

Mister, Do you have the time?

Understanding Time in Geos-Chem and IDL

September 23, 2010

Different Time Bases

*9 *9 *8 3 3

- Tau (used by Geos-Chem)
 - The elapsed hours between the current date/time and the beginning of an epoch (GEOS1 -> 1985/01/01, GISS_II -> 1980/01/01)
- Astronomical Julian Day (JD)
 - Interval of time in days and fractions of a day since 12:00:00.00 (Noon) January 1, 4713 BC
 Greenwich Mean Time
- Calendar Time (Gregorian Date)
 - Calendar used in most countries, including U.S.
- Day of Year (DOY)
 - number of days that have elapsed since the start of the year
- Coordinated Universal Time (UTC)
 - Mean solar time at the Royal Observatory in Greenwich, England
 - Used as a global time reference (standard time)
- Greenwich Mean Time (GMT)
 - Essentially the same as UTC
- Local Time
 - UTC adjusted by global time zone factor
 - Eastern Standard Time (EST) = UTC 5 hours

Scale	July 20, 2009 2 pm GMT
Tau	215198.0
JD	2455033.1
Gregorian	7/20/2009 12 p.m.
DOY	201
UTC	20090720 14:00:00
GMT	20090720 14:00:00
Local	July 20, 2009 9:00:00 a.m.

Functions for Time

- GAMAP Functions
 - ADD_DATE()
 - Compute YYYYMMDD date for a given time span from a given date
 - DATE2YMD
 - Given a date in YYYYMMDD format, returns the year, month, and day in separate variables
 - DAY_OF_YEAR ()
 - Computes the day number of a given date
 - ISLEAP ()
 - Determines if given date is a leap year
 - LOCALTIME()
 - Returns the local time for a given location
 - NYMD2TAU ()
 - Calculate Tau from YYYYMMDD
 - STRDATE ()
 - Generate a string value of date
 - TAU2YYMMDD ()
 - Convert Tau to YYYYMMDD
 - YMD2DATE ()
 - Convert Y, M, D to YYYYMMDD

- IDL Functions
 - JULDAY ()
 - Calculate JD from month, day, year, hour, minute, second (opposite of CALDAT)
 - LABEL_DATE()
 - Used to format JD values for plotting
 - Can also be used to print date to screen print, label_date(0,0,JD, format='%M-%D-%Y') => Jul-20-2009
 - TIMEGEN()
 - Creates an array of double-precision JD values
 - CALDAT
 - Computes month, day, year, hour, minute, second from Julian Day value

Converting Time

- Tau to Julian Day
 - If Tau = 215198.0 hours since 1/1/1985, then use the IDL function julday(month, day, year, hour, minute, second) to calculate the number of days since 12 pm on January 1, 4713 BC

JD = 215198.0 hrs ×
$$\left(\frac{\text{days}}{24 \text{ hrs}}\right)$$
 + julday(1,1,1985,0,0,0)

 $JD = 2455033.1 \,days$

• This is important because ...

IDL> print, jdtime_c	enter[iok], avg	[iok]			
2455033.0	2455033.0	2455033.1	2455033.1	2455033.2	2455033.2
16.121092	15.995333	15.932000	15.883333	15.013000	16.384667

... some atmospheric measurement data are saved as JD

ND48 & ND49 Time Serie

eries	*9	10 11	12 7 °
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Table in the ford	3.

%%% ND48 MENU %%%	:	
Turn on ND48 stations	:	Т
Station Timeseries file	:	./timeseries/rerun_aug2010/nd48/greenland.YYYYMMDD.1Jul2009_1Sep2009
Frequency [min]	:	60
Number of stations	:	11
Summit NOx	:	29 42 1 1
Summit Ox	:	29 42 1 2
Summit PAN	:	29 42 1 3
Summit CO	:	29 42 1 4
Summit HNO3	:	29 42 1 7
Summit BCPI	:	29 42 1 34
Summit OCPI	:	29 42 1 35
Summit BCPO	:	29 42 1 36
Summit OCPO	:	29 42 1 37
Summit NOy	:	29 42 1 19003
Summit Temp	:	29 42 1 99
	-+-	
%%% ND49 MENU %%%	:	
Turn on ND49 diagnostic	:	F
Inst 3-D timeser. file	:	./timeseries/rerun_aug2010/nd49/ts_nd49_YYYYMMDD.bpch
Tracers to include	:	1 2 4 99
Frequency [min]	:	60
IMIN, IMAX of region	:	29 30
JMIN, JMAX of region	:	42 43
LMIN, LMAX of region	:	1 20

# ND48 & ND49 Time Series



- Time series data are stored by Geos-Chem in 3-dimensional data blocks
- While these files can be used directly, performance is hampered by large file sizes or number of files
- It is preferable to combine the raw time series files into a combined series using gc_combine_nd48 or gc_combine_nd49 → 4-dimensional data blocks (i,j,k,t)

#### ND48 Time Series

- All time series data stored in one large file
- Must be combined before processing
- Time array is NOT carried into combined file
- Stores data for one grid box only
- Practical limit of 10 tracers
- Can store data from multiple levels but must start at Level 1

#### ND49 Time Series

- Time series data stored in a file for each day
- Can be combined during processing, thereby preserving time
- Stores data for multiple contiguous grid boxes
- No limit to number of tracers
- Can store data from multiple contiguous levels

# An Example for ND49...

- Plot ozone 1-hour time series for Summit Station
- Functions used
  - gc_combine_nd49
  - open_device, close_device
  - keyword_set()
  - map_set
  - ctm_tracer_info
  - plot
  - help
  - label_date()
  - tau2yymmdd()
  - dialog_message()
  - Custom external function



10

*9

8

# **Additional References**



- GAMAP Online Manual
  - <u>http://wiki.seas.harvard.edu/geos-</u>
    <u>chem/index.php/Date_and_time_computations_with_GAMAP</u>
- ISO-8601 Data elements and interchange formats -Information interchange -Representation of dates and times
  - <u>http://www.geo.mtu.edu/geoschem/docs/ISO_8601-2004_E.pdf</u>