Thermal emission of EM radiation

'The birth of photons'

• 'Classical' (pre-quantum) physics suggested that all modes had an equal chance of being produced, and that the number of modes went up as the square of the frequency

Stefan-Boltzmann Law derivation

$$F_{BB}(T) = \pi \int_{0}^{\infty} B_{\lambda}(T) d\lambda = \pi \int_{0}^{\infty} B_{\nu}(T) d\nu$$
or
$$F_{BB}(T) = \int_{0}^{\infty} \frac{2\pi h \nu^{3}}{c^{2}(e^{h\nu/k_{B}T} - 1)} d\nu$$

Stefan-Boltzmann Law derivation
• Make substitution:
$$x = \frac{hv}{k_B T}$$
 $v = \frac{k_B T x}{h}$ $dv = \frac{k_B T}{h} dx$
(limits don't change)
Giving: $F_{BB}(T) = \int_{0}^{\infty} \frac{2\pi h k_B^3 T^3 x^3}{c^2 h^3 (e^x - 1)} \frac{k_B T}{h} dx$
Tidy up: $F_{BB}(T) = \int_{0}^{\infty} \frac{2\pi k_B^4 T^4 x^3}{c^2 h^3 (e^x - 1)} dx$

Stefan-Boltzmann Law derivation

• Now removing constants from the integral gives:

$$F_{BB}(T) = \frac{2\pi k_B^4 T^4}{c^2 h^3} \int_0^\infty \frac{x^3 dx}{(e^x - 1)}$$

Evaluating the integral gives:

$$\int_{0}^{\infty} \frac{x^{3} dx}{(e^{x} - 1)} = \frac{\pi^{4}}{15}$$

Rayleigh-Jeans Approximation

$$B_{\lambda}(T) \approx \frac{2ck_B}{\lambda^4}T$$

- In the limit of large wavelength, the Rayleigh-Jeans approximation applies
- *c*: speed of light (2.998×10⁸ m s⁻¹)
- *k_B*: Boltzmann's constant (1.381×10⁻²³ J K⁻¹)
- Blackbody emission directly proportional to temperature at longer λ
- Valid for wavelengths of ~1 mm or longer (i.e., microwave remote sensing)
- Recall that this was the classical (pre-Planck) prediction of radiance from a blackbody at temperature T

- Assume a single shortwave absorptivity, \mathbf{a}_{sw}
- Equal to (1- A_{sw}), where A_{sw} is the shortwave albedo of a surface
- Assume a single longwave absorptivity, a_{lw}
- From Kirchhoff's Law, longwave emissivity ε = a_{lw}
- Using the Stefan-Boltzmann Law, longwave radiation fluxes may then be computed as $\epsilon\sigma T^4$
- Futhermore, we can assume that $\boldsymbol{\epsilon} \approx 1$ in the longwave band
- · Shortwave emission (at Earth temperatures) is omitted altogether
- · Condition for radiative equilibrium is that all fluxes balance
- If longwave (LW) emission exceeds shortwave (SW) absorption, cooling occurs and vice versa

Applications: radiation balance

• For the condition of radiative equilibrium we have:

$$\Phi_{SW} = \Phi_{LW} \Longrightarrow S_0 (1 - A_p) \pi r^2 = 4 \pi r^2 \sigma T_E^4$$
$$\Longrightarrow S_0 (1 - A_p) = 4 \sigma T_E^4$$
$$\Longrightarrow T_E = 4 \sqrt{\frac{S_0 (1 - A_p)}{4\sigma}}$$

• A_p = average planetary albedo

• Substituting the appropriate values for S_0, σ and A_p yields T_E = 255 K

• What is the actual observed global average temperature of the Earth?

· Similar calculations can be done for any planetary body

