                                                                                                                                          24   


INTRODUCTION





version 04/06/03
Matlab is a wonderful tool for geophysical computation, data analysis and display. Matlab includes about a thousand routines for higher math and data manipulation. The graphics capability is stunning.   Student Matlab, which runs under Windows or Linux, contains most of the same routines found in the full professional version, so that students and faculty can work with Student Matlab on their personal computers and use the programs on the professional Matlab. It has taken me a long time to learn what I know about Matlab, and I am learning more all the time.  At MTU use Matlab 6 installed on networked Unix machines, and I will describe Matlab in that setting.  For running either the full version or Student Matlab on a PC, the concepts are the same, but the methods of starting Matlab and using the built in editor are slightly different.

You should look elsewhere for a comprehensive introduction to Matlab. For a short  read, I suggest the book  Kermit, Sigmon, A  Matlab Primer.  Older editions  of Sigmon's notes  may be downloaded from the World Wide Web, or you may purchase the most recent version. Two excellent longer books which introduce engineering problem solving are:

Chapman, Stephen J., Matlab Programming for Engineers, and  

Palm, William J.,  Introduction to Matlab 6 for Engineers, 

These books do not cover the contouring, colorizing and three dimensional data volume manipulations discussed in the notes you are reading now, but they do contain many common  computational engineering applications. 

The basic data structure in Matlab is the matrix.  In programming languages such as Fortran and Basic, this structure is called an array. Matricies can be one, two or three dimensional. The details of working with matrices will be dealt with in more detail in Part II of these notes.  For now I will assume that you know what an array or matrix is and that you know how the cells are addressed.  Variable types in Matlab can be integer, floating point, single precision, double precision, character, etc. as in most computer languages. Data types will not  be otherwise discussed in these notes because it does not affect the material being presented. 

Personal note:  I am a geophysicist, not a computer scientist. I started learning computer languages with Fortran II in 1964. I learned Basic and more Fortran in graduate school in the 1970s. I have been learning Matlab on my own over the last ten years or so. Please forgive me if  I fail to supply basic information that you need. I will try to improvise such explanations if you ask . Please remember: There is no such thing as a stupid question. 

To use these workshop notes interactively on your computer: Open a window running Microsoft Word while Matlab is running in another window. You can copy any Matlab example line or short program from the Word document to the Matlab prompt in the window running Matlab.  Thanks to Brian Robinson from the University of Lancaster in England for this tip. 

Install Matlab now on your PC by following the directions in the booklets in the box. 

PART I.  FINDING YOUR WAY AROUND  MATLAB  

 This part of the notes is intended for a  short workshop or lab session lasting one to four hours.  

Start Matlab 6.5 by clicking on the icon on your main Windows screen. Matlab will be ready to use when the computer displays two right brackets (>>).  I suggest that you type

demos <ret>,

and take a tour of Matlab examples.  The graphics demos are the most relevant to geophysics, including the "slicer" demo.   Note that for many of the demos, the short program that generates the example is given in a window. You can copy the program and paste it in your own window and modify it as you like. 

All Matlab commands will execute both  from .m files and interactively.  To execute an .m file you just type its name in the command window, without the .m extension, and press return. To execute a command interactively, you just type it into the command window and press return.  In the interactive mode, you generally will loose what you have done, but there is a diary command which will save the commands to a file.  For example, entering diary today.txt  <ret>

will save the commands that follow to the file today.txt. 

You may use the interactive mode to experiment  with the commands but you should write short programs with an editor program for class work. 

Writing Matlab programs with an editor.

You create a matlab program by pulling down the File tab and selecting , New, m file. Matlab programs must have the extension  .m.  Saving files, etc. is done with the usual Windows pull down tabs.   You can save the files and run them immediately in the Matlab window, by typing the name of the file without the .m suffix. 

Where do I keep my matlab programs?

When I start up Matlab6, it automatically keeps programs that I write in c:\matlab6p5\work.  In fact, it makes sense to create a special directory for each project, for example c:\Matlag\mlnotes and keep your Matlab programs there. You need to set the "path" for matlab so it will know to look in the special directory.  Please read the documentation on the path command. I wrote a one line matlab program to do this. The programs is  called fixpath.m and it contains this line: 

path(path,':\matlab\mlnotes')

If you put the workshop diskette data into c:\matlab6p5\workshop then you should enter:

path(path,‘c:\matlab6p5\workshop‘)

I keep my matlab programs for my matlab notes in the  subdirectory .  This line sets my path so that Matlab will look in  You need to run this program every time you work with programs in  that subdirectory. Then Matlab will know to look for your  programs there.  If this is confusing, talk to a systems administrator or other experienced  person. 

Matlab’s help files. 

The commands in Matlab have help files, which you can access from within Matlab by typing  help  followed by the command name, for example: 

>>help plot (press the return key)

Will print the help information about the command plot. After this I will assume that you know to press the return key. The help information is the comment lines comprising the first few lines of  the Matlab program.  Within the program, lines containing comments  in Matlab are marked by  a % character. Thus you can provide help information on the programs you write in the same manner.   For example, if you type   help myprogram, the help lines in myprogram will be printed to the screen.

Getting out of Matlab.  At the Matlab prompt, enter exit.  

SOME BASIC MATLAB OPERATIONS  FOR GEOPHYSICS

These exercises and example will get you started with the basic operations that are useful in geophysics.  There will be some more discussion of matrices, writing to files, etc.,  later.  You should work through this section while you are seated at a computer with Matlab  running.  In all cases below, you should read the help file for the functions introduced in the section. 

Making a series of zeros

     tz=zeros(1,100); generates a 1 by 100  matrix tz containing 100 zeros. If you don't put the ; at the end of the line,  Matlab will print the array you just created to the screen. If you forget to enter one of the indexes but instead enter zeros(100), you will get an  100 by 100 array of zeros.*  Try the command from the command line (the >> prompt). Verify that you have created the matrix by entering  whos <ret>.  Verify the values by entering:

  tz.   The computer will print the values. 

Mini-homework: also try:

tz=zeros(10,1)

whos

tz=zeros(10)

whos

Notice that the whos function tells you the names of the matrices you have created,

and also the number of dimensions and also the storage size. 

Mini-homework: Repeat the above example with the ones function. 

Making a series of numbers representing time in seconds

Read the help for colon function. (That is, type  help colon.)

For example try entering, t=0:.001:.05   Makes a one dimensional matrix, t,  starting at zero, incrementing by .001, ending at .05. (51 terms).  

Mini-homework: Rerun the above example, but try different values for  each of the three numbers (the 0, the .001 and the .05) so you understand how they function.  

Mini-homework: make a series of numbers representing time in seconds running from 0 to 10 seconds in increments of 0.2 seconds.

Making a series of random  numbers with a "normal*" distribution. 

The numbers generated by randn  follow a normal or Gaussian distribution (otherwise known as a "bell-shaped curve"). "Normal" means that the numbers generated follow this distribution. The reason it is called normal is that many natural processes generate this kind of distribution. 

 A uniform distribution may be generated  by rand.  See the documentation on the rand and randn for more information. 

randn(1,51);  creates a 1 by 51 matrix of random numbers wiuth a normal distribution.  The mean of  these random numbers is is 0.5.

HW: Use the command hist to  plot a histogram (a probability distribution) of the values generated by rand, and comment on the shape of the plot. 

% signifies that the text that follows is a comment. Contrary to popular myths and jokes, real programmers DO comment their work, and I  want you to do so too.  If you  have to work with  your program six months from now, you will wish that you wrote more comments.

INTERLUDE: 

Matlab has two features that make debugging programs easier. If you type 

whos, you will get a list of the current variables. This is quite handy, because your program may have created variables in a way you were not expecting.  Also, typing the name of any variable

will cause the values  to be listed on the screen.  From this, you can conclude that Matlab keeps the variables your program has created in its workspace after you have run the program. The usefulness of this feature is that the variables are still present for you to use in another program or in the command mode.  The disadvantage of this feature is that you  may not want the variables there. You may want to use the same varable names and the matrix size may not be right. The clear command gets rid of all the  the variables in the Matlab workspace.  

Making a 50 Hz sinusoid.  Enter the following lines into an .m file. You may name the file
fifty.m


t=0:.001:0.5;  


f=50;

fiftyHz=sin(2*pi*f*t);

plot(t, fiftyHz)

This will generate and plot a sinusoid that is sampled every .001 seconds on the time interval 0 to 0.5 seconds.  The computer will list the series of numbers you have generated if you enter 

FiftyHz. 

Mini-homework:  Modify the above short program to generate a 100 Hz  cosine signal over the interval 0 to 0.05 seconds sampled every .001 second.

Mini-homework 2:  Remove the semicolon at the end of one of the lines of the above program. You will see why the semicolon is needed. 

Notice that the sine function operates on the matrix t, term by term. Thus,  Matlab saves programming effort by minimizing the need to write do loops. If you have never heard of programming with loops, you will later. 

Making signal plus noise: 

Add these program lines to the previous example. 

r=rand(1,length(fiftyHz));
% random numbers, same number as in FiftyHz

w=1.0;    


% weight for the noise

mr=mean(r); 


% the mean of the noise

spn=fiftyHz+(w*(r-mr)); 
% I subtracted the mean of r, to reset




% the mean to zero. 

plot(spn)

%plot it 

In the last line,  the scalar mr is subtracted from each value in the matrix
r. 

The weight, w, multiplies each value in the matrix r-mr.  The matrix fiftyHz is added to each term of the matrix (w*(r-mr)). Noticice how you can mix simple arithmetic with matrix arithmetic. 

Mini-homework 1: Add a line to the above program to plot the function spn. Add more lines to plot r and fiftyHz.  Change the value of the weight w and see the effect on the matrix spn. 

Mini-homework 2: Add lines to the above program to make (and plot) a second 50 Hz sinusoid plus noise with the sinusoid amplitude set to 3.0 and the noise weight set to 0.5. 

Convolution.

Convolution is an operation carried out with  two time series. A time series is a series of numbers (a one-dimensional array or matrix), representing sampled data.  Physically, for convolution, one time series can be thought of as a sampled signal and the other time series can be thought of as the impulse response of a physical system. Here is  a non-geologic example of convolution: The signal might be the elevation of a car tire driven along a bumpy road, call it A.  The response of the physical system might be the combined response of the car's suspension system, which is designed to absorb the bumps before delivering them to the rear end of the driver, call it B. B is the elevation of the top of the seat cushion due  to a unit impulse of  elevation delivered to the bottom of the car tire.  

If the bottom of the car tire is subjected to the elevation time series caused by the bumpy road, then the elevation of the top of the seat cushion (the time series C) is the convolution of the signal, A, convolved with the impulse response of the suspension, B.  The physical reasoning behind this is just superposition and linearity, but I will skip the details for now.  The good news is that there is a Matlab function for carrying out convolution, which is called conv.  Please read the documention on conv. 

Please read  Yilmaz pp 18 and  19 for very basic examples of convolution, autocorrelation and

crosscorrelation. For example, his computation in his Table 1-1 and 1-2 can be carried out on the Matlab command line as:

conv([1 0 0.5], [1 -0.5]) 

ans =     1.0000   -0.5000    0.5000   -0.2500

Several textbooks use the following time series as an example of convolution. You could check your understanding of the conv command with these series. 

4 2 1 convolved with 1 1 1 2 2 2  = 4 6 7 11 13 14 6 2

Auto- and Cross-Correlation

"Seismic processing often requires measurement of the similarity or time-alignment of two traces. Correlation is an  operation carried out directly on the two time series that is used to make such measurements" (from Yilmaz page  18).  Cross-correlation compares one time series to another. Autocorrelation compares one time series to itself.   

 There is no autocorrelation routine in Matlab. To compute a autocorrelation,  you must reverse* one times series and convolve it with the other time series. You reverse the time series with flipud or fliplr. 

flipud means flip up-down, and fliplr means flip right-left, whichever fits the kind of matrix you have. 

Here is the example of the autocorrelation of wavelet 1 from Yilmaz page 19, Table 1-7.

w1=[2 1 -1 0 0];
% wavelet 1

conv(w1,fliplr(w1))

ans =     0     0    -2     1     6     1    -2     0     0

Here is an example of the crosscorrelation of two time series from Yilmaz Table 5

w1=[2 1 -1 0 0];
% wavelet 1

w2=[0 0 2 1 -1];
% wavelet 2

cc=conv(w1,fliplr(w2))

answer: cc= -2     1     6     1    -2     0     0     0     0

You can carry out this computation either from the Matlab command line or from a little program.

Mini-homework 1: Find the result if you reverse the order of crosscorrelation. 

That is, change the last line to cc=conv(fliplr(w2),w1)

Answer:   The output time series is reversed.

Mini homework 2: Demonstrate what happens when you reverse the order of the series used in convolution (convolution of a with b, compared to the convolution of b with a. 

Answer: The output time series is not reversed. 

You will discover that if the mean is non-zero, you get a triangle or trapezoid function superimposed on your output. 

Mini-homework: Create two simple "box car"  time series , a and b as follows:

a=[ 1 1 1]

b=[1 1 1 1 1 1]

convolve them

conv(a,b),

and convolve each with itselfL:

conv(a,a)

conv(b,b).

Plot the  input function and the output function. Force the horizontal axis to be the same on all the plots. 

Comment on the result.

The results are memorable, and they  explain the origin of the problem described above.  

Mini-homework: Create non-trivial signals that demonstrate the problem described above, then fix the problem   by subtracting the mean from the data.

Homework: The classic simple vibroseis problem goes here.  Several textbooks illustrate the principle of the use of a swept sinusoid  as a seismic signal source. The reflected waveform is a composite of the swept sinusoids reflected from each subsurface layer. The transmitted wave form is correlated with the composite waveform to recover an  output correlogram that resembles a conventional seismic trace. A good homwork problem is to produce all these traces in Matlab. 

But, a complete  statement of the problem is  too lengthly to include here. An example of the traces is given in Reynolds, p 258. 

Term-by-term multiply  of two  one by N matrices of equal length is a.*b.  The operator is .*   (dot star). There is also a term by term operators for divide   (./) and for other operations. Note that the dot comes first.  

To delay a signal, set up another array, such as 0,0,1 and convolve it with the original signal.  The output will be the original delayed by two samples. That is, there will be two

zeros added to the front of the original signal.  Note the syntax of the  statement assigning values to a:  a=[ 0 0 1]       The elements of the matrix are enclosed in brackets. The values are separated by spaces, not commas.

 A universal measure of signal strength is the RMS value.  The initials stand for Root Mean Square. Remember that physics lab? It is computationally identical to the standard deviation. The Matlab command  is std.

Odd and ends

plot(name of one-dimensional  matrix) plots the matrix in new plot  window. The plot command works for  1 by N matrices, in which case the horizontal axis is just the index of the matrix element. There are MANY variations on the plot command. You will need to  plot one set of numbers (for example fiftyHz, above on the vertical axis) versus  another (like t, above, on the horizontal axis). Check the documentation with help plot.  

stem(name of matrix)  makes a plot with little matchsticks supporting each data point. This is sometimes used to emphasize that the points are discrete. 

bar(name of matrix) produces a plot like stem,  but the little matches have no heads (they are just little sticks). You can vary the width of the stick (see the help file).

subplot (m, n, l) subdivides  prepares the plot window so that the next plot command plots in a subwindow.  For example subplot(4,2,1) subdivides  the plot window into  four rows of  2 columns each, and the next plot command with plot into the 1st window (the upper left hand corner). The windows are counted from left to right and from top to bottom, like frames in a Sunday comic strip. 

hold on allows you to plot multiple data sets in one plot axis.  Place the command before the first time you use the plot command.  Then multiple plot commands will plot onto the same axis. 

hold off cancels hold on and  allows you to go on to another plot axis. Place this command after the last instance of plotting. 

 print from within Matlab prints the plot on the system printer.  You can also plot by 

clicking on the proper tab at the top of the plot window. 

Odds and ends with almost  no explanation. A few handy Matlab  commands are given below. You should check the on-line documentation for details. 

abs(absolute value of a complex number)

ang(angle of a complex number)

scale* ( [ xmin xmax  ymin ymax])  scales the plot manually

title* ( adds titles and axes labels to plots) 

*You enter these commands after the plot command. 

PART II.  MATRICES, LARGER DATA SETS,  PLOTTING AND CONTOURING 

Uses Matlab programs clip.m, cont4.m, plottilt.m, plotfraz.m, maglines.m, emmov.m, slicemovie.m are included on the diskette.  Data sets for programs are also included.

In the first part of these notes above, I have given you very short examples, with just a little bit about working with data in matrices.  In the second part of the notes, which you are now reading, I want to present methods of working with somewhat larger data sets, and do more with matrices and plotting.  This part of  the notes is suitable for use in a longer workshop or a term-long class. 

Using Data in Matrices
The two-dimensional  matrix is the basic data structure of Matlab.  Please review what you know about two-dimensional arrays or matrices.  The key to understanding  matrices is the indices or the rows and the columns.  My program magconts reads data into an array d. If you run the program by entering magconts, then enter whos  you will see a line:

d      1700x5                    68000  double array

among other lines, informing you that d is a matrix with 1700 rows and 5 columns. 

You can examine this point by point if you want, entering

d(1,1)  which will print the number in row 1 column 1

d(1,2)  which will print the number in row 1 column 2, etc. 

Usually, you will not need to refer to the individual values. 

In magconts, I  use data in the individual columns of d.  This gives an opportunity to explain one use of the : (colon).  You can use it to refer to an entire column or an entire row of a matrix. 

load d.dat



% load file .. numbers go into






%
matrix d

x=d(:,1);



% assign x to first column of d

y=d(:,2);



% assign y to second column of d

z=d(:,5);



% assign new z to fifth column of d

In particular, you need to know  what happens when you multiply one matrix by another,  and what it means to transpose a matrix.  Every now and then you may need to invert a matrix to solve a set of linear equations.

The way you locate numbers in matrices is by the row and column index. The notation always refers to the row first then the column. If you have trouble remembering the order, try to remember "Roman Catholic" for Row Column. If you have trouble remembering which way the rows and columns run, try to remember that Roman buildings were held up by vertical columns. 

Single dimensional matrices  are a special simple kind of matrix. In Matlab, a one dimensional array or matrix can be either a matrix with one column or a matrix with one row.  If you don't know which you have, it can cause problems with subsequent computations, but fortunately, it is easy to change the data from one form to the other with the transpose command. 

Another very common matrix manipulation is to multiply the elements of one matrix term-by-term by the elements of another matrix or divide the elements of one matrix term-by- term by the elements of another matrix.  This is done by preceeding the multiply or divide sign by a dot, e. g .* for term by term multipl or ./ for term by term divide. 

Matlab can easily invert matrices.  I will not present applications of this. If you know why it is useful to invert matrices,  you can probably figure out how to do the inversion in Matlab. Two geophysical applications are: 

1.  finding the inverse of a wavelet for deconvolution (Yilmaz, 1987, Chapter 2).   

2.  estimating the minerals present from a suite of well logs e.g. Doveton (1986)

Getting data into Matlab programs

There are several ways to get data into Matlab programs. You may simply include the data in the program, or you may read the data from a binary or text file. 

Include gridded data in program  (cont4 is example)

"Gridded data" means:

· The data were taken on a two dimensional grid in the field. The x and y spacings do not have to be equal.

· There are no missing values.

· The individual data entries do not have  x y coordinates. That information is elsewhere, for example the top or bottom of the data table.

The opposite of gridded data is (are?)  xyz data or randomly located data.  A data set could be in xyz form but be gridded, but an xyz  file can also contain  randomly located data.

In cont4.m I have entered data in the program as a matrix representing the grid  of data acquired in the field (without x and y values). 

I have then created x and y values to use later in regridding the data. 

d=[491 456 439 400 323 440 % data for the first y value, arrranged in order %of increasing x

415 438 283 358 356 345 % data for the first y value, arrranged in order %of increasing x

.








several more lines of data go here

.

351 347 409 362 163.7 363

383 375 361 359 458 426];

y=5:2.5:50;





% generate y values to go with data

x=0:5:25;





% generate x values to go with data

Including  x-z data in the program

There are reasons to include the x-location of the data, for example,  you might acquire data at more closely spaced stations where the numbers were changing rapidly with distance.

You can enter the locations and readings into your  program as a matrix, then parcel it out into x-value and  data values. A program fragment to do this is shown below. The program with the entire data set is given in the program appendix as plottilt.  Notice the use of  the colon (:) to indicate all the rows in matrix d.

% vlf wave tilt data

% format is: 

% location (tab)
 tilt in percent

d=[0
-26


10
-19

20
-1.2

.

% lots more location and tilt data

.

390
-5

400
6];

x=d(:,1);

%  x is all the rows, column 1

tilt=d(:,2);
% tilt is all the rows, column 2

subplot(2,1,1) 
% plot in upper half of screen

plot(x,tilt)
% plot x values on horizontal axis, d on vertical axis

title('wave tilt')

xlabel('distance in meters')

ylabel('tilt in percent')

Please note, you could just as well use the same approach to enter x,y,z values.

Reading data  in with Load

For larger data sets which are in text (ASCII) format in  a separate file, it is more convenient to  read the data into your Matlab program with the Matlab load command. . There is a little disadvantage to using this command. This command creates a variable with the same name as the file name, minus the extensionThe matrix name in your Matlab program must be the same as the file name (without the extension). If you have several data files to use in the same program you must rename them to the same  name the program expects.  There are two  sneaky ways to overcoming this disadvantage. The first few lines of your matlab program can 1. read the original data file with the arbitrary name then 2. copy your data  to a file with the name your program expects (outside of Matlab).  You can execute system commands such as dir or copy from within matlab directly.  In some cases you must preceed the command with a exclamation point. Trial and error are your best guide here. 


You may have several data sets from one project that you would like to read into Matlab. You could give these data sets the same name with different extensions, for example they could be named p.1,  p.2, p.3 etc. Then you use read which ever one you want into into your program  into variable p.  

If your data are in a text file with a specific format, say lines of header information followed by rows and columns of data, you should use readln. You may first have your program read the lines of header information and ignore them, then you may have your program read the rows and columns.  The formatting commands are based on formats in C language,  the Matlab documentation expects that you have some experience with a more basic programming such as C or Fortran is assumed if you are going to understand this.  The best way to learn this is on a case by case basis. I will refrain from further comments at this time.

Reading from a binary file. 

I have used Matlab to read SEG-Y seismic data files and Seismic Unix seismic or radar data files, and radar data files produced by Sensors and Software radar programs (.dt1 files). The Matlab command for reading these files is readf.  It must be preceeded by an openf command and followed by a close command.    The user must be  know the specific binary format of the data such as  16  or 32 byte integer etc, and specify the format in the openf command.  You can see an example of this in my program on displaying a cube of radar data, later. 

Plotting data

My favorite feature in Matlab is plotting.  It is easy to control basic plotting, label the axes, and annotate it.  Plot  is the basic plotting command. 

If  the argument is a single one-dimensional matrix then the points are plotted with the point count as the horizontal axis.  For example:

x=rand(20,1);
% generates 20 random numbers on the interval 0 to 1. 

plot(x)

% plots the values vs. point number

Plot with just one argument is useful for getting a quick look at a data set.   One data set may be plotted against another by including both matrices in the  argument.  

For example: 

t=0:0.1:2*pi
% generates t values running from 0 to 2*pi in steps of 0.1

y=sin(t)

% sin of the t values

plot(t,y)
% plots the values of y versus t.  (The t values are on the horizontal axis, the y %values are  on the vertical axis)

The default line style is a continuous line. Other line styles may be indicated by a third argument within single quotes, or individual points may be plotted as printing characters. For example  plot(a,b,'+ ') uses the values in  in matrix a and  b as the x and y coordinates and plots a + sign at those locations.   You may also specify different colors to plot different data sets on the same axes. 


Mini-homework: Modify the  plot commands  above but plot  the values with + signs. 

Mini-homework: modify the plot command to plot with other linestyles

Labelling plots

The axes of plots may be labeled with xlabel and ylabel commands, and a title labeled at the top of the graph with the title command.  Note that these commands do not use equals signs and that the text inside the parentheses must be enclosed in single quotes.  

For example add the following to the above program lines: 

title('sine curve')

xlabel('time in secs')

ylabel('value of function')

Annotating plots in the figure window

Drawing tools are available in the figure window to label curves within the plot, and to draw arrows from the labels to the curves. 

For example, after I have produced the plots with the commands above, I move the mouse pointer into the plotting window, I can click on the A (add text) icon, position the cursor near the curve and type  this curve.

I can add an arrow by clicking on the arrow icon to the right of the add text icon, and click on the beginning location of the arrow and drag the arrow to the location I want.

Multiple data sets to the same plotting axes

Multiple data sets may be plotted on the same axes with the hold on and hold off commands.  Before you use the plot command, you should place hold on in a line in the program.  This causes subsequent plot commands to plot onto the same axes. You can specify different line or plotting symbols to differentiate  the data sets.  Hold off terminates plotting on the same axes.  Without hold on and hold off  each new plot call replaces the previous plot.  You can see the use of hold on and hold off in sample program plotfraz.m.

If you want your Matlab program to produce plots on separate windows or pages,  you should use the figure command before the new plot command. Figure will create a new plot window situated on top of the old one. You can separate the two figure windows by dragging the one on top with your mouse.  These are pretty basic, and I don't think I need to provide an example. 

Plotting a magnetic survey as traces

The software that comes with the  Geometrics 858 magnetometer can generate a so-called  xyz data file. This file is in text format, and  you may use it  as input to a contouring program like Surfer. When you are acquiring data, a "mark" flag   is entered into the data file when the "mark" button is pressed.  The magnetometer takes data at a fixed rate, such as 10 per second. The  Geometrics program assumes that the operator is moving the magnetometer at a constant speed between the "marks" along the line.  The processing program provided by Geometrics assigns x and y values to each data  point based on this assumption.  The output of that program is a  list of x, y and corresponding magnetic field values. If a magnetic gradiometer was used, it is possible to obtain the magnetic field values from the top sensor, the bottom sensor or the difference or any combination. This is carried out within the MagMapper program.  

I like to plot magnetics data as  traces. You will see magnetics data acquired for archaeological work plotted this way (for historical reasons). Besides, it is always wise to look at your data in as simple a presentation as possible for possible debugging (identifying bad values).  The method I present here will work with any kind of data which are acquired in parallel profiles. You need the data from all the survey lines in  one big file in XYZ format, as provided by the Geometrics 858 program (MagMap). Typically, magnetic data are collected along north-south lines (taken as the y direction). To create the plotted trace formatI use the x and y data to draw the profile lines, and add scaled data to the x locations, so the plotted, lines represent data with excursions in the plus and minus x directions.  I have provide a sample program for doing this, and the program is commented.  The scaling factor should be set to make an attractive presentation for your data. 

There is a another trick to plotting magnetic field data as traces.  If  you don't use this trick, you will be plotting a distracting "retrace" line from the end of one line to the beginning of the next.   There is a special value that can be assigned to an ordinary numerical variable or matrix element. That value is "not a number", symbolized by Nan.  The importance of Nan is that a plotting program will skip it. To eliminate plotting the retrace, I added a bogus data pont at the beginning and ending of of each y-line of data. X, y and the magnetic gradient value can all be set to nan. Thus, the plotting program does not plot these Nans, and the retrace is blanked.  The sample data set and plotting program is included on the diskette  as maglines.m.  

You should also include a scale for the data. I  devised a simple means to do that. I replace two adjacent data  with bogus  values  that provide plus and minus spikes. A convenient place to place these data is at 1 meter along the first line of data.  I show below  the relevant portion of the data in program magnan2.m:

0
1.13
57768.85

0
1.06
57770.09

0  1.0   57500


%a bogus data spike of 500 nt (total excursion)

0 1.0    58000


% values bracket existing adjacent data

0
0.99
57771.111

0
0.92
57772.226

Mini homework:  Remove some of the Nans from maglines.m and see the retrace line. 

Mini homework:  Add a bogus data spike of magnitude 1000 nt to the data in  magnan2.m at 1.5 m along the first line. 

Two Dimensional Data. 

Two dimensional data can be presented a numbers on a map, as contours or they can be colorized according to the data value. The basic Matlab command is contour.  It is possible to control the number and value of contour lines, and to control whether or not  they are labelled, and the orientation of the labels.  The basic form of contour has limitations. If the number of data are relatively small, the contours are straight line segments, the contour lines are angular.  The basic contour command produces unlabelled colored contours. Also, contour produces labels that are  poorly placed.  You will see this when you try the command.  Please realize that there is a lot of "art"  or interpretation involved in contouring gelogical and geophysical data.  A simple-minded contouring program may conceal a small but important detail in the data set.  Please look at the numbers that you are contouring to make sure that important details aren't missed. 

Simple contouring

From the Matlab prompt, enter demo, and choose visualization/3Dplots/contour.  An attractive contour plot will be displayed, and also a short program that generates it.  The short program is listed below.  You should open up a new m-file,  select, cut and paste this program into it.  There are a couple of things you should try. 

% Contour Plot of Peaks

 z=peaks(25);    % the  peaks function is used to create a data set with 25 by 25 elements      

 contour(z,16);
% the contour function is called with z as the argument. Sixteen levels of  

% contours will be generated. 

colorbar
% adds a color scale. 

The contours are are smooth with a 25 by 25 array. Try the same program lines  with peaks(5) and  you will see angular contours. 

Change the contour(z,16) to contourf(z,16) (filled contours). You will see that this function fills the space between the contour lines with color.  This is an attractive display, but I think it gives the viewer the mistaken impresssion that the surface is terraced, that is that the spaces between the contours are flat.  I will show you another way to render the data in color and put in contour lines that does not produce this unrealistic impression. 

Labeling contours

 

Matlab will label contours. For example, contour labels can be added in the peaks with the clabel command example by modifying it as follows. Notice the use of the extra matrices C and H, and the syntax. I will not attempt to explain the function of these matrices and syntax except to say that it makes the labeling work the way we would like.  

% Contour Plot of Peaks

z=peaks(25);           

contour(z,16);         

[C,H]=contour(z,'k');
% The [C,H] are necessary, 'k' forces the makes % contours to be black. 

clabel(C,H);



% labels the contours

Suppose you want to specify what contours are to be used.

If you do not like the contour values that contour creates, then, you can specify your own.  In this short program, I have created a one-dimensional matrix of contour values, cons, which I then include in the call to contour, which uses them to compute and label the contours. 

% Contour Plot of Peaks

z=10*pi*peaks(25);           % I have deliberately made the data into non-    %round numbers

cons=-200:50:250


% these contour labels are round numbers

[C,H]=contour(z,cons,'k');
% the [C,H] are necessary 'k' makes black lines

clabel(C,H);


% to label the contours

Use of  colored tiles  for gridded data (pcolor and shading interp)

Colored data maps are usually easier to interpret, especially for a non-mathematical audience. They are  not  very hard to make. The simplest way to represent data in color is with the pcolor command. 

Here is a simple example of the use of pcolor command: 

z=peaks(15); 
% make a demo data matrix set  15 by 15 

pcolor(z)        
% display it as colored tiles



% only do this much for now


%shading interp
% this line will smooth the colors and get rid of the lines between the boxes

Read the documentation for  pcolor. Also look at the documentation for  image and imagesc, and try them in the above example as a replacement for pcolor.  Notice that image and imagesc plot the tiles without the black lines in between the tiles. 

Notice that in the above example, the data comprise a two-dimensional  matrix; the data must be  acquired on a rectangular array, with no missing values. The X and Y values can be generated from a knowledge of the station spacing and line spacing.  When plotted with the pcolor command, the data appear as colored tiles.  The color of the tile will represent the average value of the data at the four corners of the tile. The tiles are outlined with thin black lines.  If you would rather have each tile represent a single value of data, you should use the image command, which gives a similar display.  Clearly, the tiles displayed by pcolor give the data a blocky appearance. A quick to obtain a smoother appearance  is with the shading interp command, which should be placed AFTER the pcolor command.  

You may want to write information within the region of the colored tiles. You may do this with the text command. See the help file. 

Gridding irregularly spaced data

If  your data are irregularly spaced, they can not  be used as-is in the contour routine. If there are missing data, or your data are acqiured at random locations, they must be re-gridded.  Re-gridding has the additional benefit that the data will then be uniformly sampled and thus they will be in a proper form for one- or two-dimensional filtering. 

Smoothing  and advanced contouring

You will find that for small numbers of data Matlab tends to draw contours which are straight line segments; the contour lines are angular.  Most readers and editors, do not like the appearance of the angular contours. This is understandable, considering what contours are assumed to represent.  There is no direct command in Matlab to smooth the contours, but  it can be done with a few lines of programming, using  the griddata and conv2 commands. There are several steps, which may be seen in MATLAB program and cont4 on the diskette. You can follow the commented commands in the programs for the following steps:

1. Generate original x and y values for the data

2. Generate a new set of x and y values, which are on a finer scale than the orginal data.

3. Regrid the original data onto these x and y  values.

4. Smooth the data as follows: 

i. Generate a square array which will be the two-dimensional smoothing function. An example,   you can use a five by five array, with each element set to the value of 1/25.  Forcing the value  of each term  to  1/(total number of terms) gives the smoothing  function  unity gain.  

ii. Carry out a two dimensional convolution (conv2)  with the data and the smoothing function. There is a little trick to this. The call to conv2 includes the term 'same' which forces the output to have the same dimensions as the larger of the two input data sets. Try this operation without 'same' and or read the documentation on conv2 to learn why you want to do this. 

Color scale 

You see that is is fairly easy to make an attractive color map of data, with or without contours. You can provide a scale to associate the numerical values with the colors. This is easily accomplished with the colorbar command, which will post a color scale on the right side indicating numerical values for the colors.  If you enter help colorbar you can find out  how to force the color bar to be horizontal under the plot. 

Setting the color scheme with colormap. 

There are several color schemes for setting the colors that will be used by  pcolor, image and  imagesc. They can be selected by the colormap command. For example, colormap(gray) sets the colors to a linear gray scale. (Please note that the word gray has two acceptable spellings. The other spelling is grey. Matlab recognizes only gray.  Place this command after the pcolor or image command.  I find it difficult to find  a list of the possible color schemes in the online documentation. The colormaps available are:  hsv (default), hot,  cool, pink, gray (not grey), bone, jet, copper, prism, flag. 

For example, enter from the command line: 

pcolor(peaks(25))
% will display the peaks function in color

colormap(gray)

% now you will see it in gray scale 


colormap(cool) 

% etc

colormap(hsv) 

% resets the default. 

BASIC DATA SERIES ANALYSIS

Filtering with convolution

Convolution is a filtering process.  The shorter of the two arguments is normally considered the impulse response of the filter.  In more general terms, an  impulse response that is comprised of a finite number of coefficients is known as an finite impulse filter (FIF). 

A simple example of filtering with convolution is the Frazer filter, used with VLF wavetilt data. The main value of this filter is to change ''true crossovers" (zero crossings from positive to negative numbers going along the line ?) into positive numbers, to make it easier to visualize the location of conductors.  Frazer filtering is a convolution of the tilt data with the series -1,-1, 1,1.  There are a number of reasons why it is easy to apply this filter incorrectly (backwards). The arguments are too complex and not worth  presenting here. I tell students to use common sense and make sure that true crossovers are indeed turned into positive numbers. If true crossovers are turned into negative numbers, you just fix it by  changing the sign.  I have added a few lines to program plottilt to carry out the convolution of the tilts with the filter coefficients, and renamed it plotfraz.   A special convolution  function, conv2, is used here.  Conv2 can convolve two regular (two- dimensional)  matrices , but it can also convolve  one dimensional matrices.  The extra value for the conv2 function is that if you add  'same' inside the parenthesis, it will give you a result that has the same number of points as the longer of the two input matrices. Otherwise there would be points in the output from regions where the input series did not completely overlap.  I have done some other tricky business in  this program involving using logical operators to set negative filtered values to zero, and also I am plotting two sets of data on the same axis. Details of these tricks will be discussed later. 

% FRAGMENT OF PLOTFRAZ

% vlf wave tilt data

% format is: 

% location (tab) tilt in percent

d=[0
-26

10
-19

% .

the remaining data go here 

% .

400
6];

x=d(:,1);
%  x is all the rows, column 1

tilt=d(:,2);% tilt is all the rows, column 2

ffc=[-1 -1 1 1]/4
%   
%frazer filter coefficients  divided by 4. 

ffd=conv2(tilt,ffc','same');   %do frazer filter

ffd1=(ffd<=0)*0
% logical operator <= , then *0 

% to zero out values less than zero.

ffd2=(ffd>0).*ffd
% logical op >0, then * original matrix

% to keep the values greater than zero

ffd3=ffd1+ffd2
% now combine those two matrices into one

hold on 

plot(x,tilt)
% plot x values on horizontal axis, d on vertical axis

title('wave tilt')

xlabel('distance in meters')

ylabel('tilt and filtered  values')

bar(x,ffd3,0.4,'r')

% plot the Frazer filtered values as bars.

hold off

Other filters 

It is possible to specify specialized filters in terms of their frequency response.  Examples of these filters are Butterworth and Tsebycheff, named for their designers.  Simple methods of generating these filters are available in professional Matlab but not in Student Matlab. 

Frequency spectrum computation (the DFT or FFT).  The frequency spectrum of an impulse response may be found with the fft command. For those readers who are new to these concepts, I need to point out that the fft generates terms that may be confusing at first.

Spectrum vs time. The time evolution of a signal may be computed and displayed with the command specgram. This command is available in professional Matlab but not the student version. 

Debugging hints: whos will get you a list of the matrices in use. You should use whos after you have run the program at least once.   The list tells the size of each matrix. If you type the name of the matrix,  Matlab will print the values of the matrix on the screen.  This command is very handy for debugging. Sometimes you will not realize the dimensions of a matrix  are not what you expect, and this may be the reason a matrix multiply or other operation will not work as you desire. 

Making a movie

There are obvious advantages to presenting data or the results of computations as an animation; your attention is automatically drawn to the locations where the plot is changing. Please read the Matlab documention for the movie command, and the for command which creates looping. 

I have written an animation called emmov which plots the electric field of an electromagnetic wave propagating into an absorbing earth.  A fragment of the program is printed below with comments. 

Essential steps are:

1. Establish the matrix (M) in which the frames will be stored. 

2. Set up a loop in which you will create the graphic display that will comprise the frames of the movie.

3. Create the graphic displays  within that loop. 

4. Write those graphic images into the matrix which holds the movie with the getframe command. 

5. Display the movie with the movie command.  Please note that you can slow the move down with a third argument in the command, and discussed in help movie. . 

k is complex wavenumber (units are m-1, w is angular frequency in sec-1,

z is the depths, all  defined earlier in the program. 


M=moviein(20)


% 20 frames of the movie will be stored in M


tt=0:T/20:T;


% set up times for the snapshots


for jj=1:length(tt)  % loop over the index of the times

      efield=efield0*exp(-1.0*imag(k)*z).*cos(w*tt(jj)-real(k)*z);




% equation 3.29 Shen and Kan


% evaluate efield for all zs at a given time



hold on



plot(z,efield)

      axis([0,250,-1 1])  % force axis to be what I want

      xlabel('depth in meters')

      ylabel('electric field')



hold off 



M(:,jj)=getframe
% put the figure into M



end
% end of loop

movie(M,20)


% play the movie 20 times

Mini-homework: Modify emmov  by removing the hold on and hold off commands and see how the display changes.  

Three dimensional data (displaying, slicing and rotating cubes of data)

Please run the Matlab demos. Select visualization, 3D Plots and run the demos,  especially the demonstration of the slice command. Note that short programs are given that produce the figures. Also, you should read the documentation on the appropriate commands. 

It is possible  to load a three-dimensional cube of radar data and display it as a movie of time-slices. The radar data were acquired along parallel lines, comprising a close-spaced grid. 

To read and display trace data you must know the file format and survey details including:

the data format (16 bit integer for Sensors and Software radar data)

the number of trace header bytes (128 for Sensors and Software radar data)

the number of traces per profile

the number of points per trace

The radar data consist of time series for each trace. These traces were acquired along lines 2 ft apart. The trace spacing is 0.5 ft.  Using programs from the radar company, I edited each line to make sure that it had the same number of traces. (Some lines may have accidentally had one trace too many or too few.) I  also edited the files so that  it appeared that the traces were acquired along one long line. This is useful in preprocessing the data but not important here.  The pre-processing consists of:

· trimming or adding traces to the profiles to make sure that each profile has the same 
number of traces

· shifting the traces in time to compensate for time drift using the first pick and first shift functions.

· removing a  long-period transient. This transient is assumed to be due to soil 
polarization, and removing it is known as "de-wowing: the data.

· "gaining" the data. For example, applying an agc gain.   

I have listed lines from  my program tsmov  (time slice movie) below with an explanation. 

For simplicity, I count the header words in terms of  two byte words, because I am going to read the data in as two byte (16 bit integers).   

headerwds=64






% number of header words 64 words = 128bytes

ptspertrace=320





% points per trace (from .hd file)


wdspertrace=ptspertrace+headerwds %words per trace data plus header

tracesperline=61





% traces per line from field notes

lines=10







   %number of profiles from field notes

totaltraces=tracesperline*lines

totnums=wdspertrace*tracesperline*lines  % total number of numbers that will % be read

Then the data file is read with the following statements:

%read data in

%


fn='num3.dt1'
%file name


fid=fopen(fn);


temp= fread(fid,totnums,'short');


status=fclose(fid);

Please read the documentation on fopen, fread, and fclose for details. The data format is specified as 16 bit integers by the 'short' option in the fread statement.

The data are read in as a one dimensional matrix; just a long string of numbers.  I  discard the last 200 points in each trace, because there isn't much geological information in that part of the trace; those data are mostly noise. To access and discard those data in a convenient manner, the data must be reshaped into a two dimensional matrix. For display the data are further reshaped into a three-dimensional matrix for use in the slicer routine.  Please read the documentation for the reshape command. 

%reform as two d array 

twod=reshape(temp,wdspertrace,totaltraces);

less=200;   % discard last 200 pts in each trace

ptspertrace=ptspertrace-less

twodnh=twod(64:(wdspertrace-1-less),:);      %trim trace headers

% we are skipping points 0 to 63 and the end of the trace.  
















The following is very tricky.  The data are not oriented properly to view with the slicer routine. If the following flipping around is not done, the cube will appear upside down, backwards etc. 

twodtr=fliplr(twodnh');


Fliplr is "flip left right".  The ' mark transposes the matrix. To visualize a transpose, imagine that the numbers are written as a two-dimensional  matrix on a transparent piece of  paper. You pick the paper up by the upper right corner, turn it over and place the (former) upper right hand corner at the lower left. The number in the upper left hand corner of the paper remains in the same location, and the numbers on the diagonal remain in the same location, but otherwise the rows and columns have all been exchanged. Again, please read the documentation for fliplr and ' .

Finally, we reshape the two dimensional matrix into a three dimensional matrix. 

vol=reshape(twodtr,tracesperline,lines, ptspertrace);

The data are now organized as a three dimensional matrix as follows: 

The first dimension specifies the profile number. 

The second dimension specifies the traces number. 

The  third dimension specifies the point along the trace. 

The program is now ready to make the frames of the movie. For each frame, the command slice is used to extract and display data from the matrix vol.  You need to read the documentation for slice, view, getframe, movie,  and other commands that may be new to you in this part of the program. 

There is one for loop in this part of the program. Two indices (indexes ?) are used within the loop. 

The end of the for loop is indicated by the end statement.  The index of the for loop is the variable pt. 

The index j is computed explicitly within the loop and it is used as a counter for the frames of the movie. 

The program:

· displays each frame of the movie while it is extracting the data from the cube.

· quickly runs through the movie once it is all built.

· plays the movie at the specified number of times.

M=moviein(31) % reserve storage for frames of movie

j=1;



% frame counter

for pt=40:2:100     % loop over slices

slice(vol,[1 5 10],[1 61] ,pt)

%  The slice display command is displaying

% slices from the three dimensional matrix vol. It is displaying:

%slices (lines) 1 5 and 10 in the first dimension, i.e. the sides of 

% the box of data and slice in the middle, 

%slices 1 and 61 in the second dimension (the beginning and ending of % % the lines, i.e. the ends of the box of data and one slice in  

%the time (depth) indicated by variable pt. 

xlabel('line number')

ylabel('trace number')

zlabel('down is down!')

view(-37.5,60) % set default three dimensional view. The arguments are





 % azimuth and elevation. 

shading interp

M(:,j)=getframe % put graphics display into movie storage matrix

j=j+1




% increment frame counter

'making movie'

end
% end of the for loop

'playing movie at 0.5 frames per sec'

movie(M,5,0.5)% play movie 5 times

A note on brute force looping  

Many, many computations can be done very compactly by the clever use of matrix methods. If you are accustomed to solving programming problems by looping, it is interesting to learn how to solve the same problems with matrix operations. There are few operations that  can not be  accomplished with matrix manipulations, which require looping.  Pretty much all programming languages have provisions for looping. In Matlab,  the basic looping command is the for  statement.  Selective looping is done with the while statement. 

You check the Matlab  internal documentation for details of looping with a for  statement. I will call this brute force looping, because we typically just want to loop over the data to carry out the same operation on each matrix element.  A great value in looping is to perform some operation depending on the data values. 

Data repair; clipping with logical operators

Occasionally, you will have to work with a large data set that has a few data which are erratic, that is, these data are much higher or lower than all the others, and you think that they are due to blunders and they do not represent the quantity you are trying to measure.  You can tell that you have a problem, because if you colorize the whole data set with pcolor, you get nearly all of the interesting data in one color, such as blue, and the bad data point may show up as one cell of red. If you contour the data, you will see bunched up contours around the bad data point and nothing elsewhere. The way to repair this data set is to edit the bad datum by hand if you can find it, or to clip the data. "Clipping" means that you replace the highest and/or  lowest values with some constant.  While this job can be done by looping, there is a very efficient way to do it with logical operators operating  on the data matrix.  Look over the help for operators OR, XOR, AND, and the logical operators for equals ==, greater than, and less than. Note that a double equals sign run together (==) is a logical operator, a single equals sign (=) is an assignment

I present here some  examples of use of logical operators to find high and low values in a matrix. The logical operator by itself returns 0 or 1 depending on whether the relation is false or true. You can combine this with a term by term matrix multiplier to set to zero the matrix values that don't  match your criteria, but keep those values that do match the criteria.  

% Matlab program llogic

% demonstration of logical operators

% Each of the following lines of Matlab code will print the numbers on the screen.

z=rand(5)

% generate 5 by 5 matrix of random numbers

zlhi=(z>=0.5)
% has  values of 1 if z >= 0.5 and values of 0 if z < 0.5 to 0

zllo=(z<0.5)
% has  values 1 if z < 0.5  and values of 0 if z >= 0.5 to 0

zhi=(z>=0.5).*z  % has original value of z if z >= 0.5 zero otherwise 

zlo=(z<0.5).*z
% has original value of z if z < 0.5 zero otherwise 

(ex. Data set with deliberate bad  point. Use histogram and clipping to fix.)

Read over Matlab program  clip.m on the diskette. It contains logical operators, and it illustrates:

How to generate a set of random numbers (to simulate a data set).

How to use logical operators and other operations to clip extremely high or extremely low values.  

How to use subplot  to plot in subsections of the graphics screen. 

How to use the histogram function hist to visualize the spread of numbers in a data set and identify outliers. 

Homework:  Read the documentation for  the rand and randn commands. How would you expect the histogram of values generated with rand and randn to be different?  Change the rand command to the randn command in clip.m and notice the difference. Also, experiment by placing a multiplying coefficient in front of rand command to change the range of the values created.   Often, measurement noise is simulated by adding random numbers to actual or simulated data.  It would be sensible to make the mean of the added noise zero. Modify line with the call to rand to force the mean to be zero. 

CONCLUSION

You have worked your way through my notes on geophysical applications of Matlab.  I hope this has been helpful, and maybe even enjoyable. This is just the beginning. There is lots more to learn.  I would like feedback from you, which you may send by e-mail to ctyoung@mtu.edu.  I would particularly like to know if these notes were presented at the right level of difficulty. (Too basic? Too advanced?) I would be interested in presenting either course at your institution.   I have a followup course on time series analysis in Matlab that you might be interested in.  I am willing to answer questions about your specific Matlab application by e-mail. 

BIBLIOGRAPHY 

Chapman, Stephen J. 2002, Matlab Programming for Engineers (2nd Edition),  Brooks/Cole

Excellent examples for general engineering problem solving. 

Palm, William J., 2001,  Introduction to Matlab 6 for Engineers, McGraw Hill, (with a supplement for Matlab 6.5) Excellent examples for general engineering problem solving.

Doveton, John,  1986, Log Analysis of Subsurface Geology Concepts and Computer Methods, John Wiley and Sons, New York,  273 pp. There is no mention of Matlab in this book, but there is a good basic discussion of the application of  matrix methods to finding the mineral compostion from the response of multiple geophysical logs. 

Reynolds, John, 1997, An Introduction to Applied and Environmental Geophysics, John Wiley and Sons, New York. 

Sigmon, Kermit, 1998, A Matlab Primer, CRC Press, New York,  130 p. There are earlier editions  available online which may be downloaded. 

Yilmaz, Oz, 1987,  Seismic Data Processing, Investigations in Geophysics Vol 2, Society of Exploration Geophysicists,  PO Box 7027, Tulsa, OK, 74170-2740. 

There is nothing about Matlab in Yilmaz'  book , but the discussion about matrix methods for design of deconvolution operators ( Section 2.3 and Appendix B)  should motivate you to learn matrix multiplication and inversion on the computer. His discussions could help you understand the importance of convolution and correlation, for example: 

· Basics of convolution and autocorrelation, section 1.2.2   pp 18 and 19

· Convolution as a representation of the interaction of a wavelet and the layered Earth section 2.1 2.2 p 83 and following. 

· Inverse Filtering  Section 2.3  p 94 and following 

Contents of Workshop Diskette


mydocuments\disconts.doc
Clip.m 
demo of clipping and use of histogram with  5 by 5 array of random numbers

Clipfx.m


same as clip.m without graphics

Cont4.m


uses  gridded data, resamples  smooths data 




Data are from table top resistivity survey

Covtc.doc

Cover sheet and table of contents for workshop notes in 




Microsoft Word format. 

d.dat


magnetic survey gradient data acquired with Geometrics 858




Data  format is 




X location (line location) Y location (along line)




Magnetic field 1, magnetic field 2, gradient

d.nan


same data as d.dat, with nans put in in between lines

emov.m

       
Movie of sinusoidal electromagnetic wave penetrating




into conductive medium. Horizontal axis is depth 

emov2.m

Slight variation of emov.m

forsageep.doc

Workshop notes in Microsoft Word format. 

logmagconts.m

Plots magnetic gradient data as contours over smoothed colored tiles. 

The high dynamic range of the data is supressed by displaying the logarithm of the absolute value of the gradient, with  sign restored. 

 


Uses data in d.dat. 

logmaglines.m
Magnetic gradiometer data displayed as traces. The high dynamic range of the data is supressed by displaying the logarithm of the absolute value of the gradient, with  sign restored.

magconts.m

Plots magnetic gradient data as contours over smoothed colored tiles.

maglines.m

Magnetic gradiometer data displayed as traces.

mov.m


Displays a cube of radar data and rotates it.

newmovie.m
Displays a cube of radar data. The movie is animated according the horizontal slice is moved upward in the movie.  



num3.dt1

GPR data set (cube of data)

num3bs.dt1

The same data set byteswapped for use  on Unix systems. 

plotfraz.m

Vlf wave tilt data  and Frazer filtered values. 

slicemovie.m

Uses data filename for running on Unix system  (data are swapbyted)


slicemovie2.m

same as newmovie

tilt.m

VLF tilt angle data are included in program. This is just a simple example of 




a program containing data which are then plotted. 

Copyright 2003 Charles T. Young, Houghton ,Michigan


