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Abstract On 17 June 1996, Ruapehu volcano, New
Zealand, produced a sustained andesitic sub-Plinian
eruption, which generated a narrow tephra-fall deposit
extending more than 200 km from the volcano. The ex-
tremely detailed data set from this eruption allowed
methods for the determination of total grain-size distri-
bution and volume of tephra-fall deposits to be critically
investigated. Calculated total grain-size distributions of
tephra-fall deposits depend strongly on the method used
and on the availability of data across the entire dispersal
area. The Voronoi Tessellation method was tested for the
Ruapehu deposit and gave the best results when applied to
a data set extending out to isomass values of <1 g m"2.
The total grain-size distribution of a deposit is also
strongly influenced by the very proximal samples, and
this can be shown by artificially constructing subsets from
the Ruapehu database. Unless the available data set is
large, all existing techniques for calculations of total
grain-size distribution give only apparent distributions.
The tephra-fall deposit from Ruapehu does not show a
simple exponential thinning, but can be approximated
well by at least three straight-line segments or by a
power-law fit on semi-log plots of thickness vs. (area)1/2.
Integrations of both fits give similar volumes of about
4#106 m3. Integration of at least three exponential seg-
ments and of a power-law fit with at least ten isopach
contours available can be considered as a good estimate

of the actual volume of tephra fall. Integrations of smaller
data sets are more problematic.

Keywords Tephra-fall deposits · Voronoi · Ruapehu ·
Exponential thinning · Power-law thinning

Introduction

On 17 June 1996, Ruapehu volcano, New Zealand, pro-
duced a prolonged andesitic sub-Plinian eruption charac-
terised by two sustained plumes about 2 h apart that
reached a maximum height of 8.5 km above sea level
(Prata and Grant 2001). These two plumes were affected
by a strong SSW wind (15–35 m s"1, Prata and Grant
2001) and generated a narrow tephra-fall deposit extend-
ing more than 200 km from the volcano (Cronin et al.
1998; Hurst and Turner 1999). This was one of several
sub-Plinian eruptions from Ruapehu in 1995 and 1996, but
external factors led to an unusually complete record of the
deposit. Firstly, the eruption took place during a long
period of stable dry weather, so that the very distal parts of
the tephra-fall deposit could be sampled over the follow-
ing 7 days. Secondly, a southerly wind meant that the
deposit was dispersed on the flat-lying northern summit
plateau of Ruapehu, at a time when the winter snow pack
was actively accumulating. Very proximal deposits fell on
fresh snow and was immediately buried by further snow-
fall. This preserved the beds, to within 200 m of vent, in a
completely undisturbed state. The very complete data set
from this eruption (mass per unit area values ranging from
about 3,000 to 0.0002 kg m"2 for samples collected be-
tween 0.2 and 200 km downwind from the vent) provides
an unusual opportunity to re-evaluate methods for esti-
mating total grain-size distribution and deposit volumes.
Field data and grain-size analysis used here are from
Houghton et al. (1996, unpublished data). In the rest of the
paper we will use the term ‘Ruapehu’ to indicate features
associated with the tephra-fall deposit generated by the 17
June 1996 eruptive event of Ruapehu volcano.

The total grain-size distribution of pyroclastic deposits
is often poorly constrained due to the sparse data and to
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inconsistencies in the methods used. Different methods
have been used in the past for different deposits (e.g.
Walker 1980; Carey and Sigurdsson 1982), but the lack of
a standard approach makes the comparison of these data
difficult. The use of a well-known and reliable statistical
tool known as Voronoi tessellation (e.g. Okabe et al.
1992) is here suggested and tested against the Ruapehu
data. The limitations of calculations based on partial data
are also investigated by artificially constructing smaller
data sets that are either uniformly distributed across the
dispersal area or lacking in samples from either proximal
or distal environments.

The large Ruapehu data set is also useful to investigate
methods of calculating the volumes of tephra fall, another
parameter crucial to the understanding and characterisa-
tion of an eruption, but in practice often very difficult to
determine. Several methods have been suggested to in-
terpolate and/or extrapolate available data and the most
recent ones assume an exponential decay of thickness
with distance from vent (Pyle 1989; Fierstein and Na-
thenson 1992). However, real thickness trends are still not
well understood. Many field data appear to fit an expo-
nential decay model (e.g. Pyle 1989), but they can also be
described by a power-law trend (e.g. Bonadonna et al.
1998). It is also evident now that most deposits are not
described by a simple exponential thinning, but show at
least two segments on semi-log plots of thickness vs
(area)1/2 (Pyle 1990; Fierstein and Nathenson 1992; Pyle
1995; Bonadonna and Phillips 2003). A simple exponen-
tial thinning is considered here as described by only one
straight-line segment on a semi-log plot of thickness vs
(area)1/2. Therefore, the current use of methods for vol-
ume calculations may still either underestimate or over-
estimate the deposit volume (Pyle 1990; Pyle 1995;
Bonadonna et al. 1998). A new method of volume cal-
culation by integration of the power-law fit is presented
here and compared with existing techniques and, in par-
ticular, with the exponential approach.

Calculations of total grain-size distribution

Total grain-size distribution of tephra-fall deposits is a
crucial eruptive parameter. Firstly, it can be used to infer
fragmentation and eruption style by linking particle size
to the initial gas content and water–magma interaction
processes (e.g. Houghton and Wilson 1998; Kaminski and
Jaupart 1998). Second, it is an important constraint for
sedimentation models that help understand plume dy-
namics (e.g. Bursik et al. 1992; Sparks et al. 1992). Third,
it is necessary for hazard mitigation plans as it is used in
tephra-dispersal modelling to assess the risk and vulner-
ability of populations (e.g. Barberi et al. 1990; Connor et
al. 2001; Bonadonna et al. 2002a) and because it is an
important indication of the level of particulate pollution
dangerous for human health (e.g. Moore et al. 2002).
Unfortunately, the determination of total grain-size dis-
tributions presents several difficulties due to (1)
methodological problems related to the integration of

grain-size analysis of single samples, (2) scarcity of data
points and (3) uneven data-point distribution.

Many grain-size analyses carried out for tephra-fall
deposits are incomplete, lacking data below 63 mm (i.e.
4f, with f="log2 d, where d is the particle diameter in
mm; e.g. Walker 1980, 1981c). Commonly, a scarcity of
samples also makes the reconstruction of the total grain-
size distribution difficult and the result becomes very
dependent on the calculation method used. The calcula-
tion of total grain-size distributions may be biased against
either or both the very coarse or very fine size populations
because very proximal and very distal samples are com-
monly not available for analysis. For future eruptions,
satellite studies may be used to deal with missing data in
the distal area by retrieval of size data using AVHRR
bands 4 and 5 (Wen and Rose 1994). This technique has
the advantage that it can detect very fine particles that are
suspended for long periods in the atmosphere or can be
easily eroded away due to their very small diameter. But
retrieval of particle sizes using this technique can only
resolve those particles with effective radii <10 mm.

Grain-size-calculation techniques

Several techniques have been utilised to determine the
total grain-size distribution of a tephra-fall deposit. Only a
few workers have attempted to synthesise data sets from
individual samples: approaches have ranged from a sim-
ple unweighted averaging of all available grain-size
analyses, e.g. Rotongaio ash (Walker 1981a), to various
step-wise integrations of data that may be weighted either
by deposit thickness or mass. Walker (1980, 1981a,
1981c) prepared isomass maps for each grain-size class
for four deposits at Taupo and integrated these data to get
the total mass for each size class, which could then be
summed to derive a total deposit grain size. Murrow et al.
(1980) calculated average grain-size distribution for the
regions enclosed by each grain-size isopach and then
weighted that data with respect to the enclosed volume to
arrive at the total grain-size distribution. Sparks et al.
(1981) divided the isopach map of the 1875 Askja Plinian
fall into segments and integrated grain-size data weighted
by enclosed volume. Carey and Sigurdsson (1982) inte-
grated data for the 18 May 1980, Mount St Helens tephra-
fall deposit by dividing the dispersal area into a series of
13 polygons and calculating the total mass within each
polygon and the average grain size of all samples from
within the polygon. They then weighted the latter by the
former to arrive at a total grain-size distribution. Parfitt
(1998) calculated average grain-size distributions for the
regions between each pair of isopachs for the Kilauea Iki
1959 tephra-fall deposit and then combined these data
with volume estimates and clast density data to derive the
total mass of material in each size class for each zone.

The Ruapehu data set is large enough to allow dif-
ferent total grain-size calculation methods to be investi-
gated. Three different techniques are compared here. In
technique A, the weighted average of sample grain-size
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distribution for all samples over the whole deposit is
calculated. Each data set is weighted by the mass per unit
area value for that site (Houghton et al. 1996, unpublished
data). For technique B, a variation of the Carey and
Sigurdsson (1982) approach is considered, by dividing the
tephra-fall deposit into arbitrary sectors and weighting the
sample grain-size distribution over each sector. The sec-
toral grain-size distribution is then weighted again over
the whole deposit (Fig. 1). In technique C, the Voronoi
tessellation statistical method is used. The Voronoi tes-

sellation is a well-known method of spatial analysis and
can be defined as the partitioning of the plane such that,
for any set of distinct data points, the cell associated with
a particular data point contains all spatial locations closer
to that point than to any other (e.g. Okabe et al. 1992).

The Voronoi tessellation is commonly used in applied
sciences (e.g. Nelson 1979; Jasny 1988; Haydon and Pi-
anka 1999; Wilkinson et al. 1999; Bohm et al. 2000;
Duyckaerts and Godefroy 2000; Zhan and Troy 2000;
Blower et al. 2003; Dupuis et al. 2004), but because this is

Fig. 1 Isomass map from
Houghton et al. (1996, unpub-
lished data), showing the ‘sec-
torisation’ ( red lines) of the
Ruapehu deposit used to calcu-
late the total grain-size distri-
bution (technique B). The mass
per unit area (M/A) character-
istic for each sector is also in-
dicated. The most external line
represents the isoline of zero
mass compiled from field ob-
servations. The dashed line in-
dicates extrapolation of land
data to the sea, the red triangle
indicates the position of the
volcano and the black diamonds
indicate the sample points used
in the calculations
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the first time this method has been applied to a pyroclastic
deposit, it is here described in detail. An edge (say be-
tween sample point SP1 and sample point SP2) of a
Voronoi cell is a line segment that is a subset of the
perpendicular bisector of the line segment connecting SP1
and SP2. The mass per unit area value and the grain-size
distribution of each sample point SP1, SP2, SP3, etc. ...,
are assigned to the enclosing Voronoi cells VC1, VC2,
VC3, etc. ... As a conclusion, the tephra-fall deposit is
divided into Voronoi cells whose interior consists of all
grid points, which are closer to a particular sample point
than to any other (Fig. 2). Then the total grain-size dis-
tribution is obtained as the area-weighted average of all
the Voronoi cells over the whole deposit.

There are hundreds of different algorithms for con-
structing various types of Voronoi diagrams (e.g. Brown
1979; Gowda et al. 1983; Klein 1989). We have compiled
a MatLab code that uses the Delaunay triangulation to
assign a Voronoi cell to each sample point considered and
determines the total grain-size distribution of the corre-

sponding tephra-fall deposit (http://www.soest.hawaii.e-
du/IAVCEI-tephra-group/grainsize.htm).

The influence of different grain-size-calculation
techniques

Grain-size distributions obtained by techniques A, B and C
all show two main subpopulations with a slight saddle at
"1f (Fig. 3). However, the weight fractions and the modes
of these two subpopulations vary significantly. Techniques
A and C give grain-size distributions that can be approx-
imated by a Gaussian distribution with mode at about
"0.8f, with about 99.9 wt% of particles between 256 mm
and 1 mm ("8 to 10f). However, two lognormal subpop-
ulations could also be identified by using the Sequential
Fragmentation/Transport Analysis Windows application
described in Wohletz et al. (1989) with modes at about "2f
and 0f, respectively. Corresponding proportions for each
mode are 50 wt% for both subpopulations resulting from
technique A, and 40 and 60 wt% for the two main log-
normal subpopulations resulting from technique C. Tech-
nique B generates a grain-size distribution with two sub-
populations with modes at "2.5f and 2f and mode pro-
portions of 25 and 75 wt%, respectively. All distributions
also show a third minor subpopulation with mode at "7f
with wt% <2. The Inmann graphical statistical parameters
(Inman 1952) for the grain-size distributions resulting from
the three techniques described above are shown in Table 1.

Techniques A and C give similar results because in
both cases samples are weighted over the whole deposit
without introducing any biasing factor (Fig. 3 and Ta-
ble 1). In contrast, the ‘sectorisation’ of the deposit
(technique B) inevitably introduces some bias due to the
choice of sectors. As an example, the grain-size distri-
bution in Fig. 3b still shows two distinct subpopulations,
but is clearly biased towards fine grain sizes due to the
choice of large distal sectors (Fig. 1).

Sectorisation techniques have often been used to cal-
culate total grain-size distribution with choices of sectors
made according to the specific characteristics of different
deposits (e.g. Sparks et al. 1981; Carey and Sigurdsson
1982; Parfitt 1998). This study indicates that this ap-
proach can be relatively unreliable. Techniques A and C
provide a better statistical result that does not require any
arbitrary choice of sectors. However, technique A could
also introduce some bias in a case where the samples used
for calculations are not uniformly distributed. This is the
reason why some authors have used several variations of
technique B, to permit some weighting allowance for
uneven distributions of samples. Technique C aims to
provide a compromise between techniques A and B, as it
partitions the deposit into polygons that weight the data
without introducing any subjective bias, as the polygons
are the result of a geometrical construction that entirely
depends on the sample distribution. Given the state of the
art in terms of grain-size calculations, Voronoi tessella-
tion is suggested as an alternative statistical method to
determine the total grain-size distribution.

Fig. 2 Map showing the Voronoi tessellation applied to the Ru-
apehu deposit to calculate the total grain-size distribution (tech-
nique C). Each polygon represents a Voronoi cell built for each
sample point ( black circles), and is assigned with the same mass
per unit area values and grain-size distributions as the corre-
sponding sample points. The most external line represents the
isoline of zero mass in Fig. 1. The thin line indicates the NE coast
of New Zealand. All polygons outside the zero line and in the ocean
are given mass zero (corresponding to the blue crosses)
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The influence of the availability of data

The data set from the Ruapehu deposit is unusually
complete for both distal and very proximal locations. By
selecting only subsets of these data, the sensitivity of
calculated total grain-size distribution to the quality of
data sets can be evaluated. In this test, six different data
sets are considered as follows:

– Data set 1: the original complete data set (Fig. 4a).
– Data set 2: data set 1 reduced to about 50%, but pre-

serving a uniform distribution across the total outcrop
area (Fig. 4b).

– Data set 3: data set 1 reduced to about 10%, but pre-
serving a uniform distribution across the total outcrop
area (Fig. 4c).

Fig. 3 Whole deposit grain-size
distribution for the Ruapehu
deposit obtained by using
a technique A, b technique B
and c technique C. f="log2 ( d),
where d is the particle diameter
in mm

Table 1 Inman graphical statistical parameters for the grain-size
distributions determined with techniques A, B and C in Fig. 3 and
for the data sets 2–6 in Fig. 5. Data set 1 is not shown in this table
because it is equivalent to technique C. Mdf is the median diameter,
sf is the graphic standard deviation and SkG is the graphic
skewness (Inman 1952). f="log2(d), where d is the particle diam-
eter in mm

Mdf(f) sf SkG

Technique A "1.25 2.40 0.00
Technique B 1.35 2.58 "0.22
Technique C "0.80 2.43 "0.01
Data set 2 0.05 2.18 0.01
Data set 3 0.10 2.18 0.26
Data set 4 1.55 1.60 0.09
Data set 5 2.55 1.33 0.13
Data set 6 2.80 1.18 0.23
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– Data set 4: data set 1 reduced to about 90% by elim-
inating very proximal samples (i.e. samples within
5 km from the vent) (Fig. 4d).

– Data set 5: data set 1 reduced to about 70% by elim-
inating all samples up to 30 km from the vent (Fig. 4e).

– Data set 6: data set 1 reduced to about 60% by elim-
inating all samples up to 50 km from the vent (Fig. 4f).

Data sets 2 and 3 simulate a deposit with rather limited
but uniform exposure. Data sets 4 to 6 approximate to
scenarios where the proximal and medial deposit is buried
or obscured by vent collapse and/or is inaccessible to
different extents.

Total grain-size distributions for data sets 1–6 were
calculated by technique C. Figure 5 shows that the re-

Fig. 4 Data sets used to assess the influence of the availability of
data. a Data set 1 (complete data set), b data set 2 (data set 1
reduced to about 50% preserving a uniform distribution), c data set
3 (data set 1 reduced to about 10% preserving a uniform distribu-
tion), d data set 4 [data set 1 reduced to about 90% by eliminating

very proximal (0–5 km) samples], e data set 5 [data set 1 reduced to
about 70% by eliminating proximal (0–30 km) samples], and f data
set 6 [data set 1 reduced to about 60% by eliminating proximal and
medial (0–50 km) samples]. Red diamonds and blue triangle in-
dicate sample points and eruptive vent, respectively
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sulting total grain-size distribution strongly depends on
the data set considered and that it is strongly skewed by
the most proximal samples available. Comparison be-
tween the total grain-size distribution calculated from
data set 1 (complete data set; Fig. 4a) and data set 6 (most

distal samples; Fig. 4f) shows that availability of proximal
samples are of critical importance (Fig 5a, f). This is
because proximal samples have more weight in the cal-
culations, being characterised by larger values of mass per
unit area. Even total grain-size distributions calculated

Fig. 5 Grain-size distributions
obtained by applying technique
C (i.e. Voronoi tessellation, in
Fig. 2) to the different data
subsets in Fig. 4. a Data set 1,
b data set 2, c data set 3, d data
set 4, e data set 5 and f data set
6. g shows the variation of the
apparent fine-ash content (par-
ticles with diameter <63 mm)
for the six data subsets
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using data sets 1, 2 and 3 (all uniformly distributed) show
slightly different results (the former being slightly bi-
modal) with an apparent fining of the deposit as the
number of samples decreases (Fig. 5g; Table 1).

Figures 5a, b show that technique C gives reasonable
results also for a reduced but uniform data set, even
though the resulting Inman parameters for data sets 1 and
2 show some differences (Table 1). If the data set is not
uniform, and especially if proximal data are missing,
technique C fails to give a good representation of the true
grain size (Fig. 5d–f; Table 1). This suggests that, unless a
uniformly distributed data set is available for a given te-
phra-fall deposit, any calculated total grain-size distribu-
tion will be an apparent total grain-size distribution, with
the quality of data reflecting the availability of samples
for that specific deposit. In order to obtain a total grain-
size distribution that better represents the original distri-
bution, a reliable extrapolation of data to proximal and
distal area is needed.

As a conclusion, total grain-size distributions obtained
from poor data sets lacking of either distal or proximal
data tend to be problematic due to the issues discussed
above. However, the sensitivity of the analysis also de-
pends on the sorting of the initial particle distribution,
which relates to the style and the intensity of a given
eruption. As an example, co-PF deposits are typically
characterised by particles with diameter <1 mm and,
therefore, would be less sensitive to the data sets analysed
(e.g. Bonadonna et al. 2002b). Grain-size distributions of
tephra-fall deposits from weak-plumes, such as the Ru-
apehu deposit, are more likely to be sensitive to the data
sets analysed because they are characterised by poorly
sorted original particle distributions and block- to lapilli-
sized fragments typically sediment within a few tens of
kilometres from vent [Fig. 1 and Houghton et al. (1996,
unpublished data)].

Volume calculation

The volume of tephra-fall deposits is an important pa-
rameter in establishing the magnitudes of eruptions and in
assessing risk and vulnerability. However, the calculation
of volume is not straightforward because of several
complications. These include (1) non-linearity of the
functions linking thickness and area, (2) a general scarcity
of data especially for prehistorical deposits, (3) lack of
distal data points due to erosion or where distal tephra
mainly falls into the sea, and (4) few very proximal points
due to burial or vent collapse or inaccessibility. Such
limitations in field data require extrapolation and inter-
polation and, hence, some assumption about thickness-
area relationships. Unfortunately, a reliable and standard
approach for the volume calculation of tephra-fall de-
posits is still not available, and several field-based (e.g.
Fierstein and Hildreth 1992; Hildreth and Drake 1992;
Scasso et al. 1994) and numerical studies (e.g. Bursik et
al. 1992; Sparks et al. 1992; Bonadonna et al. 1998) have
shown that methods based on the exponential decay of

deposit thickness away from the vent (e.g. Pyle 1989;
Fierstein and Nathenson 1992) can significantly under-
estimate the total volume, particularly for eruptions that
produce a significant amount of fine ash. In fact, several
of the best preserved tephra-fall deposits do not show a
simple exponential thinning (e.g. Sarna-Wojciki et al.
1981; Fierstein and Hildreth 1992; Hildreth and Drake
1992), and are approximated by two or more straight-line
segments on a semi-log plot of thickness vs (area)1/2

(Fig. 6).

Fig. 6 Semi-log plots of thickness vs (area)1/2 for tephra-fall de-
posits from a Novarupta, 1912 eruption (layer A; Hildreth and
Drake 1992), b Quizapu, 1932 eruption (Fierstein and Hildreth
1992) and c Mt St Helens, 18 May 1980 eruption (Sarna-Wojcicki
et al. 1981)
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Exponential method applied to deposits showing one
or more breaks-in-slope

The Ruapehu deposit can be approximated by a minimum
of three segments on a semi-log plot of thickness vs
(area)1/2, with breaks-in-slope at 3 and 29 km (Fig. 7a).
Field data investigated in this paper were originally
measured as mass per unit area (Houghton et al. 1996,
unpublished data), which is the ideal technique to sample
tephra-fall deposits wherever possible. However, old de-

posits are typically described by thickness values due to
sampling difficulties in measuring mass per unit area. In
order to present a general method to determine deposit
volume, Ruapehu values of mass per unit area were di-
vided by the measured deposit bulk density and converted
to thickness. Volume calculations done on both data sets
and corresponding thinning trends do not vary signifi-
cantly because the variation of deposit bulk density with
distance from vent was accounted for (Houghton et al.
1996, unpublished data).

Fig. 7 Semi-log plots of thick-
ness vs (area)1/2 for the Ruape-
hu deposit showing a exponen-
tial ( red segments) and b
power-law best fits ( red curve).
Three segments can describe
the exponential fit, with
R2=0.997, 0.966 and 0.999, re-
spectively. The power-law best
fit gives a R2=0.986. The da-
shed line indicates the extrapo-
lation of the most proximal and
most distal exponential seg-
ments (SEG 1 and SEG 3)
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To calculate the volume of a tephra-fall deposit on a
semi-log plot of thickness vs (area)1/2, two main ap-
proaches have been used. Pyle (1989, 1990) made use of
the assumption of elliptical and circular isopachs. Fier-
stein and Nathenson (1992) extended this approach to
derive a similar result that is independent of the shape of
isopachs (i.e. influence of wind advection). The volume
integral V (m3) is:

V ¼
Z1

0

TdA; ð1Þ

where A (m2) is the total area enclosed by the isopach line
of thickness T (m). For the case of exponential thinning:

T ¼ T0 exp $k
ffiffiffi
A

p" #
; ð2Þ

where T0 is the maximum thickness and k is the slope on
plots of ln(thickness) vs (area)1/2. Changing variables and
substituting Eq. (2) in Eq. (1) for the line segments before
and after the break-in-slope, both Pyle (1990) and Fier-
stein and Nathenson (1992) derived a formula for volume
in the case of one inflection point.

However, several deposits show more than one break-
in-slope on a semi-log plot of thickness vs (area)1/2 [e.g.
Hekla 1947 (Thorarinsson 1967); Hudson 1991 (Scasso et
al. 1994); Novarupta 1912 (Fierstein and Hildreth 1992);
Quizapu 1932 (Hildreth and Drake 1992)], therefore a
general formula is more appropriate. The calculation of
the volume of tephra-fall deposit in case of n line seg-
ments (and hence (n "1) breaks-in-slope) can be obtained
by integrating Eq. (2) for each of the n segments:

V ¼ 2T10
k21

þ 2T10
k2BS1 þ 1

k22
$ k1BS1 þ 1

k21

$ %
exp ð$k1BS1Þ

þ 2T20
k3BS2 þ 1

k23
$ k2BS2 þ 1

k22

$ %
exp ð$k2BS2Þ þ:::

þ 2T n$ 1ð Þ0
knBS n$1ð Þ þ 1

k2n

$

$
k n$1ð ÞBS n$1ð Þ þ 1

k2n$1ð Þ
exp ð$k n$1ð ÞBS n$1ð ÞÞ

i
ð3Þ

where Tn0, " kn and BSn are the intercept, slope and
break-in-slope of the line segment n. This formula applied
to Fig. 7a with n=3 gives a total bulk volume of
4.0#106 m3 for the Ruapehu deposit.

Power-law method

Ruapehu data show an equally good agreement with a
power-law relationship between thickness and (area)1/2

(Fig. 7b) with:

T ¼ Tpl
ffiffiffi
A

p $mð Þ
; ð4Þ

where Tpl is a constant and m is the power-law coeffi-
cient. Changing variables and substituting Eq. (4) in
Eq. (1), the following function is obtained:

V ¼ 2Tpl

ffiffiffi
A

p 2$mð Þ

2$ m

" #1

0

: ð5Þ

To prevent values of Eq. (5) becoming infinite whenffiffiffi
A

p
¼ 0, and when

ffiffiffi
A

p
¼ 1, two arbitrary integration

limits B and C need to be defined. Thus, Eq. (5) becomes:

V ¼ 2Tpl
2$ m

C 2$mð Þ $ B 2$mð Þ
" #

: ð6Þ

For the Ruapehu deposit, B is chosen as the distance of
the calculated maximum thickness, i.e. value of

ffiffiffi
A

p
in

Eq. (4) when T = T0 in Eq. (2):

B ¼ T0
Tpl

& ' $1
mð Þ
: ð7Þ

where T0 is the maximum thickness, and Tpl and m are
the power-law constant and coefficient in Eq. (4). C is
chosen as the downwind limit of significant volcanic-
cloud spreading as shown by satellite images (Prata and
Grant 2001). Thus, B=0.3 km and C=1,000 km. C extends
about 700 km beyond the mappable limit of the deposit on
land (Fig. 1). Equation (6) applied to the plot in Fig. 7b
with these integration limits gives a bulk volume of
4.2#106 m3, very similar to the result obtained by inte-
grating three exponential segments (i.e. 4.0#106 m3;
Fig. 7a).

Investigations on exponential and power-law methods
and comparison of results

Most deposits of tephra fall are not as well preserved as
the Ruapehu deposit. The corresponding data sets are
often smaller, and, if plotted on a semi-log plot of
thickness vs (area)1/2, the data may not be sufficient to
allow an accurate thinning trend to be recognised. If all
tephra-fall deposits were perfectly preserved and not af-
fected by secondary processes (e.g. particle aggregation,
convective instabilities), they would be expected to plot
as a curve on semi-log plots of thickness vs (area)1/2, as
suggested by numerical studies (e.g. Sparks et al. 1992;
Bonadonna and Phillips 2003). Therefore, the Ruapehu
data set is used here to investigate the accuracy of the
exponential and power-law methods when applied to
small and biased data sets.

Figure 8a shows the comparison of volumes obtained
integrating one, two or three exponential line segments in
Fig. 7a and the power-law fit in Fig. 7b. The use of only
one or two of the exponential line segments significantly
underestimates the volume (between 70 and 20% of the
volume obtained integrating all three segments; Fig. 8a).
The sensitivity of the power-law technique to the choice
of the integration limits B and C is also investigated
(Fig. 8b). Considering a bulk volume of 4.2#106 m3 as the
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best estimate for Ruapehu (with B=0.3 km and C
=1,000 km for the reasons described above; Fig. 8a), er-
rors are within 20%vol for volumes obtained by integra-
tion of the power-law fit with C=1,000 km and B <1 km,
and B=0.3 km and 200< C <8,000 km (Fig. 8b).

Exponential (E) and power-law (PL) fits were also
investigated for three subsamples: a few data points in a
narrow interval (i.e. 0–30 km distance from vent, corre-
sponding to (area)1/2 =0–7 km in Fig. 9a, and 46–250 km
distance from vent, corresponding to (area)1/2=21–109 km
in Fig. 9b), and a selection of medial and distal data points
non-uniformly distributed (i.e. between 15–30 and 150–
250 km, corresponding to 5<(area)1/2<7 km and
45<(area)1/2<109 km in Fig. 9c). Results of volume cal-

culations using the two methods are shown in Fig. 9. Note
that for most subsamples the volumes are underestimated
by between 7–70 vol% using both techniques, with the
exception of the distal-data subsample that gives the lar-
gest discrepancy with an overestimation of about
450 vol% of the actual volume by integrating the power-
law fit. The smallest discrepancy obtained in this test is
given by the power-law method applied to the proximal-
data subsample (i.e. "7vol%; Fig. 9a). For the subsample
comprising medial- and distal-data points, the discrepan-
cy is about "24 and "59 vol% for the power-law and
exponential method, respectively. The two integration
limits B and C used in the integration of the power-law

Fig. 8 a Comparison of vol-
umes calculated integrating one,
two or three exponential seg-
ments and the power-law fit in
Fig. 7b Comparison of volumes
obtained integrating the power-
law fit using different integra-
tion limits B and C. Black dots
indicate volumes calculated by
varying B between 0.01 and
5 km with C=1,000 km. White
triangles indicate volumes cal-
culated by varying C between
200 and 20,000 km with
B=0.3 km. The best volume
estimate is indicated by the
red arrow (i.e. 4.2#106 m3; a).
Dashed lines indicate an error
of 20 vol%
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fits in Fig. 9 are the same used for the integration of the
whole data set (i.e. B=0.3 km and C=1,000 km).

Table 2 shows a comparison between bulk volumes of
seventeen tephra-fall deposits calculated by the power-
law and the exponential methods. The choice of integra-
tion limits B and C for old deposits is difficult and arbi-
trary. In this test, the power-law fit was integrated be-
tween B =0.3 km and C =1,000 km, consistent with the
Ruapehu study. Results from other authors based on other

techniques are also shown: the crystal-concentration
method (Walker 1980), the method based on Log–Log
plots with two straight-lines approximation (Rose et al.
1973), and the trapezoidal rule (Froggatt 1982). The
crystal-concentration method was developed to deal with
tephra-fall deposits for which the data availability on land
is poor, e.g. Taupo (Walker 1980). This is mainly based
on the assumption that large pumices are representative of
the original magma and so they can be used to determine

Fig. 9 Comparison of volume-
calculation methods for three
different subsamples of the
Ruapehu data. a Proximal data,
(area)1/2 =0.2–7 km, b distal
data (area)1/2 =21–109 km and
c medial and distal data,
5<(area)1/2 <7 km and
45<(area)1/2 <109 km. Grey
circles on plots of thickness vs
(area)1/2 represent the complete
data set, whereas black circles
represent the three sub-samples
analysed. Red segments and
blue curves represent the expo-
nential and power-law fits, re-
spectively, for the three sub-
samples. The power-law fit is
integrated between B=0.3 km
and C=1,000 km. Correspond-
ing relative error is also calcu-
lated for the exponential (E) and
power-law (PL) methods (black
bars) relatively to the volume
obtained using the complete
data set (grey bar, i.e.
4.2#106 m3, in Fig. 8)
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the crystal/glass ratio. However, the crystal content of
pumices in some tephra-fall deposits is widely variable,
making this method difficult to apply. The method based
on the Log–Log scale was developed to deal with the non-
linearity of thickness-distance data. However, the Log–
Log plots do not reduce the curvature of a thickness–
distance relationship, making the extrapolation to distal
area difficult to compute. Finally, the trapezoidal rule
based on a linear scale is very sensitive to the availability
of data and does not allow any extrapolation to distal
areas. Results from some specific techniques used for
some deposits are also shown. The power-law coefficient
m for tephra-fall deposits varies between about 0.7 and
2.2 (Table 2).

The absolute reliability of volume estimates is difficult
to constrain without access to data sets equally as com-
plete as the Ruapehu one and, therefore, our investiga-
tions (Fig. 9) cannot be used as a general rule for all
tephra-fall deposits. However, a relation between number
of isopach contours available and quality of volume es-
timates can be seen in Table 2. In fact, exponential and
power-law techniques give similar results when a large
data set is available, with three exponential segments
defined (i.e. 10–16 isopach contours: Hekla, Hudson,
MSH, Quizapu, Ruapehu; Table 2). The power-law ex-
trapolation gives significantly higher values than the ex-
ponential technique, when the data set is poor, i.e. with
only one or two exponential segments defined (e.g. 4 to 7

isopach contours: Fogo, Minoan, Santa Maria, Taupo,
Vesuvius; Table 2).

The main discrepancies between power-law and ex-
ponential techniques are shown by those deposits with a
power-law coefficient m<1 (i.e. Minoan, Santa Maria and
Vesuvius deposits; Table 2) and, therefore, by those de-
posits that are characterised by a gradual thinning. Typi-
cally, this is true for large Plinian eruptions that generate
extended tephra-fall deposits (e.g. Walker 1981b). Equa-
tion (6) shows that the integration of the power-law fit for
deposits with m<<2 is very sensitive to the choice of the
integration limits and, therefore, is more problematic. As
a conclusion, the integration of the power-law fit when
m&2 (deposits with rapid thinning) is more reliable be-
cause it is not very sensitive to the integration limits (e.g.
Hekla, Ruapehu, Tarawera; Table 2). This is also con-
firmed by the sensitivity tests done on the integration
limits for Ruapehu (Fig. 8b).

Discussion on volume calculations

In a similar fashion to the whole-deposit grain-size
evaluation, volume calculations are very dependent on
availability of data. Several authors have tried to provide
reliable methods of extrapolation of existing data by
different techniques, but the typically limited availability
of field data makes the choice of empirical laws for ex-
trapolation subjective and potentially misleading. Vol-

Table 2 Volume estimates. Data to the right of ‘Exp’ are estimates
made by other authors (shaded columns). Data: number of isopach
contours available; min. and max. area1/2: values of minimum and
maximum (area)1/2 covered by the data available; m: power-law
coefficient in power-law fit, Eq. 4); PL: power law method (inte-
gration limits: B=0.3 km and C=1,000 km for all deposits); EXP:
exponential method (Pyle 1989; Fierstein and Nathenson 1992)
(number of segments used in the calculation is in bracket); Cryst.:
crystal-concentration method (Walker 1980); Log–Log: two line-
segment approximation based on a log–log scale (Rose et al. 1973);
Trap.: trapezoidal rule based on a linear scale (Froggatt 1982);
Others: specific methods used for individual deposits: aapplication
of the trapezoidal rule to an extrapolation of thickness data based

on the tephra-fall deposit from Quizapu 1932 (Hudson); bdirect
measurements of isopach area and thickness inside the 0.5-mm
contour (MSH); cmodification of the exponential method account-
ing for tephra-fall mixing within different layers (Novarupta);
dexponential method applied to an extrapolation of thickness data
based on the tephra-fall deposit from Taupo 186 a.d. (Tarawera).
References: Askja D (Sparks et al. 1981); Fogo (Walker and
Croasdale 1971); Hatepe (Walker 1981); Hekla (Thorarinsson
1967); Hudson (Scasso et al. 1994); Minoan eruption (Pyle 1990);
Mount St. Helens (Sarna-Wojcicki et al. 1981); Novarupta (Fier-
stein and Hildreth 1992); Quizapu (Hildreth and Drake 1992);
Santa Maria (Williams and Self 1983); Tarawera (Walker et al.
1984); Taupo (Walker 1980); Vesuvius (Sigurdsson et al. 1985)

Data Min.
area1/2

(km)

Max.
area1/2

(km)

m Volume (km3)

PL EXP Cryst. Log–Log Trap. Others

Askja D (1875) 6 1.4 52.0 1.14 2.6 0.3 (2) - - 0.6 -
Fogo (1563) 5 1.4 14.9 1.14 11.6 0.4 (1) - - - -
Hatepe (186 a.d.) 7 12.2 96.3 1.42 2.9 1 (2) 6.0 - - -
Hekla (1947) 11 3.9 264.6 2.23 0.3 0.2 (3) - - 0.2 -
Hudson (1991) 10 6.9 151.9 1.36 7.0 6.9 (3) - - - 7.6a

Minoan (3.6 ka b.p.) 7 0.8 438.1 0.68 87.4 43.8 (2) - - 28.0 -
MSH (18 May 1980) 15 0.7 531.8 1.27 1.3 1.1 (2) - - - 1.4b

Novarupta, A (1912) 7 21.4 265.0 1.66 9.0 5.2 (2) - - - 6.1c

Novarupta, B (1912) 6 5.9 202.1 1.26 6.4 2.5 (2) - - - 2.7c

Novarupta, CDE (1912) 8 2.9 163.4 1.69 4.5 2.7 (3) - - - 4.8c

Novarupta, FGH (1912) 10 3.9 332.3 1.24 13.2 7.5 (3) - - - 3.4c

Quizapu (1932) 11 6.4 790.6 1.88 12.4 9.5 (3) - - - -
Ruapehu (17 June 1996) 16 0.2 109.0 2.05 0.004 0.004 (3) - - - -
Santa Maria (1902) 6 6.0 151.0 0.77 61.8 9.2 (1) 20.0 8.2 - -
Tarawera (1886) 6 8.9 41.4 2.23 1.8 0.5 (1) - - - 2.0d

Taupo (186 a.d) 5 14.3 118.6 1.18 29.9 6.7 (1) 24.0 - - -
Vesuvius, GP (79 a.d.) 4 4.0 44.0 0.71 51.0 2 (2) - 6.4 - -
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umes of tephra-fall deposits calculated in this fashion
have then been often underestimated and have often
needed to be revised using new available techniques, e.g.
Minoan eruption, 3.6 ka b.p. (Pyle 1990).

A new method for volume calculation by integration of
the power-law fit was presented in this paper and inves-
tigated together with existing techniques. The power-law
technique has the advantage of fitting the available data
without having to introduce any interpretation on the
choice of segments as for the exponential technique, and
providing for the gradual thinning of tephra-fall deposits
in distal area. However, this technique presents some
problems mainly because finite integration limits have to
be chosen.

The power-law and exponential techniques were tested
using 17 tephra-fall deposits and compared with other
popular techniques showing the following results (Fig. 9
and Table 2). First, when at least three segments can be
defined on a semi-log plot of thickness vs (area)1/2, the
exponential and power-law methods give very similar
estimates for tephra-fall volumes, with the former being
easier to apply using Eq. (3) (Table 2). Second, if distal
data are missing, the power-law extrapolation gives better
results; however, if proximal data are missing, both
techniques fail to give a reliable good estimate, with the
power-law technique giving the largest error (Fig. 9).
Third, the integration of the power-law fit is more reliable
when the power-law coefficient m is &2 because, in such
a case, this technique is less sensitive to the choice of the
integration limits (Table 2). More constraints on actual
volumes by other derivations are needed to give a final
assessment on calculations of tephra-fall volumes.

Our study shows that volume estimates can vary
widely depending on whether a power-law or exponential
fit is used. Numerical studies (e.g. Bonadonna et al. 1998)
favour the power-law approach because tephra-fall de-
posits consist of particles with different Reynolds number,
and models are better described through power laws,
particularly when data from distal areas are available.
Some well-preserved tephra-fall deposits are also well
described by a power-law fit (e.g. Ruapehu, 17 June 1996;
Hudson 1991; Novarupta 1912, all layers). However,
some well-preserved tephra fall deposits cannot be ac-
curately described by a power-law fit (e.g. Mount St.
Helens, 18 May 1980) because they were influenced by
particle-aggregation processes that significantly affect the
thinning trend making fine particles fall in the interme-
diate and turbulent regimes (Bonadonna and Phillips
2003). It is interesting to note that, even though the field
data for Mount St. Helens 1980 do not show a power-law
thinning (Fig. 6c), the application of the power-law
method still gives good volume results (Table 2). This can
be due to the fact that particle aggregation affected the
thinning trend in medial area, but that the power-law
thinning represents the deposit as if it had not been af-
fected by particle aggregation. In all situations, particle
sedimentation in proximal and distal areas is governed by
different settling regimes, the distal deposition being
controlled by low-Reynolds number particles (e.g. Rose

1993; Bonadonna et al. 1998). Therefore, there is no
reason to suppose that distal deposition should bear any
simple or systematic relation to proximal deposition. This
is also supported by the volume investigations in Fig. 9
that show that the power-law approach gives good results
only when at least some proximal and some distal data are
available in order to constrain the actual deposit-thinning
curvature. If only distal data are available, also the power-
law approach fails to give a good estimate of the actual
deposit volume. As a result, both exponential and power-
law fit are to be used cautiously, bearing in mind that
tephra-fall deposit thinning cannot be easily extrapolated
by a simple curve fit based on the available data, if
nothing is known about either the proximal or distal
thinning.

Conclusions

Given the large data set of the tephra-fall deposit from the
17 June 1996 eruption of Ruapehu some investigations on
the methods of calculating total grain-size distribution
and volume were made. A new method to calculate the
total grain-size distribution (i.e. Voronoi tessellation) and
a new method to calculate tephra-fall volumes (i.e. inte-
gration of power-law fit) are presented and compared with
existing techniques.

In terms of grain-size evaluation for the whole deposit
we can conclude that:

– The most common techniques for calculation of the
total grain-size distribution of tephra-fall deposits are
(1) weighted average of sample grain-size distribution
for all samples over the whole deposit, and (2) various
types of arbitrary sectorisation of tephra-fall deposits.
The first technique cannot deal with deposits with non-
uniform distributions of data, whereas the second is
biased due to the arbitrary choice of sectors.

– The Voronoi tessellation technique provides a better
statistical method that deals with non-uniform data sets
without introducing arbitrary sectors. The use of such a
technique would make comparisons amongst different
tephra-fall deposits analysed by different authors more
consistent.

– All existing techniques to calculate total grain-size
distribution of an eruption give only apparent distri-
butions if the data set is small. However, the sensitivity
of the analysis depends on the original sorting of the
particle distribution and the style and intensity of the
corresponding eruption.

– The total grain-size distribution of the Ruapehu deposit
calculated by Voronoi Tessellation shows a Gaussian
distribution with 99.9 wt% of the deposit consisting of
particles with diameter between 256 mm and 1 mm.
Two lognormal sub-populations with modes at 8 and
1 mm could also be fitted, with particle fraction of
about 40 and 60 wt%, respectively. Mdf is "0.8f and s
f is 2.4.
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In terms of calculations for tephra-fall volumes we can
conclude that:

– The Ruapehu large data set supports the idea that
thinning of tephra-fall deposits cannot be described by
a simple exponential decay: at least three distinct ex-
ponential segments can be defined and a power-law
trend also gives a good fit. Integrations of both fits
give similar volumes of about 4#106 m3.

– Integration of <3 exponential segments significantly
underestimates the volume of tephra-fall deposits, es-
pecially when distal data are missing. Therefore, for
many prehistoric deposits where only proximal and
medial data are available, large uncertainties in volume
estimates are expected.

– The integration of the power-law fit gives similar
volume estimates to the integration of at least three
exponential segments, but gives better results than the
exponential techniques when distal data are missing.

– Although power-law fits provide a good approxima-
tion to well-preserved deposits and are consistent with
theoretical models, this method is also problematic
because (1) integration limits have to be chosen and
(2) it cannot reproduce the proximal thinning when
proximal and/or medial data are missing.

– Integration of the power-law fit is not very sensitive to
the choice of the integration limits when the power-law
coefficient m&2, but it is very sensitive when m<<2,
i.e. for large tephra-fall deposits.

– Proximal deposition is governed by high Reynolds
number particles and distal deposition is governed by
low Reynolds number particles, and so there is no
theoretical simple relation between proximal and distal
thinning. Thus, any extrapolation based on empirical
fitting of poor data sets related to only one of these
regimes is likely to be problematic and unsafe, with
large uncertainties.
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