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After the last EHaz week, I realized that it might be useful for some of you (and me!) to present a short
introduction of the theory of the Crystal Size Distribution (CSD) technique, and what are the concepts behind.
The technique was developed and introduced in a set of papers published in Contributions, in which the theory
(Marsh, 1988) and then the volcanic (Cashman and Marsh, 1988) and the the metamorphic cases (Cashman and
Ferry, 1988) were described1. In this document I shall summarize Marsh (1988).

The theory

As pointed out by Marsh (1988), the idea is the development of a equation governing the conservation of
number of crystals as they nucleate and grow. This equation is a balance between the influx of new crystals and
the loss of other given the particular process that controls the geological system2. Before introducing such balance
I will need to introduce some previous concepts.

Population density

The first idea comes from the kinetics of crystal growth, so an implicit assumption is that the number of
crystals per size and per unit of volume of rock must be known as a function of size. We learn from my question
to Dougal that this actually is the complicated3 bit, involving measuring the crystals an estimating their real size
from the slices in 2D in the thin sections. Let’s assume L a given (bin) size and n(L) the number of crystals of such
size. Recall here that n(L) is measured in a “per length” basis (i.e. per ∆L) so it does not depend on the bin size.
If the bins are enough small, the cumulative distribution N(L) is obviously given by:

N(L) =
∫ L

0

n(L)dL (1)

For a given value of L, the cumulative function gives the number of crystals of that size or less per unit of volume.
It is clearly straightforward to recover n(L) from N(L): it is simply the derivative of (1):

n(L) =
dN(L)

dL
(2)

So, how many crystals are in a given range ∆L? Taking a population n1 of size L1 growing at (an unknown) rate
G1 in a volume V1 and another4 differing in size by ∆L n2, L2 = (L1 + ∆L), G2, V2, then the number of crystals
within such size range is given by the difference between the bigger crystals minus the smaller crystals:

(V2n2 − V1n1)∆L (3)

The population balance

Therefore, the number balance for a range size (∆L) implies that the change with time of the volume of the
system and the number density of crystals within a size range (Equation 3) is governed by the rate at which new
crystals grow into and away from such size in a time ∆t. In the example of the two populations: G1V1n1 and G2V2n2

1Probably you will need to go to your library and make old photocopies of them!
2I could have said magmatic here, but the technique have more broad application in metamorphic (Cashman and Ferry, 1988) or

even in a sedimentary process
3and tedious
4Don’t forget that both population are from the same crystalline phase
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respectively and by the influx (Qini∆L∆t) and outflow (Qono∆L∆t). Equating these two terms gives the following
conservation:

(V2n2 − V1n1)∆L = (G1V1n1 −G2V2n2)∆t + (Qini −Qono)∆t∆L (4)

Equation (4) means that (net accumulation in the bin)= (growth input – growth output)+ (flux in –flux out), in
other words crystals enter and exit a given bin when they grow and when they are physically added or removed
from the system.
Now, a little trick; if Equation (4) is divided member by member by ∆t and ∆L and letting them approach to zero:

∂(V n)
∂t

=
∂(GV n)

∂L
= Qini −Qono (5)

Influx Qini � Qono

Equation (5) is the most general population balance. A meaningful petrologic system would be for example
Qini � Qono, i.e. the system is the volume in which the observed crystal have spent their whole growing life (i.e.
nucleating and grow in a magma chamber). Adopting this condition, Equation (5) becomes:

∂(V n)
∂t

=
∂(GV n)

∂L
+ Qono = 0 (6)

Open systems of constant volume and residence time

For systems continuously fed and emptied, the volume (magma chamber) can be taken as practically constant.
Using this, it is possible to define the Residence time as τ ≡ V

Q , which will change (6) to the following simpler form
(remember, V is constant):

∂(n)
∂t

=
∂(Gn)

∂L
+

no

τ
= 0 (7)

(we will drop the subscript in no from now onwards).

If the second term is expanded (i.e. ∂(Gn)
∂L = G∂(n)

∂L + n∂(G)
∂L ) and everything is divided by nG, equation (7)

becomes:
1
G

∂ lnn

∂t
+

∂ lnn

∂L
+

∂ lnG

∂L
+

1
Gτ

= 0 (8)

because 1
y

∂y
∂x = ∂ ln y

∂x .

Thus, equation (8) shows the logarithmic nature of the population densities!

Growth rate not a function of the size

A final important assumption is that the growth rate is not a function of the size (i.e. small crystals grow
at the same rate than the big ones). This is probably one of the weakest point of the methodology, since very little
is known regarding growing of mineral phases in silicate systems. If this is the case, then ∂G

∂L = 0, which modifies
equation (7) as:

∂n

∂t
+ G

∂n

∂L
+

n

τ
= 0 (9)

solving the differential equation and evaluating the constants of integration (for the detail check Marsh, 1988):

n = n0 exp
[
t

(
1
τ0
− 1

τ

)
− L

Gτ0

]
(10)

in which n0 is the nucleation density (i.e. the density for L = 0) and τ0 is the residence time of an initial crystal
distribution in the system (i.e. at t = 0) in contrast with an “actual” residence time (i.e. at t = t). It is
straightforward that plotting lnn vs. L should produce a linear pattern with a negative slope if the populations of
crystals (all the sizes) are growing in a system with a constant volume and constant residence time. In effect, if
τ = τ0 then Equation (10) becomes:

n = n0 exp
[
− L

Gτ0

]
(11)
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If the populations are taken to a different system this new system will have a new residence time controlling the
influx and outflow of the crystals in a different way than the original system where the crystals were formed (i.e.
τ0 6= τ). There are two possibilities here:

Case τ � τ0

Which is the case in which the new residence time is enough shorter than the old one. This is needed,
because if τ is shorter but relatively similar to τ0 then the solution tend to equation (11) . . .mind that subtle kinks
are hidden in the noise!.
Thus, because the residences are enough different we can neglect the difference and modify equation (10) as:

n = n0 exp
[
− t

τ0
− L

Gτ0

]
(12)

and the original crystal size distribution is progressively replaced by a new one whose residence time is τ . This
does not mean that the old crystals are flushed away or resorbed, in fact, the point here is that both populations
are present producing an steeper slope in the diagram.

Case τ � τ0

Which produce an analogue of (12):

n = n0 exp
[

t

τ
− L

Gτ0

]
(13)

which produces the that the original crystal size distribution is progressively replaced by another with a larger
nucleation density and a more gentle slope.

Conclusions

Thus, crystals that come from a “xeno–system” will have a crystal size distribution that will reflect the
volume, residence time and rate of recharge in such system. Mixing such crystal size distribution (i.e crystals of
all the sizes) with another crystal size distribution that depends on the characteristics of the “pheno–system” will
generate the pattern with a kink. If the pheno–system has a shorter residence time, then the governing equation
for the CSD will be (12), and the slope for the smaller crystals will be steeper than should it be. In the opposite
case, the slope of the larger crystals will be gentler. I should stress here that possible changes in the growing rate
(G) as a function of the size L of the crystals will not produce the linear pattern but an hyperbolic–like shape. The
key point here is that such pattern will be continuous and always derivable, no kinks with changes in the growing
rate! So the converse is also useful: CSD can be also used to find whether the growing rate of the crystals is size
dependent or independent. Hope this document helps!
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