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A linear retrieval (spectral deconvolution) algorithm is developed and applied

.

to 1ugu-1t:bumuuu mUULdLUl_y' infrared prLlld of par ticulate mixtures and their end-
members. The purpose is to place constraints on, and test the viability of, linear spectral
deconvolution of high-resolution emission spectra. The effects of addition of noise, data

reproducibility, partlcle size variation, an increasing number of minerals in the m1xtures,
and blind end-member input are also examined. Thermal emission spectra of 70 mineral
mixtures ranging from 2 to 15 end-members and having particle diameters of 250-500 um
were obtained. Deconvolution results show that the assumption of linear mixing is valid
and enables mineral percentage prediction to within 5% on average with residual errors of
less than 0.1% total emissivity. One suite (21 distinct mixtures), varying from <10 wm to
500 um, was also prepared to test the limits of the model at decreasing particle sizes.
Incoherent volume scattering at grain diameters less than several times the wavelength

( ~60 wm) produces significant changes in spectral band morphology and hence, an
increase in the root-mean-squared (RMS) error of the model. Because of this, it appears
that spectral mixing remains essentially linear to ~60 wm (using the 250-500 wm size
fraction as end-members). Below this threshold, the linear retrieval algorithm fails.
However, with the appropriate particle diameter end-member spectra for the
corresponding mixtures, the errors are reduced significantly and linearity continues
through to the 10-20 um size fraction. Additions of increasing amounts of noise cause a
deviation of an additional 2.4%, whereas variability due to spectrometer reproducibility
produces an average error of 4.0%. The model is also able to detect accurately minerals in
mixtures containing 15 end-members, well beyond the number of geological significance.
Extensive error analysis and model testing confirm the appropriateness of linear
deconvolution as a useful and powerful tool to examine complexly mixed emission spectra
in the laboratory and the field. The results of this study provide a foundation for remote
sensing analyses of thermal infrared data from current airborne and future satellite

instruments planned for Earth and Mars.

1. Introduction

The fundamental goal of remote sensing measurements,
whether in the laboratory or from space, is to determine the
physical and chemical characteristics of the object under study.
Depending on the wavelength region examined, properties of
geologic interest can include surface roughness, mineralogy,
temperature, particle size, and elemental abundance. With ad-
vances in technology and the potential new applications for
remote sensing, future instruments will produce extremely
large data volumes, requiring faster and more accurate pro-
cessing tools [Adams et al., 1989].

One such data reduction technique is spectral deconvolu-
tion, which has been used for a variety of scientific problems
involving mixture analyses. Using both linear and nonlinear
approaches, workers have adapted the model to high-
resolution visible/near-infrared (VNIR) spectra [Johnson et al.,
1983; Mustard and Pieters, 1989; Mustard, 1993] and to a lesser
extent in the thermal infrared (TIR) portion of the electro-
magnetic (EM) spectrum using a linear assumption [Thomson
and Salisbury, 1993; Ramsey, 1996; Hamilton et al., 1997]. The
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fundamental principle of this technique is that the emitted or
reflected energy from a multimineralic surface is a decipher-
able combination of the energy radiated from each component
in proportion to its areal percentage. For the assumption of
linearity with respect to spectral mixing, the areal percentage
of surface minerals (end-members) with known particle sizes
and densities translates into the volume present. If spectra of
the pure end-members are known, mixture spectra can then be
deconvolved through a least squares linear fit resulting in a
percentage of each input end-member plus several measures of
the model quality. Deconvolution provides a relatively straight-
forward and computationally quick method of assessing the
mineral assemblages of a surface, thereby reducing hyperspec-
tral data sets to a minimum informational volume. In addition,
the products of such an analysis (areal percentage, end-
members present, and model error) are easier to interpret,
especially where translated into an image format, than are
thermal radiance values or arbitrarily classified pixels.

The assumption of linear mixing of end-member radiant
energy is not new. Early, pioneering work in laboratory reflec-
tance and thermal emission spectroscopy led Lyon [1964] to
suggest the possibility of linearity. Earth-based telescopic spec-
tra [Singer and McCord, 1979] and multispectral data returned
from the Viking lander missions to Mars were analyzed by a
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similar approach [Adams ét al., 1986]. A binary approach has
been applied by Dozier [1981] to identify and deconvolve sub-
pixel temperature anomalies using the two TIR bands of the
advanced very high resolution radiometer (AVHRR) satellite
instrument. The six VNIR spectral bands of the Landsat the-
matic mapper (TM) instrument have made it possible to dis-
tinguish vegetation types and monitor deforestation [Roberts et
al., 1990; Adams et al., 1995] as well as examine eolian sand sea
dynamics [Blount et al., 1990] using a linear deconvolution
method. More recently, mixture analysis using airborne data
sets in the VNIR [Mustard, 1993; Tompkins et al., 1997] and
TIR [Gillespie, 1992; Ramsey et al., 1993] have served as ana-
logs for future Earth-orbiting instruments.

Much of the work to date has been done on the forward
problem of spectral mixing [Christensen et al., 1986; Crown and
Pieters, 1987, Thomson and Salisbury, 1993], that is, performing
empirical comparisons of physically mixed laboratory spectra
and their numerically generated equivalents. Results from
studies such as these qualitatively show that mixing in many
cases appears to be linear; however, they do little to test un-
supervised models, nor do they indicate the limits and errors
associated with a spectral deconvolution approach. Expanding
upon these comparative studies, other investigators have ex-
amined the reverse problem, that is, trying to deconvolve spec-
tra to predict the amounts and types of minerals present and
understand the geologic processes that resulted in their mixing
[Johnson et al., 1983, 1992; Ramsey and Christensen, 1992; Sabol
et al., 1992; Mustard and Pieters, 1989].

Previous workers have either concentrated on the VNIR
portion of the spectrum (0.4-2.5 wm) where reflection spectra
have been shown to be nonlinear upon mixing [Nash and
Conel, 1974; Singer, 1981; Clark, 1983; Johnson et al., 1992] or
worked with TIR reflection [Eastes, 1989; Thomson and Salis-
bury, 1993], rather than emission spectra. These nonlinearities
of reflected energy mixing in the VNIR can be averted to some
degree by using radiative transfer equations that convert the
reflection from a surface to the single scattering albedo
[Hapke, 1981; Mustard and Pieters, 1989; Johnson et al.; 1992].
Conversions such as these do allow a linear approach to be
taken, but only for a range of observation angles and particle
sizes. The nonlinearities of mixing in this wavelength region
were shown by Johnson et al. [1992], who worked with spectra
of several ternary mixtures. They showed that there was no
statistical chance of accurate detection of quartz for mixtures
containing <30% of that mineral in olivine. To some degree
this is caused by the spectrally neutral character of many sili-
cates in the VNIR but is also a function of the overall albedo
of a particular mineral. A comparison of known mineral per-
centages with model predicted values for another mixture suite
of calcite, hypersthene, and olivine indicates a discrepancy
range of 0-22% with an average close to 10% for several of the
minerals [Johnson et al., 1992]. An excellent summary of de-
tection thresholds with respect to mixing analyses in the VNIR
is provided by Sabol et al. [1992].

By comparison, the linear assumption in the thermal infra-
red region has been shown to be significantly more valid than
in the VNIR [Ramsey. and Christensen, 1992; Thomson and
Salisbury, 1993]. Considering the dearth of past research in the
TIR region, the need for a detailed study on the deconvolution
of emission spectra becomes important considering the enor-
mous volume of upcoming satellite data from the thermal
emission spectrometer (TES) [Christensen et al., 1992] instru-
ment at Mars and the advanced spaceborne thermal emission
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and reflectance radiometer (ASTER) [Kahle et al., 1991]
planned for Earth orbit. There are several studies in the ther-
mal infrared region with direct bearing on this effort. Gillespie
[1992] applied an unmixing model to airborne TIR images of
Death Valley, California, and was able to discriminate four
end-members: vegetation, quartzite, basalt, and “virtual cold.”
There was nio attempt to verify the model results in the field or
laboratory, however. Another significant spectral mixing study
in the TIR is that of Thomson and Salisbury [1993], who used
high-resolution reflection spectroscopy to study several differ-
ent mixtures at unimodal size fractions, but no attempt was
made to apply a retrieval approach to the data. Rather, a
forward analysis with a simple comparison of the physically
mixed spectrum to the numerically mixed one showed agree-
ments to within 5% and prompted Thomson and Salisbury to
state that the assumption of linear mixing in the thermal in-
frared is valid. :

The purpose of this study is to provide a quantitative inves-
tigation of the limits and applicability of linear deconvolution
of thermal emission spectra emphasizing nonideal input con-
ditions and evaluating the associated errors. The algorithm was
applied to emission spectra of mineral mixtures of various
numbers and particle sizes. Further, results were examined
after the addition of random noise, the effect of spectrometer
precision, and the applicability of using a blind end-member
approach. A graph of the various model permutations used for
this study is shown in Figure 1.

2. Theory

2.1. Visible/Near-Infrared Photon Scattering

The scattering and absorption of energy in the VNIR results
in the spectral nonlinearity of mineral mixtures [Lyon, 1964;
Nash and Conel, 1974; Mustard and Pieters, 1989]. This scat-
tering is caused by the geometric optics of the particles with
respect to wavelength together with the absorption coefficient
of the minerals [Hapke, 1981; Johnson et al., 1983; Moersch and
Christensen, 1995]. With many minerals having a much smaller
absorption coefficient, and hence a larger photon path length
than the TIR region, photons undergo significantly greater
volume scattering at these shorter wavelengths [Eastes, 1989;
Wald and Salisbury, 1995]. Volume scattering occurs where a
photon passes through one.or more grains of a mixture and is
incoherently scattered at every particle interface and grain
asperity. Further, highly absorbing (dark) materials present in
a mixture will bias the spectral features and impart a nonlinear
signature on the composite spectrum [Nash and Conel, 1974;
Clark, 1983]. The large probability that photons will survive
passage through several transparent grains, even where those
grains are much larger than the wavelength of the photon,
causes weakly absorbing materials to have larger degrees of
nonlinear volumetric scattering. Most geologically important
rock-forming minerals such as quartz, feldspar, the alumino-
silicates, and most carbonates; as well as mineral glasses, fall
into this category.

2.2. Thermal Infrared Emission From Natural Surfaces

The thermal energy or radiance (L), emitted at any given
wavelength ()), is a function of the temperature of the object
as well as its emissivity. Ignoring instrumerit effects, the black-
body radiance (B), temperature (7), and emissivity (&) are
related through the Planck equation:
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Figure 1. Deconvolution model trial matrix used for this study. Each marked box represents a different
input effect tested on a given end-member suite of mineral mixtures. The total mixtures formed for a given
number of end-members is shown in to rightmost column (a total of 91 mixtures were analyzed for this study).
The lowermost row lists the table number corresponding to a particular model] test.

C\\73
Lon=eBon= &\ [exp (C/AT) — 1] M

where C; = 3.74 X 107 Wm? and C, = 0.0144 m K. An
object with an emissivity value equal to unity radiates a fea-
tureless spectrum described by the Planck function and is de-
fined as a blackbody emitter. Most materials do not behave as
blackbodies, however. Rather, they have spectra with emissiv-
ity values less than one at discrete wavelengths. Commonly
called absorption bands, these features are signatures of the
object or mineral being analyzed. The strongest reflections
occur at wavelengths corresponding to the large absorption
bands or reststrahlen features, which are present in silicate and
carbonate minerals [Salisbury, 1993; Salisbury and Wald, 1992].
The locations and shapes of these emission features are func-
tions of the real and imaginary parts of the mineral’s index of
refraction [Moersch and Christensen, 1995; Wald and Salisbury,
1995; Mustard and Hays, 1997].

By comparison to the VNIR, photon/matter interaction in
the thermal infrared, because of the higher absorption coeffi-
cients of the minerals, is dominated by surface or Fresnel
reflections and in general combines linearly in a “checker-
board-mixing” fashion [Gillespie, 1992; Adams et al., 1993]. In
other words, the detected energy is a function of the areal
percentage of the end-members present. Photons tend to in-
teract once after being emitted/reflected from particles and
therefore contain information only about that particular par-
ticle, or they are absorbed after being scattered and never
reach the detector.

2.3. Spectral Variation With Particle Size

Absorption bands lessen in intensity and change in morphol-
ogy with decreasing particle size; however, the positions of
these features (reststrahlen bands) remain constant [Lyon,
1965; Hunt and Vincent, 1968; Salisbury and Wald, 1992;

Moersch and Christensen, 1995). It is this property that allows
for identification of most geologic materials in the TIR irre-
spective of grain size. Significant morphological changes in
spectral features due to decreasing particle size do become a
factor with respect to spectral analysis well below 60 um [Hunt,
1976; Moersch and Christensen, 1995; Mustard and Hays, 1997].
The position and behavior of these changes vary with wave-
length and are ultimately related to the variation of the optical
constants for each mineral. Explained in detail for quartz by
Moersch and Christensen [1995] and olivine by Mustard and
Hays [1997], the change in band shape and depth can be di-
vided into three primary classes.

At the reststrahlen bands, which dominate vibrational spec-
tra at large grain sizes, the mineral has a high absorption
coefficient. With decreasing particle size, grains with a much
larger surface area increase the potential of multiple reflec-
tions and hence the subsequent amount of energy returned to
the detector (i.e., higher emissivity). In an emissivity spectrum,
this scatter of emitted energy produce the linear effect of
reducing the spectral contrast of the reststrahlen features
(1150 cm ™! and 500 cm ™!, Figure 2).

In spectral regions where the mineral is weakly absorbing,
volume transmission through the grains dominates. As particle
size is decreased, more surface interfaces are created, and the
potential for energy to escape the surface is reduced [Lyon,
1964; Hunt and Vincent, 1968; Salisbury and Wald, 1992,
Moersch and Christensen, 1995]. In these intraband regions, emis-
sivity decreases with grain size forming new absorption bands
which continue to increase in contrast (600 cm !, Figure 2).

The third primary behavior observed in the spectra of par-
ticulates occurs in the region where the index of refraction is
near unity and the absorption coefficient is rapidly increasing.
At these wavelengths, very little energy is being diffracted
[Moersch and Christensen, 1995] and the large absorption co-
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Figure 2. Effects of particle size reduction on the spectrum of quartz. As particle size is reduced, though still
remaining much larger than the TIR wavelength, surface scattering is increased further due to the larger
number of grain facets. These surface reflections result in more emitted energy reaching the detector, thereby
decreasing the depth of the large absorption bands. Very little morphological change occurs in spectra of the
largest three size fractions. The spectrum of the 40—-63 pm fraction is beginning to show the effects of volume
scattering of the emitted energy. The larger decrease in the depth of the reststrahlen bands as well as the
nonlinear changes at 900 cm ! (11.1 um) and 650 cm ™! (15.4 um) are caused by the absorption coefficient
and index of refraction of quartz as emitted energy is transmitted through the volume of each grain.

efficient limits volume scattering [Hapke, 1993]. Known as the
Christiansen feature, this region remains unaffected by
changes in the grain diameter of the mineral.

Since the optical constants of the mineral are unaffected by
changes in the grain diameter, the relatively large absorption
coefficients and small mean optical path length for most min-
erals in the TIR tend to limit volume transmission to all but the
smallest particles. It is this limiting of multiply-bounced pho-
tons that produces thermal emission spectra which are linear
combinations of the surface minerals present and allows for
the very assumption of linear deconvolution. In terms of total
photons that reach a detector, a large majority have only in-
teracted with one grain of one mineral and therefore contrib-
ute a total amount of energy to the mixed spectrum which is
proportional to the areal percentage of those grains.

With further decreases in diameter to that approaching the
wavelength, particles start to become optically thin to thermal
infrared photons. As in the VNIR, optically thin grains allow
more of the energy to pass through the particle thereby en-
hancing nonlinear volume scattering [Mustard and Hays, 1997].
Although this is not a prime concern for many terrestrial TIR
remote sensing applications, the viability of linear mixing in the
thermal infrared becomes questionable at grain diameters
smaller than this. On Earth, very few geologic surfaces are
composed of independently scattering sub-60 pwm particles.
Rather, in most arid and minimally vegetated regions (a prime
target for future TIR remote sensing), fine-grained soil parti-
cles are commonly cemented together by chemically precipi-
tated crusts which increase the effective radiating diameter
[Harden et al., 1985; Salisbury and Wald, 1992). In addition to
these soils, such regions typically consist of sand and coarse
granual lag deposits, as well as outcrops, none of which would
result in volumetric scattering [Ramsey et al., 1993; Dixon,

1994]. Only in those rare areas of unconsolidated dust or clay
would TIR spectra begin to contain scattering effects detect-
able to a degree that would effect the results of a linear de-
convolution analysis. For Mars, there are large regions of high
albedo, fine grain (<40 wm) dust [Palluconi and Kieffer, 1981,
Christensen, 1986]. However, over half the planet is covered by
low albedo regions composed of coarse-grained particles (200—
500 wm) [Palluconi and Kieffer, 1981; Christensen, 1983] nearly
identical to the size fractions used in this study. It is assumed
that these areas will be the ones initially targeted for decon-
volution using the approach presented here and the dusty
regions necessitating a more complex (perhaps nonlinear)
model.

2.4. Constrained, Least Squares Linear Retrieval
Algorithm

The fundamental principle of linear mixing is that the spec-
tral features of the end-member minerals overlap and combine
in the composite spectrum in proportion to their areal frac-
tions. This proportionality allows for a relatively simple statis-
tical determination of the best fit end-member percentages for
a given mixture spectrum [Sabol et al., 1992; Adams et al.,
1993]. Assuming n isothermal end-members, the mathematical
expression for the mixture spectrum (e(A),,;,) is stated by
equation (2) with the constraint that the fractions must sum to

unity:

e mix = 2, Le(A); + 3(N);

i=1

Z {i=1.0 (2)

where {; is the areal fraction of the ith end-member (e(A);)
and is equal to the mass divided by the product of the density



RAMSEY AND CHRISTENSEN: MINERAL ABUNDANCE DETERMINATION

and diameter. In mixtures where the particle diameters and
densities for each end-member are equal, the areal percentage
reduces to the mass fraction. The residual error, 8(A), or model
difference is calculated by subtracting the model predicted
emissivity from the measured emissivity at each wavelength.
This difference of the two spectra is a critical measure of the
retrieval algorithm’s fit and is easily visualized where displayed
versus wavelength, or as an image in the case of remotely
gathered data [Gillespie et al., 1990; Ramsey et al., 1993]. High
residual errors at specific wavelengths indicate the possibility
of an unmodeled absorption feature not present in either the
end-member or mixture spectrum. An examination of residuals
may also reveal nonlinear behavior at certain wavelengths as
well as highlight areas of poor atmospheric correction and/or
low instrument signal to noise (SNR). The residual error, ex-
pressed as a single value for the entire wavelength region, is
known as the root-mean-square (RMS) error and determines
the “goodness of fit” for a particular model iteration. -For an
instrument with (m) wavelength channels, this term is related
to the residual error term through

RMS = 3

The magnitude of the RMS varies between 0 and 1.0, with
smaller values corresponding to a better fit. For example, in
this study typical errors associated with high-resolution labo-
ratory spectra were of the order of 0.10-0.010%.

Equation (2) is commonly over determined, having several
unknowns (the end-member fractions and sample tempera-
ture) and hundreds of equations (the radiance measured at
each wavelength). In order to solve the series of equations, the
approach chosen was a numerical least squares fit using a
chi-square minimization [Ramsey, 1996]. The technique uses a
linear regression analysis, assuming a normal distribution of
the data, to solve for the matrix of unknown end-member
fractions [Press et al., 1988]. Further, it has been shown to be
the quickest computational method for manipulating large
data arrays and lends itself well to the use of spectral library
data sets. Remaining with the conventions used by Press et al.
[1988] and expanding the notation to matrix form, the deriva-
tion of the chi equation reduces the solution,

[ = ([X](TT,,A)[X](A,T,))_I[X](T",A)[U](A) “)

where [X], ., is the end-member matrix of emissivity spectra
at each wavelength (e,) and is [A wavelength channels by 71
end-members] in size. The unknown mixtue spectrum [U],,
can be represented as a [A wavelength channels by 1] column
vector. By assumption, each of the emissivity values in the
matrix [U],, is a linear combination of the emissivities from
the corresponding row of the end-member matrix. The solu-
tion [{]., is a column vector of fractions that each end-
member contributes to the mixture spectra and has a length
equal to the number of end-members [n end-members by 1].

This methodology allows for a maximum number of end-
members equal to one plus the total number of equations or
instrument wavelengths [Sabol et al., 1992; Adams et al., 1993].
However, because one degree of freedom is removed through
the assumption of a maximum emissivity during the emissivity/
temperature separation, [{] becomes a column vector of max-
imum length 7. In thermal infrared remote sensing images the
number of end-members is currently limited by the low num-

581

ber of spectral band passes of existing instruments. However,
most geologic processes such as sediment mixing along an
alluvial fan or within a dune field produce very few spectrally
distinct end-members. Each can be easily modeled with no
more than three or four end-members per scene [Gillespie,
1992; Ramsey et al., 1993]. In addition, typical rocks will have
fewer than this number of minerals in abundance. However,
with the high spectral resolution of current laboratory (and
future satellite) data, a much larger suite of end-members can
be used if desired.

The model presented here differs from previous approaches
in that the data are calibrated having the instrument terms
removed, and emissivity is separated from the temperature
prior to the analysis. Of the few studies using a similar decon-
volution approach in the thermal infrared, all have concen-
trated on multispectral TIR images rather than high-resolution
laboratory spectra and were applied to radiance rather than
emissivity data [Adams et al., 1989; Gillespie et al., 1990;
Gillespie, 1992]. By doing so, the need arises to include instru-
ment gain and offset as well as produce an extra end-member
that accounts for the temperature in the scene. Whereas this
approach appears simplified, allowing for deconvolution of the
image pixels without the need for further preprocessing steps,
the use of radiance rather than emissivity is nonintuitive. Fur-
ther, it does not apply to high-resolution laboratory data such
as those presented here and does not allow for the use of a
spectral library for end-members.

Because of the mathematics involved, the least squares al-
gorithm can produce negative as well as positive values. Two
constraints must be placed on the above methodology to pro-
duce results that are physically meaningful. First, if one or
more of the final values of [{] is negative, it is presumed that
the end-member corresponding to that value is not present in
the mixed spectrum and is therefore removed. In other words,
the model inverts the entire matrix of end-members [X] and
the negative end-member fractions flagged. These end-
members are removed from [X] and the process repeated
using the new smaller [ X] matrix. Since negative end-members
correspond to spectra that fall outside the area defined by the
original end-members, these negatives are assumed not to be
part of the mixture. Although this assumption causes the re-
sidual error to be slightly higher since the fit using fewer end-
members is typically worse, having only positive fractional val-
ues makes for a more physically plausible solution. This
constraint has been relaxed by some investigators [Adams et al.,
1986, 1989] and the “fraction overflow” areas used as another
error analysis tool. In image format, these regions would indi-
cate an area of a potentially unmodeled end-member.

The second constraint placed on the algorithm is that the
elements of the column vector must sum to unity. The unity
condition is included prior to the inversion of the end-member
matrix and therefore produces fractional percentages which
sum to 100%. This approach also differs from other studies
which have not implemented the constraint prior to inversion
of the end-member matrix. Rather, they favor the renormal-
ization of the fractions as a final step [Johnson et al., 1992].
Using the later approach can lead to a solution that can either
fall short of, or sum to greater than, 100%. In doing so, the
new, renormalized fractional values may not represent the
most accurate solution and the associated RMS errors are
typically higher.
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Figure 3. Emissivity spectra of 250-500 um end-members
used in the physical mixture suite. The large emissivity lows or
absorption bands are caused by vibrational motions of the
chemical bonds. These reststrahlen features occur at the fre-
quencies of strongest absorption, varying from 8 to 11 wm in
the silicate minerals. Each vertical tick mark represents 0.07
emissivity.

2.5. Signal to Noise Ratio

The definition of noise as it relates to spectroscopy is the
ratio at a certain wavelength of the known (ideal) energy to the
acquired (actual) signal. This signal to noise ratio (SNR) is
inherent to the instrument and varies with wavelength and
external factors such as the environment, sample alignment,
and transmission of the beam splitter [Ruff et al., 1997]. Typi-
cally, noise is thought of as random and having a normal
distribution about the noiseless signal [Sabol et al., 1992]. Al-
though not random, it is most commonly evident in regions
where atmospheric water absorption adds variability to the
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Table 1. Retrieval Model Results for the Two-End-
Member Mixture Suite
Measured Modeled
Average Model
Quartz, Calcite, Quartz, Calcite, Difference, RMS Error,
% % % % % x1073
2.00 98.00 0.51 99.49 1.49 6.250
5.00 95.00 2.39 97.61 2.61 4.866
10.00 90.00 8.09 91.91 1.91 6.471
20.00 80.00 19.68 80.32 0.32 5.101
80.00 20.00 77.03 22.97 2.97 7.149
90.00 10.00 87.58 12.42 2.42 5.712
95.00 5.00 94.09 591 0.91 4.395
98.00 2.00 94.43 5.57 3.57 4.060

spectrum. These atmospheric spectral features can be mini-
mized through controlled environmental conditions and the
coaddition of spectra. However, true instrument noise is in-
herent in the spectral system and can vary with wavelength. For
an accurate comparison of spectra gathered on different in-
struments under vastly different conditions, an examination of
the effects of increasing noise (lowering the SNR) on the linear
retrieval algorithm needs to be understood.

This was explored in great detail in a study by Sabol et al.
[1992]. They used high-resolution laboratory spectra in the
VNIR region to examine the effects on spectral mixture anal-
ysis by varying spatial scale, noise, spectral contrast of the
end-members, and the reduction of the number of instrument
channels. Despite the different wavelength region, their results
pertaining to noise and end-member detectability limits for
high resolution spectral data are of direct relevance to this
study. They found that the magnitude of the detectability error
was a direct function of the SNR of the mixture spectrum. For
example, their confidence level for accurate detection of clay
soil mixed with vegetation and shade increased from 3% to 5%
as the SNR decreased from 100 to 20. The other parameters
which they examined (spatial scale, instrument channels, and
spectral contrast) are critical for the use of mixture deconvo-
lution using available systems in the VNIR, but are less im-
portant for this work.

3. Experimental Procedure
3.1.

Spectra of the mineral end-members and subsequent mix-
tures were either obtained from crushed, sieved, and cleaned
samples with well-documented petrology or culled from the
TES spectral library. Mineral sample preparation consisted of
several stages beginning with a detailed visual inspection of
hand samples. These samples were rejected if obvious contam-

Sample Preparation

Table 2. Retrieval Model Results for the Three-End-Member Mixture Suite

Measured Modeled
Average Model
Quartz, Calcite, Enstatite, Quartz, Calcite, Enstatite, Difference, RMS Error,
% % % % % % % x1073
5.00 5.00 90.00 4.25 2.60 93.14 2.10 3.270
20.00 20.00 60.00 17.67 24.18 58.15 2.79 5.781
33.00 33.00 33.00 28.66 32.16 39.18 3.78 6.797
40.00 10.00 50.00 37.86 9.27 52.87 1.92 4.572
60.00 10.00 30.00 61.00 10.50 28.49 1.01 7.296
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Figure 4. Emissivity spectra of the three-end-member mixtures: (a) Model results for the 5:5:90 quartz/
calcite/enstatite mixture. The solid curve represents the measured spectrum, and the dashed curve represents
the best model fit of the data using the end-members from Figure 3. (b) The residual error or difference
between the measured and modeled spectra for this mixture. The greatest residual errors occur over the large
absorption bands and in regions of atmospheric interference. (c) Model fit for the 40:10:50 mixture showing
the poorer fit over the reststrahlen feature of quartz (see section 5). (d) Residual error.



584

RAMSEY AND CHRISTENSEN: MINERAL ABUNDANCE DETERMINATION

Wavelength (um)
10 12

. i @ . ) 9. i i 15 20
1'00 L i i i | P | i i 1 l I i I I I 1) ]
C \ AN .
0.95 — ]
C A ]
> - A -
2 090 —
5 - \\ / \ ﬁ
@ - .- (F
g oss - A =
N 1% ]
- ———70:5:5:20 hornblende/microcline/oligoclase/quartz mixture P ]
0.80 — - model fit 7
C A ]
ovs L1 ! ! | 1 I I | I [ | ! 1 I Lo T
1400 1200 1000 800 600 400
0.020 -—— 7 - = L 12, T A H
P e
T 0010 = E
2 0.0 = N A'M/\"/L\'\/'\I\ ‘.IMA MMI/V\MI'AJVMA L'./"VVW'\ fuhy M A
g R vavv\/ v VY W w VWWV:
5] - =
«~0:010 = residual error B 3
o000 1oy by by T
1400 1200 1000 800 600 400
-1
Wavenumber (cm )
Wavelength (um)
9 10 12 5 20
1.00 BL L L L B
0.95 —
5 C
= 090 —
= C
= C
4 C
g oss [ —
0.80 - ——30:50:10:10 hornblende/microcline/oligoclase/quartz mixture .
' - = model fit -
C ¢ 3
ovs o v bev v b v b b oo g b L0
1400 1300 1200 1100 1000 900 800 700 600 500 400
10
0020 _l 1T I T T T I 1T TT | T 17 | T TT | T TT l T T T I T T l T TT I T T 1714
> C
= 0.010 —
g o010
@ 0.0 =
g R
= -y .
<—0.010 = residual error D —
oozobr e v b b b b b b b b 003
1400 1300 1200 1100 1000 900 800 700 600 500 400

Wavenumber (cm™ )

Figure 5. Model results for two of the four-component mixtures using the spectra in Figure 3 as end-
members. (a) Measured spectrum and model fit for the 70:5:5:20 mixture hornblende/microcline/oligoclase/
quartz with a resulting RMS error of 3.2 X 1072, (b) Residual error. (c) Measured spectrum and model fit for
the 30:50:10:10 mixture with a similar overall fit (RMS of 3.1 X 107?). (d) Residual error.

Further reduction in particle size was accomplished using
two techniques. The softer mineral chips were fed into a pul-
verizer. This process reduces particle diameters to a millimeter
and below. Minerals with a hardness of quartz and above were

inants of country rock or other mineral assemblages were de-
tected by eye or under a magnifying hand lens. Typically, 5
10% of a bulk sample was rejected through this process. Hand
samples were then crushed into centimeter-sized fragments.
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Table 3. Retrieval Model Results for the Four-End-Member Mixture Suite
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Measured Modeled .
— - — Average Model
Hornblende, Mlcroclme Oligoclase, Quartz, Hornblende, Microcline, Oligoclase, Quartz, Difference, RMS Error,
% % % % % % % % % X103
5.00 10.00 15.00 70.00 431 6.02 19.27 70.40 2.34 4.776
10.00 10.00 20.00 60.00 8.41 9.66 25.31 56.62 2.65 4.308
20.00 20.00 20.00 40.00 22.16 20.32 27.59 29.94 5.03 3.928
70.00 5.00 5.00 20.00 76.47 7.80 0.00 15.73 4.64 3.235
30.00 50.00 10.00 10.00 34.56 51.88 6.85 6.72 322 3.191
35.00 10.00 50.00 5.00 41.09 11.48 43.42 4.01 . 3.78 3.420

pulverized in a tumbler/crusher device. This was deemed nec-
essary to insure sample purity. As discussed by Moersch [1992],
the pulverizer can deposit small (<100 um) spherules of me-
tallic material onto mineral grains. He postulated that where
exposed to hard minerals during the crushing process, the
temperature exceeded that of the metal housing of the ma-
chine. This could be observed visually in the processed quartz,
which-had a distinct blue-gray tint after being crushed in the
pulverizer. The tumbler/crusher, on the other hand, uses pel-
lets .of “Burrundum,” an artificial corrundum with a Mohs
hardness of 9.5 [Moersch, 1992]. The device took ~6 hours to
pulverize centimeter fragments of quartz into submillimeter
particles.

Size sorting of the particles involved using a rototap sieve to
separate grains greater than 63 um. For all experiments in this
study except one, the 250-500 um size fraction was used for
spectral acquisition and mixture construction. This size frac-
tion was chosen for two reasons. The diameter of the particles
is ~25-50 times greater than TIR wavelengths and virtually
assures that no volumetric scattering will occur. As mentioned,
the size fraction closely approximates that of most arid regions
throughout the world and many locations on Mars.

To ascertain the effects of particle size reduction on the
linear retrieval model, quartz and andesine were separated
into size fractions less than 63 um using a Stokes settling
technique. This process uses graduated cylinders of deionized
water and settling velocities based on particle density to divide
minerals into precise size fractions. The details of the tech-
nique dre described by Moersch and Christensen [1995]; how-
ever, the size fractions required for their study were much finer
due to the nature of the radiative transfer models being tested.
For this work, four relatively broad separates were prepared
(<10 pm, 10-20 pm, 20-40 pm, and 40-63 um). All mineral
samples prior to spectral acquisition were washed repeatedly in
alcohol to remove any fine particles clinging due to electro-
static forces [Salisbury and Wald, 1992].

In order to construct mixtures, mineral end-members were
separated and mixed in predetermined percentages. All end-
memibers were mixed using a mass fraction taking into account
the density of each mineral (equation (2)). Several grams of
the mixtures and pure end-members were each placed into
specially designed copper sample cups. During the handling of
a mineral sample, care was taken to minimize abrasion that
would alter the known particle size distribution. The sample
cups were placed in a temperature-controlled oven and al-
lowed to equilibrate at 80°C for 24 hours.

The spectrometer’s field of view of several centimeters al-
lowed the entire sample surface to be detected. However, to
guarantee accurate exposure of the mineral grains in propor-
tion to the mixed percentage, the sample surface was remixed

several times and new measurements made. The average of
these measurements was used as the final composite spectrum
for the deconvolution analysis. Typical variations in the spectra
were less than 2%, falling within the range of the spectrome-
ter’s precision and mdncatlng that the correct percentages were
consistently being detected.
3.2. Instrumentation and Speciral Acquisition

All thermal infrared spectra for the mineral samples were
acquired in emission using a Mattson Cygnus 100 interfero-
metric spectrometer (for a detailed instrument description, see
Barbera [1989], Christensen and Harrison [1993], and Ruff et al.
[1997]). The spectral wavelength region sampled is approxi-
mately 6.6 to 25 um (1500-400 cm™!), which includes the
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Figure 6. Spectra of five of the 15 library minerals used for
generating numerical mixtures containing greater than five

end-members. Each vertical tick mark represents 0.08 emissivity.
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Table 4a. Blind Retrieval Results (Using 10 End-Members) for Five-Component Numerical Mixture of 25% Enstatite,
10% Hornblende, 30% Augite, 25% Oligoclase, and 10% Magnetite With Additive Noise

Modeled, %
Measured, Model Difference, %
End-Member % 0% Noise 10% Noise 20% Noise 30% Noise 30% Noise
Enstatite 25.00 25.05 26.11 27.40 29.06 4.06
Hornblende 10.00 9.98 10.47 11.04 11.78 1.78
Gypsum 0.00 0.00 0.00 0.00 0.00 0
Augite 30.00 29.95 28.25 26.09 23.32 6.68
Calcite 0.00 0.00 0.00 0.00 0.00 0
Microcline 0.00 0.00 0.00 0.00 0.00 0
Oligoclase 25.00 25.00 24.75 24.43 24.01 0.99
Quartz 0.00 0.00 0.00 0.00 0.00 0
Montmorillonite 0.00 0.00 0.59 1.35 2.33 2.33
Magnetite 10.00 9.98 9.76 9.47 9.09 0.91
RMS error e 4.390E—04 1.586E—-03 3.489E—03 5.954E—03 .-

Read 4.390E—04 as 4.390 X 10™*.

diagnostic vibrational features of most rock-forming minerals.
The instrument has a spectral sampling of 2 cm™ over the
entire wavelength region with a SNR ratio approaching 500
over the highest sensitivity of the spectrometer (§-20 wm).
Atmospheric interference due to water vapor at wavelengths
short of 8 um and carbon dioxide at wavelengths longer than
12 um is minimized by a constant nitrogen purge of the spec-
trometer and sample chamber. However, even under the most
ideal situations, small amounts of water vapor are visible as
minor absorption bands in the spectra (Figure 2). Each spec-
tral measurement takes ~2 s to acquire, and to attain the
highest possible signal to noise ratio, anywhere from 64 to 200
individual spectra per sample were averaged. This averaged
spectrum constituted one sample measurement. As mentioned,
in order to minimize errors associated with a preferred ar-
rangement of the grains in the holder, samples were then
remixed and new spectra were acquired.

The derivation of calibrated, absolute emissivity [Christensen
and Harrison, 1993; Salisbury et al., 1994] is much more difficult
than the simple ratio of equation (1). To calibrate a spectrom-
eter and determine the absolute emissivity in the TIR accu-
rately, factors such as the instrument response function, atmo-
spheric interference, instrument energy, and reflected energy
from the environment all have to be taken into account. The
emissivity of the sample as a function of wavelength can be

described by the one temperature method of Christensen and
Harrison [1993],

Wy — Vool
{m [Booy — Booaal T Bovmy) — Benvny

: [BS(T) - Benv(T)]

®)
where V and V,, are the voltages measured by the spectrom-
eter for the sample and blackbody, respectively. B is the radi-:
ance determined from solution of the Planck equation evalu-
ated at the measured environmental, hot, and warm blackbody
temperatures [env(7T'), bb(T},), and bb(T,,)]. The fundamental
assumption in the derivation of emissivity using only one sam-
ple measurement is that the environmental energy reflected
from the sample follows Kirchoff’s law and is thus one minus
the emissivity [Salisbury et al., 1994). Because this reflected
term is a second-order effect; the assumption contributes very
little error into the calculation of absolute emissivity [Ruff et
al., 1997]. The primary advantages of using the one tempera-
ture technique are speed (only one spectral acquisition per
sample) and a higher SNR (less noise introduced into the
equation via another spectrum of the sample measured at
another temperature).

In studies using the Mattson spectrometer and the various
methods of deriving emissivity, Ruff et al. [1997] have per-

Table 4b. Blind Retrieval Results (Using 10 End-Members) for Five-Component Numerical Mixture of 10% Hornblende,
25% Microcline, 20% Oligoclase, 40% Quartz, and 5% Magnetite With Additive Noise

Modeled, %
Measured, Model Difference, %
End-Member % 0% Noise 10% Noise 20% Noise 30% Noise 30% Noise

Enstatite 0.00 0.00 0.00 0.00 0.00 0
Hornblende 10.00 9.93 9.71 9.34 8.88 1.12
Gypsum 0.00 0.00 0.00 0.00 0.00 0
Augite 0.00 0.09 0.00 0.00 0.00 0
Calcite 0.00 0.00 0.00 0.00 0.00 0
Microcline 25.00 24.97 25.48 26.08 26.84 1.84
Oligoclase 20.00 20.01 19.40 18.62 17.62 2.38
Quartz 40.00 40.00 39.53 38.95 38.20 1.8
Montmorillonite 0.00 0.00 1.17 2.65 4.55 4.55
Magnetite 5.00 4.99 455 3.99 3.28 1.72
RMS error oo 6.500E—05 1.443E-03 3.241E-03 5.554E-03 e

Read 6.500E—05 as 6.500 X 107°.
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Table 4c. Blind Retrieval Results (Using 10 End-Members) for Five-Component Numerical Mixture of 20% Hornblende,
20% Calcite, 20% Microcline, 20% Quartz, and 20% Montmorillonite With Additive Noise
Modeled, %
Measured, Model Difference, %
End-Member % 0% Noise 10% Noise 20% Noise 30% Noise 30% Noise
Enstatite 0.00 0.00 0.00 0.00 0.00 0
Hornblende 0.00 0.00 0.00 0.00 0.00 0
Gypsum 20.00 20.00 19.61 19.13 18.50 1.5
Augite 0.00 0.00 0.00 0.00 0.00 0
Calcite 20.00 20.00 19.82 19.60 19.32 0.68
Microcline 20.00 19.99 20.17 20.38 20.66 0.66
Oligoclase 0.00 0.00 0.00 0.00 0.00 0
Quartz 20.00 20.00 19.64 19.20 18.63 1.37
Montmorillonite 20.00 20.01 20.61 21.36 22.32 2.32
Magnetite 0.00 0.00 0.00 0.00 0.00 0
RMS error [RX 2.300E—05 1.458E—03 3.280E—03 5.623E—03 s

Read 2.300E—05 as 2.300 X 107>,

formed a detailed error analysis for all contributing factors and
report an instrument precision, and thus an overall spectral
reproducibility, of 0.5%. This value is a great improvement
over past years due to significant enhancements in the spec-
trometer and acquisition technique. Spectra used in this study
were gathered over the course of these improvements and
therefore could have inherent instrument errors that range
from 0.5% to approaching 4.0% (the larger values being asso-
ciated with repeat measurements over time). However, be-
cause spectra of a given mineral mixture suite and its end-
members were always acquired on the same day, it is unlikely
that reproducibility errors of 4% were encountered even in the
oldest spectral measurements. This factor is the primary cause
of the minor variations in the spectral features of a mineral as
compared to its counterpart from a different mixture suite.
However, all spectra belonging to an individual suite acquired
on the same day had no variations or noise differences between
end-member and mixture.

4. Results
4.1.

A binary mixing suite of quartz and calcite was prepared as
the first physical test of the linear retrieval algorithm. The
primary goal of this initial test was to examine the detection
limits of the algorithm and spectrometer. For this reason, mix-
ture percentages are concentrated on the low (0-20%) and

Increasing the Number of End-Members

high (80-100%) ends of the possible range. The strong absorp-
tion band of calcite (~1500 cm™!) and the doublet of quartz
(~1150 cm ™) are the main reststrahlen features of these min-
erals. The crystal structures of both are rather simple, which is
reflected by the few and well-defined absorption features in
each spectrum. The spectra of the particulate end-members
are shown in Figure 3 and the results of the model are given in
Table 1. The results indicate an average model difference in
predicted percentage of 2.0% with and average RMS error of
0.55% [Ramsey and Christensen, 1992].

The number of mineral end-members was increased by one
with the addition of enstatite (Figure 3). The change from a
framework arrangement of silica tetrahedra in quartz to the
more loosely bound chain structure in enstatite is evident upon
comparison of the two spectra. The strong reststrahlen feature
in quartz is broadened, shallowed, and shifted to longer wave-
lengths (lower vibration frequencies). The results for the three-
end-member suite are listed in Table 2 and are similar to those
of the quartz/calcite mixtures. The modeled percentage errors
range from 0.5% to 6.2% with an average of 2.3% and an
average RMS error of 0.55%. Figure 4 shows the measured
spectra and model results for two of the quartz/calcite/enstatite
mixtures. The residual error is the emissivity difference be-
tween the two spectra and is positive over wavelength regions
where the measured spectrum is shallower than the modeled.
The good alignment of the modeled spectra with the actual
measurements is evident in the small residual errors (less than

Table 4d. Blind Retrieval Results (Using 10 End-Members) for 10-Component Numerical Mixtures With Additive Noise

Modeled, %
Measured, Model Difference, %
End-Member % 0% Noise 10% Noise 20% Noise 30% Noise 30% Noise

Enstatite 10.00 9.91 11.42 13.30 15.73 573
Hornblende 10.00 10.03 9.80 9.53 9.17 0.83
Gypsum 10.00 9.99 9.53 8.69 8.23 1.77
Augite 10.00 10.05 8.07 5.59 2.39 7.61
Calcite 10.00 10.00 9.41 8.66 7.71 2.29
Microcline 10.00 9.94 8.91 7.61 5.94 4.06
Oligoclase 10.00 10.06 10.89 11.92 13.26 3.26
Quartz 10.00 10.00 9.54 8.96 8.21 1.79
Montmorillonite 10.00 10.02 13.08 16.90 21.81 11.81
Magnetite 10.00 9.98 9.12 8.05 6.67 3.33
RMS error 1.680E—04 1.367E—03 3.056E—03 5.231E—-03

Read 1.680E—04 as 1.680 x 107*.
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Figure 7. Numerically generated spectra of 10:25:20:40:5
mixture of hornblende/microcline/oligoclase/quartz/magnetite
(top) with a decreasing signal to noise (SNR) ratio. The sim-
ulated reduction in the spectrometer’s SNR through addition
of random noise obscures the finer spectral features of the
original mixture. This addition produced an average error in
the model predicted percentage of 1.34% with an increase in
the RMS error (5.5 X 10~3). Each vertical tick mark represents
0.06 emissivity.

1.0%), indicating the strong linear relationship between areal
fraction and the depth and morphology of the spectral fea-
tures.

Hornblende, microcline, oligoclase, and quartz (Figure 3)
were mixed to produce end-member mixtures (Figure 5). This
new mineral suite was chosen to mimic the compositions of
granitic and granodioritic rocks. The same procedure of mix-
ture construction, spectral acquisition, and model application
was performed with the results listed in Table 3. The predicted
percentage had an error range of 0.3-10.1%, with an average
of 3.6%, slightly higher than the initial results. However, the
average RMS error (0.38%) for the entire suite decreased
from previous mixtures. This increase in model fit is attributed
to better spectral calibration and the use of minerals with less
pronounced spectral contrast between features. Figure 5 shows
the model fits for the 70:5:5:20 and the 30:50:10:10 mixtures of
hornblende/microcline/oligoclase/quartz. The largest residual
error occurs at 1050 cm ™' (9.5 um) in Figure 5b, correspond-
ing to the maximum spectral contrast between quartz and
hornblende. RMS errors for the entire spectrum are <0.5%
for both mixtures, indicating the dominance of linear mixing.
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For mixtures with greater numbers of end-members, the
TES spectral library was sampled. Spectra of 15 minerals (Fig-
ure 6) were used to form numerical, rather than physical,
mixtures. This was done to limit sample preparation time and
was based on the success of the model thus far. In addition, the
spectra of these mixtures were subjected to the effect of in-
creased noise using a blind end-member approach to deter-
mine the model sensitivity. The need for physical mixtures
containing 10 or more end-members becomes far less critical
for these types of studies.

4.2, Additive Noise

The introduction of noise for this purpose was accomplished
by generating a random noise pattern with a total emissivity
variation of =1%. This noise spectrum was then convolved
with the spectra of real and numerical mixtures in increments
which translated into a lowering of the spectrometer SNR from
500 to 200. The new “noisy” spectra were then deconvolved
using their original end-members. This approach is similar to
that of Sabol et al. [1992], who examined the effects of noise on
existing VNIR instruments.

Four mixtures were numerically created from the mineral
end-members (Figure 6) taken from the spectral library and
composited with the noise spectrum. The first three mixtures
used five end-members and the last represents a 10-end-
member composite. The minerals, percentages, and results of
the deconvolution are listed in Table 4, and spectra of one of
the mixtures are shown in Figure 7. This mixture of 10:25:20:
40:5 hornblende/microcline/oligoclase/quartz/magnetite re-
sulted in variations in the predicted end-member percentages
from a minimum of 0.6% to a maximum of 11.8% with de-
creasing the SNR (Figure 8). In addition, as the noise was
increased, the loss of small-scale spectral features produced
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Figure 8. Variation in the retrieval algorithm’s modeled per-
centages as a function of the lower SNR for the mixture dis-
played in Figure 7. The addition of noise to the spectra of the
mixtures can generate errors as large as 11.8% in the predicted
areal end-member fractions; however, the average for all the
mixtures subjected to noise was 1.98%. Note also the predic-
tion of augite and montmorillonite, which were not present in
the original mixture (see text).
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Table 5. Model Results for the Three-End-Member Mixture
of 40:10:50 Quartz/Calcite/Enstatite With Increasing
Additive Noise

Quartz, Calcite, Enstatite, RMS Error,
End-Member % % % X103
Measured 40.00 10.00 50.00 cen
0% noise 37.89 9.38 53.07 4572
10% noise 37.33 9.7 53.16 4.386
20% noise 36.62 10.11 53.28 4.951
30% noise 35.71 10.62 53.42 6.268

the spurious result of sodium montmorillonite to be predicted
in a statistically significant quantity by the model. In general,
however, the model errors averaged over the number of min-
eral end-members for each mixture were only 1.68%, 1.34%,
0.65%, and 4.25% for the three five-end-member and one
10-end-member mixture, respectively. These errors yield an
average of 1.98% for a greater than 50% decrease in SNR.

The 40:10:50 mixture (Figure 4c) from the quartz/calcite/
enstatite suite was chosen as a representative physically mixed
example, and the results of increasing noise on this spectrum
using the model are presented in Table 5. The addition of
noise produced an average deviation of 2.78% in the retrieval
results, with an increase in the RMS error from 4.5 X 1073 to
6.3 X 107, The higher error in the physically mixed example
can be attributed to the slight nonlinearities over the rest-
strahlen features and yet is still remarkably small considering
the degree of spectral degradation. Further, the average model
error of 2.4% for all the mixtures subject to noise falls within
the spectral variability of the instrument.

4.3. Spectral Precision

The precision of the spectrometer is the variation in emis-
sivity of repeat measurements of the same sample. After cali-
bration of the measured radiance and the derivation of emis-
sivity, this precision error is typically manifested as a variation
in spectral depth of large emission features. The absolute pre-
cision value of any spectrometer is the fundamental limiting
certainty that any spectral fitting algorithm can guarantee ac-
curate results. Because such routines rely on the morphology
of absorption features, changes in their depth due to repro-
ducibility factors will have an affect on the output of such
models. As mentioned, improvements to the current labora-
tory spectrometer have reduced this figure from 3-4% to less
than 0.5% currently. Some of the spectra used in this study
were acquired prior to many of these improvements and were
therefore subject to the higher errors. However, the largest
errors in precision result from instrument drift due to changing
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Figure 9. Model errors with spectrometer precision using
the 30:50:10:10 physical mixture (Figure 5c) of hornblende/
microcline/oligoclase/quartz end-members. A maximum error
range of up to 5% precision is shown. However, current esti-
mates place this error closer to 0.5% (see text). Changes in the
spectral band depth directly translate into percentage errors of
the retrieval algorithm’s results. An average error of 4% due to
a spectrometer variability of 5% indicates the approximate
linearity of the model with instrument precision.

external conditions (most notably over the course of many
days). Since both end-member and mixture data were always
acquired on the same day, this error is reduced significantly
and is assumed to be less than 2%.

Subjected to the deconvolution analysis, spectra with a sim-
ulated variability of 2% (*=1%) produced errors of 0.5-4.0%
(Table 6). The same procedure was repeated for increasing
precision errors of 1-5% (Figure 9). The average model error
was 4.0% indicating an approximate linear relationship of re-
producibility and deconvolution.

4.4. Blind End-Member Input

If the retrieval algorithm is only given the spectral end-
members of exactly the minerals that form the unknown spec-
trum, it is “forced” to fit those particular minerals. As is the
case for all remote sensing applications and many laboratory
samples, the exact composition of the sample is not known. In
fact, the ability to determine composition is one of the funda-
mental objectives of a linear retrieval approach. To accomplish
this, an entire spectral library, or logically narrowed subset
thereof, should be used as possible end-members. Known as

Table 6. Retrieval Model Results for a Four-End-Member Mixture With Decreasing

Spectral Precision

Hornblende, Microcline, Oligoclase, Quartz, RMS Error,

End-Member % % % % X103
Measured 30.00 50.00 10.00 10.00 cee

0% variation 34.56 51.88 6.85 6.72 3.191
1% variation 34.52 50.90 8.58 6.68 3.159
2% variation 34.25 49.59 10.27 6.61 3.160
3% variation 33.99 48.28 11.96 6.53 3.196
4% variation 33.73 46.95 13.65 6.46 3.262
5% variation 33.46 45.67 15.34 6.38 3.405
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Table 7. Blind Retrieval Results for the 15-End-Member
Numerical Mixture

Measured, Modeled, Model
End-Member % % Difference, %

Enstatite 20.00 19.69 0.31
Hornblende 10.00 9.77 0.23
Gypsum 10.00 9.85 0.15
Augite 10.00 9.08 0.92
Calcite 5.00 5.04 0.04
Microcline 5.00 497 0.03
Oligoclase 5.00 5.01 0.01
Quartz 5.00 5.02 0.02
Montmorillonite 5.00 5.00 0
Magnetite 5.00 4.84 0.16
Kyanite 4.00 4.05 0.05
Pyrophyllite 4.00 4.01 0.01
Tourmaline 4.00 4.09 0.09 -
Diopside 4.00 522 1.22
Forsterite 4.00 4.06 0.06
RMS error, X1073 .. 2.728 e

blind end-member input, this allows the model to find the best
fitting combination of minerals.

For the purpose of these initial trials, the numerical and
physical mixtures were subjected to this blind approach allow-
ing the model to choose from the 15-end-member suite of
possible minerals. The 5-, 10-, and 15-end-member mixtures
(numerically generated with decreasing SNR) as well as the
four-end-member physical mixture were deconvolved and the
results presented in Tables 4, 7, and 8. In the case of the
numerically mixed noisy spectra the correct end-members were
consistently chosen with the exception of the lowest SNR, in
which several minerals were chosen that were not part of the
composite spectrum (Table 4). However, these modeled end-
members were consistently below 5% and only present in the
lowest SNR spectra. Because this mixture was numerically
generated, the accuracy of the modeled percentages is likely
exaggerated, however. The results for the physical mixture of
hornblende/microcline/oligoclase/quartz were similar with re-
spect to the accurate identification of the end-member miner-
als. Comparison of the actual percentages shows a deviation of
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as much as 12%, but an average error for all the end-members
of only 3.47% (Table 8).

4.5. Particle Size Variation

The effects on linear deconvolution of reducing particle
diameters were investigated in one binary suite of quartz and
andesine. The significant changes in absorption band morphol-
ogy as volume scattering becomes a dominant component of
the emitted energy can be seen for quartz and andesine in
Figure 10. For silicate minerals, these changes generally be-
come evident at the 40—63 um grain size fraction [Salisbury
and Wald, 1992; Moersch and Christensen, 1995; Mustard and
Hays, 1997].

Two approaches were taken in application of the model to
this spectral suite. First, assuming a future spectral library will
have minerals composed of only one grain size, the algorithm
was run using the 250-500 pm end-member on the entire size
fraction of mixed spectra. The goal of this phase was to deter-
mine accurately where linear deconvolution fails regardless of
particle size. Second, by applying the same methodology only
using the end-member spectra from each size fraction to de-
convolve the corresponding mixed spectrum, features arising
from size effects could then be modeled. This analysis will have
an impact on whether future libraries should contain spectra of
mineral size suites as well.

Because of the insignificant changes of the end-member
spectra having diameters greater than 63 wm, the results of
linear deconvolution of these size fractions with the 250-500
pm end-member showed little difference (Tables 9 and 10). As
expected, below this threshold, the model can no longer accu-
rately fit mixture spectra. Figure 11a shows the results of the
retrieval algorithm for the 10-20 wm mixture of 50:50 quartz/
andesine. With a large RMS of 2.43% and a predicted areal
percentage of 10:90, the model is obviously invalid. Since the
chosen end-member spectra contain no features due to volume
scattering, these spectral regions contain the largest residual
errors. However, with spectra of the correctly sized end-
members, the model results improve to a predicted end-
member percentage of 44:56 quartz/andesine and a residual
error of 1.09 X 102 (Figure 11b). These results for each of the
three mixture ratios are graphically represented in Figure 12 as

Table 8. Blind Retrieval Results Using 15 End-Members for the Physical Mixtures of Hornblende/Microcline/Oligoclase/

Quartz
Mea- Mea- Mea- Mea- Mea- Mea-
End- sured, Modeled, sured, Modeled, sured, Modeled, sured, Modeled, sured, Modeled, sured, Modeled,
Member % % % % % % % % % % % %
Enstatite cee cese cese ceso s cee cos con cee ces cee
Hornblende 5.00 1.51 10.00 7.66 20.00 18.98 70.00 67.93 30.00 27.75 30.00 32.57
Gypsum ceoe cee oo cee coo s cee coe cee cee cee
Augite 2.11 2.94
Calcite
Microcline 10.00 11.28 10.00 21.99 20.00 31.20 5.00 6.16 50.00 53.04 10.00 11.59
Oligoclase 5.00 6.80 20.00 13.44 20.00 10.50 5.00 e 10.00 7.47 50.00 44.35
Quartz 80.00 79.68 60.00 56.93 40.00 36.62 20.00 19.16 10.00 8.74 5.00 8.45
Montmorillonite
Magnetite
Kyanite cee cee
Pyrophyllite 2.71 4.65 3.00 0.09
Tourmaline . eee eee eee
Diopside
Forsterite cee coe cee cen cee coe
RMS error, X102 3.592 2.970 2.213 1.842 1.556 1.468
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Figure 10. End-members of the binary mixing suite showing the effects of particle size reduction. Artanged
from top to bottom from <10 um to 250-500 wm. Note the Christiansen frequency (CF), which is invariant
with particle size, at approximately 1400 cm ™~ for quartz and 1260 cm ™! for andesine feldspar: (a) quartz and

(b) andesine.

a function of size fraction. Using the one size end-member, the
departure from linearity shown by the predicted model end-
member percentage begins to occur below the 63-125 um
particle diameter. This departure is strongest for the 75:25 and
weakest for the 25:75 quartz/andesine mixtures, respectively.
The larger errors are a function of the strong absorption char-
acteristics of quartz [Thomson and Salisbury, 1993].

In a remote sensing situation, where both the mineral type
and potentially the grain diameter are unknown, constraints
must be placed on the retrieval algorithm. The only indepen-
dent piece of information that is returned from the algorithm
is the root-mean-square error. Larger errors indicate poorer
fits and may be used to disregard or accept the model’s pre-
dicted percentage results. Figure 13 shows the variation of the
RMS with particle size for deconvolution with both sets of
sized end-members. The RMS of both end-member suites are

virtually inseparable from 500 to 63 um. However, at diame-
ters less than this, there is a sharp increase in the RMS for the
single size end-member deconvolution, whereas the errors re-
main approximately equal to 1.0 X 1072 for the sized end-
members. Obviously, these error values can not be universally
applied to deconvolution results for different mixtures but do
indicate the possibility of separating the effects of mineral type
and grain diameter utilizing a retrieval algorithm.

5. Discussion

In general, the largest residual errors occur over the strongly
absorbing portion of the emissivity spectrum. The deviation
from the predicted result indicates that mixing of thermal
energy for a multicomponent sample is slightly nonlinear in the
regions of low emission. Large positive and negative residual
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Table 9. Retrievgil Model Results for Particle Size
Variations Using the Same Diameter End-Members

Modeled
End-Member - Model
Size Fraction, Andesine, Quartz, Difference, RMS
um % . % % Error

25:75 Quartz/Andesine Mix
<10 85.65 14.12 10.65 8.662E—-03
10-20 80.31 19.72 5.31 7.531E—-03
2040 75.24 24.87 0.24 7.130E—-03
40-63 71.90 27.98 3.10 9.401E—03
63-125 79.61 20.33 4.61 6.262E—03
125-250 76.89 22.78 1.89 7.289E—03
250-500 78.65 21.04 3.65 5.694E—03

50:50 Quartz/Andesine Mix
<10 64.08 3592 14.08 1.215E-02
10-20 55.92 44.08 592 1.089E—02
20-40 47.49 52.51 2.51 8.302E—-03
40-63 48.79 51.21 1.21 7.202E—03
63-125 54.24 45.76 4.24 7.594E—03
125-250 49.88 50.12 0.12 9.036E—03
250-500 51.51 48.49 1.51 8.962E—03

75:25 Quartz/Andesine Mix
<10 36.30 63.70 11.30 1.264E—-02
10-20 26.58 73.42 1.58 1.234E-02
2040 18.37 81.63 6.63 7.633E—-03
40-63 26.58 73.42 1.58 6.425E—03
63-125 27.04 72.96 2.04 8.075E—03
125-250 20.36 79.64 4.64 9.282E—03
250-500 26.48 73.52 1.48 9.822E—03

Read 8.662E—03 as 8.662 X 1073.

Table 10. Retrieval Mdde_l Results for Particle Size
Variations Using the 255-500 um End-Member

Modeled
End-Member Model
Size Fraction, Andesine, Quartz, Difference, RMS
pm % % % Error

25:75 Quartz/Andesine Mix
<10 100.00 0.00 25.00 3.010E—-02
10-20 100.00 0.00 25.00 2.889E~-02
2040 92.70 7.30 17.70 1.628E—02
40-63 81.90 18.10 6.90 1.119E-02
63-125 81.94 18.06 6.94 5.314E—-03
125-250 77.01 22.99 2.01 7.401E—03
250-500 78.65 21.04 3.65 5.694E—03
50:50 Quartz/Andesine Mix )
<10 100.00 0.00 50.00 2.527E~02
10-20 90.72 9.28 40.72 2.430E—02
2040 77.60 22.40 27.60 1.316E—-02
40-63 65.19 34.81 15.19 1.267E—02
63-125 58.93 41.07 8.93 7.141E-03
125-250 50.43 49.57 0.43 9.359E—03
250-500 51.51 48.49 1.51 8.962E—03

75:25 Quartz/Andesine Mix
<10 98.25 1.75 73.25 2477TE—02
10-20 79.73 20.27 54.73 2471E—-02
2040 61.19 38.81 36.19 1.644E—-02
40-63 49.00 51.00 24.00 1.307E-02
63-125 34.30 65.70 9.30 8.356E—03
125-250 21.34 78.66 3.66 9.795E—03
250-500 26.48 73.52 1.48 9.822E—-03

Read 3.010E—02 as 3.010 X 1072
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€rrors are most noticeable at areas of high noise due to atmo-
spheric water and over these largest mineral absorption bands
(Figures 4 and 5). Discussed in detail by Thomson and Salis-
bury [1993], this slight nonlinearity is most clearly expressed in
mixtures containing larger amounts of quartz (compare Fig-
ures 4a and 4c). Areas that show a positive residual error
indicate more energy was emitted by the mineral mixture than
the monomineralic end-members used to model the spectrum.
This can be explained in terms of the wavelength dependent
absorption coefficient of quartz. For example, at 1220 cm™?!
(8.2 um) quartz is weakly absorbing (k ~ 1) [Salisbury and
Wald, 1992; Moersch and Christensen, 1995] and as seen in
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Figure 11. Emissivity spectra of the physical mixtures (solid)
and the model fits (dashed) for the 50:50 quartz/andesine mix-
ture using different size fraction end-members: (a) The 10-20
um mixture using the 250-500 wm end-members. Note the
regions of poor fit due to unmodeled features in the spectra of
the fine-grained minerals. The results of the model are poor
for this case (10:90%, RMS = 2.4%). (b) The same mixture
described in Figure 11a using model end-members of the same
size fraction (1020 um). Note the closer fit and more accurate
results (44.4:55.6%, RMS = 1.1%). (c) Model fit for the 250—
500 wm mixture using the same end-member size fraction. As
expected, results are acceptable (48.5:51.5%, RMS = 0.9%).
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Figure 13. RMS error variation with grain size for the 21 mixtures described in Figures 11 and 12. The
divergence of the RMS at approximately 60 um is in accord with the higher errors in predicted mineral
percentages and is caused by the appearance of spectral features due to volumetric scattering (see text). The
solid curve shows the increased errors associated with trying to model these features with the 250-500 um
end-members. The dashed curve indicating a modeling attempt using the corresponding size fraction end-
members, shows a much lower RMS error that remains nearly constant at 0.01.

Figure 4c, there is a <1% positive residual in the fit. In a
sample consisting of only quartz grains (the end-member),
emitted energy will undergo stronger surface reflections (i.e.,
lower emission) at this wavelength and have a lower compo-
nent of volumetrically scattered energy. Where those quartz
grains are mixed with other minerals, the same emitted energy
will have a much greater chance of interacting with another
grain with a different absorption coefficient. Those photons
have a higher probability of reaching the detector after being
reflected, thereby producing a shallower emission trough in the
mixed spectrum.

At 1120 cm ™! (8.9 um) the absorption coefficient of quartz
increases (k ~ 2) [Salisbury and Wald, 1992; Moersch and
Christensen, 1995], and the residual error becomes negative,
indicating lower emission in the mixed spectrum. In this situ-
ation, the higher absorption of quartz promotes greater scat-
tering at grain edges and surface asperities. This is intensified
in a sample of quartz and produces a shallower emission
trough. In the mixed sample, on the other hand, photons will
tend to be reflected from grain surfaces by less absorbing
minerals and thereby produce deeper emission features. These
effects are most accentuated in regions where there is a strong
contrast between end-member spectral features and in those
minerals with very strong features. In mixtures of quartz, cal-
cite, and enstatite this is compounded as both calcite and
enstatite tend to be spectrally flat over the 11001200 cm ™"
region and quartz has one of the most pronounced absorption
bands of any mineral. However, even in this case, the residual
errors are still less than 1% over these regions, and about 0.5%
where averaged over the entire spectrum.

6. Conclusions

At thermal wavelengths, the physics of energy/matter inter-
action is significantly easier to model than in the VNIR and

therefore is an ideal region for the application of a linear
spectral retrieval approach. For this study a linear model was
developed and extensively tested on laboratory thermal emis-
sion spectra of minerals for the first time. The results show that
the assumption of linear mixing is valid and allows for the areal
percentage of a mineral to be predicted to within a 4% average
with less than 0.5% residual error. Other effects such as noise
and instrument reproducibility were also examined and re-
sulted in only minor errors of <4%. Figure 14 depicts this
linearity for all the physical mixture suites used in this study.
The data have an excellent linear regressive fit (R*> = 0.995)
and clearly show the accuracy of the technique. The results of
the model for a wide range of silicate minerals as well as calcite
proves its appropriateness for use in high spectral resolution
studies of particulate mixtures. Further work is progressing on
other mineral classes as well as whole rock analysis. In addi-
tion, the applicability to multispectral thermal infrared remote
sensing data has been studied and is presented by Ramsey
[1996] for several different regions.

The reduction in particle diameter caused a slightly greater
increase in the model error. It was found that particle size
effects could be modeled accurately down to the 63 um size
fraction using larger size end-members. Below this particle
diameter, linear retrieval fails using a single size fraction for
the end-member. However, with spectra of the appropriate
size fraction, the errors are reduced significantly, with model
success through the 10-20 pwm range. This approach provides
a much more straightforward and computationally quick
method of deciphering complexly mixed spectra than does the
use of radiative transfer models, which require the need for the
absorption coefficients of every mineral. However, linear re-
trieval using the spectra of mineral size fractions is only an
approximation and still clearly fails below 10 um where non-
linear volume scattering dominates.
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Figure 14. Model results for the entire set of physical mixtures (two-, three-, and four-component) described
in the text. The accuracy of the model in all cases can be seen by the linear curve fit of the data points with

a R? value of 0.995.

The viability and application of emission spectroscopy to
remote sensing measurements of geologic surfaces are evident
from the planned missions to Earth and Mars. The high data
rate and large potential of overlapping information from in-
struments such as these has necessitated the need for fast,
accurate, and innovative processing tools such as linear decon-
volution. As has happened for most of remote sensing history,
techniques are quick to develop and even quicker to be dis-
carded as the next innovation is unveiled. It is critical, however,
to understand the physics of thermal emission and how it is
effected by numerous complexities inherent upon the mixing of
radiant energy.
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