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[1] The 7.5 ka Socompa sector collapse emplaced 25 km3 of fragmented rock as a thin,
but widespread (500 km2), avalanche deposit, followed by late stage sliding of 11 km3

as Toreva blocks. Most of the avalanche mass was emplaced dry, although saturation of
a basal shear layer cannot be excluded. Modeling was carried out using the depth-averaged
granular flow equations in order to provide information on the flow behavior of this
well-preserved, long run-out avalanche. Results were constrained using structures
preserved on the surface of the deposit, as well as by deposit outline and run-up (a proxy
for velocity). Models assuming constant dynamic friction fail to produce realistic results
because the low basal friction angles (1 to 3.5�) necessary to generate observed run-out
permit neither adequate deposition on slopes nor preservation of significant
morphology on the deposit surface. A reasonable fit is obtained, however, if the
avalanche is assumed simply to experience a constant retarding stress of 50–100 kPa
during flow. This permits long run-out as well as deposition on slopes and preservation
of realistic depositional morphology. In particular the model explains a prominent
topographic escarpment on the deposit surface as the frozen front of a huge wave of
debris reflected off surrounding hills. The result that Socompa avalanche experienced a
small, approximately constant retarding stress during emplacement is consistent with a
previously published analysis of avalanche data.
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1. Introduction

[2] Long run-out rock or debris avalanches are one of the
most hazardous of geological phenomena [Melosh, 1990].
During emplacement, the center of mass follows a low-
angle (�30�) trajectory, forming a thin, widespread deposit.
Avalanches on Earth with volumes greater than 106 m3 are
generally of long run-out type. Long run-out avalanches
are emplaced in a catastrophic manner, with observed or
inferred velocities of 20–100 m s�1 and run-outs reaching
in some cases many tens of km. They occur both in
terrestrial and marine environments by sudden mobiliza-
tion of large rock masses, either in volcanic or nonvolcanic
contexts. The ability of avalanches to travel large distances
in a fluid-like manner is not well understood, apparently
requiring greatly reduced dynamic friction, and a number
of possible friction reduction mechanisms have been
proposed (see recent articles by Davies and McSaveney
[1999], Legros [2002], and Collins and Melosh [2003] and
references therein).
[3] In this paper we use numerical modeling to place

constraints on the flow dynamics of the long run-out
avalanche that formed 7500 years ago by sector collapse
of Socompa Volcano in northern Chile. The model solves

the equations of motion for a granular flow and has the
advantage of taking into account basal friction, internal
friction and volumetric spreading behavior in a rigorous
manner. The modeling is constrained by deposit outline,
run-up (a proxy for velocity), and structures preserved on
the surface of the deposit when the avalanche ceased
motion. In particular we seek to explain the formation of
high topographic escarpment that is a prominent feature of
the avalanche deposit. The study provides some crude, but
intriguing, constraints on the rheological behavior of the
avalanche during motion.

2. Socompa Avalanche

[4] Socompa avalanche in northern Chile (Figure 1) has
been described in papers by Francis et al. [1985], Wadge et
al. [1995], and Van wyk de Vries et al. [2001], on which the
following summary is based. It formed by gravitational
collapse of the northwestern flank of the 6000-m-high
stratovolcano, leaving an amphitheater 12 km wide at its
mouth and with cliffs 300–400 m high. The avalanche
flowed across a broad topographic basin northwest of the
volcano (Monturaqui Basin) to a maximum distance of
40 km, and covered 500 km2. The vertical drop from
the volcano summit to the lowest point of the basin was
3000 m; at its northwestern limit the avalanche rode part
way up a range of hills before being deflected to the
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northeast, forming a frontal lobe. The volume of rock
transported is estimated to be about 25 km3, with another
11 km3 preserved as intact (‘‘Toreva’’) blocks up to 400 m
high at the foot of the collapse scarp.
[5] The morphology of the avalanche deposit is perfectly

preserved in the hyperarid climate of the Atacama Desert
(Figure 1a). The margins are steep and well defined, with
thicknesses ranging from 10 to 60 m [Wadge et al., 1995].
In some places, levees are present (labeled L on Figure 1a).
A zone of convergence and SE verging thrusting called the
‘‘median escarpment’’ (ME on Figure 1a) separates the
proximal part of the deposit, characterized by longitudinal
surface ridges, from the distal part characterized by convo-
luted surface texture [Van wyk de Vries et al., 2001]. A
complex assemblage of surface structures including normal
faults, strike-slip faults, thrusts, and longitudinal and trans-
verse ridges records the last increments of movement of the
avalanche on a local scale. The 5-km-wide central zone (CZ
on Figure 1a) immediately north of the median escarpment
is particularly rich in structures (Figure 1a) and lies 30–
60 m higher than neighboring areas.
[6] Ignimbrites, gravels, sands, and minor lacustrine

evaporites from the subvolcanic Salin Formation dominate
the avalanche sheet (reconstituted ignimbrite facies; RIF �
80%). Brecciated lavas and volcaniclastic deposits from the
edifice itself (Socompa breccia facies; SB) constitute �20%

and are confined mainly to the upper levels of the deposit.
The eastern half and outer margins of the deposit consists
almost entirely of RIF, with a thin overlying layer of SB no
thicker than a couple of meters, whereas the southwestern
half is composed of RIF overlain by up to 15 m of SB (see
Figure 10e in section 5).
[7] Most of the avalanche probably formed by a series of

retrogressive failures that merged to form a single moving
mass [Wadge et al., 1995]. Spreading took place as a
semirigid mass on a basal layer of shearing RIF [Van wyk
de Vries et al., 2001]. The RIF behaved in a ductile fashion
and must have been very weak mechanically to accommo-
date flow on slopes of 5� or less, as confirmed by the
modeling presented below. The SB, on the other hand,
behaved in a brittle fashion, breaking up passively as
it rode on a layer of RIF lubricant. Perfect preservation
of the avalanche margins, and the absence of distal mud-
flows, shows that any interstitial water was present in
insufficient quantities to saturate the majority of the flow-
ing debris.

3. Numerical Modeling of the Avalanche

3.1. Basic Equations

[8] The assumption is made in our model that the bulk of
the avalanche slid on a thin basal layer. This is commonly

Figure 1. (a) Shaded topography of Socompa avalanche, showing the median escarpment (ME), the
frontal lobe (FL), thick distal levees (L) cut by large normal faults (NF), and the central morphologically
rough zone (CZ). The accumulation of Toreva blocks is marked (T). La Flexura (LF) is a basement
anticline predating sector collapse. Deposits from later pyroclastic flows are marked (P). Coordinates are
given in km (UTM, WGS84). (b) Location of Socompa Volcano in northern Chile. Reconstructed
topography (c) of the area before collapse and (d) of the failure surface. The 25 km3 that collapsed to form
the avalanche in the ‘‘deep’’ collapse model is outlined by a black dotted line; the white ruled area is the
11 km3 that slumped after collapse and which was left in place in our calculations. The contact between the
two volumes is taken as a hemi-cylindrical headwall scarp 5 km in radius. In the ‘‘shallow’’ collapse model
the 25 km3 that collapsed is taken as a slab representing the upper 69.4% (=25/36) of the entire 36 km3 area.
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assumed in modeling granular flows [e.g., Savage and
Hutter, 1989, 1991; Iverson, 1997; Iverson and Denlinger,
2001; Denlinger and Iverson, 2001; Heinrich et al., 2001;
Patra et al., 2005] and is consistent with field evidence at
Socompa and other long run-out avalanches [Shaller, 1991;
Takarada et al., 1999; van Wyk de Vries et al., 2001].
[9] Using a topography-linked coordinate system

(Figure 2), with x and y parallel to the local ground
surface and h perpendicular to it, the general depth-
averaged equations of mass (equation (1)) and momentum
(equations (2) and (3)) conservation are
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where h is flow thickness, u = (u, v) is flow velocity, a is
ground slope, T is retarding stress, r is bulk density of the
avalanche, kactpass is Earth pressure coefficient (ratio of
ground-parallel to ground-normal stress), and subscripts
denote components in the x and y directions.
[10] For a dry frictional material, the retarding stress is of

the form

Tx ¼ �rh g cosaþ u2

r

� �
tanjbed

u

k u k ð4Þ

where jbed is the angle of dynamic friction between the
avalanche and the ground surface and any excess pore fluid
pressure is assumed to be negligible. Use of this law, even
in cases of rapid granular flow, is justified by Savage and
Hutter [1989]. Shear cell tests show that the ratio of shear to
normal stresses in a rapidly deforming granular material can
be represented by an approximately constant dynamic
friction coefficient, even if interparticle collisions are
important. The second term in parentheses is the centrifugal
stress, where r is the radius of curvature of the ground
[Savage and Hutter, 1991]. The y component of T is
obtained by replacing u by v.
[11] Following Iverson and Denlinger [2001], the

expression for kactpass used if the internal behavior is
frictional is

kactpass ¼ 2
1� 1� cos2 jint 1þ tan2 jbedð Þ½ �1=2

cos2 jint

� 1 ð5Þ

where jint is the internal angle of friction of the avalanche.
This expression is valid if jbed < jint. The sign ± is
negative (and kactpass active) where the local flow is
divergent and is positive (and kactpass passive) where the
local flow is convergent. If, on the other hand, jbed � jint,

then kactpass is given by

kactpass ¼
1þ sin2 jint

1� sin2 jint

ð6Þ

3.2. Numerical Scheme

[12] The equations were solved numerically using a
shock-capturing method based on a double upwind Eulerian
scheme (Appendix A). The scheme can handle shocks,
rarefaction waves, and granular jumps and is stable even
on complex topography and on both numerically ‘‘wet’’ and
‘‘dry’’ surfaces. Some numerical schemes require the
ground ahead of the avalanche to be covered with a very
thin artificial layer of avalanche material: a so-called
numerically wet surface [Toro, 2001].
[13] In order to check the accuracy of our numerical

scheme we performed tests to compare the numerical results
with analytical solutions and with simulations based on
other numerical schemes. Some of these are presented here.
Figures 3–5 show comparisons between numerical and
exact solutions of dam break problems. In the first case
(Figure 3) the slope is horizontal and there is zero friction.
This problem simulates the breakage of a dam separating an
initial layer 1.5 m thick (left) from a layer 0.5 m thick
(right). Our solution reproduces almost exactly the analyt-
ical solution, and particularly the frontal shock wave and the
thickness of the central plateau.
[14] Figure 4 shows three comparisons with exact

solutions obtained by Mangeney et al. [2000] for a dam
break problem on a slope with nonzero friction and with
zero thickness in front of the initial dam. The shape and
velocity of the flow are accurately reproduced, even for the
least favorable case of a steep slope and high friction
angle. Note that vertical expansion of the y axis exag-
gerates the difference between numerical and analytical
solutions.

Figure 2. Geometry of the calculation domain. The
ground topography is defined using horizontal axes xh and
yh, and vertical axis zh. The avalanche coordinates and
thickness are defined using topography-linked axes x, y,
and z. The cell dimensions are dx and dy.
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Figure 3. Comparison between numerical and analytical solutions for a dam break onto a numerically
‘‘wet’’ surface, in the absence of friction. An initial 1.5-m-thick layer is released onto a 0.5-m-thick layer.
Points of the analytical solution for t = 0.3 s are (x = 0, h = 1.5) (0.3492, 1.5) (1.0915, 0.924289) (2.5781,
0.924289) (3 0.5). Note the good fit between the two solutions at t = 0.3 s and the accurate reproduction
of the front. The thickness of the plateau obtained by our numerical solution is between 0.9240 and
0.9244, compared with 0.924289 for the analytical solution. Parameters used are dxh = 2.5 mm, dt = 1 �
10�4 s, and g = 9.81 m s�2.

Figure 4. Comparison between the analytical solution of Mangeney et al. [2000] (dashed gray), and our
numerical model (solid black) for a frictional dam break flow onto a numerically ‘‘dry’’ surface.
(a) Horizontal surface (a = 0�) with no friction (jbed = 0�) at t = 21 s; (b) a = 20�, no friction (jbed =
0�) at 18 s, and (c) a = 40�, jbed = 30� at 21 s. Parameters used are dxh = 1 m, dt = 10�2 s, and g =
9.81 m s�2. The figures to the right show the initial shape at t = 0, without vertical exaggeration.
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[15] Since our numerical scheme is based on a rectilinear
coordinate system, we also performed circular dam break
tests to ensure that the calculations are isotropic. In
Figure 5, a 6-m-diameter cylinder of zero - friction
fluid, 1.5 m thick, is released onto a 0.5-m-thick, hori-
zontal layer of the same fluid. The resulting degree of
isotropy and the shock resolution are both satisfactory,
some small numerical oscillations disappearing progres-
sively during the calculation.
[16] We also applied our code to published laboratory

experiments of granular flows down chutes. These include
the experiments of Savage and Hutter [1991], Pouliquen
and Forterre [2002], and Gray et al. [2003]. In all cases our
code is able to reproduce the experimental results as well as
schemes presented by the authors and based on other

numerical approaches (the frictional law of our model can
be easily changed to take into account the various frictional
laws used by the authors to reproduce their experimental
results). In one numerically challenging experiment, in
which a high-friction flow at high velocity encounters an
obstacle [Gray et al., 2003] (Figure 4), our scheme repro-
duces the shape and velocity of the flow; however, it is
somewhat less stable than the numerical scheme used by the
same authors to simulate their experiment (using the same
time and space steps). The advantage of our scheme is that
the computing time necessary for simulating flow over
terrain with a large number of mesh cells is less than for
many published methods. In this paper we calculate the
emplacement of an avalanche on a 460 � 570 mesh
topography in about 1 day with 3 GHz computer. The

Figure 5. Circular dam break tests viewed from above (and in cross section in the lower part of each
figure) show the isotropy of our numerical scheme. An initial 1.5-m-thick layer flows onto a 0.5-m-thick
static layer. The surface is horizontal, and there is no friction. Parameters are dxh = 0.05 m, dt = 0.005 s,
and g = 9.81 m s�2. Small numerical instabilities present in Figure 5b disappear as the flow propagates.
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computation time could be reduced, but we have chosen
a time step 5 times lower than necessary to ensure
stability.

3.3. Geological Starting Conditions

[17] The preavalanche topography north of Socompa
Volcano was estimated as follows. The present-day topog-
raphy of the volcano and avalanche (Figure 1a) was
extracted from Shuttle Radar Topography Mission (SRTM)
data. Field and borehole constraints on deposit thickness
[Wadge et al., 1995] were used to subtract the 25 km3 of
avalanche deposit and to obtain a best estimate of the
preavalanche landscape (Figure 1c). The �11 km3 accumu-
lation of Toreva blocks at the northern foot of the volcano
were removed, and the sectorial scar filled in using
Figure 13 of Van Wyk de Vries et al. [2001] to reconstruct
the precollapse morphology of the volcano (Figure 1c).
We reconstruct the La Flexura anticline north of the
volcano (LF, Figure 1a) from descriptions of Van Wyk
de Vries et al. [2001], as well as the small preexisting
relief north of La Flexura. The combination of these
constraints resulted in little freedom in reconstructing
the precollapse morphology. Since in this paper we only
model emplacement of the (fluid) 25 km3 avalanche, 11 km3

of the scar fill was left in place during our calculations (to
slump subsequently as Toreva blocks).
[18] One significant uncertainty is the exact geometry of

the initial collapse volume. In the absence of precise
evidence concerning the shape of the avalanche headwall
scarp (partly buried by postavalanche products), we assume
two end-member cases: (1) a wedge-shaped volume with
hemicylindrical headwall scarp 5 km in radius (Figures 1c
and 1d), referred to in what follows as the ‘‘deep’’ collapse
geometry, and (2) a slab-like initial slide volume, referred to
as the ‘‘shallow’’ geometry (see the legend of Figure 1 for
details). The deep geometry appears to be most compatible
with field evidence [Van wyk de Vries et al., 2001] and has
been used for most of the simulations. The shallow geom-
etry is not really compatible with field evidence, but
provides an alternative limiting case.

4. Numerical Results

[19] Different models were run with the aim of
satisfying the following field constraints: (1) best fit to
the northwestern margin, where the avalanche ran up a
distal slope approximately perpendicular to the flow
axis, (2) best fit to the overall outline of the avalanche
deposit, including the frontal lobe, and (3) reproduction
of major structures observed on the avalanche deposit,
in particular the median escarpment. Only models satis-
fying reasonably all three constraints are taken as
acceptable approximations of reality. All the results
presented below were obtained by flow across numerically
dry topography.

4.1. Frictional Rheology

[20] Models were run assuming a frictional avalanche
rheology (equation (4)) considering three combinations of
basal and internal angles of dynamic friction: (1) jbed �
jint = 30�, the static angle of friction for dry granular debris;
(2) jbed 6¼ 0� but jint = 0�; and (3) jbed = jint 6¼ 0�. In each

case the parameters were varied in multiple simulations.
The visual best fit solutions are presented in Figure 6 using
the deep collapse geometry.
[21] In the first best fit model (Figures 6a–6d), jint = 30�,

and a value of jbed = 1� is necessary to reach the
northwestern margin of the Monturaqui Basin and to
produce the observed runup. A high internal friction may
be realistic for Socompa avalanche, which exhibits field
evidence for rafting and progressive brittle breakup of SB
material on top of a base of shearing, low-friction RIF [Van
wyk de Vries et al., 2001]. Bed friction angles higher than 1�
result in reduced run-out, and lower ones cause excess
spreading. The avalanche first accelerates away from the
volcano, attaining a maximum velocity of �100 m s�1,
before reflecting progressively off the northwestern margins
of the basin (Figures 6a–6c).
[22] In model 2 (Figures 6e–6h), jbed 6¼ 0� but jint = 0�,

so that kactpass = 1. This is not necessarily unrealistic
because recent experiments show that the ratio of ground-
parallel to ground-normal stress is close to unity in labora-
tory granular flows [Pouliquen and Forterre, 2002]. In the
absence of internal friction, a slightly higher basal friction
angle (2.5�) is now required for best fit. The evolution is
close to the previous case, but here waves can be observed
reflecting off the western, northern, and northeastern sides
of the basin (Figure 6f).
[23] Model 3 (not shown in Figure 6), in which the basal

and internal angles are assumed to be the same (best fit for
�2.5�), produces a result very similar to the second model.
This is because the values of kactpass are very similar: 1 in
model 2 and 1.0038 in model 3.
[24] All three of these frictional models reproduce only

very crudely the shape of the real avalanche deposit. A
major failing is that, owing to the very low basal friction,
the model avalanches flow off any gradients greater than
1 to 2.5� (depending on the case). After reaching their
maximum limits, the avalanches drain back into the center
of the Monturaqui Basin. Consequently the model deposits
each have negligible thickness along their limits of max-
imum extent, whereas thicknesses of up to 60 m are
observed along the margins of the real avalanche [Wadge
et al., 1995]. The effect of topographic draining is to
cause excess concentration of debris on the floor of the
Monturaqui Basin. Models 2 and 3 with low internal
friction generate essentially flat-topped ponds that are quite
different from the real avalanche. The high angle of
internal friction in model 1 permits the preservation
of surface topography, but comparison with that of the
real avalanche is not favorable. None of the models
generate a well defined surface feature resembling the
30- to 60-m-high median escarpment. The frictional
models therefore fail in reproducing some first-order
morphological characteristics of the real avalanche deposit.
[25] In order to assess the effect of initial slide conditions

on our results, we also ran the same models using the
shallow collapse geometry (Figure 7). Using the same
values of jint as in Figure 6 (30� and 0�), we find best fit
values of jbed (1� and 3.5�, respectively), deposit shapes,
and surface morphologies that are similar to those for the
deep geometry. We conclude that the form of the resulting
deposit is only weakly dependent on the geometry of the
collapse volume, so that our uncertainty of the latter does
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not invalidate the apparent failure of the simple frictional
models used above.
[26] We also allowed jbed to vary with the Froude

number (k u k/
ffiffiffiffiffi
gh

p
) of the avalanche, as found for labora-

tory granular flows [Pouliquen and Forterre, 2002] and
approximated [Heinrich et al., 2001] by

tanjbed ¼ tanj1 þ tanj2 � tanj1ð Þ exp � h

D

ffiffiffiffiffi
gh

p

k u k

� �
ð7Þ

where j1 and j2 are limiting angles of friction (with j2 > j1)
and D is approximately an order of magnitude larger than the
mean particle size. Here, kactpass is considered to equal 1.
Equation (6) in fact gives results comparable to model 2
(jbed 6¼ 0� and jint = 0�) described above (Figures 6e–6h).
The effect of velocity is to increase jbed over and above the
static value (j1). For the mean value of jbed necessary to
reproduce the observed run-out (2.5�), j1 needs to have an
even lower value, irrespective ofD and j2. Once a given part
of the avalanche is slowing down, jbed reverts to j1 and, as
in the constant-jbed case, formation of surface topography is
prevented by the high fluidity of the material. It is worth
noting that values for j1, j2 and D used by Heinrich et al.

[2001] to simulate the �0.005 km3 26 December 1997
debris avalanche on Montserrat (11�, 25� and 15 m,
respectively) result in a run-out for Socompa that is much
smaller than that observed. Using a more complete form of
equation (7) [Pouliquen and Forterre, 2002] gives slightly
better results because the friction angle increases just as the
avalanche comes to rest, allowing structures to be preserved.
However, while this law gives very good results for
simulated laboratory experiments, we have not found any
combination of the six free parameters that give a good fit in
the case of Socompa.
[27] Finally, we note that the well known Voellmy rheo-

logical law also fails to satisfy all three constraints at
Socompa. The Voellmy law consists of a frictional stress
plus a positive stress term proportional to velocity squared
[e.g., Evans et al., 2001]. Although entirely empirical, it has
been widely used to model snow and rock avalanches in two
dimensions. However, in the case of Socompa we find that
it fails to generate realistic results for a similar reason as
equation (7).
[28] In summary, simple frictional models are able to

reproduce the approximate run-out of Socompa avalanche

Figure 6. Snapshots of the emplacement of frictional avalanche models 1 and 2 at t = 200 s and t =
400 s, with the corresponding deposits. See text for full discussion. (a–d) Model 1, avalanche with jbed =
1� and jint = 30�. (e–h) Model 2, avalanche with jbed = 2,5� and jint = 0�. The color scale denotes the
thicknesses (m) of the avalanche. Figures 6d and 6h are shaded relief maps of the final deposits. Both
models assume an initial deep slide surface and vertical headwall scarp of hemicylindrical shape.
Distances are given in meters (UTM).
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only if very low values are used for the basal dynamic
friction. However, they are unable to generate deposits
either with realistic thicknesses on slopes greater than about
three degrees, or realistic surface morphology such as the
median escarpment. This is because the low basal friction
angles necessary for long run-out also result in strong
topographic drainback.

4.2. Constant Retarding Stress

[29] In view of the apparent inadequacy of the simple
frictional models, we also ran models in which the retard-
ing stress T in equations (2) and (3) was constant (kactpass
was taken as unity). This very simple assumption was
motivated by the study of Dade and Huppert [1998], who
found that the field data for a large number of avalanches
can be explained by an approximately constant retarding
stress.
[30] The models produce surprisingly good fits to the real

avalanche provided that T lies in the range 50–100 kPa,
depending on the initial slide geometry chosen. Using the
deep collapse geometry the overall distribution is repro-
duced reasonably well with a value of 52 kPa (Figure 8), but
with slight excess spreading to the west and east. A 75 kPa
resistance produces realistic fits to the western and eastern
boundaries, but the northwestern limit is not reached. In the
case of a (geologically less realistic) shallow collapse, a
resistance of 100 kPa is required, but the frontal lobe is less
well produced.
[31] Unlike the frictional rheologies, this law produces a

deposit with a well defined edge and leaves a deposit of

realistic [Wadge et al., 1995] thickness on all slopes,
irrespective of angle. Surface structures on the model
deposit are remarkably similar to those of the real avalanche
(Figures 8d and 8e). In particular, a well-defined NE-SW
trending topographic discontinuity (ME, Figure 8) strongly
resembles the median escarpment, both in height (20 to 50m)
and location.
[32] Snapshots of the 52 kPa simulation (Figure 9,

colored for velocity, see also Animation 1) provide an
explanation for the origin of the median escarpment.
The avalanche accelerates down the northern flank of the
volcano, attaining a maximum speed of �100 m s�1. As it
runs up the western, then northwestern, slope of the basin, it
reflects as three waves (one main one and two smaller ones)
that then merge and wash back across the basin. The front of
this composite wave then freezes to form the median
escarpment. The elevated zone located north of the frozen
wave front is also observed on the real avalanche deposit,
and in the model represents the peak of the reflected wave
(CZ, Figure 8). This area, which in the natural deposit is
rich in complex fault structures, experiences a complex
history during the simulation, involving (1) initial stretch-
ing as the avalanche accelerates away from the volcano
(Figure 9a), (2) compression as the material decelerates
and accumulates against the northwest margin (Figure 9c),
and (3) stretching and shearing during reflection off the
northwest margin (Figures 9d and 9e). Other similarities
between the simulated and real deposits include the frontal
lobe (FL, Figure 8) and the overthickened margins along
the northwestern limit of the avalanche that in the model

Figure 7. Best fit simulations using a shallow slab-like initial slide geometry, to be compared with the
deep geometry shown in Figure 6. The color scale denotes thickness. (a) Avalanche with jint = 30�.
Visual best fits require approximately the same value of jbed = 1� for this shallow geometry as for a deep
geometry. (b) Avalanche with jint = 0�. Visual best fits require jbed = 3.5� for this shallow geometry
compared with the 2.5� for the deep case in Figure 6.
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form by accumulation, then back slumping, of material
during wave reflection.

5. Discussion

[33] We have carried out numerical modeling of the
emplacement of Socompa avalanche using the depth-
averaged equations for granular flow and a numerical

scheme capable of resolving shocks to a high degree of
accuracy. The models assume transport of the avalanche
on a basal slip layer, as suggested by evidence at Socompa
and avalanche deposits. Starting conditions are consistent
with field observations. The avalanche is assumed to have
traveled as a single mass, with the exception of the Toreva
blocks, which in our models are left to slump after
avalanche emplacement.

Figure 8. Avalanche evolution using a constant retarding stress T = 52 kPa. The color scale denotes
thickness. The initial deep slide geometry is used in this simulation. (a–c) Snapshots at 200 s, 400 s, and
600 s. (d) Shaded relief map of the simulated deposit. (e) Shaded relief map of the real deposit.

B12202 KELFOUN AND DRUITT: MODELING OF THE SOCOMPA ROCK AVALANCHE

9 of 13

B12202



[34] The high ‘‘mobility’’ of long run-out avalanches is
normally interpreted in terms of reduced dynamic friction.
The results of our modeling using frictional laws indeed
confirm that very low basal friction (3� or less) is required
to explain run-out at Socompa, irrespective of the internal
value. This agrees approximately with the value of arctan
(H/L) for the avalanche, which is 4.3� if the maximum
values ofH (height drop) and L (horizontal run-out) are used.
Simple scaling arguments show that (H/L) � tan f, where f
is the mean dynamic friction angle during emplacement
[e.g., Pariseau and Voight, 1979]. The long run-out cannot
be explained by gravitational spreading of a very large
volume of rock debris with normal friction. Use of values
of f in the range 20�–30� typical of dry granular materials
results in run-outs that are grossly inferior to that observed.

No variation of the geometry of the initial slide mass within
geologically realistic limits changes this conclusion.
[35] Many hypothetical mechanisms of friction reduction

have been proposed for rock avalanches; see Davies and
McSaveney [1999], Legros [2002], and Collins and Melosh
[2003] for recent summaries. We focus here on just a few
that are relatively well constrained physically. Elevated pore
fluid pressure may play an important role in friction
reduction in many avalanches by decreasing the effective
normal stress at the bed. Fluid pressures close to lithostatic
have been measured in debris flows [Major and Iverson,
1999] and are likely in wet rock avalanches such as Mount
St. Helens [Voight et al., 1983]. Although there was
insufficient water in Socompa avalanche for subsequent
decantation and mudflow formation, saturation of a thin

Figure 9. Snapshots every 100 s of the constant stress (52 kPa) simulation of Figure 8, colored
according to velocity (m s�1). The reflected wave is particularly clear in these figures, as is the late stage
emplacement of the frontal lobe. See Animation 1 for video version.
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basal layer cannot be excluded. Water could have been
derived from the water table beneath the volcano or from
the ground surface over which the avalanche traveled. It is
possible that a shallow lake or water-saturated sediments
existed in the Monturaqui Basin in late postglacial times
[Van wyk de Vries et al., 2001]. Pressurized hydrothermal
fluids derived from the edifice and/or overridden atmo-
spheric air could also have played a role. Other mecha-
nisms, such as acoustic fluidization [Melosh, 1983; Collins
and Melosh, 2003], mechanical fluidization [Davies,
1982], self-lubrication [Campbell, 1989; Campbell et al.,
1995], or dynamic fragmentation [Davies and McSaveney,
1999] may generate velocity dependencies of dynamic
friction in the absence of pore fluids.
[36] Although frictional models can account crudely for

the long run-out of Socompa avalanche, the low basal
friction allows neither realistic deposition on slopes nor
preservation of surface morphology like the median

escarpment. A better fit is obtained if we simply assume
a constant retarding stress in the range 50–100 kPa. We
emphasize that we do not consider this to be necessarily
an accurate rheological description of the avalanche;
constraints on the starting conditions are too crude to
enable any unique rheology to be inferred. Avalanches
will probably exhibit very complicated time-dependent
and spacially variable mechanical behavior [Iverson and
Vallance, 2001]. Most likely, the condition represents
some average value of a retarding stress that varied with
time during run-out. However, it is consistent with the
finding of Dade and Huppert [1998] that an approximately
constant stress in the range 10–100 kPa can explain the
spreading behavior of rock avalanches with a wide range
of volumes. Indeed, it was this observation that led us to
try models of this type. Other authors have also concluded
that long run-out avalanches exhibit some kind of yield
strength by comparing avalanche deposit thicknesses on

Figure 10. (a–d) Constant stress (52 kPa) simulation of Figures 8 and 9, with surface rocks colored
according to lithology. Pink indicates altered Socompa lavas. Grey and brown indicate fresh lavas. Pale
blue indicates ignimbrite. Ignimbrite bordering the initial avalanche front to the northeast represents the
ignimbrite-cored La Flexura anticline that formed the thrust front of the initial avalanche slump. The
distribution of lithology colors has been arbitrarily adjusted but is geologically realistic. White lines show
the trajectories of points on the avalanche surface advected by the flow. The snapshots are at (a) t = 200 s,
(b) 300 s, (c) 400 s and (d) the final deposit. (e) Landsat image. Numbers refer to structures visible on the
simulated deposit and on the Landsat (channels 7 4 2) image.
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Earth and Mars [McEwen, 1989; Shaller, 1991]. That a
constant retarding stress can also capture to a first order the
emplacement dynamics of Socompa avalanche lends some
support to Dade and Huppert’s analysis and raises the
question of the origin of this behavior.
[37] We speculate that conditions in the avalanche may

have varied with time in such a way that the retarding
stress could have remained approximately constant, even
though the rheological behavior was fundamentally fric-
tional (i.e., basal shear stress was a product of an apparent
friction coefficient times the lithostatic normal stress,
modified by a centrifugal term (equation (4)). Consider a
hypothetical avalanche in which high fluid pressure is
initially present in the basal shear zone, so that motion
commences (when the avalanche is thick) with low basal
friction. During run-out, pore fluids migrate away from the
shear zone, so that friction increases progressively by
pressure diffusion at the same time that the avalanche
spreads and thins [e.g., Iverson and Denlinger, 2001]. The
result could be that the basal stress remains approximately
constant due to the competing effects of basal friction and
flow thickness (i.e., lithostatic normal stress). In the case
of a velocity-dependent process such as acoustic fluidiza-
tion or mechanical fluidization, the basal friction might be
reduced at initial high velocity (when the flow is thick),
but would increase at lower velocities and approach the
value of static friction as the avalanche comes to rest (once
the flow had thinned). In both examples, acquisition of
high apparent friction as avalanche motion ceased would
permit preservation of surface morphology. A third possi-
bility is that basal friction remains negligible throughout
run-out (for example due to fluid pressure � lithostatic
overburden), and that the retarding stress is a cohesive
component related to grinding and crushing of particles in
the basal layer and/or to rock breakage within the over-
riding mass as it spreads across the landscape. Stresses of
50–100 kPa indeed lie in the range of cohesive strengths
of volcanic materials measured in laboratory experiments
[e.g., Voight et al., 2002].
[38] Irrespective of the exact dynamics, our study

provides two general constraints on the flow behavior
of the avalanche. First, all models investigated require
peak velocities of �100 m s�1 to achieve the observed
run-out. This is due to the large height differential
between the volcano summit and the basin floor (3000 m):
one of the largest known for a terrestrial avalanche. Second,
the results suggest that the median escarpment is the frozen
front of a huge composite wave of rock debris reflected off
the western, northwestern, and northern margins of the
Monturaqui Basin. Reflection is observed to different
extents in all the models run, but it is only in the
constant-stress simulation that the wave front is preserved
as a high escarpment.
[39] The reflection hypothesis is further investigated in

Figures 10a–10d, in which the 52 kPa constant-stress
model is rerun with the avalanche surface colored according
to rock lithology. The initial distribution of lithology colors
is arbitrarily adjusted, but is geologically realistic (B. Van
wyk de Vries, oral communication, 2001). White tracer
particles track the motion of the avalanche as they are
advected along. The distribution of surface lithologies on
the resulting numerical deposit closely resembles that evi-

dent on the Landsat image of the avalanche (Figure 10e).
Moreover the back-reflected trails of the tracer particles
mimic the stretching and folding fabrics on the avalanche
surface. As the wave is reflected back in the model, material
behind the wave drains northwestward to form the frontal
lobe. Although certainly not a unique solution, Figure 10
demonstrates that avalanche reflection, as well as generating
the median escarpment, can plausibly account for the
surface textures observed on the deposit surface for a
geologically realistic precollapse distribution of lithologies
on and around the volcano.
[40] The topographic reflection of a huge wave of frag-

mented rock debris off the side of the Monturaqui Basin is a
striking illustration of the high fluidity that characterizes
long run-out avalanches like Socompa.

Appendix A: Numerical Scheme

[41] We use a Eulerian explicit upwind scheme where
scalars (flow thickness h and ground elevation z) are defined
and computed at the centers of cells, and vectors (fluxes f
and velocities u = (u, v) at the edges (Figure A1a). Mean
values of flow thickness (h) are computed at the edges of
cells, and mean values of velocities, u = (u, v), at the centers
of cells.
[42] We use cell edge (i � 1/2, j) to illustrate the main

steps of the algorithm (Figure A1b). For each time incre-
ment we first compute the source terms of the conservation
equations, then the advection terms. The governing equa-
tions contain three source term accelerations:

aw ¼ �g sin qz sina;�g cos qz sinað Þ
ap ¼ �g kactpass cosa dh=dx;�g kactpass cosa dh=dy

� �

ar ¼ � t
rh

u

k u k ;�
t
rh

v

k u k

� �

where a is the local slope, qz is the horizontal azimuth of
that slope, and t is the retarding stress dependant on the
rheological law chosen. The algorithm first calculates a
fictive velocity due just to terms aw and ap. The retarding
acceleration ar is then computed in the direction opposed to
this fictive velocity. This approach increases the stability of
the algorithm and ensures isotropy of the solutions. The
value of new velocity (called s) due to the action of source
terms is then

si�1=2;j ¼ ut�dt
i�1=2;j þ aw þ ap þ ar

� �
dt

[43] The second stage of the algorithm computes the
advection terms. The fluxes of mass and momentum are
calculated using an upwind scheme. For example, if the x
component of si�1/2,j is negative, fluxes through the side are
computed by

fh
i�1=2;j ¼ si�1=2;j h

t�dt
i;j dy

fhu
i�1=2;j ¼ si�1=2;j u

t�dt
i;j ht�dt

i;j dy

fhv
i�1=2;j ¼ si�1=2;j v

t�dt
i;j ht�dt

i;j dy

Note that the superscripts of f indicate the quantity
advected: mass h and momentum hu and hv. From these
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fluxes, we calculate the new thickness and the new mean
velocity at the center of each cell:

hti;j ¼ ht�dt
i;j þ fh

i�1=2;j � fh
iþ1=2;j þ fh

i;j�1=2 � fh
i;jþ1=2

� �
dt=S

uti;j ¼
ut�dt
i;j ht�dt

i;j þ fhu
i�1=2;j � fhu

iþ1=2;j þ fhu
i;j�1=2 � fhu

i;jþ1=2

� �
dt=S

hti;j

vti;j ¼
vt�dt
i;j ht�dt

i;j þ fhv
i�1=2;j � fhv

iþ1=2;j þ fhv
i;j�1=2 � fhv

i;jþ1=2

� �
dt=S

hti;j

where S is the surface of the cell.
[44] Finally, the x and y components of the new velocities

at the edges, modified by advection, are calculated using a
second upwind scheme. For example, if ui,j

t and ui�1,j
t are

both negative, ui,j
t will modify only the value of ui�1/2,j

t , and
the new velocity at time t at edge (i � 1/2, j) is given by

uti�1=2;j ¼ si�1=2;j þ uti;j � ut�dt
i;j

� � hti;j

h
t�dt

i�1=2;j
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Figure A1. Definitions of (a) scalars, vectors, and (b) cell
notation in the numerical scheme.
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