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Abstract. The Pico Mountain Observatory, located at
2225 m a.s.l. in the Azores Islands, was established in 2001
to observe long-range transport from North America to the
central North Atlantic. In previous research conducted at
the observatory, ozone enhancement (> 55 ppbv) in North
American outflows was observed, and efficient ozone pro-
duction in these outflows was postulated. This study is fo-
cused on determining the causes for highd[O3] / d[CO] val-
ues (∼ 1 ppbv ppbv−1) observed in the summers of 2009 and
2010. The folded retroplume technique, developed byOwen
and Honrath(2009), was applied to combine upwind FLEX-
PART transport pathways with GEOS-Chem chemical fields.
The folded result provides a semi-Lagrangian view of pol-
luted North American outflow in terms of physical proper-
ties and chemical processes, including production/loss rate
of ozone and NOx produced by lightning and thermal de-
composition of peroxy acetyl nitrate (PAN). Two transport
events from North America were identified for detailed anal-
ysis. Highd[O3] / d[CO] was observed in both events, but
due to differing transport mechanisms, ozone production ten-
dency differed between the two. A layer of net ozone pro-
duction was found at 2 km a.s.l. over the Azores in the first
event plume, apparently driven by PAN decomposition dur-
ing subsidence of air mass in the Azores–Bermuda High. In
the second event, net ozone loss occurred during transport in
the lower free troposphere, yet observedd[O3] / d[CO] was
high. We estimate that in both events, CO loss through oxida-
tion contributed significantly tod[O3] / d[CO] enhancement.
Thus, it is not appropriate to use CO as a passive tracer of

pollution in these events. In general, use ofd[O3]/d[CO] as
an indicator of net ozone production/loss may be invalid for
any situation in which oxidants are elevated. Based on our
analysis, use ofd[O3] / d[CO] to diagnose ozone enhance-
ment without verifying the assumption of negligible CO loss
is not advisable.

1 Introduction

Ozone plays key roles in tropospheric chemistry and air qual-
ity. Photolysis of ozone is a primary source of the hydroxyl
radical, the primary oxidant in the atmosphere (Logan et al.,
1981; Thompson., 1981). Anthropogenic activities such as
fossil-fuel combustion produce large amounts of ozone pre-
cursors (CO, hydrocarbons, and nitrogen oxides) (Mahlman
et al., 1980). The photochemical lifetime of ozone in the tro-
posphere ranges from days to weeks (Wang et al., 1998a),
while intercontinental transport of air pollution can occur
in 4–10 days (Stohl et al., 2002). Intercontinental transport
has been found to carry considerable amounts of ozone to
downwind continents (e.g.,Guerova et al., 2006). Ozone pro-
duction tendency during transport is controlled by the avail-
ability of ozone precursors, with net ozone production hav-
ing been observed in pollution originating in eastern Asia
(Kotchenruther et al., 2001) and North America (e.g.,Reeves
et al., 2002; Auvray et al., 2007; Hudman et al., 2009).

Production of ozone in remote regions of the troposphere
is thought to be limited by available NOx (NO+ NO2) in the
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atmosphere (Chameides et al., 1992). NOx has a relatively
short lifetime, less than 24 h (Liu et al., 1987), and can be
quickly oxidized to nitric acid (HNO3) and peroxy acetyl
nitrate (PAN). Removal of NOx and total reactive nitrogen
(NOy) is very sensitive to ambient conditions such as tem-
perature and relative humidity (RH). PAN is an important
NOx reservoir in the troposphere and has a lifetime of up to
several months in the upper troposphere (Kleindienst, 1994),
though it can quickly decompose in the marine boundary
layer (MBL; lifetime < 2.5 days;Parrish et al., 1992). PAN
decomposition has been found to be a potential NOx source,
which can lead to ozone production during the transport of
pollution plumes (Kotchenruther et al., 2001; Zhang et al.,
2008; Fischer et al., 2011)

Meteorological conditions during pollution export and
transport are thought to be critical to the deposition of ozone
precursors and ozone production tendency. Air masses can
be exported from the continental boundary layer (CBL) by
lifting into the free troposphere (FT, 3–4 kma.s.l.), where
air masses are transported by strong geostrophic winds. Ex-
port of air pollution from populated areas can also occur
close to the boundary layer (< 2–3 kma.s.l.; e.g.,Neuman
et al., 2006). The meteorological conditions at various alti-
tudes vary, with the troposphere composed of the warm and
humid air near the ground and cold and dry at higher alti-
tudes. Thus, detailed meteorological conditions and transport
pathways should be considered during studies of ozone pro-
duction tendency.

Ozone and ozone precursors exported from the North
American boundary layer, especially from the populated
eastern coastal region, are known to impact air quality over
the North Atlantic (Parrish et al., 1993) and even over Europe
(Auvray and Bey, 2005). Findings from the North Atlantic
Regional Experiment (NARE), a multiyear campaign that be-
gan in 1993, suggested anthropogenic emissions contribute
significant amounts to the ozone budget in the North Atlantic
region (Fehsenfeld et al., 1996). More recently, the Interna-
tional Consortium for Atmospheric Research on Transport
and Transformation (ICARTT;Fehsenfeld et al., 2006) study,
conducted during July–August 2004, revealed observations
indicating high ozone levels (up to 100 ppbv) in North Amer-
ican outflows (Mao et al., 2006). In other measurement peri-
ods, only slightly elevated ozone (> 55 ppbv) was observed
in the free troposphere near the east coast of the U.S. by us-
ing retrievals from the Tropospheric Emission Spectrometer
(TES; Hegarty et al., 2009). Despite this body of research,
ozone production tendency in North American outflow fur-
ther downwind is incompletely characterized.

In order to study the photochemical evolution of pollutants
in the continental outflows from North America, an obser-
vatory was established in July 2001 on top of Mt. Pico in
the Azores Islands (38.47◦ N, 28.40◦ W, 2225 ma.s.l.), which
enabled frequent sampling of North American outflows fol-
lowing the prevailing westerly winds at midlatitudes. Mea-
surements of ozone and CO at the Pico Mountain Observa-

tory (PMO) demonstrated an influence of long-range trans-
ported pollution (Honrath et al., 2004). Periods of elevated
ozone were linked to anthropogenic emissions (Owen et al.,
2006) and boreal forest fires (Lapina et al., 2006), both of
which contribute to enhancement in nitrogen oxides in the
central North Atlantic (Val Martin et al., 2008). In this study,
we conduct a semi-Lagrangian analysis (Owen and Hon-
rath, 2009) to investigate transformations of chemical species
and the associated meteorological conditions during trans-
port. As the first application of this method, we focus on
anthropogenic pollution events with relatively simple trans-
port patterns. We present detailed analysis of the chemical
evolution of two pollution plumes transported from North
America to PMO in the summers of 2009 and 2010. The
analysis enables us to evaluate the validity of the assumption
thatd[O3]/d[CO] indicates net ozone production/loss during
transport.

2 Methods

2.1 Pico Mountain Observatory and measurements

Summertime measurements of CO, O3, NOx, NOy, non-
methane hydrocarbons (NMHC), RH, and black carbon were
collected in 2009 and 2010 at Pico Mountain Observatory.
The observatory is located at an altitude of 2225 ma.s.l.,
which prevents it from being influenced by local upslope
flow for over 80 % of the time in summer (Kleissl et al.,
2007), providing a unique land-based location for the obser-
vation of free tropospheric air in the North Atlantic.

CO levels were measured using a modified commercial
instrument (Thermo Environmental Inc., model 48C-TL).
Its sensitivity was calibrated daily with a standard gas that
was referenced against the calibration scale of the Global
Monitoring Division, NOAA, Boulder, CO. Ozone was mea-
sured with two commercial ultraviolet absorption instru-
ments (Thermo Environmental Instruments Inc., model 49C).
Honrath et al.(2004) presented details on these methods for
CO and ozone measurement. NO, NO2, and NOy were mea-
sured using an automated system that was custom developed
at Michigan Technological University. NO was detected by
O3 chemiluminescence, NO2 by conversion to NO via ultra-
violet photodissociation, and NOy by Au-catalyzed reduction
to NO in the presence of CO (Val Martin et al., 2006). In this
work, we present 30 min averaged measurement data of sum-
mers 2009 and 2010 for all species in Figs.1 and2.

2.2 Application of FLEXPART

The Lagrangian particle dispersion model (LPDM) FLEX-
PART (version 8.2;Stohl et al., 1998) was used to simu-
late transport of North American outflows. Both forward and
backward modes were implemented to simulate North Amer-
ican outflows and transport trajectories. CO from the Emis-
sions Database for Global Atmospheric Research (EDGAR
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Fig. 1. Time series of 30 min average of measurements and meteorological conditions, 6 h average contributions from North American
anthropogenic emission (NA_CO) and biomass burning emissions (FIRE_CO) calculated by FLEXPART, and 4 h average GEOS-Chem CO
(GC_CO) and O3 (GC_O3) at Pico Mountain Observatory station during summer 2009. Data points are colored with correspondingy axes.
Vertical dashed lines show time windows of each event, which are labeled with red numbers close by at the top.

Fig. 2.Same as Fig. 1 but for summer 2010.

version 3.2;Olivier and Berdowski, 2001) annually aver-
aged anthropogenic emissions and the Global Fire Emissions
Database (GFED v3.1, daily averaged fire emissions;Mu
et al., 2011) were used in FLEXPART runs. A combination
of 6 h meteorological NCEP Final Analysis (FNL) data at
00:00, 06:00, 12:00, and 18:00 UTC and 6 h Global Forecast

System (GFS) data at 03:00, 09:00, 15:00, and 21:00 UTC
was used to drive FLEXPART. The data set had a 3-hourly
temporal resolution, with 1 horizontal resolution and 26 ver-
tical levels.

When simulations were conducted in the backward mode,
a passive tracer was released from the receptor and advected
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and dispersed backwards in time, resulting in spatial dis-
tribution of the air mass at an upwind time, referred to as
a “retroplume”. The retroplumes can be used to calculate
a time series of tracer concentrations at the receptor con-
tributed by a certain emission source (e.g., anthropogenic or
biomass burning) by multiplying the residence time in the
lowest 300 m by the emission flux (Seibert and Frank, 2004).
In this study, backward simulations were set in two differ-
ent spatial resolutions. For the purpose of identification of
North American transport events, retroplumes were released
every 3 h, with 4000 particles released over a 1 h time inter-
val from a 1◦ × 1◦ horizontal grid box of altitude from 2000
to 2500 ma.s.l. centered at PMO. The retroplume output was
saved in a grid with a 1◦×1◦ horizontal resolution in 11 verti-
cal levels from 300 to 15 000 ma.s.l. A high-resolution retro-
plume simulation, in which 10 000 particles were released
every 3 h, was conducted for higher accuracy in the folded
GEOS-Chem and FLEXPART technique (see below). FLEX-
PART output in this high-resolution run was saved in a grid
with a 2◦ (latitude)× 2.5◦ (longitude) horizontal resolution
in 130 vertical levels from 0 to 8 kma.s.l.

Forward simulations injected anthropogenic CO emissions
into the lowest 300 m over North America. Two forward sim-
ulations were conducted: one with EDGAR anthropogenic
CO emissions in an output grid matching the retroplume
grid used as a component of folded FLEXPART retroplume
analysis (see Sect.2.4), and one with emissions from the
same inventory used in GEOS-Chem simulations and with
the same grid, used to evaluate discrepancies in transport be-
tween FLEXPART and GEOS-Chem (see Sect.3.3).

2.3 Application of GEOS-Chem

GEOS-Chem is a global three-dimensional model of tropo-
spheric chemistry driven by assimilated meteorological ob-
servation fields from the Goddard Earth Observing System
(GEOS) of the NASA Global Modeling Assimilation Of-
fice (Bey et al., 2001). The model has fully coupled ozone–
NOx–VOC–aerosol chemistry, and can resolve more than
120 species with a sparse matrix vector gear code chemical
solver (Jacobson and Turco, 1994). Anthropogenic emissions
in GEOS-Chem follow the EDGAR global inventory (Olivier
and Berdowski, 2001) and are updated with regional inven-
tories including the U.S. Environmental Protection Agency
National Emissions Inventory (EPA/NEI05 and EPA/NEI99),
Environment Canada’s Criteria Air Contaminants inventory,
the European Monitoring and Evaluation Programme inven-
tory, and the STREETS Emission Inventory in Asia (Streets
et al., 2003). The GEOS-Chem model has been extensively
evaluated and applied to a wide range of research topics re-
lated to atmospheric chemistry and air quality (e.g.,Martin
et al., 2002; Evans and Jacob, 2005; Duncan et al., 2007;
Hudman et al., 2007; Wu et al., 2007; Huang et al., 2013).
The performance of the model in simulating CO and ozone
has been comprehensively evaluated (e.g.,Bey et al., 2001;

Wang et al., 2009; Kumar et al., 2013). Simulation of CO
was found to be significantly affected by emission invento-
ries used, but model results generally show reasonable agree-
ment with data from various observational sites or networks
around the world (Duncan et al., 2007). GEOS-Chem has
also been applied to simulate outflow events from North
America (Liang et al., 1998; Li et al., 2004; Auvray and Bey,
2005; Hudman et al., 2009). Li et al. (2005) used GEOS-
Chem to characterize the major outflow pathways from North
America to the North Atlantic, and the model successfully
captured ozone chemistry during convective lifting of pol-
lution plumes. In the work byMillet et al. (2006), GEOS-
Chem was used to estimate CO in outflows from the U.S. to
Chebogue Point.

This study used GEOS-Chem v9-01-02 driven by GEOS-5
meteorology with a horizontal resolution of 2◦

×2.5◦ and 47
vertical layers. Model simulations for the period of January–
July for both 2009 and 2010 are conducted and the results
for June 2009 and July 2010 are used in the final anal-
ysis. The time steps used for emissions (30 min), chem-
istry (30 min), transport (15 min), and convection (15 min)
are typical of a 2◦ × 2.5◦ simulation. A domain extending
from 100 to 20◦ W (longitude) and 24 to 56◦ N (latitude)
was selected, which includes part of North America and
PMO. Instantaneous mixing ratios of relevant tracers (e.g.,
CO, O3, nitrogen-containing species such as NOx and PAN,
and NMHC such as ethane, propane, and propene) with 2 h
resolution and diagnostics for meteorology including RH,
temperature, and boundary layer height were archived for
this domain. In addition, the daily average production/loss
rates of O3 for June 2009 and July 2010 were saved. These
GEOS-Chem simulations are a subset of those used inKu-
mar et al.(2013), in which the observed CO and ozone trends
at PMO were compared with both GEOS-Chem simulations
and satellite data from the Atmospheric Infrared Sounder
(AIRS) and TES. They found that GEOS-Chem underesti-
mated CO over the North Atlantic, but successfully captured
the seasonal cycles and decreasing trends of CO and ozone
at PMO.

A tagged CO simulation in GEOS-Chem was also em-
ployed in order to study the transport of CO from the U.S.
to PMO. A description of this simulation can be found in
Duncan et al.(2007). Two-hourly instantaneous tracer mix-
ing ratios for June 2009 and July 2010 were archived for the
above domain.

2.4 Folded GEOS-Chem and FLEXPART technique

A LPDM retroplume simulates the displacement and defor-
mation of an air mass in the atmosphere. However, LPDMs
typically use an Eulerian grid for saving results, and are thus
unable to fully describe source-to-receptor transport. To ad-
dress this issue,Owen and Honrath(2009) derived a method
to track pollution plumes by computing the entry-wise prod-
uct (also known as the Hadamard product;Charles, 1989)
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of the output from the forward and backward simulation,
a process that has been described as “folding” the two data
fields. The output of this method, which we call a folded
retroplume, highlights a transport pathway by overlapping
forward simulation, initialized at the source, with backward
simulation released from the receptor. As a result, a folded
retroplume exhibits a 4-D (spatial and temporal) field that
contains the polluted air plume and in which most of the
physical and chemical processing occurs.

To meet differing objectives, retroplumes can be folded
with FLEXPART or GEOS-Chem simulations. FLEXPART
retroplumes represent a sensitivity,S(j,t,(j ′,t ′)), of the air
mass in an upwind cell (j ) at an earlier time (t) to that of the
entire plume released at the receptor (j ′) at time t ′. A col-
lection of these sensitivitiesS(t,(j ′,t ′)) is a 3-D matrix that
can be used to estimate the sensitivity of emissions and me-
teorological conditions from the upwind distribution of the
air mass. For timet , the folded retroplume is obtained by
multiplying the sensitivity matrixS(t,(j ′,t ′)) by a quantity ma-
trix χt . In this study, FLEXPART retroplumes were folded
with mixing ratios (χt ) from FLEXPART forward simula-
tions to produce FLEXPART folded retroplumes (hereafter
called “folded retroplumes”). FLEXPART retroplumes were
also folded with mixing ratios, ozone reaction rates, and
meteorological fields from GEOS-Chem results (hereafter
called “folded results”). The former simulate transport path-
ways, while the latter, as described below, simulate chemical
transformation during transport.

The formulation of the folded results can be summarized
as follows by using a tracer mixing ratio as an example of the
quantity matrixχt . The retroplume is folded with the GEOS-
Chem mixing ratio matrix fieldχ(j,t) of a given species
at a specified upwind time. The product, called the partial
folded quantity (PFQ(j,t,(j ′,t ′))) and calculated in Eq. (1),
represents the contribution from the grid cell (j ) to the mix-
ing ratio of the species in the plume, whereas the distribution
of the PFQ(j,t,(j ′,t ′)) at timet represents the spatial distribu-
tion of contributions from all grid cells in the model domain.

PFQj, t, (j ′, t ′)=Sj, t, (j ′, t ′)·χj, t, (j ′, t ′) (1)

A summation of the PFQs over the model domain (j ) at an
upwind time (t) measures the mixing ratio of target tracer
substance in the entire dispersed plume (Eq.2), called the
upwind folded quantity (UFQ):

UFQt, (j ′, t ′)=

∑
j

PFQj, t, (j ′, t ′). (2)

Variation in UFQ in the target plume changes according
to chemical and physical processes simulated by GEOS-
Chem. Therefore, chemical transformation in the plume can
be simulated by a time series of UFQs and provides a semi-
Lagrangian view of plume aging during the transport. This
semi-Lagrangian approach uses backward FLEXPART sim-
ulation results to sample air masses in an Eulerian GEOS-

Chem field. There are three features of this method that pre-
vent it from providing a perfect Lagrangian view. The funda-
mental aspect is the difference in meteorology fields driving
the two models. GEOS-Chem uses the GEOS meteorology
fields, while FLEXPART is driven by GFS fields. Although
both GEOS and GFS are considered to be valid simulations
of meteorology, some degree of discrepancy is expected be-
tween them. The second feature is the result of random com-
ponents in the models, including turbulence and convection
mechanics, which were noted when the method was first pub-
lished (Owen and Honrath, 2009). Finally, inherent numeri-
cal diffusion in GEOS-Chem can lead to extra dilution of pol-
lution plumes. This last issue can be reduced by using higher-
resolution simulations but cannot be entirely avoided. Given
the large scale of the particular events that met our criteria
(10◦lat.× 10◦long.), the folded results are still able to ad-
equately reflect a Lagrangian view of chemical processing.
However, some chemical species in the plume may deviate
from mass conservation and the magnitude of deviation may
vary for differing conditions, e.g., transport types or proper-
ties of species. In regard to the affected results, specific is-
sues are discussed as they arise. In this study, UFQs of mix-
ing ratios such as those of ozone and ozone precursors are of
primary interest. UFQs of meteorological conditions such as
temperature and RH are also calculated for better characteri-
zation of simulated processes.

3 Characteristics of North American transport events
during the summers of 2009 and 2010

In this section we describe several criteria that were used to
identify the transport events from North America to PMO
during the summers of 2009 and 2010. The objective is to
identify transport events predominantly affected by emission
sources over the North American continent that exhibit direct
and rapid transport from source to PMO with no interference
from local sources due to mechanically forced upslope flow.
We present measurement and modeling results for the time
periods in which transport events occurred, and select events
that met the criteria. Table1 summarizes a list of qualified
events that are impacted by biomass burning emission, an-
thropogenic emission, or both.

3.1 Criteria applied for transport event identification

3.1.1 Elevated CO

CO is a pollutant that is emitted during incomplete combus-
tion from both anthropogenic and biomass burning sources.
Due to its low reactivity in the troposphere (lifetime from
weeks to months), CO has been used widely as a tracer of
pollution (Fishman and Seiler, 1983). Periods with an ob-
served CO mixing ratio above 88 ppbv for 2009 and 95 ppbv
for 2010 (horizontal dashed lines in CO panels in Figs.1 and
2) were considered to be potential transport events. These
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Table 1.Summary of analysis used to identify events resulting from anthropogenic outflows from North America.

Event Perioda d[O3]/d[CO] Nb Avg-CO (ppbv) d[O3]/d[CO] (GC)c GC-COd BBe Anth.f Origin in U.S.g

1 09/06/2009 10– 2.28 48 69.2 0.82 yes yes no E Coast
10/06/2009 10 (R2

= 0.838) (R2
= 0.840)

2 13/06/2009 20– 1.37 126 93.9 3.54 yes no yes E Coast
16/06/2009 12 (R2

= 0.519) (R2
= 0.436)

3 20/07/2009 15– 0.85 131 89.0 0.58 yes yes yes SE Coast
23/07/2009 15 (R2

= 0.431) (R2
= 0.395)

4 30/07/2009 00– 1.29 48 80.5 0.78 yes yes yes SE Coast
31/07/2009 00 (R2

= 0.607) (R2
= 0.948)

5 06/06/2010 12– 0.96 48 104.1 0.78 yes no yes Florida
07/06/2010 12 (R2

= 0.348) (R2
= 0.732)

6 20/07/2010 12– 0.99 64 100.8 1.92 yes no yes SE Coast
21/07/2010 21 (R2

= 0.744) (R2
= 0.139)

7 22/07/2010 00– 1.29 72 98.6 −1.4 yes yes yes E Coast
23/07/2010 18 (R2

= 0.379) (R2
= 0.790)

a UTC time in DD/MM/YYYY HH, determined by using ozone and CO measurements as described in text;
b number of data collected for each event;
c d[O3]/d[CO] simulated by GEOS-Chem at PMO for event period;
d CO elevation for event period in GEOS-Chem simulations;
e significant impact from biomass burning emission;
f significant impact from North American anthropogenic emission;
g determined by FLEXPART folded retroplumes.

cutoff values were defined to be 20 ppbv over the summer-
time background in each respective year, based on the ap-
proach used byHonrath et al.(2004). There were periods of
several days (e.g., from 11 to 17 June 2009) as well as short
time windows of several hours (e.g., on 9 June 2009) during
which measured CO exceeded the cutoff value. All periods
identified by this criterion were evaluated against additional
criteria that are discussed in detail in Sect.3.2. While CO lev-
els exceeding the cutoff are the primary indicator of the start
and end of each event, neighboring time periods with lower
CO levels are combined into events based on the assumption
that the edge of event plumes contained lower concentration
of pollutants due to dilution by background air.

3.1.2 d[O3]/d[CO]

The change in O3 relative to CO, ord[O3]/d[CO], has been
widely used as a measure of ozone enhancement (e.g.,Par-
rish et al., 1993). Thed[O3]/d[CO] values cited from other
studies and reported in our work are calculated by two-
sided regression, which accounts for error in both variables
in the regression (Ayers, 2001). Significant correlation be-
tween CO and ozone was found over eastern North Amer-
ica. A d[O3]/d[CO] of 0.3 was speculated to represent a
uniform characteristic of boundary layer air over eastern
North America in summertime (Chin et al., 1994; Cooper
et al., 2001). Various values of this ratio from satellite ob-
servation and aircraft campaigns have been reported down-
wind of North American emission regions. At Nova Sco-
tia, Berkowitz et al,(1996) observed transported pollution
plumes that originated from urban areas of North America
andd[O3]/d[CO] ranged from 0.19 to 0.30 (R2 > 0.5). Dur-

ing the 1993 summer NARE intensive campaign, a range
in d[O3]/d[CO] from 0.25 to 0.28 was observed over east-
ern North America and the North Atlantic (Parrish et al.,
1993; Daum et al., 1996; Fehsenfeld et al., 1996). In a spring
study,Prados et al.(1999) reported ad[O3]/d[CO] of 0.21
(R2

= 0.19) during intensive aircraft measurements between
the U.S. and Bermuda.Zhang et al.(2006) provided a global
distribution of the O3–CO correlation in the middle tropo-
sphere (618 hPa) for July 2005 from both TES detection and
GEOS-Chem simulation. They found ad[O3]/d[CO] value
of 0.81 molmol−1 (R2

= 0.28) over the eastern U.S. The
value was shown to be consistent with an observation of
d[O3]/d[CO] = 0.90 molmol−1, R2

= 0.12, at 600–650 hPa
from the ICARTT aircraft campaign.Hegarty et al.(2009),
also using TES data, reported a much smaller springtime
d[O3]/d[CO] of 0.13 (R2

= 0.048) extending from North
America out over the Atlantic Ocean for 2005 and 2006. Val-
ues ofd[O3]/d[CO] that have been reported in the literature
vary from 0.1 to 1, and in most cases,R2 values are less than
0.5. The cause of the variation in slope and low correlation
may be mixing of differently aged air masses from different
sources. Different ozone production tendency during trans-
port can lead to differing values ofd[O3]/d[CO] observed at
differing times at the same location. Events that qualify for
the study presented here were selected based on the condition
to have statistically significant correlation between simulta-
neously observed CO and ozone at the 95 % confidence level.
Values ofd[O3]/d[CO] andR2 for time periods that met the
first criterion (CO mixing ratio> cutoff) and this criterion are
included in Table1.
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3.1.3 Transport pathway

Simulated transport pathways of pollution plumes were ob-
tained from FLEXPART folded retroplumes, computed as
summarized in Sect.2.4, in which CO was used as a tracer
for anthropogenic pollution. For a given event, PFQs of
CO were calculated by folding 3-D CO fields from forward
simulation with the 3-D residence time matrix from back-
ward simulation such that the folded retroplume (distribu-
tion of PFQs) highlighted the transport pathway. We selected
transport events characterized by an anthropogenic emission
originating in the eastern U.S. and direct transport pathway to
the PMO by examining the FLEXPART folded retroplumes.
Transport events with complex pathways are difficult to as-
sess due to complicated chemistry and increased dilution.
Therefore, we did not include events with transport pathways
exhibiting multiple branches or long looping times (i.e., more
than a week) over the North Atlantic Ocean to further evalu-
ation in this study.

3.1.4 Anthropogenic versus fire emission impacts

In order to focus on anthropogenic events, we distinguished
events according to source type. Contributions from anthro-
pogenic and wildfire emissions were calculated by fold-
ing FLEXPART retroplumes with separate emission inven-
tory categories as described in Sect.2.2. Three-hour aver-
ages of CO contributions from each source are presented in
Figs. 1 and 2. Events that received more than 10 % of the
observed CO mixing ratio at PMO from North American an-
thropogenic or biomass burning emissions were identified as
impacted by the respective emission source and displayed
with a “yes” flag in Table1.

3.1.5 Upslope flow

Local boundary layer air masses can be carried by upslope
flow to PMO and lead to mixing of free tropospheric air with
MBL air. Upslope flow occurs through mechanically forced
lifting, in which strong synoptic winds are reflected by the
mountain slope, or through buoyant forcing, in which the sur-
face air mass is lifted as a result of solar heating.Kleissl et al.
(2007) determined the occurrence of upslope flow to be less
than 39 % of the days during the summers of 2004 and 2005.
During the days when upslope flow occurred, there was no
evidence of significant impacts of uplift on measurement of
chemicals interested in this study. For summers of 2009 and
2010, we examined the possibility of upslope flow due to me-
chanical lifting.

When mechanically forced lifting occurs, air masses above
the dividing streamline (DSL) can be lifted to the top of the
mountain, while air masses below the DSL travel around the
mountain. The altitude of the DSL (in the bottom panel in
Figs.1 and2) is calculated by using the method described by
Sheppard(1956) from the wind speed profiles in the meteo-

rological data set driving FLEXPART (GFS and FNL). Dur-
ing time periods when the height of the DSL was less than the
MBL height simulated in GEOS-Chem, PMO may have re-
ceived MBL air. As shown in Figs.1 and2, there were a few
time periods when the calculated DSL was below the MBL.
These time periods were excluded from event selection.

3.1.6 Capture of events in GEOS-Chem

A requirement for valid folding results from the two mod-
els is that the events are predicted to occur in both FLEX-
PART and GEOS-Chem as indicated by enhanced CO levels
at PMO in both simulations. CO and ozone data, shown in
Figs. 1 and 2, were obtained from a 4◦ × 5◦ GEOS-Chem
simulation in the work ofWeise(2011). Four-hour-averaged
mixing ratios were extracted from the grid cell that was cen-
tered at PMO. For all events identified using the other criteria
summarized in Table1, GEOS-Chem indicated elevated CO
mixing ratio, demonstrating that events identified through
measurements at PMO were also captured in GEOS-Chem.

3.2 Characteristics of transport plumes and quantified
events

The transport conditions that qualified as events as summa-
rized in Table1 exhibit a wide variety of characteristics.
A range in d[O3]/d[CO] values (from 0.85 to 2.28) was
found for the eight events. Our criteria selected events with
significant impacts from anthropogenic or biomass burn-
ing emissions. In this study, we looked for events in which
d[O3]/d[CO] was close to or greater than 1, a value found
previously at PMO in North American outflows (Honrath
et al., 2004). The correlation coefficients reported in Table1
are greater than those reported in the previous studies dis-
cussed in Sect.3.1.2, and similar to the values for events in
the previous study byHonrath et al.(2004). Higher corre-
lation coefficient values are observed at PMO because the
measurement data used in the regressions were extracted for
an individual transport event as identified based on the above
criteria.

Figures1 and 2 show time series measurement data at
PMO and model results of CO contributions from North
American anthropogenic and biomass burning emissions in
the summers of 2009 and 2010, respectively. We found sev-
eral events linked to anthropogenic and biomass burning
emissions. For instance, plumes for events 2 and 6 were
dominated by North American anthropogenic emissions, as
indicated by FLEXPART North American CO (NA-CO)
contributions of 35 and 42 ppbv (Figs.1 and 2), respec-
tively. Conversely, event 1 was characterized by fire emis-
sion influence, as indicated by the FLEXPART biomass burn-
ing CO (FIRE-CO) contribution up to 15 ppbv (Fig.1).
There were also periods when both types of emissions con-
tributed significant amounts of CO (e.g., events 4 and 7).
Overall, the frequency and magnitude of contribution from
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Event 6 on 21 July 2010 
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Fig. 3.FLEXPART folded retroplumes of events 2 and 6 discussed in text:(a) and(c) are plan views of FLEXPART folded retroplumes with
locations at each upwind time labeled by red numbers in days; panels(b) and(d) are vertical distributions of FLEXPART folded retroplumes
with dual x-axis labels, showing both date (in UTC) and upwind time. Folded retroplume concentration is shown using a scale normalized to
the highest concentration at each upwind time to provide a clearer view of transport pathways.

North American anthropogenic emissions was estimated to
be greater than those of biomass burning emissions during
the summers of 2009 and 2010. In this study, we examined
events 2 and 6 in detail as they meet the criteria described in
Sect.3.1.

3.3 Simulation of transport for selected events

Prior to detailed analysis of chemical and physical processes
for events 2 and 6, we discuss transport pathways and evalu-
ate the similarity of transport simulation in FLEXPART and
GEOS-Chem. The transport characteristics of the two events
are discussed in Sect.3.3.1. As a prerequisite for folding cal-
culation, transport similarity in the two models is evaluated
in two approaches. Tagged CO simulations are presented in
Sect.3.3.2for evaluation of transport similarity in two mod-
els from a forward simulation perspective. The coherence of
the transport is also examined by analyzing the NMHC pho-
tochemical clock in folded results in Sect.3.3.3.

3.3.1 FLEXPART folded retroplumes

Transport pathways of events 2 and 6 are shown in Fig.3.
The plume associated with event 2 arrived at PMO on 15 June
2009 at 06:00 UTC. At five to four days upwind, the plume
was lifted from the planetary boundary layer (PBL) of the
northeastern U.S. into the free troposphere (3–4 kma.s.l.) by
a warm conveyor belt (WCB) that was identified on NCAR
weather maps over the northeastern U.S. (NCAR, 2009). The

plume was then transported from the northeastern U.S. to
the central North Atlantic free troposphere, and during this
time it was isolated from the MBL air. When approaching
PMO, the plume experienced a subsidence from about 4 to
2 kma.s.l. The plume for event 6 originated over the southern
U.S. and arrived at PMO on 21 July 2010 at 06:00 UTC. The
plume was transported in the lower FT (1.5–2.5 kma.s.l.) to
the east-northeast to the North Atlantic without much change
in transport altitude (2–3 kma.s.l.).

3.3.2 Tagged CO simulations

One potential source of error in the folding process could be
the result of differing transport in FLEXPART and GEOS-
Chem simulation. In order to evaluate discrepancies in trans-
port between the two models, forward FLEXPART and
GEOS-Chem simulations were conducted for the time peri-
ods of events 2 (9–15 June 2009) and 6 (15–21 July 2010)
using a tagged CO tracer. The two largest anthropogenic
CO emission sources of North America – road transporta-
tion and oil production – which comprised approximately
80 % of total CO emissions, were extracted from GEOS-
Chem and integrated into a FLEXPART forward simulation.
GEOS-Chem seasonal and diurnal variations for these emis-
sions were also taken into account in the FLEXPART sim-
ulation. Figure4 compares results from the forward FLEX-
PART simulation with a GEOS-Chem tagged CO simulation
for event 2.
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Fig. 4. Tagged North American CO simulation results for FLEXPART and GEOS-Chem at three upwind times for event 2: 9 June 2009,
18:00 UTC (upper panel); 11 June 2009, 18:00 UTC (middle panel); and 13 June 2009, 18:00 UTC (lower panel). Concentrations of CO in
panels(a–c)for FLEXPART and(d–f) for GEOS-Chem are averaged along the latitudinal region defined by the model domain (see the text).
Panels(g–i) present tagged CO profiles from FLEXPART (solid black line) and GEOS-Chem (dashed red line) at the three upwind times
with locations determined by maximum CO in folded results (UFQs). The plume locations are also marked with two dashed vertical lines in
panels(a–f).

Tagged CO simulations demonstrated close agreement be-
tween FLEXPART and GEOS-Chem simulation results. Lat-
itudinal averages of North American CO concentrations in
FLEXPART (a, b and c) and GEOS-Chem (d, e and f) are
shown in three rows in Fig.4 for three upwind times in which
the plume was in the PBL, during lifting, and during trans-
port in the free troposphere, respectively. Similar plumes can
be identified in FLEXPART and GEOS-Chem results at all
three time steps. Detailed views of CO vertical profiles at the
three upwind times (Fig.4g, h, and i) show that the vertical
profiles of CO in FLEXPART and GEOS-Chem agree well
at the locations where the plume was predicted. On 9 June,
FLEXPART and GEOS-Chem simulations (Fig.4g) indicate
that CO was abundant in the lowest 2 km over the U.S. con-
tinental region. On 11 and 13 June, similarity is conserved
as the pollution plume was lifted and transported over the
North Atlantic (Fig.4h and i). It is important to note that the
concentration of CO simulated in GEOS-Chem was higher
than that simulated in FLEXPART, which is caused by dis-
crepancies in emission inventories in the two models and ac-
cumulation of long-lived CO during the spin-up period of
the GEOS-Chem simulation. The same tagged CO simula-
tions were conducted for event 6; these also exhibit good
agreement of transport between the two models (results not
shown). The agreement in the two model simulations indi-

cates that the folding technique (Owen and Honrath, 2009)
may be used for the analysis.

3.3.3 NMHC aging in the folded GEOS-Chem and
FLEXPART results

We also evaluated the coherence of the folded results by com-
paring NMHC aging folded results to theoretical values. Ra-
tios of simultaneously observed NMHC have been used to
study photochemical aging of air masses (McKeen and Liu,
1993; Helmig et al., 2008; Honrath et al., 2008). Correlation
analysis of natural logarithms of [n-butane]/[ethane] versus
[propane]/[ethane] can be used to determine plume age (Par-
rish et al., 1992). If aging of NMHC in the folded results
agrees with the theoretical chemical aging rate predicted by
GEOS-Chem, we can conclude that the folded results repre-
sent a consistent result with the modeled chemical transfor-
mation during the transport.

We examined the NMHC aging rate in the folded results
and compared it to aging rate predicted based on theoreti-
cal decay, as defined by reaction rates in GEOS-Chem for
events 2 and 6 (Fig.5). GEOS-Chem combines mixing ra-
tios of all alkanes having carbon number≥ 4 (ALK4), so
ALK4 was used in this analysis of plume aging instead of
n-butane. A theoretical decay slope (solid blue line in Fig.5)
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Fig. 5.Relationship between the natural logarithms of [ALK4]/[ethane] versus [propane]/[ethane] in folded results during transport of event 2
(a) and event 6(b). Folded results (UFQs) are shown in red dots, with labels indicating the upwind time at which the simulated data were
obtained. Red solid lines indicate the two-sided regressions for folded results, and the slope andR2 values of the regressions are given in the
top-left corner of each plot. The two lines initiating from the youngest data point represent, respectively, mixing of background air containing
negligible concentrations of ALK4 and propane (dotted black line) and theoretical oxidation by OH (solid blue line). Marks on the theoretical
decay line provide estimates of decay rate at an average ambient temperature in folded results.

Fig. 6. Folded results (UFQs) of pollution plumes at each model time step during event 2 (left column) and 6 (right column). Data color
corresponds to the respectivey axes. Six-hour-averaged UFQs of tracer gases are shown in panels(a), (b), (e)and(f). Folded daily averaged
UFQs of ozone production (POx) and loss (LOx) rates and lightning NOx (L-NOx) are shown in panels(c) and(g). FLEXPART retroplume,
temperature, and RH in the folded results are shown in panels(d) and(h), with dualx axes for date in UTC and upwind time in days.

indicates the decay rate of NMHC against the hydroxyl radi-
cal, while a mixing line (dotted black line) indicates the trend
if the plume mixes with clean background air. Regressions
of NMHC UFQs for both events are significant (R2 > 0.9),
which suggests that the folded results simulated transport and
aging well. If plumes of different ages had been extracted

from GEOS-Chem fields by FLEXPART (indicating discrep-
ancies in transport), folded results of NMHC would deviate
from the regression line. Given the similarity in transport
observed as discussed in Sect.3.2, the similarity between
the theoretical aging slope and folded results of NMHC in
both plumes provides additional evidence that the folding
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Fig. 7. GEOS-Chem profiles of tracer gases (CO, O3, PAN, etc.), ozone production/loss rates (POx, LOx), OH concentration, and specific
humidity (SPHU) at four upwind times along the transport pathway for event 2. The four times were selected to show different stages during
the transport. Upwind times are indicated to the left of each row. Plume location and altitude are determined by folded retroplume analysis at
the indicated upwind time (Fig.3). Simultaneous retroplumes (in blue) are shown in units of residence time (second), which can be viewed
as vertical dispersions of plume air masses over altitude in the column containing the highest folded retroplume concentration such that the
retroplume profiles in each row are identical. Each plot shows two GEOS-Chem profiles, the colors of which correspond to the colors of the
upper and lowerx axes.

technique performed well in extracting Lagrangian informa-
tion of the transported plumes from the Eulerian model.

The regression slope for the folded results in event 2 was
very close to the theoretical value calculated for reaction with
hydroxyl radical only. This may be the result of the transport
of a highly compacted plume, as apparent in Fig.3a. The re-
gression line for event 6 lies between the theoretical decay
line and the line for mixing with zero background air, sug-
gesting that the event 6 plume experienced a higher degree
of mixing than that of event 2. In each panel shown in Fig.5,
a measure of decay rate for each day is labeled on the theoret-
ical line (blue labels). Theoretical decay rate was computed
by substituting the average folded OH level in each plume
into the second-order reaction rate equation of the (lumped)
alkanes. The decay rates of the folded NMHC results (red
labels) and theoretical results (blue labels) are comparable.
Distances between the blue labels are greater for the results
in event 6 than for those in event 2 because OH levels were
higher during transport in event 6 (as it will be shown in
Sect.4), which resulted in relatively faster loss of NMHC.
The cause of the higher OH levels estimated for event 6 was

likely the higher exported ozone concentration in the associ-
ated plume.

4 Ozone production tendency in North American
outflows

In this section we present detailed descriptions of the trans-
port and chemistry that occurred for the two selected events.
First, we use the folded GEOS-Chem and FLEXPART retro-
plume analyses to provide information regarding chemical
transformation in the plume during transport (Fig.6). Sec-
ond, we use GEOS-Chem profiles to focus on vertical dis-
tribution of chemical species at several upwind time frames
(Figs.7 and8).

4.1 Event 2 (9–15 June 2009)

Figure6a–d show the time series of folded GEOS-Chem and
FLEXPART retroplume results (UFQs) for event 2. These
time series include chemistry information during the lifting
from the boundary layer, transport in the FT, and start and
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Fig. 8.Same format as in Fig. 7 but for event 6 in 2010.

end of the subsidence phase. The FLEXPART retroplume is
also shown within the chemical profiles in order to provide
reference as to plume shape and altitude at each time shown
(Fig. 6d). In addition, Fig.7 shows profiles of CO, ozone,
NOx, NOy, OH, specific humidity, and production and loss
rate of ozone (POx/LOx) from GEOS-Chem simulation re-
sults at 4.8, 2.8, 1.8, and 0.8 days upwind. The profiles are
shown at the location of the plume, determined to be the hor-
izontal latitude and longitude of the column with the largest
UFQs of CO mixing ratios at the selected upwind times.

The vertical distribution of the FLEXPART retroplume
(Fig. 6d) indicates that more than half of the retroplume was
distributed in the PBL below 1 km at six days upwind. The
retroplume contained high levels of primary pollution species
such as CO (> 100 ppbv) and NOx (> 0.2 ppbv) and was in
a state of net ozone production (2 ppbvday−1; POx = 7.5
andLOx = 5.5 ppbvday−1). This net ozone production value
is somewhat lower than typical values reported for mid-
latitude polluted areas (approximately 5 ppbvday−1; Wang
et al., 1998b). However, the lower net production rate is
likely due to a lower ozone production rate at higher altitude
given that part of the plume extended into the FT.

NOx from lightning can be an important contributor to
O3 production (DeCaria et al., 2005); however, this is not
predicted to be the case in this event. NOx from lightning
(L-NOx) was estimated to account for a maximum value of

9 pptv of NOx at this time (Fig.6c), a small fraction (3–5 %)
in comparison to the total NOx mixing ratio in the plume
(0.18–0.24 ppbv). Thus, lightning NOx was unlikely to con-
tribute significantly to ozone production during this event.

From five to four days upwind, slightly less than 50 %
of the retroplume was lifted from the PBL into the FT, and
ozone production tendency switched from a state of net pro-
duction to net destruction (Fig.6c) because of more efficient
loss of NOx than ozone in the pollution plume. In addition,
CO mixing ratios dropped slowly as a result of photochem-
ical loss and mixing with background air; levels of oxidized
nitrogen species decreased quicker due to relatively shorter
photochemical lifetime as compared to CO in the FT. In
Fig.7a, profiles of simulated CO, O3, NOx, and PAN, as well
as production and loss rate of ozone, show maximum val-
ues at about 2 kma.s.l. at 4.8 days upwind. This correlation
in species concentrations indicates that the pollution plume
was concentrated at 2 kma.s.l. at this stage.

Over 80 % of the simulated plume was lifted up into the
FT by three days upwind. During the lifting, temperature
dropped from 280 K over the continent to 265 K, while RH
increased from∼ 50 to 75 % (Fig.6d). Oxidized nitrogen
species and ozone decreased slightly, which was due to fur-
ther dilution and destruction, and ozone production tendency
remained in a net destruction status at−2.2 ppbvday−1

(Fig. 6c). At the same time, PAN levels in the plume
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increased from 0.12 to 0.18 ppbv (Fig.6b). This accumula-
tion of PAN was likely caused by continuous oxidation of
NOx to PAN combined with the longer lifetime of PAN in the
middle of the FT; the lifetime of PAN is 10–100 times longer
in the FT than in the PBL (Kleindienst, 1994). The increase
in PAN was found to be much higher than the decrease in
NOx during this lifting, which may appear inconsistent if it is
assumed that PAN is formed primarily from NOx destruction.
When PAN reached its highest mixing ratio at 12:00 UTC on
12 June, due to a slight discrepancy in convection in the two
models, the FLEXPART retroplume profile did not entirely
match the GEOS-Chem plume profile and only sampled in
the upper part of the plume (see Fig.7, column 1, panel b).
During lifting, the GEOS-Chem plume encountered a poten-
tial cloud layer (see RH in Fig.6, panel d). As a consequence,
the FLEXPART retroplume, which was concentrated above
the potential cloud layer, sampled the upper part of the plume
where NOx had already been transformed to PAN or washed
out during lifting. The lower part of the plume, where signif-
icant NOx change could be expected, was not sampled by the
retroplume because of the disagreement in convective trans-
port in the models. Thus, the change in NOx in the folded
results may have been underestimated. CO and ozone, which
are more stable than NOx, were unaffected by the potential
cloud layer on the short timescale, and the retroplume cor-
responded well to the layers in which CO and ozone were
elevated, so the effects on the folded results of CO and ozone
were small. After being lifted from the PBL, the plume layer
reached an altitude of 3 to 5 kma.s.l., as indicated by the sim-
ulated CO profile (Fig.7b). NOx was almost diluted to the
background level, and net loss of ozone was predicted for the
entire altitude range of the simulated plume.

Starting from three days upwind, the plume began to de-
crease in altitude (Fig.6d). The CO mixing ratio in the folded
results continued to decrease, while ozone mixing ratio in-
creased slightly, with the UFQ of ozone reaching a value of
59 ppbv upon arrival at PMO (Fig.6a). The dilution observed
for CO suggests that the increase in ozone is due to produc-
tion during subsidence. The decrease in PAN mixing ratio
suggests that thermal decomposition of PAN occurred in this
stage, which resulted in a 50 % increase in NOx and conse-
quent ozone production (Fig.6b), a hypothesis that is con-
firmed by UFQs of ozone production/loss rate. From three
to one days upwind, due to a slight increase in ozone pro-
duction rate in the plume and continued decrease of ozone
destruction rate, the net ozone destruction decreased from
−2.2 to−1 ppbvday−1 (Fig. 6c), and by a half day upwind,
the loss rate of ozone was nearly balanced by the produc-
tion rate. GEOS-Chem profiles for the arrival dates (Fig.7c
and d) indicate that a net ozone production layer (rate of ap-
prox. 1 ppbvday−1) with enhanced NOx was present at an
altitude of ca. 2 kma.s.l. at 1.8 and 0.8 days upwind, which
suggests that a net ozone production layer may have covered
a broad upwind area over the central North Atlantic. The con-
centrated CO layer was actually predicted to be higher in alti-

 

GEOS5 47L O
3
 090615 at 06:00 GMT

Avg from L=5−15 (0.8−2.5 km)

°

25oN

30oN

35oN

40oN

45oN

50oN

55oN
 

 80oW 60oW 40oW 20oW 

    22 38 54 69 [ppbv]

 

 

GEOS5 47L SLP 090615 at 06:00 GMT

L=1 (0.3 km)

°

25oN

30oN

35oN

40oN

45oN

50oN

55oN
 

 80oW 60oW 40oW 20oW 

    997 1008 1018 1028 [hPa]

 

(a)

(b)

Fig. 9. GEOS-Chem-simulated ozone mixing ratio averaged from
0.8 to 2.5 km altitude(a) and surface pressure(b) at the arrival time
of event 2 (15 June 2009, 06:00 UTC). The location of Pico Moun-
tain Observatory is indicated with a blue circle.

tude than the layers in which NOx and ozone production rates
were elevated, which suggests that net ozone production oc-
curred more efficiently in the lower portion of the pollution
plume where PAN decomposed as a result of higher temper-
ature.

To demonstrate the link between plume subsidence and the
Azores–Bermuda High (ABH), we show a plan view of av-
eraged O3 in the lower FT (0.8–2.5 km) and surface pressure
over the North Atlantic at the time when the plume arrived at
PMO (Fig.9). This GEOS-Chem simulation result indicates
that ozone was abundant over the U.S. and southern Canada
due to large anthropogenic emissions, as well as in the region
impacted by direct transport from the continent, extending
several hundred kilometers to the North Atlantic. An ozone-
rich region was also present over the Azores region, isolated
from the other regions of enhanced ozone, similar to findings
presented byCreilson et al.(2003). We conclude that the re-
gion of elevated ozone was a result of subsidence, discussed
above. Indeed, the position and shape of the ABH correlates
well with the ozone-rich region over the Azores, providing
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an explanation for air mass subsidence (ABH system) and
associated PAN decomposition.

4.2 Event 6 (16–21 July 2010)

A similar analysis was carried out for event 6. The UFQs
for event 6 are shown in Fig.6e–h, and profiles at four up-
wind times are presented in Fig.8. The plume associated
with event 6 was characterized by low-altitude transport, as
described in Sect.3.2. Six to five days upwind, the plume
was located in the PBL over the mid-eastern U.S. (Fig.3c).
The plume contained high levels of CO and ozone (98 ppbv
and 70 ppbv, respectively), and an O3 production rate of 3–
6 ppbvday−1 (POx = 13–17 andLOx = 10–11 ppbvday−1)
prior to export. This O3 production rate is larger than that
observed for event 2 (2.5 ppbvday−1). In contrast to event 2,
stable weather conditions were observed at this time over
the eastern U.S. Air masses with fresh pollution emissions
were well mixed, and stagnant atmospheric conditions were
favorable for ozone production (Jacob et al., 1993). Simu-
lated NOx from lightning also showed a maximum prior to
plume export. The predicted amount of NOx produced was
less than 10 % of the total NOx UFQs in the simulated plume.
This amount was not significant enough to contribute to the
simulated ozone production.

From five to four days upwind, the plume was exported to
the North Atlantic and traveled mainly at 1–3 km (Fig.6h),
presumably above the MBL, which was predicted to be
confined to a layer less than 500 m thick by GEOS-Chem
(Fig. 2). UFQs of temperature in the plume were fairly stable
and ranged from 280 to 286 K. RH was higher in event 6 (60–
80 %) than in event 2 (40–60 %), which indicates a greater
part of the event 6 plume may have interacted with a cloud
layer during transport and thus was not lifted above the
boundary layer. Compared to event 2, these meteorological
conditions in the boundary layer may have enhanced destruc-
tion of ozone and removal of ozone precursors. Both CO and
ozone exhibited a smooth and quick decrease after the simu-
lated plume was exported to the North Atlantic (Fig.6e). The
rate of loss in simulated CO and ozone decreased after three
days of transport in the North Atlantic, when concentrations
approached background levels. UFQs of nitrogen species in
the plume for event 6 also showed similar decreasing trends.
In contrast to the PAN accumulation observed in event 2,
PAN mixing ratios in this plume decreased following ex-
port from the PBL, which implies that the plume lost most of
its potential for ozone production. The plume switched from
a net ozone production to a net ozone destruction state at
four days upwind, and stayed in a net destruction state during
the rest of the transport period (Fig.6g). Net production of
ozone decreased during the entire transport and it decreased
much more quickly than net ozone loss rate. When the plume
arrived at PMO, the plume was in a net ozone destruction
state of−2 ppbvday−1. Similar transport in the lower FT was
found in a transpacific transport study (Kotchenruther et al.,

2001), as well as in another North American outflow study
simulated using WRF-Chem (Lee et al., 2011).

5 Potential causes for enhancement ind[O3]/d[CO] at
PMO

In this section, we analyze observations ofd[O3]/d[CO]
enhancement at PMO and investigate chemical transforma-
tion in plumes based on the above findings. We estimate
d[O3]/d[CO] in the plumes at upwind times for events 2
and 6 by applying estimates of photochemical loss and gain
of CO and ozone during transport. We lack in situ measure-
ments of trace gases in the plumes when they were exported
from North America. In order to evaluate the values of up-
wind d[O3]/d[CO], we compare the values to upwind slopes
simulated by GEOS-Chem and observational data from the
MOZAIC (Measurements of OZone, water vapour, carbon
monoxide and nitrogen oxides by in-service AIrbus aircraft)
program. The objective of this analysis is to elucidate factors
driving variation ind[O3]/d[CO] during transport.

5.1 d[O3]/d[CO] evolution during transport of event 2

For the purpose of this analysis, we assume that the
d[O3]/d[CO] value obtained by regression of the measure-
ment data is the result of mixing between a so-called “pollu-
tion plume point” and background air in the central North At-
lantic. Therefore, for event 2, a substitute slope is derived by
connecting higher CO and O3 values in the plume and lower
background O3 and CO values. The plume point for event 2
(red triangle in Fig.10a) at PMO is determined by averaging
the top 10 % of O3 and CO mixing ratios from measurements
associated with this event. The background point is estimated
from observed O3 and CO mixing ratios at PMO during spe-
cific periods determined to be representative of the North At-
lantic regional background. This determination is made by
selecting periods with FLEXPART retroplumes with more
than 50 % of their residence time over the North Atlantic re-
gion (defined by latitude from 30 to 48◦, longitude from−60
to −15◦) and more than 80 % of their residence time under a
vertical height of 5 km at 10 days upwind from PMO. Given
a typical transport time from North America to PMO is ap-
proximately 6–7 days (Honrath et al., 2004), this choice of
upwind time insures that the CO and ozone mixing ratios
selected were aged midlatitude North Atlantic air. The av-
erage CO and O3 mixing ratios for qualified periods were
used as the background point (green circle in Fig.10a). By
connecting the plume point (104 ppbv of CO and 60 ppbv of
ozone) and the background point (78 ppbv of CO and 30 ppbv
of ozone), a substitute slope (value of 1.15,L1 in Fig. 10a)
for the regression line of observations (value of 1.37,L0 in
Fig. 10a) is obtained. The associated substitute slope can be
viewed as a genericd[O3]/d[CO] value for event 2 at the
central North Atlantic. According to FLEXPART simulation
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Fig. 10. Calculations ofd[O3]/d[CO] for the two selected events(a) event 2 and(b) event 6. Background levels for the central North
Atlantic (green circles), and simulated upwind pollution plume data points (red symbols) are defined in the text. Solid black lines (L0)
indicate two-sided regression results of observation data (black dots) at PMO. The brown-lined area indicates thed[O3]/d[CO] range in
upwind derived using MOZAIC flight measurements. Line G has an upwind slope that is derived from the GEOS-Chem captured plume.
Adjusted lines (L1–L3) for each event demonstrate the variation ind[O3]/d[CO] according to chemical transformation pathways (R1–R2)
during transport.

results, transport from tropical regions occurred immediately
after this event, so a few observations of clean air (Fig.10a)
were included in the event period.

To derive the upwind slope values of the plume for event 2,
we estimate CO and O3 mixing ratios in the plume at five
days upwind (near the coast) based on folded results from
Sect. 4. As previously discussed, transport of event 2 is
characterized by initial lifting from PBL into the free tro-
posphere and subsequent subsidence near PMO. Since CO
transformation is less affected by transport height and tem-
perature, we begin by estimating the upwind CO mixing
ratio in the plume by calculating CO production and CO
loss over the transport time. By knowing the production/loss
rate of CO in the folded results, we calculate the percent
production/loss relative to CO mixing ratio in the folded
results for each day. For example, if the CO net destruc-
tion rate were−1.16 ppbday−1 (PCO= 1.25 andLCO=

2.41 ppbday−1), we compute a 1.4 % loss relative to an aver-
age CO mixing ratio of 85 ppbv during the last day of trans-
port. By doing this computation iteratively for each day, we
obtain a total loss of 10 % of CO during five days of trans-
port. To compare this net CO loss with values found byHon-
rath et al.(2004), we can compute the CO loss based on re-
action with OH, and CO production based on oxidation of
hydrocarbons. By applying an average OH concentration of
2.8× 106 moleculescm−3, Honrath et al.(2004) estimated
a 23–27 % CO loss due to reaction with OH during 5–6 days
of transport from the east coast of the U.S. to PMO. The av-
erage OH concentration estimated in our folded results was
3.0×106 moleculescm−3, which gives a 25 % loss of CO by
reaction with OH in the five days of transport. Considering
that in the folded results, the predicted CO production rate
from the oxidation of hydrocarbons is about half of the CO
destruction rate, a net loss of CO of 13 % is expected, con-
sistent with the estimation of CO loss calculated iteratively

of 10 %. According to an estimated 10 % loss of CO, we ex-
pect the plume point (red triangle in Fig.10a) to move to
the right to a CO level of 116 ppbv at five days upwind fol-
lowing processR1. By using the same iterative calculation
of relative ozone production/loss for each day, we compute
an 11 % loss in ozone for the transport period, moving the
plume point (followingR2 in Fig. 10a) up to an ozone level
of 66 ppbv (red diamond in Fig.10a). The slope of the line
(L2 in Fig. 10a) connecting this upwind plume point and the
background point, which is presumably unchanged, is 0.97.
ComparingL1 andL2, we conclude that both CO and ozone
transformation can affect the slope. Net ozone loss has neg-
ative contribution to the slope, while net CO loss has pos-
itive contribution to the slope. It is also important to note
that although the averaged net ozone production rate during
the 5-day transport period was negative, the slope increases
from L2 to L1 as a result of significant CO loss. This finding
contradicts the intention of use ofd[O3]/d[CO] as an indica-
tor of net ozone production. To our knowledge, prior to this
study, CO loss has been pointed out as a potential explana-
tion for enhancement ind[O3]/d[CO] only in the study by
Real et al.(2008).

In order to evaluate the upwind slopeL2, we compare it
with other estimations of slope values derived from near-
coast pollution plumes inferred from our GEOS-Chem sim-
ulations. At the time of export from North America (9 June),
GEOS-Chem profiles (not shown) indicated that the plume
associated with event 2 contained 160 ppbv of CO and
72 ppbv of ozone. If this plume (orange circle in Fig.10a)
were mixed with the background (green circle), the derived
upwind slope would be 0.52 (line G).

We also investigated upwind pollution plumes by using
flight measurements obtained from the MOZAIC airborne
program. To estimate the composition of the event 2 plume
when it was exported from eastern North America, we chose
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the CO and ozone profiles from Philadelphia, the closest
MOZAIC airport to the location of the event origin (see
Fig. 3) from 2008 to 2010. The 2008 data were included
because there were only a few profiles collected in summer-
time 2010. CO and ozone mixing ratios measured from an
altitude of 2 to 3 km were considered to represent lower free
troposphere air. The top 10 % of CO mixing ratios at this
level were treated as highly polluted air and were used to
determine the potential range of the initial plume conditions
for event 2. By connecting these CO and ozone mixing ra-
tios in the plume with the North Atlantic background, we
obtained a range in upwindd[O3]/d[CO] from 0.48 to 0.79
(H range in Fig.10a). This range is a little larger than those
of recent satellite observations downwind of eastern North
America (0.4–0.6;Voulgarakis et al., 2011), but consistent
with values measured near coastal areas observed during the
ICARTT Campaign (0.81 and 0.72;Zhang et al., 2006).

Compared to the slope range of the G and H lines, the up-
wind slope for event 2 based on the folded results (1.15 for
L2) is greater than the upper end of the slope range of G
and H lines and is probably overestimated. We speculate that
our calculation of ozone transformation during transport in
event 2 underestimated net ozone production during plume
subsidence, which is likely caused by numerical diffusion in
GEOS-Chem. Due to retention of NOx in the PAN chem-
ical reservoir during rapid lifting from the PBL and sub-
sequent transport at high altitude (> 3 km), the plume had
a potential for ozone production during subsidence in the
last two days of transport as PAN decomposed to NOx. This
sequence of events, including net ozone production during
plume subsidence, occurred in a limited space. However, the
NOx generated was immediately diluted in GEOS-Chem grid
cells as a result of numerical diffusion, and as a result, net
ozone production within the plume would be underestimated
in GEOS-Chem simulations and associated folding calcula-
tions. As discussed in Sect.3, the pollution plume for event 2
was compact during transport, as such was vulnerable to nu-
merical diffusion, which may have amplified the underesti-
mation of NOx and net ozone production in the plume. This
artifact can be minimized by using higher-resolution chem-
ical models, which reduces the magnitude of artificial mix-
ing with the ambient air. If we assume a hypothetical, aver-
aged, net ozone production rate of 2.1 ppbvday−1 (7.2 % net
ozone production) during the last two days of transport in-
stead of the simulated, averaged, net ozone destruction rate
of −0.6 ppbvday−1 (3.7 % net ozone loss averaged from the
folded result values on upwind days 2 and 1; Fig.6c), there
would be no accumulated ozone change (0 % net ozone pro-
duction) for the 5-day transport period because the net ozone
loss in the first three days would be compensated for by this
hypothetical higher net ozone production rate. In this case,
the upwind plume point for event 2 would remain at an ozone
level of 60 ppbv (red square in Fig.10a), producing an up-
wind slope of 0.80 as shown in Fig.10a for L3, instead of
ozone being increased at five days upwind to account for

ozone destruction predicted in the folded result (R2; slope
of L2 = 0.97). Compared withL2, the slope ofL3 shows
better agreement with the upwind slopes of lines G and H,
which means that the net ozone production was likely closer
to the assumed value (2.1 ppbvday−1) in the final two days
of transport. In the remote North Atlantic, this ozone pro-
duction rate is possible because of the considerably higher
ozone production efficiency resulting from fresh NOx pro-
duction. Based on aircraft measurement of NOx in the FT,
Reeves et al.(2002) calculated a pollution plume with a net
ozone production rate of 9.6 ppbvday−1 with a simultane-
ously measured NO value> 60 pptv. When the plume was
lifted, GEOS-Chem and the folded results could similarly
underestimate PAN accumulation due to numerical diffusion,
which would also result in underestimation of net ozone pro-
duction during subsequent subsidence. Correction for this
underestimation could move the slope ofL3 even lower and
closer to the G and H lines.

If the explanation that GEOS-Chem underestimates in-
stantaneous ozone production is correct, enhancement of
d[O3]/d[CO] in event 2 (fromL3 to L1 in Fig. 10a) was
the result of a combination of ozone production and CO loss
during transport. Compared to upwind CO and ozone mixing
ratios in the upwind plume simulated in GEOS-Chem (or-
ange circle), the upwind CO and ozone mixing ratios calcu-
lated above (red square onL3) are much lower. This discrep-
ancy is a result of our calculation based on diluted pollution
plumes observed at PMO. However, the dilution effect, i.e.,
mixing, does not change the slope values because mixing of
the pollution plume with background air would only move
the plume point along the derived slope line (L3) in a direc-
tion opposite to the background point.

5.2 d[O3]/d[CO] evolution during transport of event 6

The evolution ofd[O3]/d[CO] in event 6 can be stud-
ied using a similar approach (Fig.10b). Averaging the top
10 % of CO and ozone mixing ratios for the data observed
for event 6 produces a computed plume point of 119 ppbv
CO and 54 ppbv ozone at the arrival time (red triangle in
Fig. 10b). Similarly, the North Atlantic background CO and
ozone for summertime 2010 were found to be 88 ppbv and
26 ppbv, respectively (green circle in Fig.10b). The derived
line connecting these two points exhibits a slope of 0.90 (L1
in Fig.10b) as a substitute for the regression slope for event 6
(0.99;L0).

According to the folded results, both CO and ozone con-
centration decreased during transport, and no net ozone pro-
duction was found, so we expect the plume point for event 6
to move to the upper right in Fig.10b when tracing back
five days upwind. By using the same approach for event 2,
we estimate 12 % CO loss during transport for event 6,
more loss than in event 2 due to higher OH levels in the
plume (4.5× 106 moleculescm−3 daily average value from
GEOS-Chem), which may be a result of more efficient ozone
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production and export at lower altitude. This CO loss moves
the plume point horizontally to the right in Fig.10b (follow-
ing R1). Similarly, we estimate 20 % ozone loss during the
entire five days of transport. By adjusting for loss of CO (R1
in Fig. 10b) and of ozone (R2), the plume point is moved to
136 ppbv CO and 68 ppbv ozone for five days earlier (red dia-
mond in Fig.10b), which, when connected to the background
point, produces an upwind slope of 0.88 (L2). Similarly, we
estimate upwind slopes by using GEOS-Chem simulation
and plumes observed during previous aircraft campaigns. An
upwind plume associated with event 6, with 155 ppbv of CO
and 72 ppbv of O3, was captured by GEOS-Chem five days
upwind. Thus, a value of 0.69 is computed as the upwind
slope based on the GEOS-Chem simulation (line G).We also
estimated the CO and ozone composition for event 6 plume
when it was exported from North America by using the same
approach as for event 2. Profiles from Atlanta were used
because it was the closest MOZAIC airport to the location
of export in event 6. By connecting the estimated CO and
ozone composition and the background point, we obtained a
range of upwindd[O3]/d[CO] from 0.51 to 0.92 (H range in
Fig. 10b).

The derived upwind slope of lineL2 (0.88) is very close
to the slope ofL1 (0.90). Far away from continental pollu-
tion sources, the plume for event 6 lost most NOx and PAN
for net ozone production after export. As a result, significant
ozone loss occurred in transport to PMO, which resulted in
a negative contribution tod[O3]/d[CO]. However, this nega-
tive contribution was partially compensated for by significant
CO loss during transport. Therefore, the downwind slope (of
L1) has a similar value to the slope ofL2. Both L1 andL2
slopes fall in the range of the estimated upwind slopes (slopes
of G and H lines ranging from 0.51 to 0.92), which suggests
a low variation ind[O3]/d[CO] during transport for event 6.
Different from event 2, for event 6, numerical diffusion in
GEOS-Chem had a minor effect on estimated CO; ozone pro-
duction/loss because chemical transformation was more con-
tinuous; and intensive and abrupt chemical processes, such
as net ozone production during subsidence, were absent. The
over-dilution caused by numerical diffusion has less a sig-
nificant effect in event 6 than in event 2 because the plume
for event 6 experienced more efficient mixing during trans-
port. This type of mixing is better approximated as numerical
diffusion in GEOS-Chem as compared to the mixing during
transport associated with event 2 discussed above. As a re-
sult, better agreement between the estimated upwind event
plume point (red diamond, Fig.10b) and the adjusted simu-
lated and previously observed plume points (upper end of G
and H lines) is observed.

Usually, net ozone production is believed to be the rea-
son ford[O3]/d[CO] enhancement in remote regions (Par-
rish et al., 1993). Here we observed that variation in
d[O3]/d[CO] is not sufficiently explained by net ozone
production/loss alone, as previously suggested byVoulgar-
akis et al.(2011). Instead, significant CO loss during the

two transport events was found to contribute to increases
in d[O3]/d[CO]. As a result of sufficient ozone export
in the two event plumes, high OH concentrations were
found in our simulation results (3.0× 106 moleculescm−3

for event 2; 4.5× 106 moleculescm−3 for event 6 as di-
urnal average during the transport period) in comparison
with typical background OH levels of approximately 1.0×

106 moleculescm−3. Elevation in OH level, caused by high
ozone concentration in the plumes, in turn accelerates CO ox-
idation, which suggests that use of CO as an inert gas tracer
of pollution events in the analysis ofd[O3]/d[CO] in pollu-
tion plumes is biased by a contribution from significant loss
of CO.

6 Conclusions

We used measurements of atmospheric tracer gases at PMO,
the transport model FLEXPART, and the chemical transport
model GEOS-Chem to identify transport events that were
mainly impacted by North American anthropogenic emis-
sions in the summers of 2009 and 2010. Both FLEXPART
and GEOS-Chem were able to simulate the transport pro-
cesses of the two selected events, and the agreement between
the two model simulations of plume transport dynamics al-
lowed us to examine the aging and chemical transformations
occurring in the plume with a semi-Lagrangian framework.

CO enhancement observed at PMO was used as a primary
indicator of the impact of pollution plumes. Correlation co-
efficients ofd[O3]/d[CO] for selected events show signifi-
cant enhancement in pollution-impacted measurements, and
regression analyses ofd[O3]/d[CO] in selected plumes ex-
hibit high correlation (R2 > 0.5). We successfully identified
two North American anthropogenic pollution plumes by ex-
amining CO sources, trajectory analyses, and excluding in-
fluence of mechanically forced upslope flow to the obser-
vatory. The folded GEOS-Chem and FLEXPART technique
was applied to study chemical evolution in the two selected
events. Lagrangian information including plume dispersion
and transport in FLEXPART were used to extract chemical
transformation information in GEOS-Chem Eulerian fields.
Although the accuracy of the folded results is likely limited
by numerical diffusion in GEOS-Chem and transport dis-
crepancy between the models, these results indicate that me-
teorological conditions and transport pathways largely deter-
mined the chemical transformation in the pollution plumes.
Based on these analyses, two parameters – transport height
and concentration of hydroxyl radical – are important de-
terminants of production and loss of air pollutants during
transport over the North Atlantic. For example, our results
lead us to conclude that NOx was converted into PAN during
quick lifting into the middle free troposphere in the begin-
ning of event 2, while most of the reactive nitrogen species
were lost to deposition at low altitude in event 6. Exported
plumes are usually transported directly from the northeastern
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U.S., followed by looping south to intercept PMO. During
event 2 in 2009, the plume experienced pronounced subsi-
dence caused by the ABH when approaching the observatory.
NOx released through thermal decomposition of PAN created
a net ozone production layer at 2 kma.s.l. in the Azores. For
event 6, the potential for ozone production was low due to
active mixing at low altitude, and ozone was primarily de-
stroyed during transport. The enhancement ind[O3]/d[CO]
for event 6 was instead the result of efficient CO loss during
transport. High ozone and OH levels in the pollution plumes
accelerated CO loss, which brings into question the validity
of assuming CO to be a conserved passive tracer of pollu-
tion plumes. We conclude that enhancedd[O3]/d[CO] val-
ues, which have been frequently used as indicators of ozone
production in transport plumes, may not reflect ozone chem-
istry only. CO destruction in the plume can also explain the
higher d[O3]/d[CO] observed for event 2, when both CO
loss and ozone production were identified.
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