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Probabilistic forecasting of volcanic eruptions is a central issue of applied volcanology with regard to mitigating
consequences of volcanic hazards. Recent years have seen great advances in the techniques of statistical analysis of
volcanic eruption time series, which constitutes an essential component of a multi-discipline volcanic hazard
assessment.Here, twoof the currentlymost active volcanoes of SouthAmerica, Villarrica and Llaima, are subjected to
anestablished statistical procedure,with theaimtoprovidepredictions for the likelihoodof future eruptionswithin a
given time interval.
In the eruptivehistory of bothVillarrica andLlaimaVolcanoes, time independence of eruptions provides consistency
with Poissonian behaviour. A moving-average test, helping to assess whether the distribution of repose times
betweeneruptions changes in response to the time interval considered, validates stationarity for at least theyounger
eruption record. For the earlier time period, stationarity is not entirely confirmed, whichmay artificially result from
incompleteness of the eruption record, but can also reveal fluctuations in the eruptive regime. To take both
possibilities into account, several different distribution functions are fit to the eruption time series, and the fits are
evaluated for their quality andcompared. Theexponential,Weibull and log–logisticdistributionsare shown tofit the
repose times sufficientlywell. The probability of future eruptionswithin defined timeperiods is therefore estimated
from all three distribution functions, as well as from amixture of exponential distribution (MOED) for the different
eruption regimes and from a Bayesian approach. Both theMOED and Bayesian estimates intrinsically predict lower
eruption probabilities than the exponential distribution function, while the Weibull distributions have increasing
hazard rates, hence giving the highest eruption probability forecasts.
This study provides one of the first approaches to subject historical time series of small eruptions (including those of
Volcanic Explosivity Index=2) of very active volcanoes to this type of statistical analysis. Since both Villarrica and
Llaima are situated in a regionof highpopulationdensity, the eruptionprobabilities determined in this studypresent
a valuable contribution to regional hazard assessment.
: +49 431 880 4456.
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1. Introduction

The Andean Cordillera comprises four segments with active volcanic
arcs, formedby subductionof theNaczaPlatebeneath theSouthAmerican
Plate. Those are fromNorth to South theNorthern Volcanic Zone (NVZ, 5–
2°S), the Central Volcanic Zone (CVZ, 14–27°S), the Southern Volcanic
Zone (SVZ33–46°S) and theAustral Volcanic Zone (AVZ, 49–55°S) (Lopez
et al., 1995; Stern, 2004). The longest and most active of these, the SVZ,
includes Villarrica and Llaima Volcano (Fig. 1), two of the most active
volcanoes of South America, and has recently stirred much attention by
theunexpected explosive eruptionof Chaitén volcano, previously thought
to be dormant or extinct. The high population density, industrial and
agricultural use, and touristic attractiveness of the regions adjacent to the
active volcanoes call for volcanic hazard assessment, aiming at eruption
prediction and mitigation for these hazard-exposed zones.
Volcanichazardassessmentandmitigationcanbestbeachievedby the
continuous monitoring of various processes such as seismicity, amount
and chemical characteristics of degassing, deformation etc., which in
many cases allow for timely warning of an impending eruption (e.g.
Scarpa and Tilling, 1996). However, on a longer time-scale, statistical
analyses have also proved useful. Past eruption patterns have been
statistically evaluated and were found to yield a prediction of expected
futureeruptionsbasedoneruption frequency (e.g.Mendoza-RosasandDe
la Cruz-Reyna, 2008). While this approach does not acknowledge inter-
acting tectonic, geophysical, and geochemical processes as immediate
eruption triggers, it uses this particular interaction to introduce a random
behaviour in the eruption time series, which can then be investigated
using the methods of standard life distribution/failure analyses (for an
introduction to this topic, see, e.g., Marshall and Olkin, 2007; Cox and
Oakes, 1984).

After the introduction of stochastic, i.e., non-deterministic, time series
models for repose times by Wickman (1966), this approach has been
successfully applied to various volcanoes around the world, notably the
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Fig. 1. Location map of Villarrica and Llaima Volcanoes.
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Hawaiian volcanoes (Klein, 1982; Ho, 1990; Bebbington, 2008), New
Zealand volcanoes (Bebbington and Lai, 1996a; Turner et al., 2008),
Soufrière Hills (Connor et al., 2003), Italian volcanoes (Ho, 1990;
Marzocchi et al., 2004; Bebbington, 2007; 2008), Mexico (Mendoza-
Rosas and De la Cruz-Reyna, 2008, 2009) and others. To date, the only
application to Chilean volcanoes appears to have been performed by
Muñoz(1983), testing thevolcanoesVillarrica, LlaimaandTupungatito for
Poisson behaviour.

In the course of such recent advances in volcano statistics, we here
implement these most elemental statistical techniques for the two
selected volcanoes of the Chilean SVZ. Our aim is not to pursue a
methodological advancement of the statistical theory, but to apply an
established procedure to help estimate the likelihood of future eruptions
within a given time interval, and to discuss possible shortcomings of the
methodological approach.With this work we present a first step towards
thewider aims of an integrative hazard assessment, whichwould have to
encompass geophysical, volcanological and geochemical findings.

2. Volcanoes considered in this study

This study will focus on Villarrica and Llaima, two of the most active
volcanoes of South America, whose eruptive record comprises about fifty
eruptions over the past 400 years. Individual testing of other recently
active volcanoes of the SVZ may be implementable, though possibly
associated with more perceptible limitations because of insufficiencies
in the documentation of the eruption record, or too low eruption fre-
quencies. Chaitén, for example, cannot be statistically analysed since only
one eruption (7420 BC) is known before the onset of new activity onMay
2, 2008.

2.1. Villarrica Volcano

Villarrica Volcano is situated at the northern tip of the southern
part of the large N–S trending Liquiñe–Ofqui Fault Zone (LOFZ), where
it intersects with the W–E trending Mocha–Villarrica Fault Zone at
39°25′14″S / 71°56′23″W. It emerged in the Mid- to Late-Pleistocene
by ejecting lava flows as well as violent fallouts, which led to an early
caldera collapse at 95 ka BP. The following 80 kawere characterised by
recurrent effusive and explosive activity, culminating in another
caldera formation through release of several voluminous mafic
pyroclastic flows at 14 ka BP. Continuous explosive activity rebuilt
the current stratocone, interrupted by the 3.7 ka BP eruption of the
Licán ignimbrite, which produced a smaller summit caldera. The
historic activity has been mainly effusive with some strombolian
explosions. At present, Villarrica Volcano contains a small lava lake
inside the summit crater, subject to permanent degassing (Lara and
Clavero, 2004). Despite this volcanologically rather weak activity
pattern of present time, Villarrica's morphologic features and location
in close proximity to the townships of Pucón and Villarrica and their
touristic popularity, even smaller eruptions may cause a considerable
hazard to people and property. Permanentmonitoring is performed by
the Observatorio Volcanológico de los Andes del Sur of the Servicio
Nacional de Geología y Minería.

2.2. Llaima Volcano

Llaima Volcano, located slightly westward of the LOFZ at 38°41′30″S /
71°43′43″W, is a compound basaltic to andesitic stratovolcano that has
grown since the Late-Pleistocene, initially dominated by effusive activity.
An explosive stage started with a caldera-forming eruption at 13 ka BP
and lasted till 7 ka BP, characterised by several large Plinian eruptions.
The historical activity consists mostly of effusive behaviour, which is
interrupted by numerous smaller explosions and accompanied by
quiescent degassing. Recent explosive activity in 2008 and 2009, which
forcedevacuationof local population and causeddamage toproperty, lead
the Chilean government to support efforts of monitoring and surveillance
(Dept. deGeologíaAplicadaof theServicioNacionaldeGeología yMinería,
personal communication; Naranjo and Moreno, 2005; Stern, 2004; and
references therein).

For the two volcanoes studied here, information on past eruptions is
taken from the Smithsonian Global Volcanism Programwebsite (www.
volcano.si.edu), compiled from Naranjo and Moreno (2005), and Lara
and Clavero (2004). Following the convention by Klein (1982), repose
times are taken tobe the interval of timebetween theonsetof successive
eruptions, which neglects the duration of the individual eruptions.

3. Eruption record

Statistical evaluation of eruption frequencies has been shown to be
more reliable for large eruptions than for smaller ones (e.g. De la Cruz-
Reyna, 1991). In this paper, we filter the eruption records of the target
volcanoes by the Volcanic Explosivity Indices (VEIs), as assigned in
literature data for the individual eruptions. The VEI has been defined
by Simkin and Siebert (1994), refined after Newhall and Self (1982),
as a measure of eruption magnitude, considering predominantly the
erupted tephra volumes, supported by several other eruption param-
eters such as eruption duration, column height, and qualitative de-
scriptive terms (Newhall and Self, 1982).

As a large number of explosive eruptions occurred at both Llaima
and Villarrica in the past centuries, we will focus here on the historical
data only (Tables 1a and 1b).

In the historical record, most eruptions from Villarrica did not
exceed VEI=2. Eruptions smaller than VEI=2, of which the deposits
are more likely removed and therefore unidentifiable, yield a higher
risk of being missed in the chronological eruption documentation. In
particular in the earlier periods of the eruption record, it is likely that
the record of smaller eruptions may be incomplete. For this reason,
only eruptions with VEI≥2 are considered in this study.

For consistency and comparability of the results, the limit of VEI≥2
will also be applied to LlaimaVolcano, although itwould also bepossible
to do the statistical assessment using a VEI≥3 limit for Llaima.

4. Poisson processes

In the simplest and ideal case, the occurrence of a sequence of
events such as volcanic eruptions can often be modelled as a Poisson
process, a stochastic process in which events

(1) occur seldom (the probability of two or more events occurring
contemporaneously is virtually zero),
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Table 1b
Historical eruptions of Llaima Volcano, with VEI.

Year VEI Year VEI Year VEI Year VEI

1640 4 1889 2 1932 3 1990 2
1751 2 1892 2 1937 2 1992 1
1759 2 1893 2 1938 1 1994 2
1822 2 1895 2 1941 2 1995 2
1852 2 1903 2 1942 2 1997 1
1862 3 1907 2 1944 2 1998 2
1864 3 1912 2 1945 3 1998 2
1866 2 1914 2 1946 2 2002 1
1869 2 1917 2 1949 2 2003 2
1872 2 1922 2 1955 3 2007 2
1875 2 1927 2 1964 2 2008 3
1877 2 1929 2 1971 2
1883 2 1930 2 1979 2
1887 2 1932 2 1984 2

Table 1a
Historical eruptions of Villarrica Volcano, with VEI.

Year VEI Year VEI Year VEI Year VEI

1558 2 1815 1 1908 2 1963 3
1562 2 1822 2 1909 2 1964 2
1594 2 1832 2 1915 1 1971 2
1647 1 1837 2 1920 2 1977 1
1657 1 1853 2 1921 2 1980 2
1688 1 1859 2 1922 2 1983 1
1716 1 1864 2 1927 2 1984 2
1730 2 1869 2 1929 1 1991 2
1737 2 1874 2 1933 2 1992 1
1742 2 1875 2 1935 1 1994 1
1745 1 1877 2 1938 1 1995 1
1751 1 1879 2 1938 2 1996 1
1759 1 1880 2 1947 1 1996 1
1775 2 1883 2 1948 2 1998 1
1777 1 1893 2 1948 3 2003 1
1780 1 1897 2 1956 1 2004 1
1787 2 1904 2 1958 1 2008 1
1790 1 1906 2 1960 1
1806 2 1907 2 1961 1
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(2) independently of one another (the probability of an event in
any time interval is independent of what happened up to the
start time of the interval) and

(3) with constant probability (there is no time trend, “memoryless
property”).

(The resulting formulae are discussed in Section 6.1; for a mathe-
matical definition and derivation of these properties, see, e.g., Cox and
Lewis, 1966).

4.1. Test for independence

In a first step, it is tested whether successive eruptions are time
independent from each other. This is done by calculating the cor-
relation of successive repose times from serial correlation scatter plots
(Cox and Lewis, 1966; Mendoza-Rosas and De la Cruz-Reyna, 2008).
The correlation coefficient R is calculated as

R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ yest;i− �y
� �2

∑ yi− �y
� �2

vuuuut ð1Þ

which, in the special case of an assumed linear relationship, can be
written as

R =
∑ xi− �x
� �

yi− �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ xi− �x
� �2� �

∑ yi− �y
� �2� �s ð2Þ
where the sum is taken over the n−1 repose time values on the x-axis
(xi) and the repose time values on the y-axis (yi), and their cor-
responding means x̄ and ȳ. In the more general, nonlinear case, the
estimated yest,i are calculated as any nonlinear function of the xi. The
square of the correlation coefficient (the coefficient of variation R2)
represents the fraction of the variation explained by the model to the
total variation.

For a known correlation coefficient, we test whether the observed
correlation could have arisen by pure chance (the null hypothesis “no

correlation”) by comparing the value R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n−2
1−R2

r
with the tabulated

values for the Student's t-distribution for 5% confidence level (e.g.
Spiegel and Stephens, 2008).

Fig. 2B shows the serial correlation scatter plot for Villarrica repose
times, with correlation coefficient R=0.16. This value does not yield
enough statistical evidence to discard thenull hypothesis that thevalues
are uncorrelated (at the 5% level of significance). Therefore, this is
consistent with the hypothesis of no correlation, and data points are
close to the axes, both pointing to independence of successive repose
times. However, thismay be an artefact generated by the longest repose
time of 136 years in the early eruption record.

Indeed, before 1730, eruptions occur rarely, with large repose times
in between, whereas after 1730, they become fairly regular. While this
observation might reflect a real eruption frequency increase in 1730,
such thatVillarrica entered regime of higher activity, amore likely cause
may be that the earlier historical record is incomplete. In the docu-
mentation, assigned VEI values of older eruptions are more at risk of
being too low, as the erupted volumes may be underestimated because
of removal of the respective deposit by erosion. Additionally, entire
small eruptions may be missed because the deposits could be too
disturbed. But even if only eruptions after 1730 are taken into account
(inset in Fig. 2A), the repose times give a very low correlation coefficient
of 0.19, still consistent with the assumption of independence of
successive eruptions.

In the case of Llaima, Fig. 2B shows that again the rate of eruptions
seems to increase markedly at some time in the past, in this case around
1850 AD. As for Villarrica, this may have been caused by a real change in
eruption activity, but might also reflect incompleteness of the historical
record. Therefore, the inset in Fig. 2B repeats the test, but restricted to the
time after 1850.

For both time intervals, the correlation of successive Llaima repose
times is weak, the correlation coefficients are 0.26 and 0.25, respec-
tively. As for Villarrica, this is consistent with the assumption of
independence. In addition to the calculated correlation coefficient,
this independence also becomes evident from visual inspection of the
figure, which displays large scatter between data pairs.

Despite the mentioned limitations of the data, we do not find
compelling evidence to discredit the assumption of independence of
successive eruptions and assume that memory effects are lacking.
5. Test for stationarity

Non-stationarity of the dataset (namely, the repose time series),
meaning that the probability distribution or parameters may depend
on the time interval considered, can be detected by a moving average
test (Klein, 1982; De la Cruz-Reyna, 1996; Mendoza-Rosas and De la
Cruz-Reyna, 2008). To implement this test, the average of each five
successive repose times is calculated and the results are plotted as a
function of time. This test is performed to detect non-homogeneity of
the assumed Poisson process, in the respect that the eruption rate-
parameter may change over time. While smoothing over short-term
fluctuations, this provides insight into a possible trend in repose
times. A condition for this test is the completeness of the eruption
record. On the other hand, if stationarity is assumed, the test can serve
to detect possible incompleteness of the dataset.



Fig. 2. A,B. Serial correlation scatter plot of repose times for (A) Villarrica, from 1558
(inset from 1730), (B) Llaima, from 1640 (inset from 1850).
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For the total historical eruption record of Villarrica, the average 5-pt
repose time amounts to 9.0 years. The first two 5-pt repose time
averages, however, fall well outside the 95 % confidence limit of this
value (Fig. 3A). As already inferred from Fig. 2A, this shows that
stationarity is not confirmed for the early eruption record, indicating
that either a change in the eruption frequency took place, or that the
early eruption record is not complete.

If we restrict the analysis to eruptions after 1730, the inset in
Fig. 3A shows that the variations in 5-pt average repose times are
consistent with random variations around the mean (6.4 years).
Although the diagram hints at a decrease in average repose times in
the 19th century followed by someminor variations, statistically, these
changes are not significant and may be pure fluctuations. Hence, the
data are consistent with the assumption of stationarity.

For Llaima, the 5-pt repose time averages also appear to decrease
steadily until about 1870 (Fig. 3B); after that, the averages are much
more constant. The first average falls outside the 95% confidence
limit of the mean (5.6 years), which agrees with our previous appre-
hension that the eruption record before 1850 may not be complete —

or that the eruption regime may have changed to stronger activity
around this time. Including only eruptions after 1850 in the analysis
(inset in Fig. 3B), the data are again consistent with the assumption of
stationarity.
6. Survival time fit

Define the repose time distribution function that “the probability
that the observed repose time T is smaller than or equal to t” by

F tð Þ = P T≤ tf g ð3Þ

with values in the interval [0,1]. This cumulative distribution function
F(t) is non-decreasing in t, and T is the random variable for the repose
time between the eruptions. The corresponding survival function S(t)
is then

S tð Þ = P T N tf g = 1−F tð Þ ð4Þ

The observed number of repose times greater than time t is then
obtained by scaling the survival function with the total number of
observed reposes.

In this application, we consider only basic distributions that are
“sufficiently good-natured” so that the density function f exists, where

f tð Þ = d
dt

F tð Þ ð5Þ

is a measure of the instantaneous failure probability at time t. Several
functions are commonly used to approximate the observed repose
time distribution.

6.1. Exponential distribution

The simplest case of a stationary Poisson process gives rise to an
exponential distribution function

Fexp tð Þ = 1− exp −λtð Þ ð6Þ

Sexp tð Þ = exp −λtð Þ ð7Þ

fexp tð Þ = λ exp −λtð Þ ð8Þ

The distinguishing characteristic of the exponential function is that
the statistical hazard rate

r tð Þ = limΔ↘0
P tbT≤t+Δ jT N tf g

Δ
=

f tð Þ
S tð Þ = λ ð9Þ

is constant, i.e., the probability of an eruption occurring in the next
small increment of time does not depend on the time that has already
elapsed since the last eruption occurred.

This means that if we define the residual life distribution Sx by

Sx tð Þ = S x + tð Þ
S xð Þ ð10Þ

i.e., the survival function as a function of time t after a given waiting
time (age) x, given survival up to that time, the exponential dis-
tribution is characterized by the property that Sx,exp(t)=Sexp(t). This
means, an exponential distribution is not affected by aging; i.e.,
the eruptive regime at the time considered does not suffer from
exhaustion of the driving forces consumed by previous eruptions.

6.2. Weibull distribution

It may be argued on physical grounds that the hazard rate should be
allowed to systematically increase/decrease with time to include
regimes of increasing volcanic activity orwaning/extinguishing activity.
This canbeaccomplishedby theWeibull distribution, commonlyused in



Fig. 3. A,B. 5-point moving averages of Villarrica and Llaima repose times, respectively (plotted at the end of the last repose). Dashed line: mean, dotted line: 95% confidence interval
of the mean. A) Villarrica repose times (inset from 1730); B) Llaima repose times (inset from 1850).
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failure analysis and successfully applied to various volcanoes (Ho, 1991;
Bebbington and Lai, 1996a,b; Watt et al., 2007):

SWB tð Þ = exp − λtð Þα� � ð11Þ

where α is a power parameter, usually referred to as the “shape
parameter”. For α=1, the Weibull distribution includes the expo-
nential distribution as a special case, but it also accommodates the
possibilities of increasing or decreasing hazard rates if αN1 or αb1,
respectively. As the Weibull distribution represents a model of simple
failure, it best illustrates scenarios that consider this failure after a
given time as a result of only one dominant process in the system.
Volcanologically, this could be projected to repose times of magma
maturation between the eruptions in a continuous or temporally
regular pattern, and eruption onset when gas pressure through
magma differentiation builds up beyond a critical threshold. In such
scenario, the value of α could be used to express for example changes
in the replenishment rate of a shallow chamber from a deeper source,
resulting in episodes of systematic waxing or waning activity.

6.3. Log–logistic distribution

Finally, it has been argued that competing processes may act in a
way that particular parameters increase the probability of an
eruption, while other, contemporaneously counteracting parameters
cause a decrease in eruption probability. For example, vent closure as



Fig. 4. A,B. Cumulative repose time fits for (A) Villarrica (from 1730), (B) Llaima (from
1850). Exponential, Weibull and log-logistic distributions were fit to the data with the
Origin software package using least-squares fitting. Fit parameters and results (reduced
χ2, i.e., χ2 divided by the number of degrees of freedom (DoF), R2) are given in the
boxes. The MOED is also plotted for comparison, see Section 7).

Table 2
AICc results for fits to Villarrica and Llaima repose time functions.

Villarrica Llaima

Exponential 9.37 21.62
Weibull 27.14 15.47
Log–logistic 30.82 25.89
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commonly occurs at Llaima Volcano between the eruptions combined
with only limited permanent gas release, hence volatile accumulation
in the melt through magma storage in shallow reservoirs, will lead to
a positive feedback process of pressure increase, thus contributing to
explosion probability enhancement. In contrast, processes such as
open system degassing, as takes place at the lava lake of Villarrica, will
facilitate a continuous quiescent pressure release, therefore rather
leading to relaxation of the system and lowering the likelihood of
an eruption. Such influencing factors can be phenomenologically
addressed by the introduction of, e.g., shape parameters. Interacting
processes such as those described can give rise to a log-logistic dis-
tribution (Pareto III distribution):

Slog tð Þ = 1
1 + t=bð Þα ð12Þ

which includes a scale parameter b and a shape parameter α. A log–
logistic distribution can sometimes achieve a better fit particularly to
very long or short repose intervals (Connor et al., 2003).

6.4. Quality of the fits

Since our aim in this study is to show the applicability of the
standard statistical modelling schemes to any volcano of interest, we
will indiscriminately try to fit all three possible distribution function
models to the observed repose time distribution functions, using the
method of least-squares fitting (equivalent to maximum-likelihood if
the errors are assumed to be normally distributed). A standard soft-
ware package can be used for the fits (e.g., R, Matlab or Origin; here,
OriginPro 8.0 and Origin 7.0 were used). The fit curves, parameters
and statistical measures (χ2 at the respective degrees of freedom
(DoF) and coefficients of determination R2, which indicate the pro-
portion of variance in the dataset that is accounted for by the statis-
tical model) are provided in Fig. 4A,B for both volcanoes.

6.4.1. Akaike information criterion
The Akaike Information Criterion (AIC) is a tool for model selec-

tion, which penalises both the misfit and a large number of param-
eters (Akaike, 1973; Bebbington, 2007; Turner et al., 2008). In the case
of least squares fitting to the same dataset, the AIC is calculated as

AIC = n⋅ ln
∑ y xið Þ−yið Þ2

n
+ 2k ð13Þ

where n is the number of data points fitted, k the number of free
parameters, and y(xi) the points of the model y(x) used to fit the data
points (xi, yi). In the case of a small number of data points n, a cor-
rection needs to be applied, giving the adjusted

AICc = AIC +
2k k + 1ð Þ
n−k−1

ð14Þ

(Sigiura, 1978; Burnham and Anderson, 1998). Results are given in
Table 2. On the basis of the AICc, the best fit for Llaima is achieved by
the Weibull function, while for Villarrica the exponential function is
preferred.

The absolute value of the AICc is irrelevant, the criterion provides
only a relative comparison between different models, in which the
lowest value points to the best fit. While this allows us to select the
best of the models, the AICc is not a goodness-of-fit test. Therefore, the
absolute quality of the fit needs to be assessed with a standard hypo-
thesis test such as the Kolmogorov–Smirnov-test.

6.4.2. Kolmogorov–Smirnov-test
The goodness of the three fits is evaluated using the Kolmogorov–

Smirnov–(K–S-) test (Table 3) (e.g., Gibbons, 1976). In contrast to the
AICc, where themisfit is evaluated by the root-mean-square deviation,
the K–S-test is a nonparametric test which assesses the maximum
deviation of the model from the data and evaluates the probability
that such a deviation might have arisen by chance. The advantage
of the K–S-test over, e.g., χ2, is that it is an exact test, i.e., valid
independently of the number of data points, and nonparametric, that
is, independent of the underlying probability distribution.

The χ2-test, in contrast, would be easier to reconcile with the AICc
results, because the degree of misfit is evaluated in the same way.
Another disadvantage of using the K–S-test as a measure of goodness
of fit is that it does not account for the reduction of the number of
degrees of freedom when parameters are estimated from the data.
In this case, the K–S-values are conservative and possibly overly
restrictive. The K–S-test provides the maximum of the absolute
deviations, which is a measure of the goodness of fit, but a very
restrictive condition in fitting. (For a more ample discussion of χ2 vs.



Table 3
K–S differences for fits to Villarrica and Llaima repose time functions.

Villarrica Llaima

Exponential 0.169 0.263
Weibull 0.205 0.204
Log-logistic 0.162 0.199
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K–S-testing, see, e.g., Gibbons, 1976). On the other hand, if the dis-
tributions fit to the data are consistent with both χ2 and the K–S-test,
this provides some independent insight into the quality of the fit.

For Villarrica Volcano, both the exponential and log-logistic
distributions give K–S-differences smaller than that of the 0.05 level
of significance (0.17 and 0.16, respectively, compared with a cut-off
value of 0.21), so themodels are consistent with the observations. The
Weibull distribution, however, performs worse than the exponential
distribution (K–S value of 0.21). This is a somewhat unreasonable
contrast, because the Weibull distribution includes the exponential
distribution as a special case with a constant shape parameter, there-
fore it should perform at least as well as the exponential distribution.
The large difference is obtained at the origin, due to the fact that the
scale factor A differs markedly from the total number of observed
repose times. If A is fixed in the fitting process, the resulting Weibull
distribution is very similar to the exponential distribution. Indeed, the
exponential distribution offers a good fit particularly to small repose
times, whereas it tends to zero quickly for longer repose times. The
Weibull distribution, if fit with variable A, remedies this problem
and provides a good fit to longer repose times with a long tail of the
distribution function, but does not reproduce very short repose time
statistics well, particularly not for a repose time value of 0. If we leave
out the value at T=0 in the K–S-test for Villarrica and limit the fit to
finite repose times, a K–S-difference of only 0.15, well below the 0.21
of the 0.05 limit, is obtained. It is justifiable to ignore T=0, because
the source data provide many eruption dates only as calendar years,
rendering it impossible to properly distinguish between 0 and 1. For
instance, and the only instance in this time series, there were two
VEI≥2 Villarrica eruptions in the calendar year 1948, which are
mathematically treated as repose time T=0, while in fact they had a
repose time of about ½ year and would have been treated differently
had they both occurred two months later, so that the second eruption
would have fallen into 1949 — a repose time of one year (i.e., T=1)
would then have been used for the analysis. Considering eruption
dates on a monthly to weekly time resolution would contribute to a
better precision for the short repose times.

In the case of Llaima, both the Weibull and log-logistic distribu-
tions give a good fit to the data within the 0.05 level of significance
(both 0.20), whereas the exponential distribution fails the test at this
level (0.26). While it may seem paradox that the exponential dis-
tribution fails the K–S-test, despite a better AICc than the log–logistic
distribution, the lower and hence better AICc is due solely to the lower
number of parameters and does not reflect less misfit. The combina-
tion of the K–S-results with the AICc indicates that a purely stationary
Poisson process is not a good description of the Llaima eruption
sequence, and the time series appear to be more likely affected by an
increasing hazard rate.

7. Different eruption regimes — MOED

Recently, Mendoza-Rosas and De la Cruz-Reyna (2008; 2009)
introduced the mixture of exponentials distribution (MOED) into
volcano statistics analysis as a way to take into account possible non-
stationarity of the eruption process. In their approach, the historical
eruption record is divided into a number of different regimes: time
intervals over which the eruption rate can reasonably be assumed to
be constant. Statistical methods exist that allow for a mathematically
sound and objective definition of regime boundaries in time series,
which can involve application of hidden Markov models (Mulargia
and Tinti, 1986; Mulargia et al., 1987; Bebbington, 2007). However,
within the scope of this work, we decided for the intuitive, visual
definition of regimes as used for MOED estimation and MOED-based
Bayesian analyses (De la Cruz-Reyna, 1996; Mendoza-Rosas and De la
Cruz-Reyna, 2008, 2009), which is based on visual identification of
piecewise linear regimes in a plot of cumulative number of eruptions
vs. time (Fig. 5A,B). Although it may seem at first sight that the choice
of the start- and end-points of the intervals is arbitrary to some
degree, the main features are stable: while the regime start and end
times may be moved by one or two decades at most, this does not
involve a significant change in the eruption rate for this regime, nor in
the results of the method.

TheMOED is definedas theweighted sumover the individual regime
distribution functions, giving a piecewise exponential behaviour:

FMOED tð Þ = ∑m
i = 1wi 1− exp −λitð Þð Þ; ð15Þ

SMOED tð Þ = ∑m
i = 1wi exp −λitð Þ ð16Þ

∑m
i =1wi = 1 ð17Þ

where m is the total number of identified regimes, λi is the eruption
rate (number of eruptions in regime i divided by duration of the
regime), and wi are weighting factors given by

wi =
Dt−Di

∑m
i = 1 Dt−Dið Þ ð18Þ

with Di being the duration of each regime and Dt the total duration of
the sampled interval of time.

Following the procedure outlined by Mendoza-Rosas and De la
Cruz-Reyna (2008), we use the chosen eruption regimes to determine
the parameters of a mixture of exponentials distribution (Table 4a
and b). Note that this method does not fit a MOED to give best agree-
ment with the data, but reads the MOED parameters from the plot. In
consequence, the agreement of the MOED with the data will depart
from the optimum on one hand, but on the other hand, this method is
much easier and more stable than fitting, and certainly more intuitive
than using a readily implemented fitting routine. It is also directly
insightful because the changes between phases of higher and lower
volcanic activity become apparent in the plots.

For Villarrica, three episodes of differing eruption rates can be
visually derived from Fig. 5A. The highest activity is bracketed by two
phases of somewhat lower eruption rates, whichmethod-wise dimin-
ishes the scenario that regimes of lower activity are only artefacts
of insufficient eruption documentation aggravating when reaching
further back in the past within this time span.

For Llaima, Fig. 5B shows that the data until 1862 can be grouped
together in one regime, which has considerably lower eruption fre-
quency than the following episode.We already supposed that the erup-
tive record up to the year 1850 might not be complete, and have up to
now chosen this year as lower boundary of consideration. This new
analysis, however, suggests that we should only consider Llaima erup-
tions after 1862. As mentioned before, it is of course possible that this
flatter slope images a real regime of lower activity, implying that it
should be included in the analysis. However, since this is the oldest part
of the historic record, and the rate is saliently different from all later
regimes, it is more plausible that this effect is due to incompleteness
of the record and this time interval should be skipped. This also agrees
with the outcome of the stationarity check performed above.

As for the three other distributions, the agreement of the MOED
with the data is examined with the K–S-test and produces differences
of 0.136 and 0.272 for Villarrica and Llaima, respectively. This gives an
excellent agreement with observations for Villarrica, while failing for
Llaima.Wemust, however, take into account that this is based on data



Fig. 5. A,B. Cumulative number of eruptions of (A) Villarrica (from 1730), and (B) Llaima (inset: eruptions from 1862). Blue/dashed lines: visually identified regimes of constant
eruption rate; (green) dashed-dotted lines: constant eruption rate approximation to the total time interval.
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read off from the plot without any kind of optimisation. Given the
fact that the K–S-differences are comparable in size to those of the
fits, the MOED model performs moderately well. Furthermore, there
is no reason why the MOED should be a more adequate representa-
tion of the data than for example a single, but optimised, exponential
distribution. To determine the MOED, exponential regimes are iden-
tified piecewise from the data, then the weighted mean of the indi-
vidual functions is taken to compile the total function. This mixture of
the exponentials is then applied to the entire data set for any given
period, thus immanently accompanied by the possibility of deviations
from the data.
Table 4
Parameters for MOED.

Regime Start year End year Nr. erupt. Rate λi Weight wi

Villarrica
1 1730 1859 10 0.0769 0.2688
2 1859 1948 24 0.2667 0.3405
3 1948 2009 6 0.0968 0.3907

Llaima
1 1862 1955 31 0.3333 0.1852
2 1955 1994 6 0.1539 0.3670
3 1994 2009 7 0.4667 0.4478
The only way to achieve a better representation of the data seizing
their piecewise definition is to also adjust the distribution function to
a piecewise exponential definition, in the way that

FPED tð Þ = ∑m tð Þ
i =1 1− exp −λi t−tið Þ½ �f g ð19Þ

where m(t) is the regime which includes the time t, and ti is the time
when the ith regime starts. This piecewise-exponential distribution is
represented by the blue lines in Fig. 5A,B, which is continuous but only
piecewise differentiable for mN1. However, this function – while
giving an excellent approximation to the data in Fig. 5A,B – is not
suitable for further analysis, for several reasons.

Firstly, the function depends on the start year, i.e., the expected
distribution of repose times starting in year t1 is generally not identical
to the distribution of repose times starting in year t2≠t1, as long as
repose times long enough to traverse from one regime to the next are
considered. Tofind the distribution of repose times, wewould therefore
have to integrate over all possible starting times.While this is possible, it
is cumbersome and doubtful whether the improvement in the results
can justify the additional computation effort.

Secondly andmore importantly, the ultimate aimof carrying out this
analysis is a prediction of the present and future volcanic hazards. To
infer the most realistic forecast from the time series, the present-day
eruption rate is the most relevant section of the eruption record to be
subjected to the statistical analysis. Therefore, defining a distribution
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function for an eruption rate in a limited time period that had ter-
minated in the past is reduced to an academic exercise with no appli-
cation for hazard research. This distribution would express only this
particular timeperiod andwouldnot bevalid for any later episodes, thus
producing only results irrelevant for forecasting present-day eruption
probabilities. The only ways to estimate the present-day eruption
rate are therefore (1) to concentrate only on the most recent regime,
which is considered to be ongoing, and use the observed eruption rate
to extrapolate to the future, or (2) to use the weighted mean of past
eruption rates, because there is no reason to believe that the last
observed regime is still continuing, it is possible that we just entered a
new regime with unknown eruption rate. This last assumption, using
the weighted mean of all past eruption rates, is the underlying idea
behind the use of the MOED, although the exact functional form of
the weights may be subject to debate (see above). Therefore, while not
providing as good a fit to the observed eruption data, previous inves-
tigators (Mendoza-Rosas and De la Cruz-Reyna, 2008, 2009) have con-
sidered the MOED useful for the estimation of future eruptions. As
we are applying the most common techniques here, also the MOED
will be used for eruption forecasting later in this work.
Table 5
Calculation of posterior eruption rates. For Villarrica Volcano: λposterior=0.0961 yr−1 ;
for Llaima Volcano: λposterior=0.193 yr−1.

Erupt rate Duration Prior Likelihood Posterior

λi (yr−1) Δt [yr] P(λi) P(y|λi) P(λi|y)

Villarrica
0.0769 129 0.462 4.54e−5 0.0371
0.2667 89 0.319 3.78e−11 2e−8
0.0968 61 0.219 2.48e−3 0.963

Llaima
0.3333 93 0.633 3.44e−14 2.9e−11
0.1539 39 0.265 2.48e−3 0.876
0.4667 15 0.102 9.12e−4 0.124
8. MOED-based Bayesian analysis of present eruption rate

When interpreted from a Bayesian point of view, what the MOED
does is to provide an estimate of the eruption rate used for the
forecast, based on the length of time period each eruption rate has
been observed to occur in the past. This is to some degree intuitive,
and it may be argued that a non-informative prior should be used
instead. However, we believe that an educated guess of prior infor-
mation, subsequently improved based on the data (the Bayesian
approach), provides a better estimate than using no information
at all. Nonetheless, also the latter approach will be followed in
Section 9.

The weighting scheme used in the MOED estimation is to some
degree debatable, as has been discussed. In the context of a Bayesian
analysis, the underlying idea is that the eruptions follow an expo-
nential distribution, but the value of the eruption rate at the present
time is unknown and needs to be estimated. The eruption rates ob-
served in the past in different eruption regimes can give a tentative
estimate of the possible values of λ, therefore we weigh the regimes
according to their length by

wi* =
Di

Dt
ð20Þ

to determine the prior expectation of the eruption rate

λprior* = ∑iwi*λi ð21Þ

as the average over the observed eruption rates λi up to now.
Taking advantage of Bayesian theory, the posterior expectation for

the eruption rate can be calculated based on Bayes' theorem that

P λi jyð Þ = P y jλið ÞP λið Þ
∑n

i P y jλið ÞP λið Þ ð22Þ

With P(λi|y) the probability of each λi reviewed in the light of an
experimental outcome y=“no eruption at the present time”, P(λi)=
wi the prior (estimated “intrinsic”) probability of λi and P(y|λi) the
likelihood of observing y=“no eruption” given λi, calculated as the
probability of event “zero eruptions” in a Poisson distribution with
parameter λi:

P 0;λið Þ = λiΔtð Þ0 exp −λiΔtð Þ
0! = exp −λiΔtð Þ = exp −nið Þ ð23Þ
where ni is the number of eruption in the ith regime (see De la Cruz-
Reyna, 1996 for a full explanation and, e.g., Gelman et al., 2009, for
details on the Bayesian approach).

The P(λi|y) can then be used as weights in the calculation of the
posterior expected value of λ in the light of the known data:

λposterior = ∑iP λi jyð Þλi ð24Þ

The calculations and results are given in Table 5.
9. Bayesian analysis based on non-informative Gamma prior

If no prior knowledge of the eruption rate is assumed, a non-
informative Gamma prior may serve to describe the distribution of
possible eruption rates (Solow, 2001; Varley et al., 2006; Gelman et al.,
2009).

π λð Þ = βα

Γ αð Þλ
α−1 exp −βλð Þ ð25Þ

where for the non-informative prior case α=β=0. The posterior
distribution is then of the same form, with parameters αpost=α+
ntotal=ntotal and βpost=β+ttotal=ttotal, ntotal being the total number
of eruptions observed in the total time ttotal:

P n eruptions in time t0ð Þ = βpost

βpost + t0

 !αpost βpost

t0
+ 1

� �−n

ð26Þ

The probability of at least one eruption occurring in the time t0
then becomes

P T≤t0ð Þ = 1−P n = 0eruptionsintime t0ð Þ

= 1−
βpost

βpost + t0

 !αpost ð27Þ

10. Forecasting eruption probabilities in comparison of
the methods

The different distributions as well as the results from the Bayesian
analysis are used here to determine the probability of witnessing at
least one VEI≥2 eruption in a specific time t in the future by evaluat-
ing the formula (Marshall and Olkin, 2007)

P T ≦ s + t jT N s
	 


= 1−1−F s + tð Þ
1−F sð Þ ð28Þ

where s is the time that elapsed since the last eruption, which reaches
till the present (Tables 6a, 6b and Fig. 6A,B). The fraction term of the



Table 6a
Probability of at least one VEI≥2 eruption of Villarrica Volcano within the next T years,
in %.

T (years) Exp. Weibull Log–log MOED Bayes (MOED) Non-informative

0 0 0 0 0 0 0
1 14.6 18.4 9.7 8.6 9.2 13.3
2 27.1 33.5 18.0 16.5 17.5 24.8
5 54.6 64.6 37.2 35.9 38.2 50.7

10 79.4 88.1 57.1 58.6 61.7 75.4
20 95.8 98.8 76.5 82.4 85.4 93.7
50 100 100 92.7 98.6 99.2 99.9

100 100 100 97.6 100 100 100

Table 6b
Probability of at least one VEI≥2 eruption of Llaima Volcano within the next T years,
in %.

T (years) Exp. Weibull Log–log MOED Bayes (MOED) Non-informative

0 0 0 0 0 0 0
1 28.3 24.2 29.6 25.7 17.6 25.6
2 48.6 46.7 54.7 43.7 32.0 44.6
5 81.1 86.6 85.9 72.8 61.9 76.8

10 96.4 99.4 96.0 89.7 85.5 94.4
20 99.9 100 99.0 98.0 97.9 99.6
50 100 100 99.9 100 100 100

Fig. 6. A,B. Probability of at least one VEI≥2 eruption of Villarrica (A) and Llaima (B), as
a function of time, in %.
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formula is the probability of no eruption occurring within time s+t
given our knowledge that none has occurred by time s — this is the
residual life distribution defined in Eq. (10). Vice versa, this can then
be applied to estimating the probability that at least one eruption
occurs in the given time.

In general, the Weibull distribution gives the highest probabilities
of an eruption occurring within a given time in the future, and reaches
values close to 100% fastest. Depending on the volcano, the expo-
nential and log–logistic distributions give intermediate hazards,
whereas the predicted time to the next eruption is longer from the
MOED and Bayesian estimates.

The high hazard rate produced for both volcanoes by the Weibull
distribution is primarily a result of the shape parameter αN1, which
fits particularly short repose times well, usually better than the
exponential fit. The resulting Weibull distributions are both found
to be increasing hazard rate (αN1), which is by no means less plau-
sible a priori than would be decreasing hazard rate shapes (αb1). A
somewhat stronger disagreement in the fit is observed for longer
repose times, which would rather lead to a long-tailed behaviour with
αb1.

The log–logistic distribution predicts eruption likelihoods de-
veloping over larger time scales than the Weibull and exponential
distribution in the near future for Villarrica, and the 100% level is
approached only slowly in the long-term. Since the log-logistic dis-
tribution proved to be a good representation of the data, this points
to competing processes rather contributing to relaxation of the sys-
tem and a relatively higher probability of eruption triggering by sim-
ple failure. For Llaima, the log-logistic model tends to produce similar
results as the Weibull and exponential distributions, in which the
100% probability is reached sooner.

The MOED gives overall lower hazards and reaches eruption
probabilities close to 100% comparatively late, which is due to the fact
that as a mixture of exponential distributions, the MOED itself has a
decreasing hazard rate (Marshall and Olkin, 2007).

The MOED-based Bayesian estimate for the present eruption rate
is in any case lower than the eruption rate obtained from an expo-
nential distribution fit. Since both estimates for future eruption prob-
abilities are based on the same functional form (the exponential
distribution), but with different eruption rate parameter (lower for
the Bayesian estimate), it is a natural consequence that the Bayesian
prediction consistently gives much lower probabilities for an erup-
tion to occur within a given time span. This takes into account the
theoretical consideration that high eruption rate regimes are sup-
posed to be shorter than low eruption rate regimes (Mendoza-Rosas
and De la Cruz-Reyna, 2009) and we can therefore expect to find
ourselves in a low eruption rate regime rather than in a high rate
regime— particularly if the time since the last eruption has been long.

In comparison, the non-informative Bayesian prediction gives
intermediate probabilities within the range of the other approaches.
This is not surprising since this estimate is a smooth model general-
ising for the entire time span of observation and the total number of
eruptions.

Such diverging predictions derived from different models should
raise alertness from understanding calculated eruption hazard as
unimpeachable. The fact that Llaima last erupted in 2008 makes it
plausible to believe that the 1994–2008 eruption regime is still on-
going, which justifies the extrapolation of the past hazard rate to the
present and future. There is, however, no confirmation on geologic
grounds that a new regime is not just commencing. The unexpected
Chaitén eruption that started in 2008 provides a good example that
the mere absence of eruptions at a volcano for almost 10,000 years
does not necessarily mean it is extinct. This is especially true for
volcanoes such as the ones this study is focused on, where the large-
scale driving force that acts on a much longer time scale, here the
subduction of the Nazca Plate beneath the South American Plate,
shows no signs of deceleration or attenuation.
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11. Applicability of the method

The eruption time series of the very active volcanoes Villarrica and
Llaima have not been successfully subjected to the implemented
statistical procedure in previous investigations. De la Cruz-Reyna
(1991) found globally Poisson-distributed explosive eruptive activity
only for VEI≥4 and to some degree for VEI≥3, but observed severe
shortcomings for VEI≤2. However, since this method has not yet been
ubiquitously applied to many volcanoes in the world, also possible
distortions for less explosive eruptions are not thoroughly verified. In
this study, we are forced to use VEI≥2 eruptions (Villarrica) because
of the scarcity of eruptions with assigned larger VEI. In the course of
scrutinising the approach, we follow the philosophy that an estimate
with limitations will be far more useful than no estimate at all. In
addition, this work may help to reveal possible systematic deviations
from the expectations, and hence, to adjust and better establish the
technique. Moreover, it is questionable whether it is appropriate
to simply ignore smaller eruptions from hazard considerations. We
acknowledge the fact that despite the focus on eruptions with VEI≥2,
also smaller eruptions and non-explosive eruptions releasing lava
flows, debouching flank collapses, triggering lahars, with an eruptive
regime characterised largely by intrusions, thus leading to perma-
nent quiescent gas emissions, yield a potential of considerable damage
to people, property, and ecosystems, or even devastation of the sur-
roundings. These smaller explosive and effusive eruptions are also
able to stepwise relax the system by pressure and stress release, likely
to affect the explosiveness of and the repose time elapsing until the
next eruption.

12. Conclusions

The implementation of standard failure-analysis statistical tech-
niques to the eruption time series of the young volcanoes Villarrica
and Llaima in the Chilean Southern Volcanic Zone with historical
VEI≥2 eruption records permits to forecast the probabilities of future
eruptions within given time periods. From the Weibull, exponential
and log-logistic distributions, the 100% likelihood of a future eruption
is generally reached in a shorter time span than from MOED-based
analyses. The non-informative gamma prior for the Bayesian anal-
ysis gives intermediate probabilities. For Llaima, all distributions fore-
cast at least one eruption with a VEI≥2 to occur within the next
20 years at a probability of N90%, which is reached at Villarrica within
50 years.

Despite the discussed limitation of the method, we offer this
approach as a useful tool for stepping towards hazard evaluation,
which should obviously never build up on statistical analyses alone.
Volcanic settings have been observed many times to be of untamed
nature, and statistical eruption forecasting as presented in this study
can do no more than illustrating the likelihood that eruptions will
occur within a time slot considered. For a successful disaster preven-
tion, management and mitigation, short-term hazard assessment in
the daily use should be based on informative monitoring techniques
such as regional recording of seismic activity andquiescent gas release,
deformation measurements by GPS networks, constraints on magma
compositions and tectonic features. Joining these sources, and sup-
porting them by statistical forecasting, will provide a multi-parameter
approach,which can indicatemuchmore reliably and at shorter notice
if a change in the activity level of the volcanoes is to be expected.
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