1 Global atmospheric transport and source-receptor

2 relationships for arsenic

	4	Ka-Ming	Wai ¹ ,	Shiliang	Wu^{2*} ,	and Xue	ling Li ¹
--	---	---------	--------------------	----------	-------------	---------	----------------------

- ⁵ ¹Dept. of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton,
- 6 MI, USA
- 7 ²Atmospheric Sciences Program, Dept. of Geological and Mining Engineering and Sciences and Dept. of
- 8 Civil and Environmental Engineering, Michigan Technological University, Houghton, MI, USA
- 9 ^{*}e-mail: <u>slwu@mtu.edu</u>

Arsenic and many of its compounds are toxic pollutants in the global environment. 10 They can be transported long distance in the atmosphere but the global source-11 12 receptor relationships between various regions have not been accessed yet. We develop the first global model for arsenic to better understand and quantify the 13 inter-continental transport of arsenic. Our model reproduces the observed arsenic 14 15 concentrations in surface air for various sites around the world. Our global arsenic emission inventory shows a global total anthropogenic arsenic emission of 21.4 Gg 16 vr⁻¹ and the global average atmospheric lifetime of arsenic is calculated to be of 5.1 17 18 days. Here we show that arsenic emissions from Asia and South America are the dominant sources for arsenic in the northern and southern hemisphere, respectively. 19 20 Asian emissions are found to contribute to 53% and 41% of the total atmospheric 21 arsenic deposition over Arctic and Northern America respectively. Another 32% of the atmospheric arsenic deposition to the Arctic region is attributed to European 22 23 emissions. Our results indicate that reduction of anthropogenic arsenic emissions in Asia and South America can significantly reduce arsenic pollution not only locally 24 but also globally. 25

26

27

Arsenic (As) is a chemical element ubiquitous in the global environment. Arsenic and
many of its compounds have high toxicity and have been listed by the International
Agency for Research on Cancer (IARC) as Group 1 carcinogens¹. Recent studies^{2,3} have
shown levels of arsenic in rice in the United States significantly higher than the World
Health Organization (WHO) standards for personal arsenic intake. The EU Directives has

set the new standard for annual mean atmospheric arsenic concentration of 6 ng m⁻³
effective from January, 2013.

35

36	Despite the toxicity of airborne arsenic, its measurements are relatively scarce compared
37	to other heavy metals such as mercury and lead, especially in developing countries.
38	Typical residence time of arsenic in the atmosphere is several days ⁴⁻⁶ , making it capable
39	of long-range transport. This implies that arsenic emissions from one region can
40	significantly affect other regions downwind, but the global source-receptor relationship
41	between various regions has not been quantified so far.
42	
43	Sources of arsenic in the atmosphere include both anthropogenic and natural sources with
44	dominant contributions from anthropogenic sources. Metal (copper, zinc and lead)
45	smelting and coal combustion are two important anthropogenic arsenic sources ⁷⁻¹⁰ with
46	copper smelting being the dominant source ^{6,8,9,10} . Additional minor anthropogenic sources
47	include application of herbicide, wood preservation and waste incineration ¹⁰ . Natural
48	sources of arsenic such as volcano activity, wind erosion and biological activity also
49	contribute to arsenic in the atmosphere but are three times lower than those from
50	anthropogenic sources ^{6,7} .

51

Limited measurement data indicate that the range of concentrations can vary by several
orders of magnitudes from less than 0.1 ng m⁻³ in remote sites to more than 10 ng m⁻³ in
urban/industrial areas. In south polar atmosphere, the arsenic concentrations were
reported to be less than 41 pg m^{-3 11}. In China and Chile, the dominated arsenic source

regions in northern and southern hemisphere respectively, the arsenic concentrations were
reported to reach 15 ng m⁻³ or higher^{12,13}.

58

59 There have been some studies on the regional atmospheric transport of arsenic. Pacyna et al.¹⁴ and Akeredolu et al.¹⁵ investigated the long-range transport of arsenic and other 60 61 heavy metals from Europe to Norway and the Arctic region, respectively. Gidhagen et al.¹² studied the regional effects from smelter emissions of arsenic in Chile. Based on the 62 significant arsenic enrichment in snowpack samples from the Antarctic Plateau, Hong et 63 al.¹⁶ proposed that the emissions of trace elements (including arsenic) from nonferrous 64 65 metal smelting and fossil fuel combustion processes in South America, especially in 66 Chile are the most likely sources.

67

In this study, we develop a global emission inventory for arsenic (more details in the 68 69 Methods section) and implement it into a global atmospheric chemical transport model. 70 The global arsenic model has been evaluated with available measurement data of 71 atmospheric arsenic concentrations around the world (Table 1 and Fig. 1). The model results agree very well with the observations with high correlation ($r^2 = 0.99$). The global 72 total arsenic emission is calculated to be 21.4 Gg yr⁻¹ with the breakdown for major 73 source regions summarized in Supplementary Information Table S1. We then apply the 74 75 global model to quantify the arsenic source-receptor relationships between various 76 regions.

77

78 The simulated results in Figure 1 reveal high arsenic concentrations over large areas in eastern
79 China and northern Chile, reaching 10 ng m⁻³ or higher, which are at least one order of magnitude

higher than those in the United States and Europe. Figure 1 also illustrates that the continental
outflow of arsenic plumes from Asia is transported over the North Pacific towards North
America following the Westerlies. Similarly the arsenic plumes from North America are
transported across the North Atlantic to Europe. In the Southern Hemisphere, the major
arsenic source is Chile. The arsenic plumes at lower latitudes are transported towards the
tropical Pacific following the trade winds and those at higher latitudes are transported
towards the Southern Atlantic following the Westerlies.

87

88 In order to better examine the source-receptor relationships between various regions, we carry out a suite of sensitivity simulations where arsenic emissions from a certain region 89 90 is turned off in the model. For example, we shut off emissions from Asia in the sensitivity 91 model run and then compare the calculated atmospheric arsenic concentrations (C_{no} Asia) 92 with those from the control run ($C_{control}$) to derive the percentage contribution of Asian 93 emissions to atmospheric arsenic in the receptor region: Contribution_{Asia} = $(C_{control} - C_{control})$ 94 $C_{no Asia}$ / $C_{control}$ x 100%. Figure 2 shows the contribution of total (wet + dry) deposition 95 for each continental-scale source. Similarly, the contribution of concentration for the 96 corresponding source is shown in the Supplementary Information Fig. S1.

97

98 Arsenic emissions from Asia are found to make the dominant contributions to

99 atmospheric arsenic concentration and deposition over the North Pacific Ocean (Fig. 2a).

100 About 20-50% of atmospheric arsenic concentration and 20-80% of total arsenic

101 deposition over the western part of Northern America are attributed to Asian emissions.

102 Significant contributions to the Arctic region (up to 80% for atmospheric concentration

and up to 90% for total arsenic deposition) are also calculated for Asian emissions (Fig.2a).

105

106	Figure 2b shows the contribution from European arsenic emissions. Besides Europe, the
107	European contributions mainly extend northward to the Arctic and eastward over Russia
108	in the Siberia region or to the north of Mongolia. The European emissions are also found
109	to contribute to atmospheric arsenic over the northern Africa by up to 60%. Figure 2c
110	shows the contribution from Northern American arsenic emissions. The eastward
111	transport of the arsenic-laden plumes from Northern America leads to its large
112	contribution to the North Atlantic Ocean (up to 80% right off the eastern coast of the US).
113	
114	The average source-receptor relationships for atmospheric arsenic concentration and
115	deposition between major regions in the Northern Hemisphere are summarized in Table
116	2. On average, about half of the total arsenic deposition over the Arctic region is
117	attributed to Asian emissions, reflecting the strong arsenic emissions from Asia. The
118	European emissions are calculated to contribute to about 30% of the total arsenic
119	deposition to the Arctic. The Northern American contribution to arsenic in the Arctic
120	(about 10%) is found to be much less than those from Asia or Europe, reflecting both the
121	lower emission strengths and the lower latitudes of the sources. The Asian emissions are
122	found to contribute to the total arsenic deposition in Northern America by 40%.
123	
124	The contribution of arsenic emissions from South America is found to dominate over the

125 Southern Hemisphere except for Southern Africa and Australia (Fig. 2d). More than 90%

126	of arsenic deposition over the Antarctic is attributed to emissions from South America,
127	which confirms the hypothesis by Hong et al. 16 .

129 The inter-continental transport of arsenic, especially the significant global impacts 130 associated with arsenic emissions from certain source regions as shown by our results, 131 highlights the benefits of international cooperation to reduce arsenic pollution around the 132 world. These source-receptor relationships should be considered by researchers and 133 policy-makers in designing mitigation strategies for arsenic pollution. 134 135 Methods Model Description. We develop a global arsenic model based on the GEOS-Chem 136 137 chemical transport model (http://geos-chem.org) v9-01-01. The GEOS-Chem model has been applied to a wide range of researches related to tropospheric trace gases, aerosols, 138 and mercury¹⁷⁻¹⁹. It is driven by assimilated meteorological fields from NASA GMAO. 139 140 141 Global Emissions Development. Available data on arsenic emissions for various regions 142 around the world are compiled, processed and implemented in the model with a base year 143 of 1999. For Chile, the major arsenic source region in the southern hemisphere, we follow Gidhagen et al.¹². The Australian emissions are based on Australia's National 144 145 Pollutant Inventory (NPI) (http://www.npi.gov.au/resource/arsenic-and-compounds-0). 146 Arsenic emissions in the United States follow the U.S. EPA NATA (National-Scale Air 147 Toxics Assessment) inventory for 1999 148 (http://www.epa.gov/ttn/atw/nata1999/index.html). The Canadian emissions are based on

- 149 Environment Canada's National Pollutant Release Inventory (NPRI)
- 150 (http://www.ec.gc.ca/inrp-npri/). The European emissions of arsenic follow the
- 151 ESPREME inventory (<u>http://espreme.ier.uni-stuttgart.de/</u>).
- 152

There is no national emission inventory for arsenic available for China, so we develop the
inventory for China in this study. Arsenic emissions from the non-ferrous (copper, zinc
and lead) smelters are derived using the production data of non-ferrous metals from the
Statistical Yearbook²⁰ and the corresponding arsenic emission factors from Chilvers and
Peterson¹⁰. Arsenic emissions from coal-fired power plants in China follow Tian et al.²¹.
Arsenic emissions from other countries around the world are estimated based on the
emissions of mercury (Hg), which is also a heavy metal but with better quantified

- 161 emission inventories. The As/Hg emission ratio is assumed to be 3.18, the same as the
- 162 ratio of median concentrations of As and Hg in rainwater samples 22,23 .
- 163

The absolute majority (95%) of atmospheric arsenic sorbs onto $aerosols^8$, so we treat the 164 deposition processes of arsenic similarly as aerosols. The wet deposition of arsenic 165 follows the schemes used by Liu et al.²⁴ which considers the scavenging from convective 166 updrafts, rainout from convective anvils, and rainout and washout from large-scale 167 precipitation. The dry deposition follows a resistance-in-series scheme²⁵, with the surface 168 resistances following the work of Zhang et al.²⁶. The global total wet deposition and dry 169 deposition of arsenic is 17.5 Gg yr⁻¹ and 3.9 Gg yr⁻¹ respectively. The global total 170 171 atmospheric burden of arsenic is calculated to be 297 Mg leading to a global average

172	atmospheric lifetime for arsenic of 5.1 days. The calculated atmospheric lifetimes for
173	arsenic range from 3.2 to 5.3 days for different regions around the world (Table S1),
174	which are within the range $(2.5 - 9 \text{ days})$ reported in the literature ⁴⁻⁶ .
175	
176	For model evaluation, we focus on atmospheric arsenic measurement data from nonurban
177	sites given the coarse spatial resolution (4° latitude x 5° longitude) of the global model.
178	We collect available measurement data from various regions around the world in the
179	literature and compile them in Table 1. Data for sites in the United States and Europe are
180	from the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the
181	European Monitoring and Evaluation Programme (EMEP) network, respectively.
182	
183	Initial model evaluation reveals that the model can reproduce the observed atmospheric
184	arsenic concentrations (Table 1) over various sites around the world except for East Asia,
185	where we find a systematic low bias with model results by a factor around three for all
186	the six sites (Fig. 3). The most likely cause for this model-data discrepancy is the under-
187	estimation of arsenic emission factors ¹⁰ used in developing the arsenic emission
188	inventories in China. We then scale up the arsenic emissions from China by a factor of 3
189	in the model and find very good agreement between model results and observational data
190	(Fig. 1).
191	
192	
193	
194	

195	Acknowledgement
-----	-----------------

- 196 The authors thank the EMEP data providers for making the arsenic data available. This
- 197 publication was made possible by a U.S. EPA grant (grant 83518901). Its contents are
- solely the responsibility of the grantee and do not necessarily represent the official views
- 199 of the U.S. EPA. Further, U.S. EPA does not endorse the purchase of any commercial
- 200 products or services mentioned in the publication. S.W. acknowledges support from the
- 201 NSF (grant 1313755).

203 Author contributions

204 K.M.W. and S.W. designed the entire study and wrote the manuscript. K.M.W. developed

the arsenic model based on standard GEOS-Chem model and did all model experiments

- and analysis of outputs. X.L. assisted the project with literature review and database
- 207 preparation at the early stage of the project.

208

209 Competing financial interests

210 The authors declare no competing financial interests.

211

213 **References**

- 1. IARC (International Agency for Research on Cancer). IARC Monographs on the evaluation
- of carcinogenic risks to humans (2013) (Available at:
- 216 http://monographs.iarc.fr/ENG/Classification/).
- 217 2. Consumer Reports. Arsenic in your food (2012) (Available at:
- 218 http://www.consumerreports.org/cro/magazine/2012/11/arsenic-in-your-food/index.htm).
- 219 3. Davis, M. A. *et al.* Rice consumption and urinary arsenic concentrations in U.S. children.
- 220 Environ. Health Perspect. 120, 1418–1424 (2012).
- 4. Pacyna, J.M. in Lead, Mercury, Cadmium and Arsenic in the Environment Ch.7 (eds.
- Hutchinson, T.C. & Meema, K.M.) (John Wiley & Sons, Chichester, 1987).
- 223 5. DET Department of the Environment, Transport and the Regions, Scottish Executive, The
- 224 National Assembly for Wales. A review of arsenic in ambient air in the UK (2000) (Available
- 225 at <u>http://uk-air.defra.gov.uk/reports/empire/arsenic00/arsenic_97v.pdf</u>).
- 226 6. Walsh, P. R., Duce, R. A. & Fasching, J. L. Considerations of the enrichment, sources, and
- flux of arsenic in the troposphere. J. Geophys. Res. 84, 1719–1726 (1979).
- 228 7. WHO (World Health Organization). *Air Quality Guidelines Second Edition*
- 229 (WHO Regional Office for Europe, Copenhagen, Denmark, 2000).
- 8. Matschullat, J. Arsenic in the geosphere—a review. Sci. Total Environ. 249, 297–312 (2000).
- 231 9. *Brimblecombe*, *P*. Atmospheric arsenic. *Nature* 280, 104-105 (1979).
- 232 10. Chilvers, D.C. & Peterson, P.J. in Lead, Mercury, Cadmium and Arsenic in the Environment
- 233 Ch.17 (eds. Hutchinson, T.C. & Meema, K.M.) (John Wiley & Sons, Chichester, 1987).
- 11. Maenhaut, W., Zoller, W. H., Duce, R. A. & Hoffman, G. L. Concentration and size
- distribution of particulate trace elements in the south polar atmosphere. J. Geophys. Res. 84,
- **236** 2421–2431 (1979).
- 237 12. Gidhagen, L., Kahelin, H., Schmidt-Thomé, P. & Johansson, C. Anthropogenic and natural
- levels of arsenic in PM₁₀ in Central and Northern Chile. *Atmos. Environ.* **36**, 3803-3817

239 (2002).

- 240 13. Li, C. *et al.* Concentrations and origins of atmospheric lead and other trace species at a rural
 241 site in northern China. *J. Geophys. Res.* 115, D00K23 (2010).
- 242 14. Pacyna, J. M., Bartonova, A., Cornille, P. & Maenhaut, W. Modelling of long-range transport
- of trace elements. A case study. *Atmos. Environ.* 23, 107-114 (1989).
- 244 15. Akeredolu, F. A. et al. The flux of anthropogenic trace metals into the arctic from the mid-
- 245 latitudes in 1979/80. *Atmos. Environ.* 28, 1557-1572 (1994).
- 16. Hong, S. et al. Evidence of Global-Scale As, Mo, Sb, and Tl Atmospheric Pollution in the
- 247 Antarctic Snow. *Environ. Sci. Tech.* **46**, 11550-11557 (2012).
- 248 17. Bey, I. *et al.* Global modeling of tropospheric chemistry with assimilated meteorology: Model
- description and evaluation. J. Geophys. Res. **106**, 23,073 23,095 (2001).
- 250 18. Martin, R.V. et al. Interpretation of TOMS observations of tropical tropospheric ozone with a
- 251 global model and in-situ observations. J. Geophys. Res. 107, 4351 (2002).
- 252 19. Huang, Y., Wu, S., Dubey, M. K. & French, N. H. F. Impact of aging mechanism on model

simulated carbonaceous aerosols. *Atmos. Chem. Phys.* **13**, 6329–6343 (2013).

- 254 20. China Non-ferrous Metals Industry Association. The Yearbook of Nonferrous Metals Industry
- 255 of China 1999 (in Chinese, China Nonferrous Metals Industry Press, Beijing, 1999).
- 21. Tian, H. *et al.* Atmospheric emissions estimation of Hg, As, and Se from coal-fired power
 plants in China. *Sci. Total Environ.* 409, 3078-3081 (2011).
- 258 22. Landing, W. M., Caffrey, J. M., Nolek, S. D., Gosnell, K. J. & Parker, W. C. Atmospheric wet
- deposition of mercury and other trace elements in Pensacola, Florida. *Atmos. Chem. Phys.* 10,
 4867-4877 (2010).
- 261 23. Galloway, J. N., Thornton, J. D., Norton, S.A., Volchok, H. L. & McLean, R. A. N. Trace
- 262 metals in atmospheric deposition: A review and assessment. *Atmos. Environ.* 16, 1677-1700
 263 (1982).
- 264 24. Liu, H., Jacob, D. J., Bey, I. & Yantosca, R. M. Constraints from ²¹⁰Pb and ⁷Be on wet

- deposition and transport in a global three-dimensional chemical tracer model driven by
- assimilated meteorological fields. J. Geophys. Res. 106, 12109-12128 (2001).
- 267 25. Wesely, M. L. Parameterization of surface resistances to gaseous dry deposition in regional268 scale numerical-models. *Atmos. Environ.* 23, 1293–1304 (1989).
- 269 26. Zhang, L. M., Gong, S. L., Padro, J. & Barrie, L. A size-segregated particle dry deposition
- scheme for an atmospheric aerosol module. *Atmos. Environ.* **35**, 549–560 (2001).
- 271 27. Chen, J. *et al.* Characteristics of trace elements and lead isotope ratios in PM_{2.5} from four
 272 sites in Shanghai. *J. Hazard. Mat.* 156, 36-43 (2008).
- 273 28. Yang, Y. *et al.* Elemental composition of PM_{2.5} and PM₁₀ at Mount Gongga in China during
 274 2006. *Atmos. Res.* 93, 801-810 (2009).
- 275 29. Kang, J. et al. A five-year observation of atmospheric metals on Ulleung Island in the
- 276 East/Japan Sea: Temporal variability and source identification. Atmos. Environ. 45, 4252-
- **277** 4262 (2011).
- 278 30. Kaneyasu, N. & Takada, H. Seasonal variations of sulfate, carbonaceous species (black
- carbon and polycyclic aromatic hydrocarbons), and trace elements in fine atmospheric
- aerosols collected at subtropical islands in the East China Sea. J. Geophys. Res. 109, D06211
- 281 (2004).
- 282

284 Figure Legends

Figure 1 | Surface-level concentrations. Annual average arsenic concentrations

- 286 measured at various stations (circles) overlaying on the computed concentrations
- 287 (background).
- **Figure 2** | **Contributions from difference regions.** Percent contributions of arsenic total
- deposition from: (a) Asia; (b) Europe; (c) Northern America; and (d) South America.
- **Figure 3** | Observed and simulated concentrations over East Asia. A comparison of
- arsenic concentrations between observation and simulation over East Asia before and
- after the adjustment of China emissions. The value of r^2 is shown for the data before the
- adjustment.
- 294
- 295
- 296
- 297

Table 1| Model simulated annual average surface atmospheric arsenic

Site	Model result (ng m ⁻³)	Observations (ng m ⁻³)	Year of observations	Source for observational data
Storhofdi, Iceland (63.4° N, 20.3° W)	0.06	0.08	1999	EMEP
Peyrusse Vieille, France $(43.6^{\circ} \text{ N}, 0.2^{\circ} \text{ E})$	0.19	0.23	2003	EMEP
Neuglobsow, Germany (53.1° N, 13.0° E)	0.47	0.55	1999	EMEP
Topoliniky, Slovakia (48.0 ° N, 17.8° E)	0.35	0.38	2003	EMEP
Montseny, Spain (41.8° N, 2.4° E)	0.19	0.38	2003	EMEP
Bredkalen, Sweden (63.8° N, 15.3° E)	0.10	0.10	2002	EMEP
Pallas, Finland $(61.0^{\circ} \text{ N}, 24.2^{\circ} \text{ E})$	0.30	0.22	2000	EMEP
Rucava, Latvia (56.2°N, 21.1°E)	0.58	0.61	2002	EMEP
Florida, US (30.1° N, 84.2	0.53	0.46	2001	IMPROVE

concentrations compared with observations.

°W)

•••)				
Virginia, US (37.6° N, 79.5° W)	0.68	0.54	2000	IMPROVE
Maine, US (46.7° N, 68.0 ° W)	0.23	0.22	2001	IMPROVE
Michigan, US (47.5° N, 88.1° W)	0.33	0.27	1999	IMPROVE
South Dakota, US (43.7° N, 101.9° W)	0.11	0.09	1999	IMPROVE
Texas, US (31.8° N, 104.8 ° W)	0.38	0.40	1999	IMPROVE
Washington (46.6° N, 121.4° W)	0.11	0.08	2000	IMPROVE
California (34.2° N, 116.9 ° W)	0.17	0.16	1999	IMPROVE
Idaho (44.2° N, 114.9° W)	0.11	0.08	1999	IMPROVE
Hawaii, US (19.4° N, 155.3° W)	0.04	0.04	2001	IMPROVE
Alaska1, US (56.5° N, 132.8° W)	0.04	0.07	2004	IMPROVE
Alaska2, US (55.3 $^{\circ}$ N,	0.04	0.04	2001	IMPROVE

160.5° W)				
Beijing, China (39.8° N,				13
117.0° W)	16.74	18.00	2005	15
Shanghai, China (31.4°) N,	2675	27.00	2004 2005	27
121.3°E)	26.75	27.00	2004-2005	
Sichuan, China (29.6° N,	2.00	< 10	2007	28
102.0° E)	3.80	6.10	2006	20
Ulleung Island, S. Korea	1.62	2.07	2002 2000	29
(37.5° N, 130.9° E)	4.03	2.97	2003-2008	
Amami-Oh-shima Island,	0.51	1.00	1001 1004	30
Japan (28.5° N, 128.5° E)	0.71	1.00	1991-1994	
Miyako-jima Island, Japan	1.02	0.70	1002 1004	30
(24.5° N, 125.5° E)	1.23	0.70	1993-1994	
Quillota, Chile (32.9° S,	21.52	20.70	1000 0000	12
71.2° W)	31.53	30.70	1999-2000	
Quillagua, Chile (21.6° S,	1.50	6.50	1000 0000	12
69.5° W)	4.58	6.50	1999-2000	

		Source regions			
		Asia	Europe	Northern	
				America	
	Arctic (70 – 90°N,	43.9	35.9	11.3	
	179°W – 179°E)	(52.6)	(31.5)	(9.5)	
	Asia (10 – 70°N, 60 –	69.5	15.6	0.8	
	145°E)	(71.8)	(15.7)	(0.9)	
Receptor regions	Europe (35 – 70°N,	6.4	78.8	2.2	
	$5^{\circ}W - 60^{\circ}E$)	(10.7)	(71.9)	(3.4)	
	Northern America	27.1	2.5	68.8	
	(30 – 70°N, 125 – 65°W)	(41.3)	(1.6)	(54.5)	
	Western US (30 –	35.7	0.6	60.0	
	48°N, 125 – 100°W)	(52.9)	(0.7)	(41.3)	
	Eastern US (30 –	8.0	0.3	91.0	
	48°N, 100 – 70°W)	(16.1)	(0.4)	(80.7)	

Table 2| Source-Receptor relationships for atmospheric arsenic concentration

(deposition) between various regions*.

*Shown as the percentage contribution to total atmospheric arsenic concentration (deposition) in the receptor region from the source region.

b

C)

d)

As modeling results (ng/m³) 12 12

- C - -