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Instability of Flow with Temperature-Dependent Viscosity:
A Model of Magma Dynamics

J.  A.  WSTTEHEAD lNo K^rn l  R.  Hpr, rucn

Woods Hole Oceanogrophic Int t i lu l ion,  Woods Hole,  Massachusel ld

In material whose viscosity is very temperature dependent, flow from a dramber through a
cooled slot ca,n develop a fingering instability or time-dependent behavior, depending on the
elastic properties of the chamber, the viscosity-temperaturc relationship, a,nd the geometry of the
slot. A laboratory experiment is described where syrtp flows from a reservoir through a tube
imrnersed in a chilled bath to an exit hole at constant pr€ssure. Flow is either steady or periodic
depending on the temperature of the bath and the flow rate into the reservoir, A theory indicates
that the transition from steady to periodic flow depends on nonlinearities in the steady state
relation between pnessure a,nd flow rate. A general stability criterion is advanced that states that
the Peclet nurnber must be within a certain range for instability to develop. Parameters governing
the oscillation period a.re determined. Theory also indicates that flow through a slot would develop
finger-like instabilities under certain conditions. Qualitative laboratory experiments with paralfin
spreading over a cold plate reveal the fingering.

1. ImRonucrtoN

There are many examples in geophysics where hot ma-
terial from deep in the Earth flows to the surface, where

it then cools, slows down and may ultimately even stop
from that cooling. Obvious examples are found in volcanic

magma flows, where stoppage is ultimately produced by so-
lidification of the material. However, before the complete
solidification is consummated, flow resistance can increase
from the action of numerous processes that retard the flow
upon cooling of the magma. Some examples of processes

that increase the resistance of magmas flows are [Hughes,
1982] constriction of the pipes and conduits from deposi-

tion of crystals along the wall; an increase in fluid viscosity

due to coolingl an increase in viscosity due to bulk compo-

sition changes through preferential crystallization; and the

addition of suspended crystals to the fluid upon cooling,
with a consequent dramatic increase in bulk viscosity. One
wonders whether novel flow structures such as fingers, time-

dependent surges, and complicated free surface shapes such
as pahoehoe or pillow lavas are the result of this increase in

resistance.
Magmatic systems are not the only flowing systems that

encounter an increase of resistance upon cooling. Many
aquifers dissolve away minerals under high pressure and tem-
perature and some of these minerals may be redeposited
along the walls in other locations of the system where there

are lower pressures or temperatures. There are numerous

cases both in terrestrial and deepsea hydrothermal springs
where the systems pulsate, become restricted to a few local-

ized springs, or ultimately become clogged by the deposited

minerals.
The purpose of this study is to investigate the dynam-

ics of flows that develop increased resistance as they flow

into cooler regions and particularly to understand a dynamic
instability that develops. The instability is characterized
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by the development of fingers of melt-and time-dependent
flows. We believe that this is one of the most prevalent
processes in the cooling of hot geological and geophysical
systems. The approach is to study simple problems, to il-
lustrate the features that develop, and to suggest possible
applications. Duplication of full geological complexity is be-
yond our capabilities and in any case could only be done on
a case by case basis.

The closest analogy known to this situation is Saffman-
Taylor instability [Safrman and Taylor, 1958], in which a
fluid intrudes into a porous region or a Hele-Shaw cell (two
plane walls separated by a small gap) that contains a second
more viscous fluid. Under suitable conditions, the interface
between the two fluids will develop finger-like protrusions
that contain the lower-viscosity fluid and extend into the
viscous fluid. The lower-viscosity fluid possesses less hy-
draulic resistance to the large-scale pressure field and moves
rapidly into the finger. This forces the finger tip to advance
farther into the viscous fluid. The examples of Saffman-
Taylor instability that have been studied to date, whether
with mathematical analysis or with laboratory experiments,
are inherently time dependent, and the tips continue to move
indefinitely. After a long time the region is filled with veins
of the low-viscosity fluid; each vein is surrounded by islands
of viscous fluid that are slowly moving away from the source.
The final state is never truly steady.

An analysis similar to that of Safman-Taylor but with
more direct geochemical applications was conducted by Or-
toleva, et ol., [1987o]. In their problem, an advancing front
reacted with host material to produce scallops. They sug-
gest that numerous geological features may be generated by
this geochemical self-organization Ortoleua, et ol., [1987b].
A second physical process for thermal control of basaltic
eruptions has been recently developed by Bruce and Hup-
pert [1989]. Melt flowing through a dyke is shown to be fun-
damentally unsteady and either gradually blocks or melts
back the walls of the dyke. It was pointed out that these
results show that such a process leads to flow localization as
hypothesized by McBirney 119841.

Here, a thermal approach similar to that of Bruce and
Iluppert is combined with instability considerations to pro-
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duce a thermal equivalent to either the Saffman-Taylor in-
stability or the geochemical self-organization. Instead of
two materially differing fluids we will have one fluid with
temperature-dependent viscosity. It will flow from the
source as a hot fluid and will be cooled through thermal
conduction to the cold sidewalls of a Hele-Shaw cell. Un-
like the previously studied problems, the final state may be-
come truly steady (although periodic or chaotic states are
also possibilities). The only similiar study is by S. Morris
(private communication, 1989), who predicts instability in
the above problem in a semi-infinite halfspace.

In section 2 we describe a laboratory experiment that il-
lustrates one possible situation, when hot fluid flows through
a cold pipe from an elastic reservoir. The flow is found to
be either steady or periodic, depending on the amount of

increase in viscosity that is produced in the cold region and

the replenishment rate of the reservior.

In section 3 a simple theory is advanced to explain the

observed behavior. A stability analysis is conducted for an

idealized problem with flow from an elastic chamber through

a slot. In the one-dimensional limit corresponding to the

experiments in section 2, the theory predicts linear insta-

bility for certain parameter ranges. The nonlinear theory

shows that a limit cycle oscillation will result. For two'

dimensional flow, linear theory predicts a spatial fingering

instability which would laterally concentrate the flow in the

slot.
In section 4 a second type oflaboratory experiment is de-

scribed with paraffin spreading radially from a point source

over a cold plate. It is found that when the Peclet num-

ber is of order l, the radially symmetric flow experiences a
transition to a fingering flow. At first, a number of fingers

are visible at the outer front of the expanding circular pool

of parafin. In the intermediate stage, these fingers advance

substantially. Each finger is fed by a tube of flowing melted
paraffin. The rest of the paraffin stops and ultimately solid-

ifies. At a later time all but one of the tubes slow down and

stop, and the melted parafrn flows only in one tube for as

long as the experiment continues. The parafrn everywhere

else gradually solidifies.
Both the laboratory experiments and the theory indicate

that the flow rate must lie within a certain range for insta-

bility so that a suitably defined Peclet number is of order

one. Both flow below this range, and flow above this range

will produce decaying infinitesimal perturbations. Linearly
unstable flow can develop oscillatory instabilities or spatially
periodic instabilities.

2. A LlsoR"aroRy EKpERJMEnT Wrrrr Coolpn
Conrv Svnup

The apparatus (Figure I ) consisted of a vertical glass tube
3.8 cm inside diameter and I m long located below a reser-
voir containing uKaro" brand corn syrup. A variable control
valve leading from the reservoir allowed syrup to fall into the
glass tube at a controlled rate. Projecting out of the bot-
tom of the glass tube was a stopper with a hole and a 0.383
cm inside diameter copper tube. Various lengths were used.
The copper tube projected downward and was shaped like
the letter "j". The lowest part to the "j" was immersed in
a refrigerated thermostatic bath, and a flexible plastic tube
extended from the end of the copper tube to a point out-
side the bath over a beaker placed to catch outflow. In an
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Fig. 1. Sketch of the apparatus for generating fl6ar 66drrla[l6n
from temperature-dependent viscosity. Corn syrrp is fed into a
horizontal tube at a constant rate. As the syrrp accumulates, it
increases pressure acroaa a small outlet tube that is in contact
with a cold bath. When the syrrp flowe rapidly, it stays hot, but
when it flowe slowly, it gets very cold and viscous.

experiment, syrup flowed from the reservoir into the tube.
Syrup in the glass tube builds up to a height i that can be
easily measured and flows out through the bottom copper
tube. The ftictional resistance to flow takes place princi-
pally in the copper tube because it is much smaller that the
glass tube. As the syrup flows out, it is cooled by thermal
conduction through the copper tube.

The apparatus was intended to be a simple upside down
model of a magma system. The glass tube represents a com-
pressible magma chamber, the height of the free eurface in
the glass tube represents pressure in the chamber, and the
copper tube in the refrigerated bath represents magma flow-
ing to the surface of the Earth through cracks or fissures. It
was hoped that if the refrigerator was sufficiently cold and
if the syrup has a sufficiently great viscosity upon cooling,
that an unsteady flow would develop even if flow from the
reservoir was steady. Some estimate of how much viscos-
ity change was necessary was obtained from the theoretical
considerations in section 3.

First, simple run-down experiments were conducted to
obtain eome estimate of the resistance as a function of the
flow rate. Theoretical considerations in section 3 indicated
that time dependence was not to be expected unless resis-
tance could be made to be inversely proportional to flow
rate. Pigure 2 shows data from two runs. The first (left)
had a bath temperature set to 0oC, a room temperature of
24.1'C and with a copper tube 30 cm long; the second (right)
had a bath temperature of -11.0oC, a room temperature of
24.0"C, and a copper tube 14.5 cm. long. Figures 2a and
2D show height versus time, from which the height versus
velocity were determined to give Figures 2c and 2d. For the
OoC run, the run-down is close to exponential (which one
would expect for a strictly uniform viscosity). In contrast,
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the -11.0"C run was similar to the first run for only roughly
the first thousand seconds. then there was a transition to a
very much slower run-down. Presumably at the later time
the viscosity of the syrup is very large due to cooling in the
copper tube. The diference between the two states is par-
ticularly clear on the height versus velocity plot (Figures 2c,
and, 2d) and even more so when shown as a logJog plot

log a

(Figures 2e, and 2f).  For the run at -11.0oC, the transi-

tion region from fast to slow run-down is characterized by a
plateau in the height-velocity logarithmic curve. Consider-

ations developed in the theoretical section will illustrate the

significance of the plateau.
When the volume flux of the source was set at a value

corresponding to the middle of the plateau, the height oscil-

Fig. 2. Results from two run down experiments with different bath temperatures. On the left, (Figures 2a, 2c
and 2e) the bath it at OoC, and on the right (Figure 2b,2d, and 2/) the bath is at -11.0oC. Height versus time is
plotted in (Figurea 2o, 2b), height ver:us velocity ia plotted in Figures 2c, 2tl), and log height virsr:s log velocity
ie plotted for (Figurea 2e, 2/).
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lated with time. Figure 3 shows height versus time, height
versus velocity and the log height versus log velocity for one
example. This run was started as a run-down, but then the
volume flux from the reservoir was turned on at the time de-
noted by the arrow shown in Figure 3a. Three complete and
nearly identical oscillations were seen thereafter. The plot

of height versus velocity was made from these data, but it
was necessary to subtract the constant velocity of the source
from the time derivative of the height record to determine
velocity out of the end of the tube. This was accomplished
by measuring the abrupt change in slope immediately before
and after the arrow. The oscillations produce a closed curve
in height-velocity space that lies on the top of the plateau
from the run-down portion of the experiment, The plots of
the logarithms (Figure 3c) more clearly show the limit cycle
oscillation on the plateau.

Additional runs have verified the reproducibility of the
oscillations when the parameters were set close to those in
Figure 3. When the flow rate of the source was set at a value
outside the plateau or when the bath was set at 0oC, no
oscillations were found, and the height would asymptotically
approach a steady value.

The experiments exhibited a transition from steady flow
to a more complicated flow when the velocity u ranged be-
tween 0.003 and 0.03 cm/s. Peclet numbers ur/r (see sec-
tion 3) based upon the above velocities, a radius r of0.2 cm,
and thermal difusivity r : I x l0-3 cm2 f s, range from
0.6 to 6. The parameter urzf rL, where I is the length of
the copper tube, ranged from 0.01 to 0.1.

3. Srlsu,rry oF UNTFoRM FLow

The purpose of this section is to develop a theory for hot
fluid flowing through a slot that is cooled from the side-
walls. A slot, rather than a circular tube, is incorporated
so that spatial, as well as time-dependent, instabilities may
be investigated. It will be shown that both temporal and
spatial instabilities are expected for Peclet numbers within
a certain range.

Consider the simple system sketched in Figure 4. A nar-
row slot with cooled walls is fed from below by fluid in a hot
chamber. The bottom of the chamber is fed by a uniform
volumetric f lux per unit  length Q. The slot width is d and
the slot height is .t. Take the chamber to be elastic so that
pressure in the chamber is related to inflation or deflation
of the chamber by the formula

E - ' 2 - e - - d - A *  ( r )a t  . -  
0 s

where 7 is cross-sectional area of the chamber, which we

J  o l+

SLOT

CHAI{BER

o
Fig. a. Sketch of the idealized system. A constant flux Q comes
in at the bottom of the chamber. It can flow up the slot with local
velocity tr and cool thrcugh the side walls. It can also flow along
the chamber. The chamber has elastic walls.
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have taken as a constant on the righbhand side in order to
keep (1) linear. Ilere E is a positive coemcient of elasticity,
and velocity u is the velocity along the chamber axis. .E-r
is analogous to glass tube area and p is analogous to Il
in the experiment in section 2. In the chamber, we assume
there is Poiseuille flow, so there is a balance between viscous
resistance from velocity u and along-chamber pressure drop,
so that

vqa 7 0p

t2  
: - i  

aa
where y;1 is the viscosity of the hot fluid in the chamber and

{ is a length scale of the chamber. Combining (1) and (2),

E-,  X-e- - , t . -## (3)
If we assume that the vertical flow in the slot is indepen- 0

dent of the across-slot direction, the viscous flow is governed
bv
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Figure 6 is a plot of equation (11) for three values of ,4. An
important physical result is that for ,4 > 6 pressure can drop
off with an increase in velocity over the range

2 f  l .  6 . r . . l  I

f  [ r - f t r - i r r ]  a ! - a 1 (  l 4 )

The lower limit of the inequality is equal to 2/3 when A = 6,
and is equal to l/3 for A > 6. In dimensional terms this
gives a pressure drop off with an increase in velocity for

2 ud2

5 < 8 ^ r < l
and

I ud,2

; . - . t  
f o r , 4 ) 6

This parameter range is extremely important because a
drop off in pressure with an increase in velocity leads to
various instabilities to the uniform flow as observed in the
experiment. The stability equations will now be derived.

T.
l e m p e r a t u r e0u l2v(T\  I

a t +  d ,  - = - i

where the viscosity

(4)
0p
0z

and ? is ,h","-o":;:".1;:T;?,n" 
".,. 

(5)

It is desired to find the pressure drop through the slot
(i.e., resistance to the flow) as a function of rr. To do this,
it is necessary to determined the temperature in the slot,
which can be found analytically under certain assumptions.
First, we look at steady flow through the slot and assume
that the material is flowing as a uniform slab so that

_u, 
a2T

6 ; :  
*  

W  ( 6 )

Let the temperature of the boundary decrease linearly in the
z direction at a rate AT/L so

T - T x - + ,  a t

A particular solution to (6) and (7) of the form

A T  . u A T  ( d 2  , \r : r u - - z +  r . L  l ; - " )  
( 8 )

exists. A homogeneous solution i (r,"1 must be added to
(8) match the boundary condition T = Tx at z : 0. The
homogeneous solution gives the boundary layer adjustment
at the entrance, and decays rapidly to zero with an e-folding
scale - wdz f nr2 . Rather than use the combersome full so-
lution, we will approximate the centerline (" = 0), temper-
ature by Tn for z < wd2 f 8n and by (8) with r = 0 for
ud2 f 8x I z 1 L. The temperature of the sidewall and the
centerline is sketched in Figure 5 .

It is helpful to inspect a solution to the momentum equa-
tion (4) with 0w/0t = 0 and z given bV (S). The tempera-
ture along the centerline is used to give

T=#{ l J , ,a ,+
(e)

lU"(AY - -oii') d,\

Fig. 5. Sketch of the temperature of the wall and the temperature
of the centerline of the fluid for this idealized problem.

which can be normalized to

p 'o :

(  /  z  ^ r z \
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\  :  \  \  " ^ /  /
I  ! #  - > f f

( r0)

# ( t + + ( t - * ) " )  u S u ,  ( r )
# 

' .r . ' l1u. lr

I  r  l :  d/2 (7)

Pod2 {
e l h t r L - " :  \

Here

and

( r2)

( r3)

f o r , 4 : 6

g Q o r r
t rith l.r,cd
r 8or r.lai P q =

p

c e n t e  r l i n e



t

I

\

4150

W/W,

- 2
- 2 - 1

Log llr,/l{"

Fig. 6. (c) Preseure drop acroes the slot calculated from equation
(11) as a function ofvelocity ofthe fluid for the three values.A = 0
(solid curve), 10 (dashed curve), and l0O (.laelpdel curve). (6)
The same data plotted as log-log.

Assuming that the viscous resistance in the slot can be
approximated by the steady result (11), integrating the mo-
mentum equation (4) from z = 0 to -L gives

!\4mumao AND lh.rrucrl Ttslfl,BATtlnF.Dopu'owr Msogrv

n

The flow resistance in the slot is

f ( w t = { ' ( ' + + ( r - w ) ' z )
t t ' ,

The parameters 7 and 6 are given by

, : (#) ' (#)

'=(w)

d2w , df

W -  d -

r p ( l
u r ) l

(re)

(20)

(2r)

(22)

(23)

n

and

The parameter 7 is a mea"sure of the ability of the chamber
to expand with pressure and 6 is a measure of the frictional
resistance along the chamber.

3.1. One-Dimensional Flow

With no spatial dependence (0 l0y = 0), (17) and (18)

correspond to the experiments discussed in section 2. The
pressure is analogous to the height of fluid in the column.
The velocity rr corresponds to the average velocity out of

the copper tube which is directly proportional to the rate of

change of the level in the column.
Equations (17), with 0 I 0y : 0, and (18) can be combined

to give

- 1
#*e? = o

- 0w l2w

" E + E
Normalizing (15
with

ust = u/w,

Q' - Qf w,d

t '  : t/kI2l72vn)

we get, after dropping the primes

1 # : a - w + 6 #

=f, (rs)

and the chamber pressure equation (3)

p'= or#t-"

This equation has the steady fixed-point solution

t r r o = a

Po : f(*o)

It is straightforward to show that this steady solution is

linearly unstable when

#l-"' o \24)

This inequality corresponds to a decrease in fricitional resis-

tance (or piessure drop) with an increase in velocity. This
cri terion is met by equation (11) for A > 6 in the range
given by (f+) and i l lustrated in Figure 6.

The behavior of the nonlinear solution can be deduced
by recognizing that (22) is in the form of an equation de-
scribing a mass-spring system with a nonlinear friction co-
efficient, here given by d.f ldu. The topology oI d.f /dw is
similar to the classic. V:-n der Pol equation (for example, see

Douies and James, [i966]), with a region of negative fric-

tion bounded by increasing positive friction outside of this

region. For Q in the linearly unstable regime a limit cycle

oscillation will always develop. When .4 is large and /(ur)
has a region of large negative slope, rr will oscillate between
periods of nearly constant low flow and an eruptive phase in
which u increa.ses rapidly and then teturns to the low flow.

As A approaches the critical value of 6, the oscillations will

become nearly sinusoidal. If other parameters are fixed, in-
creasing 7 causes the period of the limit cycle to increase.

Por Q in the stable regions the solution will a.symptotically
approach the steady fixed point.

This behavior is illustrated with numerical solutions to
(l?) and (18) with 0/09 = 0. Figure 7c shows an example
with [ ,4, Q,t j  = [50.0, 0.7, 1.0]. We picked the parame-

v n l t #  ( ' - * ) ' )

)

y ' =  y / L l 
(,6,
(  17 )

(18)
0us
u

and

+ f ( - ) = p
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pressure). Increasing 7 (see (20)) corresponds to a decrease
in the elasticity of the chamber compared to the viscous re-
sistance in the slot (measured by either the momentum dif-
fusion time il2f vs or the slot aspect ratio l,/d). The other
parameters are unchanged from Figure Z. For larger 7, the
evolutions of p and ur are similar to Figure Z. Increasing
7 causes the period of oscillation to increase. During the
deflation phase, the fallof of u is slower than for 1 = l.
The p - to phase plane (Figure 8D) shows that the solution
approaches the high rr branch of the steady solution during
deflation.

One final example is shown in Figures 9c, and 9b for

nusoidal. The limit cycle in the p - ur plane forms a near
ellipse around the unstable fixed point.

The behavior of the theoretical model is qualitatively sim-
ilar to the experimental results shown in Figure 3. In Fig-
ures 36 and 3c the h - u phase plane plots show an apparent
limit cycle connecting two stable branches delineated by the
results of the rundown phase of the experiment. The /r ver-
sus t plot in Figure 3a shows an asymmetrical sawtooth pat-
tern similar to p versus t in Figure 7a. Slow periods of build
up ef height (or pressure) are interrupted by periods of rapid

-l

rr,l
+ smaller viscosity contrast [A, Q, l]: [10.0, 0.?, 1.0]. For

this low value of,4 the solutions for p and u are nearly si-
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FiS. 7 (a) Numerical solurion of (f6) with O/Ey = O and
(17) for p (dashed curve) and u (solid curve) with (A,e,l) =
(50.0,O.7,1.O). (r) p - u phase plane plot of the solution (solid
curve). The steady etate r€lation po = l?u) from (18) is also
shown (dashed curve).

ter .4 large so there is a sizeable increase in viscosity. The
parameter Q = 0.7 has been picked so the steady flow urs
is near the center of the unstable region. The parameter 7
was arbitrarily set to l. The solution quickly achieves a limit
cycle in which the flow periodically has spikes of high flow,
separated by periods of low flow. The pressure p follows an
asymmetrical sawtooth pattern with a slow increase during
the stable low flow phase and a rapid decrease during the
eruptive phase. Figure 7D shows the corresponding limit cy_
cle in the p - ur phase plane. The steady relation ps = /(tu)
is also plotted. The solution closely follows the stable low
flow branch of the steady solution, jumping quick-ly across
the unstable region, then looping back to the stable low flow
branch. Decreasing Q increases the period ofoscillation, and
the eruptive phase occurs over a smaller fraction of the pe-
riod. The qualitative character of the solution is unchanged
from Figure 7. Increasing Q has the opposite effect. The pe.
riod decreases and duration of the eruptive phase increases.
Increasing (decreasing) Q causes the chamber to refill more
quickly (slowly).

Figures 8a, and 86 are for a case with ? = 5 so the cham-
ber is uweaker" (i.e,, more expansive with an increase in
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Fig.^ 10. Plot of the growth rate Re(as) from (27) as a function
of fr-z. Here Re(a1) is divided by |/2dJ /dtul-o and *2 is divided
b! 1 dI /du l-o . Four values of the paramerei 1/a d! /du l-o are
illustrated. All curves asymptote to 2 for large wavenurnbers,

Taking u1 : W, u'kvtot,
quadratic dispersion relation
two roots c1,2 are given by

where I,[ is a constant. a
is obtained from (26). The

(28)

- t  12  (2a)

(30)

o7 ,2  =

l .  r ar I
"  L i ( - l - "  

+
(27)

The real part of the plus root, a1, is always larger than the
other root, d2, So w€ will colsider a1 only. For lc - 0 we
r e c o v e r t h e o n e - d i m e n s i o n a l r e s u l t t h a t d f l d u | - o <
required for instabi l i ty. For rt  = 0 and 1> l ,

- +l#,1-".+]
+)'- + (' + 6k2!!-l-")] "'

0

deflation and eruption. Note that when the height rapidly
decreases, the temperature of the outflowing fluid rapidly
rises. Finally, the plateau in the rundown experiments cor-
responds to a jump from the fast to the slow branch. Of
course, the model is highly idealized, but it does reproduce
the main features of the experiment.

3.2. Two-Dimensionol Flow

We now return to the two-dimensional problem and ask
whether spatial perturbations can grow. If spatial instabil-
ities do grow the flux of fluid from an eruption woulcl be
spatially concentrated, resulting in along-slot fingering.

First,  (17) and (18) are l inearized about the steady solu-
t ion (23) with

t l r : 1 r o + e u r l

p = p o + e p l

where e ) 1, and one equation for urr is found

(25)

o t= -# l_ "+  o (7 - , )
a n d w h e n l  >  1 ,

Re(o) = -; #l_" rm (o) - 1

,,=-#,1." *o,n-',

This root is growing osci l lat ions.
Analysis for k I 0 shows that df /dwl-o ( 0 is still a

necessary corrdition for instability. Since 6 always multiplies
42, it can be removed by rescaling g and therefore will be
set to I  in (27). For & ) l ,  (22) becomes

' o ' - '  *  .L l  u t t  -'  AP ' d,u l-o At

6 g  - 6 { l  * { , r = o  

( 2 6 )
- 

1tAoz 
- 

d,w l-o 0y,

and the root is purely real.
For & ( O(l) the behavior is slightly more complicated.

Figure 10 i l lustrates the behavior of Re(o1). For I  )  l ,
Re(a1) is independent of t. As 7 decreases the growth rate
for it : 0(l) decreases until a band of wavenumbers have
Re(a1 ) < 0. When 7 > 4/ Uf /4* l-o ), th" roots are purely
real. When -y < 4/ (df /du l_-.q )' the roots are complex (i.e.,
osci l lato^ry) for d/c2 121-r1z !1 @f /dwl_o) and real for
larger &2. The transition occurs at t corresionding to the
minimum of ,Re(a1) shown in Figure 10.

The linear stability analysis of the two-dimensional prob_
lem shows that a fingering instability resulting in the lateral
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concentration of outflow is possible. However, the linear
analysis does not give a single wave number of maximum
growth and therefore does not suggest a dominant length
scale, A more complete analysis in the nonlinear regime, or
an improved model incorporating lateral flow within the slot
is necessary.

Before ending, it must be pointed out that the overall
features of the results are not dependent upon the specific
thermal model of the slot that has been Jopted here. A
second calculation has been made that parameterizes the
temperature of fluid rising through the slot with a model
equation of the form

where u is velocity through the slot and ?w is the wall
temperature. The constant C is a geometrical variable that
was set for convenience equal to I' The solution is

7 - Tw * (Tn - Tw\ e-*'ld2u (32)
where ?x is temperature of the fluid in the chamber.

For this thermal model it was necessary to have viscosity
dependence upon temperature be ,"p..r"nt"d as a quadratic
function

v = vE * a(Ts - f) + g(Tu -. T\2 (33)

in order to obtain a relationship between stea.dy pressure
drop pe and u that is anologous to (10). If p is set to zero,
there is no region of decreasing pressure drop to increasing
u and therefore no inst:rbility will develop.

4. hpnnrurxrs WrrH pl,nar,r,n

Experiments with liquid paramn have been conducted
that demonstrate a transition from uniform flow to fingering
flow as time progresses. The apparatus consisted of a 1.2 cm
thick square rolled aluminum plate 6l cm on a side placed
horizontally in a pan of ice water so that the underside of the
plate was in contact with the water. The temperature of the
ice w1{,sp is estimated to be approximately SoC in contact
with the plate, since the ice floated only around the edges of
the plate. The plate was carefully placed in the water so no
air was trapped under it, and then it was carefully leveled.
The leveling was essential because preliminary experiments
had raised the question of whether the direction of flow was
influenced by poor leveling. A l.l-cm-thick square plexiglas
plate 46 cm on a side was clamped over the aluminum with
spacers between the aluminum and plexiglas so a narrow
gap 0.247 + 0.007 cm remained. A hole drilled in the center
of the plexiglas was connected by heated hose to a reservoir
containing melted paraffin. A camera was positioned above
the apparatus to take photographs every 4 s.

1.1. Qualitatiue Obseraations

As a run commenced, parafrn was delivered to the hole at
a rate of 5.5 cm3 s-r. For approximately the first 16 s, the
parafin spread out in a growing pattern that was close to
perfectly circular (Plate 1a). Small deviations from perfect
circles appeared to be produced from surface tension efects
arising from slight irregularities in the texture of the black
painted aluminum, but these deviations produced less than
10% deviation in the radius of the circle. After 16 s, the cir_
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cular front rapidly developed little notches (plate lb) that
signified a sudden decrease in velocity at a point on the cir_
cle. Next to these notches, there was shortly a rapid growth
ofradial fingerJike bulges (Plate 1c) with round tips. Ten or
12 fingers grew within 4 s but many of them stopped grow_
ing during the next 4 seconds (Plate 1d). The only change in
the pattern subsequently was that four fingers reached the
edge of the tank, the rest gradually froze. Oil-soluble dye
was injected into the paraffin source, and it was observed
that when the dye had arrived in the cell, 2g s after plate
ld most flux was into the two largest fingers (plate 1e).
The dye had begun to intrude into a third tube, but it ap_
parently stopped shortly after arriving in the cell. Forty
seconds later, dye of another color was injected, and by thai
time, flow was only going out of one finger (plate l/). For
40 s more, flow out through that finger continued in a clearly
defined channel with little apparent change.

1,2. Quantitative Measurements

To measure the progression of the front, distances were
taken from the photographs with dividers and tabulated.
For the photographs with an almost circular intrusion, the
extremes of the radius were measured. For the finger cases,
the distance of the tip of every finger from the outside of
the feeding tube was measured and one measurement was
also taken in between each pair of fingers. The results are
shown in Figure 11. During the time when the front was
circular, the front advanced as it would from simple laws of
conservation of mass; a line with the formula r = (et/rh)r12
is shown^for comparison. In this formula the volume flux e
is 5.5 cm3 s-l ,  t ime is I  and gap width D is 0.241 cm. As the
fingers developed, the fronts on the fingers speeded up, and
the front between fingers slowed down and finally stopped at
which time the parafin appeared to begin to solidify at the
stopped regions. As time commenced, many of the smaller
fronts of fingers also stopped, but the remaining ones sped
up even more. The width of the final channel as marked bv
the colored dye varied along the channel from 1.4 to 1.7 cm.

A simple explanation of why the instability must happen
is that the paraffin would become cold and very viscous if
it remained in circular flow because then it would stay in
the gap for more than a thermal time constant. However, it
was clear that the paraffin had never completely solidified
anywhere during this run; it just appears to experience a
dramatic increase in bulk viscosity as it cools. Assuming
that both the lid and the aluminum plate cool the paraf_
fin as it flows along the slot, the value of the thermal time
constant for the paraffin in a gap of 0.247 cm can be esti-
mated from the formula h2 /lk. IJsing the above value of i
and t = 0.0004 cm2 s-1, the t ime constant is 36 s. In the
experiment the interface become unstable after 16 s. Also,
the final channel of approximately 1.5 cm width admits a
flow from the hole to the edge of the plate of about l5 cm/s.
Therefore, fluid leaves the region after being in the slot for
less than 2 seconds, a time that is short compared to the
time constant estimated above. Of course. these numbers
have considerable uncertainties and are meant to be only
approximate, but the simple concept that a flow pattern is
formed that would allow fluid to escape before it cools is
consistent with the experiment.

We also estimate the parameter group ud2 lgnl at which
the fingers were first detected. Here u = Je/4rril, where
r = 13 cm, the radius when fingering developed, and ,t is

.f: = -c # (r -rw) (31 )
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Plate 1. Photographs of the evolution of parafhn flowing with
constant volume flux through a cooled slot from a point eource.
From ldt to right: (a) At 12 r after start of the experiment a
circular intrueion is seen. (b) At f6 e two small notchee have
grown. (c) By 2O s numerous fingera bneak out. (d) At 24 s the
fingers have grown conaiderably. (e) At 52 s, dye reveals there
ia flow thrcugh two channele; there is also evidence that third
channel stopped just as the dye entered the tank. (f) At 92 s,
darker dye reveds that there ia flow in only one channel.

also set to this radius. Using these valves and the values of

Q,x and d from above, we get

ud2 3Qd

i l a=  E7;=u 'o
This value is within the range predicted by the idealized
theory (14) for A ) 6, which is the case for parrifin. These

are numerous differences between the experiment and the

model, but the agreement is encouraging.

CoNcr,untxc Rnmlnxs

The central result is that flows are unstable if Peclet num-

ber wdf n is in the range
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upon cooling. The hypothesis by McBirney [1984] that flow
through a dyke is fundamentally unsteady and is either grad-
ually blocked or melts away the wall, as developed by Bruce
and Huppert [1989], seems to be the closest actual applica-
tion. A study by Lowell 11990) attributes focusing of feeder
fluid to black smokers to contraction upon cooling of the vent
walls and thus is similiar in spirit to the present study, but
alludes to a different mechanism. Recent gravity datafLin,
et al,, 19841 show that the accretion of magma at a series
of segment along the Mid-Atlantic Ridge is focused at dis-
crete centers along the spreading axis. Whether this arises
from the present mechanism or from diapirism from deeper
in the mantle lWhitehead et al., 1984) is unknown. Finally,
R. Kent (private communication 1990) has pointed out to
us the presence of lamprophyre intrusions in the Damodar
Valley of north east India whose cylindrical melt tubes have
apparently arisen from low-viscosity melt penetrating into
carbonaceous sediments. Whether these can be understood
in the context of this mechanism is still open.

We close by noting there is still an enormous number of
problems to be done. The finite amplitude behavior is not
understood yet nor is the full two-dimensional stability prot>
Iem. We wonder wheter these problems are very sensitive
to geometry. Can fluid intrusions through porous flow de-
velop similiar instabilities if the interaction between fluid
and porous medium increases hydraulic resistance?
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Unstable flow can be either time dependent or spatially de-

pendent. Both laboratory and numerical experiments show

that time-dependent flows are periodic for the very simple

one-dimesnional problem studied here. Little is known in de-

tail abcut the spatially dependent system, although the lin-

earized stability analysis indicates that fastest growth rates
are for larte wave numbers, or short wavelengths. The small
wave numbers have growing oscillations if the chamber is ex-
pansive enough. Crude transient experiments with paramn

exhibited fingers suddenly developing as a circular front ad-
vanced over a cold plate. However, the number ofadvancing
fingers rapidly decreased with time to one, but that one per-

sisted for a very long time thereafter. This indicates that
spatial finite amplitude behavior may be quite complicated
to analyze theoretically.

A detailed application to any geological system ha.s not
yet been made, but numerous magmatic and hydrother-

mal systems are known to possess an increase in resistance


