
Chapter 3

✦ Discovering the Possibilities ✦✦✦

Working with Color

Chapter Overview
The purpose of this chapter is to present a brief introduction to color in the direct
graphics system in IDL. (Color is handled differently in the object graphics system,
but this will be discussed in conjunction with object graphics programming in the
second half of this book.) According to participants in my IDL programming classes,
nothing is as consistently frustrating as trying to get color output to work correctly on
the different graphics output devices IDL supports. This chapter will explain how
color works in IDL and will introduce you to several color tools that will make it
easier for you to write IDL programs that work in a device-independent way.

When I wrote the 2nd Edition of this book, we were in a period of transition from 8-bit
to 24-bit graphics cards. It was extremely important to know then how to write IDL
programs that could co-exist in both of these environments. But I haven’t run into an
8-bit graphics display in a very long time, so I presume all of us have made that
transition to 24-bit graphics cards successfully. Unfortunately, we haven’t been able to
escape the 8-bit environment or mindset completely. We still have graphics devices
(e.g., the PostScript device, the Z-graphics buffer, and most PRINTER devices) that
are 8-bit devices. And an enormous amount of the IDL software we use was written
with an 8-bit worldview, and that is a problem on 24-bit graphics displays. So we still
have problems to overcome. This chapter is designed to help you meet those problems
head on, and to help you write more flexible direct graphics programs in IDL.

Specifically, you will learn:

• How to configure a UNIX computer to work with color in IDL

• The difference between decomposed and indexed color models

• How to display color graphics in a color model independent way

• How to create, modify, and save color tables

For Proper UNIX Colors, Start Correctly
Although never a problem for users running on Windows computers, UNIX users
running versions of IDL prior to IDL 6.2 were put, by default, into an X windows
color environment, DirectColor, from which it was next to impossible to recover.
Nothing you could do in that environment made much sense. Windows were always
flashing colors at you when you switched from one window to another. And many an
1

Working with Color
IDL programmer assumed that the red on black color scheme in IDL graphics
windows was just the (strange) way IDL’s designers had planned it.

Most of the people using IDL this way did not realize they had missed the color memo
until they observed other IDL programmers working in completely different ways.
Unfortunately, the memo (if there was one) was easy to miss. And getting their
machines set up correctly was more like mystical incantations, with its strange
vocabulary (“backing store,” “X window visual class”), then it was like using a piece
of modern software with (supposedly) helpful defaults.

You might be one of these unfortunate users. How would you know? Here is how.
Start an IDL session and type the following commands. You will use the Device
command to get information about your current graphics device.

IDL> Window
IDL> Device, Get_Visual_Name=theVisual, $

Get_Visual_Depth=theDepth
IDL> Print, theVisual, theDepth

If the visual name is DirectColor, then you can be completely excused for not
understanding how color works in IDL. No one else does, either, in that visual
environment.

I think almost everyone these days will see the depth as 24, meaning a 24-bit graphics
display, which is typical. (A depth of 16 would be treated as a 24-bit depth, for most of
this color discussion, so that is okay, too.) If you have an 8-bit depth or a PseudoColor
visual name, then you are stuck with an ancient computer and we feel your pain, but
you are probably in good shape for colors. If you are reading this book, it is probably
because a few of your colleagues with newer computers are complaining about your
programs and would like you to know how to write programs that can co-exist in both
environments. The discussion that follows will certainly help.

Be Sure You Are In a TrueColor Visual Class
If you have a 24-bit graphics card (the depth was 24 in the commands above), then
you want to be using a TrueColor visual class, not a DirectColor visual class. (If you
have an 8-bit depth, then you should be using the PseudoColor visual class.)
Unfortunately, the visual class is selected at the moment when IDL opens its first
graphics window, and cannot be changed in that IDL session.

Selection of an X windows visual class can be done in one of two places. You can
modify your .Xdefaults file to include the idl.gr_visual and idl.gr_depth resources,
like this:

idl.gr_visual: TrueColor
idl.gr_depth: 24

Or, you can modify your IDL startup file to select a 24-bit TrueColor visual (see
“Using an IDL Startup File” on page 15) by adding the following command to your
IDL startup file.

Device, True_Color=24

You will have to exit IDL and restart it for these changes to take effect.

Now you will at least have put yourself in a position from which colors can be
understood, although it will probably still require diligent study. (As a warning, I
should point out that even those of us who consider ourselves reasonably
knowledgeable in the color arena find ourselves scratching our heads a great deal
more frequently than seems absolutely necessary. Your mileage may vary, too.) But,
read on.
2

Understanding IDL Color Models
Understanding IDL Color Models
The central problem to be overcome in trying to understand color in IDL is this: two
completely different color models can be used to specify colors on a 24-bit graphics
display, and the same IDL direct graphics commands work differently depending upon
which model is currently in use. And the problem is only compounded by the fact that
some IDL commands (those written by many of your colleagues, no doubt, but some
common ones in IDL, too) will only work in one model and not the other. And then, of
course, colors work differently on Windows and UNIX machines. Sigh... It does takes
some time and experience to sort it all out.

The two color models are called decomposed color and indexed color. We often refer
to these models as “decomposition on” and “decomposition off,” respectively, because
of the way each model is selected with the Device command. The Decomposed
keyword is set to 1 to indicate the decomposed color model, and is set to 0 to indicate
the indexed color model.

Device, Decomposed=1 ; Selects the Decomposed Color Model.
Device, Decomposed=0 ; Selects the Indexed Color Model.

By default, when IDL starts up in a 24-bit TrueColor environment, it will be using the
decomposed color model. Or, another way to say this, color decomposition is on. But,
what does this mean?

Every color in IDL is represented, ultimately, as a three-element byte vector of red,
green, and blue values, in which each value can vary between 0 and 255. We call this a
color triple. Thus, we have the possibility of specifying (256 times 256 times 256)
approximately 16.7 million possible colors in IDL. We say we have a palette of 16.7
million colors to choose from. This is also known as true color, because it is similar
enough to what we see with our eyes in the real world to be a reasonable
representation of that world.

Our two color models arise from how we select a color from this color palette. We
might wish to select one of the 16.7 million colors directly, by specifying its color
triple, or we might wish to load a specific 256 colors out of our 16.7 million color
palette colors into a color lookup table (which can only be 256 elements in length) and
specify a color by means of its index into that color table. If we decide to select our
color directly, we must specify a color triple. But, rather than using a three-element
vector, as is done in the object graphics system in IDL, in the direct graphics system
we create a 24-bit value that can be decomposed into three 8-bit values. This is what is
meant by color decomposition.

Consider a yellow color, which is the color triple [255, 255, 0]. (The first element is
red, the second green, and the third blue.) To construct a 24 bit value that can be
decomposed into this color triple, we write code like this:

IDL> color = [255, 255, 0]
IDL> thisColor_d = color[0] + color[1]*2L^8 + color[2]*2L^16
IDL> Print, thisColor

65535

Note that the lowest 8 bits in this 24-bit value represent red bits, the next 8 bits
represent green bits, and the next 8 bits represents blue bits. (The highest 8 bits in this
32-bit long integer value are not set and are all zeros.) Displayed as a binary value,
with the highest 8 bits removed, the number looks like this, with the lowest 8 bits on
the right:

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3

Working with Color
If we wanted to express this yellow color as a color index, we would have to load the
color into the color table at a particular color index. Suppose we load it at color index
200 with the TVLCT command, like this:

IDL> TVLCT, 255, 255, 0, 200
IDL> thisColor = 200

The last argument to TVLCT is the color index where we are loading the color triple
[255, 255, 0]. This is how we will access this color when using the indexed color
model. Note that a single index (0 to 255) is used to select three separate values: the
red, green, and blue color values associated with that index in the color table.

We see now that the same yellow color can be represented as a 24-bit number
(thisColor = 65535) or as a color index (thisColor = 200) in IDL. In the vast majority
of IDL graphics output commands colors are input as a value to a Color keyword (or
an equivalent keyword like Background, etc.). Whether that value is interpreted as a
value to be decomposed or as an index number into a color table depends on what
color model is currently selected in the IDL session. We say it depends on the color
decomposition state of the IDL session.

Naturally, you can get strange results if the color value you supply is mismatched with
the color model that can interpret the value appropriately. Most IDL users run into
problems when they use color values that represent color index numbers in their code,
but they use the decomposed color model (which, remember, is the default color
model) that interprets those color values as numbers to be decomposed. If you
decompose any number from 0 to 255 (which are valid color table index numbers)
into a 24-bit value, the only bits you can possibly set are those bits used to represent
red colors. For example, the binary value 200 is represented like this:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

Now, do you understand why you might be seeing red plots on black backgrounds in
IDL? Here is an example of exactly this sort of mismatch between a color value and a
color model.

IDL> Device, Decomposed=1
IDL> Plot, findgen(11), Color=200

The solution, of course, is to match your color model with the color representation of
your number (an indexed color model, for example, when we use the color index
number 200 to represent a yellow color).

IDL> Device, Decomposed=0
IDL> Plot, Findgen(11), Color=200

Or, done the other way around.

IDL> Erase
IDL> Device, Decomposed=1
IDL> Plot, Findgen(11), Color=65535L

Because so much software has been written in the past with an 8-bit worldview (as
IDL itself was, several years ago), many users find it advantageous to make sure they
use the indexed color model, which necessarily limits them to 256 colors. So you will
see the following line in a lot of IDL startup files (see “Using an IDL Startup File” on
page 15):

Device, Decomposed=0

Although not exactly the same as having to dress in mustard yellow shirts with wide,
paisley ties and bell-bottomed pants to go to work, it does tend to date you,
nonetheless. (I’m looking at a mid-1970s family wedding photo for a reference here.
4

Understanding IDL Color Models
I’m not even going to mention mustaches and mutton-chop sideburns. Who were
those people!?)

No one we want to resemble, I hope. So I have taken it on as my special mission to the
IDL community to teach people to take advantage of that 24-bit graphics card they
paid so much money for and learn to specify the 16.7 million colors in a better way.

Specifying Colors in a Device Independent Way
Here is the problem, as I see it. The kind of code we are talking about writing, doesn’t
exactly give me the warm, cozy feeling of “yellow.”

Plot, Findgen(11), Color=200
Plot, Findgen(11), Color=65535L

The whole “color as number” scenario doesn’t make much sense to me. Especially
when I am busy trying to figure out what color model or “decomposition state” I
happen to be in when I get around to displaying some graphics. It would make a lot
more sense to be able to write code like this:

Plot, Findgen(11), Color='yellow'

And expect to find a yellow plot on my display no matter what decomposition state I
am in or color model I am using when I type the command.

Of course, IDL doesn’t work this way. But we can’t have IDL dictating how we work,
or we will all go paranoid and schizophrenic, sure enough. So I have written a little
“independent color” program, named FSC_Color. With FSC_Color I can write code
like the following and I can always expect a yellow plot to appear on my display, no
matter what color model is currently in place.

IDL> Plot, Findgen(11), Color=FSC_Color('yellow')

How does it work, and how many colors does it know about?

The program currently “knows” the names of 104 colors. I chose these from a
spectrum of colors to represent various drawing colors I would like to use in my own
IDL programs. But if you don’t like my colors, you can load your own from a text file
that you can create. You can list the 104 colors in alphabetical order, like this:

IDL> Print, FSC_Color(/Names)[Sort(FSC_Color(/Names))], $
Format='(6A18)'

Active Almond Antique White Aquamarine Beige Bisque
Black Blue Blue Violet Brown Burlywood Cadet Blue
Charcoal Chartreuse Chocolate Coral Cornflower Blue
Cornsilk Crimson Cyan Dark Goldenrod Dark Gray Dark Green
Dark Khaki Dark Orchid Dark Red Dark Salmon Deep Pink
Dark Slate Blue Dodger Blue Edge Face Firebrick Frame
Highlight Honeydew Hot Pink Indian Red Ivory Khaki
Lavender Lawn Green Light Coral Light Cyan Light Gray
Light Salmon Light Sea Green Light Yellow Lime Green
Linen Magenta Maroon Medium Gray Medium Orchid
Moccasin Navy Olive Olive Drab Orange Orange Red
Orchid Pale Goldenrod Pale Green Papaya Peru Pink
Plum Powder Blue Purple Red Rose Rosy Brown Royal Blue
Saddle Brown Salmon Sandy Brown Sea Green Seashell
Selected Shadow Sienna Sky Blue Slate Blue Slate Gray
Snow Spring Green Steel Blue Tan Teal Text Thistle
Tomato Turquoise Violet Violet Red Wheat White Yellow
5

Working with Color
If you don’t know the name of a color to use, FSC_Color allows you to select a color
interactively from a palette of colors. Use the SelectColor keyword like this. (Note
that the Coyote program PickColorName also allows you to select a color name.)

IDL> Plot, Findgen(11), Color=FSC_Color(/SelectName)

You will see something that looks like this.

The program works very simply. It has four vectors internally. One vector is filled
with color names, the other three vectors are filled with the red, green, and blue values
of the colors associated with those names. Here is a simplified representation of the
four vectors.

names = ['teal', 'khaki', 'salmon']
r = [0, 240, 250]
g = [128, 230, 128]
b = [128, 140, 114]

When you ask for a color name, I look the name up in the names vector with the
Where function, find it’s index, and use that index to find the corresponding red,
green, and blue value in the color vectors to create the color triple.

theIndex = Where(StrUpCase(names) EQ 'KHAKI')
colorTriple = [r[theIndex], g[theIndex], b[theIndex]]

Next, I determine what color decomposition state is currently in effect for this IDL
session.

Device, Get_Decomposed=currentState

If color decomposition is turned on, I create a 24-bit integer value from the color
triple, and return that as the result of the function. I use Color24, another Coyote
program, to create the 24-bit value.

IF currentState EQ 1 THEN Return, Color24(colorTriple)

Figure 1: The FSC_Color program will allow you to select a color interactively if
you don’t know the color’s name. There are 104 colors available. The
row of eight colors along the bottom of the palette are “system” colors
associated with your operating system. You can use these colors to create
graphics windows and widgets that look similar to other windows that
appear on your display.
6

Understanding IDL Color Models
If, however, color decomposition is turned off, then I load the color at a particular
color index number, and I return the color index number.

IF currentState EQ 0 THEN BEGIN
 TVLCT, Reform(colorTriple, 1, 3), 255-(theIndex)-1
 RETURN, 255-(theIndex)-1
ENDFOR

The 104 colors are designed to load themselves at unique indices in the top half of the
color table. Under no circumstances (unless forced, see below) will they load
themselves at index number 255. This makes it possible to use various drawing colors
on your display and in PostScript files, for example, without having to think overly
much about where those colors should be loaded in a color table. That is to say, this
method generally does the right thing.

But there are times when you wish a color to be loaded at a particular color index
number. You can do that with FSC_Color by simply specifying what that index
number should be. For example, if you wish to load a yellow color at color index 240,
you can call FSC_Color like this:

color = FSC_Color('yellow', 240)

Note that the value in the variable color will depend on the decomposition state in
effect when this command is issued. Colors are actually loaded into the color table
only if color decomposition is turned off. Otherwise, colors are turned into 24-bit
values that can be decomposed into the proper color values.

IDL> Device, Decomposed=1
IDL> Print, FSC_Color('yellow')

65535
IDL> Print, FSC_Color('yellow', 240)

65535
IDL> Device, Decomposed=0
IDL> Print, FSC_Color('yellow')

205
IDL> Print, FSC_Color('yellow', 240)

240

While the FSC_Color program was originally designed to select colors at the moment
graphics commands are being executed, there are times when colors have to be pre-
loaded into the color table (e.g., when outputting to a PRINTER device, or when
drawing a filled contour plot). The FSC_Color program has been modified to help
with that. Setting the Triple keyword will result in a color triple being returned instead
of the usual output. The triple is returned as a column vector, which will allow it to be
used as input to the TVLCT command that loads colors in the current color table. So,
for example, if you are pre-loading a color table and you wish to have yellow at color
index 200 (regardless of the current color model), you can type code like this:

IDL> LoadCT, 0, NColors=200, /Silent
IDL> TVLCT, FSC_Color('yellow', /Triple), 200

In fact, multiple colors can be loaded by specifying a vector of color names, rather
than a single color name.

IDL> TVLCT, FSC_Color(['teal', 'khaki', 'salmon'], /Triple),
201

You can see what colors you currently have loaded in your color table by using the
CIndex program (another Coyote program). You will see the yellow, teal, khaki, and
salmon colors loaded at color indices 200 to 204.

IDL> CIndex
7

Working with Color
To see all the FSC_Color colors loaded in the color table, starting a color index 64,
type the following command, then click you cursor inside the CIndex window to
update its display.

IDL> TVLCT, FSC_Color(/All, /Triple), 64

The FSC_Color colors are loaded in indices 64 through 167.

You will learn a great deal more about the benefits of using a program like FSC_Color
to specify your graphics drawing colors in the chapters that follow, as we will make
extensive use of it to write color model and graphics device independent IDL
programs.

Color Models Also Affect Image Display
Probably the number one reason we see so many IDL users limiting themselves to 256
colors by selecting the indexed color model in their IDL startup files is because the
choice of color model also affects the display of images with the TV and TVScl
commands. In particular, if you have the decomposed color model selected (it is the
default color mode, remember) and you load a color table, and display a 2D image, the
image is not displayed in color. Enormously frustrating!

Here are some commands you can type to see what I mean.

IDL> Device, Decomposed=1
IDL> LoadCT, 22
IDL> image = LoadData(7)
IDL> TV, image

Figure 2: The Coyote program CIndex will show you the colors currently loaded in
your color table. You may keep CIndex on your display as you work with
color tables. To update CIndex to the current colors, you must click the
cursor inside its main graphics window. Note that the colors appear on
the index numbers 52 though 55, too. This is because to see the index
numbers on the colors I have to write the numbers in the “opposite” col-
or. 255 minus index 203 is 52.
8

Understanding IDL Color Models
The image, which is suppose to be seen in nice pastel colors, is displayed instead in
gray-scale colors. And it doesn’t matter what color table we load, all we can get out of
this situation is gray-scale colors.

To display the image correctly, we have to switch to the indexed color model.

IDL> Device, Decomposed=0
IDL> TV,image

What accounts for this? I’m not sure. I’ve always thought that IDL was “building” a
24-bit (also called a true-color image) image out of the 8-bit image by replicating the
8-bit image three times. Any 24-bit image of this type will necessarily be displayed in
gray-scale.

Displaying 24-bit Images
But there is also a problem in how 24-bit images are displayed, at least on machines
running Microsoft Windows operating systems. Consider this 24-bit rose image.

IDL> rose = LoadData(16)
IDL> Help, rose

ROSE BYTE = Array[3, 227, 149]

Figure 3: When using the color decomposed model 2D images are always dis-
played in gray-scale colors, even when a color table is loaded.

Figure 4: To get 2D images to display in color, we have to use the indexed color
model.
9

Working with Color
A 24-bit image (this one is pixel interleaved) has color information built into the
image itself. It displays normally with a decomposed color model.

IDL> Device, Decomposed=1
IDL> TV, rose, True=1

But if we use the indexed color model, the image is displayed correctly on Windows
machines only if the gray-scale color table is loaded. It displays incorrectly if any
other color table is loaded. The image is always displayed correctly on UNIX
machines. But, of course, UNIX users have to be aware of this to write machine
portable IDL code.

IDL> Device, Decomposed=0
IDL> Window, XSize=227*2, YSize=149, Title='Indexed'
IDL> LoadCT, 0, /Silent
IDL> TV, rose, True=1, 0
IDL> LoadCT, 22, /Silent
IDL> TV, rose, True=1, 1

What happens in this case is that the RGB values in the 24-bit image, which in fact
represent the colors the user wants to display, are routed through the color tables to
look up different RGB values for the display of the image. Yikes! Who thought this
was a good idea?

Figure 5: A 24-bit image is displayed correctly with the decomposed color model.

Figure 6: A 24-bit image is only displayed correctly with the indexed color model
if the gray-scale color table is loaded. This happens only on the Windows
operating system, but, of course, you have to plan for it if you want to
write machine-portable IDL code.
10

Working with Color Tables
For this reason, and many others (which you will learn about in more detail in the
image display chapters), a great many IDL users no longer use the TV (or TVScl)
command to display images. Instead, they use one of several smart TV substitute
commands that can be found in IDL libraries on the Internet. These commands
determine which color model is in use at the time the command is used, switch to the
proper model to display the image correctly, then switch back to the starting color
model after the image is displayed. Thus, both 8-bit and 24-bit images are always
displayed in the proper color, regardless of the color model currently in effect.

The most popular of these substitute commands are TVImage, a Coyote library
program, and ImDisp, a TV substitute command written by Liam Gumley and
available from his web page (http://cimss.ssec.wisc.edu/~gumley/index.html). We
make extensive use of TVImage (or, sometimes, TVScale) in this book.

For example, to have TVImage act exactly like the a TV command with more color
intelligence, you must only set the TV keyword. Note that TVImage can also
determine from the 24-bit image you are trying to display what kind of image
interleaving is required, so there is no reason to use the True keyword in the call. This
makes it easier to display 8-bit and 24-bit images with the same IDL code.

IDL> Device, Decomposed=1
IDL> Window, XSize=227*2, YSize=149, Title='TVImage Indexed'
IDL> LoadCT, 22, /Silent
IDL> TVImage, Congrid(image, 227,149), 0, /TV
IDL> Device, Decomposed=0
IDL> TVImage, rose, 1, /TV

Working with Color Tables
IDL comes with a standard set of 41 color tables, found in the file colors1.tbl, which is
located in the /resource/colors/ sub-directory of the IDL distribution. The files are
normally accessed and loaded by either the LoadCT or XLoadCT command. The
LoadCT command, which you have already used in this chapter, is normally used
when you know exactly which color table you want to load. For example, to load the
standard gamma II color table, which is color table index 5 in the colors1.tbl file, you
would issue a command like this.

LoadCT, 5

Figure 7: The TVImage command works identically in decomposed color or in-
dexed color models to produce images of the correct color, and doesn’t
require the use of the True keyword to indicate image interleaving. These
are only two of the many additional advantages to using substitute TV
commands.
11

Working with Color
Using the LoadCT command masks, to some extent, what is really happening in IDL.
Since the LoadCT command is an IDL library file, you could open the file in a text
editor and read the IDL code to find out what it does. You would find that it reads
three vectors from the color table file. We call these the red, green, and blue color
vectors, and each vector contains 256 elements. Those vectors are loaded into the
color table with the TVLCT command, which is the fundamental command for loading
colors in IDL. The TVLCT command loads color vectors of any length from 1 to 256.

TVLCT, red, green, blue

Depending upon the size of the color table, which is always stored in the system
variable !D.Table_Size, and is always 256 if you have a 24-bit graphics card, these
color vectors are sometimes resampled before they are loaded. That is to say, if you
had a color table with only 96 entries, these color vectors would be resampled to 96
colors, and those colors loaded with TVLCT. The resampling is done with the Congrid
command. The resampling is a statistical process in which the end points are kept
fixed, and colors (values, really) are dropped out of the larger vector in a more or less
uniform manner, so that the reduced number of colors more or less represents the
color range in the larger vector. So, for example, if you had 96 colors in your color
table, or if you only wanted to use 96 colors in a particular color table, you could
resample and load your color vectors, like this:

r = Congrid(red, 96)
g = Congrid(green, 96)
b = Congrid(blue, 96)
TVLCT, r, g, b

If you wanted to load those 96 colors, but you wanted to start loading them at color
index 64, rather than zero, so that they were loaded at color indices 64 through 159,
then you would use a fourth positional parameter to TVLCT, which is the starting color
index number.

TVLCT, r, g, b, 64

As it happens, you can do the exact same thing, with the LoadCT command, by using
the NColors and Bottom keywords. To see what I mean, start with the default gray-
scale color table (color index 0), and load the Hue-Sat-Value-2 color table (color index
22) into the 96 color indices, starting at color index 64. View the results by using the
CIndex command.

IDL> LoadCT, 0
IDL> LoadCT, 22, NColors=96, Bottom=64
IDL> CIndex

☞ Note that the LoadCT command will issue a message in the command log window
whenever a new color table is loaded. I have always found this more of an annoyance
than a help, especially in widget programming. If you wish to turn this messaging off,
use the Silent keyword to the LoadCT command.

IDL> LoadCT, 0, /Silent

Loading Color Tables Interactively
Sometimes you do not know which color table you want to you, or you would like to
try several color tables to see which conveys the most information to you from your
data, or you would like the user of your program to make a color table choice of their
own. In such a case, we allow the user to select a color table interactively. The
command supplied with IDL to do this is XLoadCT.

You will have to learn to use XLoadCT on your own. Color is extremely important to
me, and I use it extensively in the IDL programs I write. I find XLoadCT to be
12

Working with Color Tables
deficient in the ways I want to use it, so I have not used it in at least the past eight or
nice years. Rather, I am going to use the Coyote program XColors to load colors
interactively in this book. XColors is written in such a way that it can be a drop-in
replacement for XLoadCT nearly all the time. It uses the same color tables, the same
keywords, etc. It just does a few things, which I seem to always require in my
programs, much better than XLoadCT. These are primarily in the area of program to
program communication. You will learn more about these advantages, including why
XColors doesn’t use common blocks and why that makes sense for a color table tool,
in subsequent chapters in this book. Oh, and XColors works correctly when you are
using a decomposed color model. That is a big advantage!

To see how XColors can be used to communicate between programs, first clear your
display of any widget programs currently running.

IDL> Widget_Control, /Reset

Now call CIndex, but use the NotifyID keyword to obtain the widget identifiers of the
Change Colors button and the top-level base widget.

IDL> LoadCT, 0
IDL> CIndex, NotifyID=theIDs

These identifiers can be passed to XColors through its own NotifyID keyword. Now,
when XColors loads a new color table, the CIndex program is notified of that fact by
XColors sending a widget event to the CIndex program. CIndex responds to the event
by updating its color display. This allows you to select color tables with XColors and
see the effect immediately in CIndex, a completely different widget program. To
change just those 96 colors, starting at color index 64, as before, type this:

IDL> XColors, NotifyID=theIDs, NColors=96, Bottom=64

Figure 8: The Hue-Light-Value-2 color table is resampled to 96 colors and loaded
into the color table starting at color index 64 by using the NColors and
Bottom keywords to the LoadCT command.
13

Working with Color
☞ Note you may have to minimize your IDLDE window to see both the CIndex and
XColors windows at the same time, or you won’t see the immediate update I am talk-
ing about.

A typical frustrating problem for beginning IDL programers is that they display an
image in an IDL graphics window, and then they want the image colors to be updated
as they change color tables with a tool like XColors. Normally, on a 24-bit display, to
see the new colors in effect for your image, you would have to change the color table,
then re-display the image to take advantage of the new color table.

But there is an easier way. You can write a short IDL program that does it
automatically. Open a text editor and type the following short program. When you are
finished typing, save the file as refresh.pro in a directory on your IDL path. (Your
current directory is also a good place to save the file.)

PRO Refresh, IMAGE=image, WID=wid, _EXTRA=extra
 IF N_Elements(wid) NE 0 THEN WSet, wid
 TVIMAGE, image, _Extra=extra
END

Compile the program like this:

IDL> .compile refresh

If the program doesn’t compile, fix the errors (probably typing errors if you type like
everyone else around here, sigh...), save the file, and try again to compile it. Repeat
until perfect.

Now, load an image and display it in a graphics window.

IDL> image = LoadData(7)
IDL> LoadCT, 0

Figure 9: The XColors program, which is used in place of XLoadCT in this book.
XColors is better at program-to-program communication and avoids the
use of common blocks, which makes it more versatile in IDL programs.
14

Working with Color Tables
IDL> Window, 1, Title='Window 1'
IDL> TVImage, image

To change the colors for this image, and see them updated immediately in Window 1,
type the following command. Note that you may have to minimize your IDLDE
window to be able to see both the Window 1 and XColors at the same time.

IDL> XColors, NotifyPro='Refresh', Image=image, WID=1, $
Title='Window 1 Colors'

While those windows are still on the display, open a second graphics window, and
display the image there. You can control the colors to the second graphics window
with another copy of XColors. (This cannot be done with XLoadCT because it uses
common blocks, and must therefore limit itself to one copy of itself on the display at
any one time.)

IDL> Window, 2, Title='Window 2'
IDL> TVImage, image
IDL> XColors, NotifyPro='Refresh', Image=image, WID=2, $

Title='Window 2 Colors'

Given the name of an IDL procedure to call, XColors will pass along any information
passed to it in keywords it does not have defined for itself. It passed this information
along anytime the color table changes. This is an extremely flexible and general
method for program to program communication, and makes it quite simple and easy to
write programs that work the way you want and expect them to work.

Creating Your Own Color Tables
First, I’ll show you how to construct a simple color table. Then I’ll show you how to
extend the ideas behind the simple color table to construct any kind of color table you
like.

Suppose we want a color table that runs from a yellow color in the first index to a red
color in the last index. In terms of color triples, we want a color table that goes from
[255, 255, 0] to [255, 0, 0]. You already know that a color table is made up of three
vectors, containing the values for the red, green, and blue portion of a specific color.
And, in most color tables, we would like a smooth progression from one value to the
next, until we reach the final value.

What would constitute a smooth progression of colors? We see that for each of the red,
green, and blue vectors we must go from the starting value in that vector to the ending
value in that vector. And we must do it in some arbitrary number of steps that will be
the size of our color vector. We can write a general expression for the vector that looks
like this:

vector = beginNum + ((endNum - beginNum) * scaleFactor)

where we define the beginning number, the ending number, and the scale factor, which
will depend upon the number of steps we want to take in getting from the beginning to
the ending number.

Suppose we define these quantities like this:

IDL> beginNum = 10.0
IDL> endNum = 20.0
IDL> steps = 5
IDL> scaleFactor = FIndGen(steps) / (steps -1)

Then using the equation above, we print the vector values:

IDL> Print, beginNum + ((endNum = beginNum) * scaleFactor)
10.0000 12.5000 15.0000 17.5000 20.0000
15

Working with Color
This looks right, so let’s apply it to our color table problem. The red vector must go
from 255 (the red value in the yellow color) to 255 (the red value in the red color). The
green vector must go from 255 to 0. And the blue value must go from 0 to 0.

The red and blue vectors are extremely simple, since their values don’t change. We
can use the Replicate command to create those vectors. We will have to use our
formula for the green vector, however. Here is the code to create a color table 200
elements in length.

IDL> steps = 200
IDL> rVec = Replicate(255, steps)
IDL> bVec = Replicate(0, steps)
IDL> scaleFactor = FIndgen(steps) / (steps - 1)
IDL> beginNum = 255 & endNum = 0
IDL> gVec = beginNum + ((endNum - beginNum) * scaleFactor)

Finally, load the color table vectors you created with TVLCT, and display an image
that uses those 200 colors.

IDL> TVLCT, rVec, gVec, bVec
IDL> Window, XSize=200, YSize=40, Title='Color Table'
IDL> TVImage, BIndGen(steps) # Replicate(1B,40)

Using these principles you can construct as complicated a color table as you like. For
example, suppose you want a 200 element color table that goes from yellow to red, as
before, but you want it to go through a series of blue colors in the middle of the table.
You simply break this down into two problems, each with 100 steps, that are similar to
the first example. In other words, in 100 steps go from yellow [255, 255, 0] to blue [0,
0, 255], and then in 100 more steps from blue to red [255, 0, 0]. The code looks like
this.

IDL> steps = 100
IDL> scaleFactor = FIndgen(steps) / (steps - 1)

Set up the first 100 steps, going from yellow to blue.

IDL> rVec = 255 + (0 - 255) * scaleFactor
IDL> gVec = 255 + (0 - 255) * scaleFactor
IDL> bVec = 0 + (255 - 0) * scaleFactor

Now do the second 100 steps, going from blue to red.

IDL> rVec = [rVec, 0 + (255 - 0) * scaleFactor]
IDL> gVec = [gVec, Replicate(0, steps)]
IDL> bVec = [bVec, 255 + (0 - 255) * scaleFactor]

Load the color vectors into the color table, and display an image using the colors.

IDL> TVLCT, rVec, gVec, bVec
IDL> Window, XSize=200, YSize=40, Title='Color Table'
IDL> TVImage, BIndGen(steps*2) # Replicate(1B,40)

☞ Note that the IDL command XPalette allows you to create color tables by doing
exactly this kind of interpolation between color values interactively. But I think it
always helps to know what it is doing.

Figure 10: A simple yellow to red color table.
16

Working with Color Tables
Saving a Color Table
Before you can save a color table, you have to be able to obtain the RGB vectors that
represent the color table. You may have created the vectors yourself, as above, or you
may have created the color table by manipulating the color vectors interactively. (For
example, you might have used XColors, XLoadCT, XPalette, or other tools to
manipulate the color table vectors.)

If you manipulated the color table interactively, you can obtain the RGB vectors
currently loaded in the color table by using the Get keyword to TVLCT. The vectors
will be returned in the first three positional parameters. That is to say, the first three
positional parameters will be output variables, rather than the input variables they are
normally when you use the TVLCT command.

IDL> TVLCT, rVec, gVec, bVec, /Get
IDL> Help, rVec, gVec, bVec

RVEC BYTE = Array[256]
GVEC BYTE = Array[256]
BVEC BYTE = Array[256]

These vectors contain as many elements as your color table (see !D.Table_Size), and
will typically be 256 elements in length if you are using a 24-bit graphics card.

The simplest way to save these RGB vectors so they can be recalled later is to use the
Save command. The vectors, including their names (rVec, gVec, and bVec), are saved
in a machine-portable binary format (XDR) so they can be restored on any machine or
platform running IDL.

IDL> Save, rVec, gVec, bVec, Filename='mycolortable.sav', $
Description='Yellow-Blue-Red Color Table'

When you wish to use the color table, restore the variables and load them into the
color table.

IDL> Restore, Filename='mycolortable.sav', Description=desc
IDL> IF desc NE '' THEN Print, desc

Yellow-Blue-Red Color Table
IDL> TVLCT, rVec, gVec, bVec

Another way to save the vectors is to simply write them to a file. I recommend you use
the XDR binary format and that you write the size of the vectors into the file first, so
you can recreate the vectors in the correct size when you read them back out.

IDL> OpenW, lun, 'mycolortable.tbl', /Get_Lun, /XDR
IDL> WriteU, lun, N_Elements(rVec), rVec, gVec, bVec
IDL> Free_Lun, lun

To read the vectors out of the file, you write code similar to this.

IDL> OpenR, lun, 'mycolortable.tbl', /Get_Lun, /XDR
IDL> theSize = 0L
IDL> ReadU, lun, theSize
IDL> rVec = BytArr(theSize)

Figure 11: A yellow to red color table, that passes through the color blue in the mid-
dle of the table.
17

Working with Color
IDL> gVec = (bVec = rVec)
IDL> ReadU, lun, rVec, gVec, bVec
IDL> Free_Lun, lun
IDL> TVLCT, rVec, gVec, bVec

A third way to save a color table is to use the ModifyCT command to substitute your
color table for one of the 41 color tables in the colors1.tbl file distributed with IDL.
You will need administrator privileges to modify this file, but if you don’t have them
you can always copy this file to another file name and change the modified file. Load
the modified file instead of the one distributed with IDL by using the File keyword
with LoadCT, XLoadCT, XColors, etc.

Suppose, for some reason, we wished to have a 256 element color table in which the
first 100 colors were gray-scale colors, and the next 156 colors were an orange color
table, going from orange [255, 165, 0] to white [255, 255, 255]. We could construct
such a color table like this:

IDL> LoadCT, 0, NColors=100 ; Indices 0 to 99
IDL> steps = 156
IDL> scaleFactor = FIndgen(steps) / (steps - 1)
IDL> rVec = Replicate(255, steps)
IDL> gVec = 165 + ((255 - 165) * scaleFactor)
IDL> bVec = 0 + ((255 - 165) * scaleFactor)
IDL> TVLCT, rVec, gVec, bVec, 100

And we could exchange this for the Prism color table (a vile, nasty color table, at least
for teaching purposes) in the normal IDL distribution. The Prism color table is index
number 6. (Have you made a backup copy of color1.tbl in case something goes
drastically wrong in the next few minutes? I’d recommend it.) First, be sure you get
the current color table vectors you just loaded into the color table.

IDL> TVLCT, r, g, b, /Get
IDL> ModifyCT, 6, 'HALF ORANGE', r, g, b
IDL> XColors

Figure 12: XColors displaying the new color table in the modified colors1.tbl file.
18

Working with Color Tables
Using Other Color Systems
While colors in IDL are always expressed as RGB values, and we must load RGB
vectors into the color table, it is sometimes useful to express colors in other color
systems. IDL also supports the HLS (hue, lightness, saturation) and HSV (hue,
saturation, value) color systems. Colors in these systems are created with the HLS and
HSV commands, respectively. Both of these commands load the color table that results
from calling them into the current color table. And both return, in an optional
parameter, the color system values converted to RGB values so these can be saved,
reused, and so forth.

HLS Color System
The HLS color system is sometimes also referred to as the HSL (hue, saturation,
lightness or luminosity) or HSI (hue, saturation, intensity) color system. The system is
typically draw as a double cone or spiral, and is (like the HSV system) a non-linear
deformation of the normal RGB color cube. In IDL we specify the starting hue, which
is a number from 0 to 360 (red equals 0, green equals 120, and blue equals 240) and
indicate how many times we wish to loop through the color spiral. In addition, we
specify the staring and ending lightness (a number from 0 to 100) and saturation (also
a number from 0 to 100) values. The command looks like this:

HSL, light1, light2, sat1, sat2, hue, numloops, rgb

An image of the HSL color system cone or spiral is shown in Figure 13.1 The rgb
parameter is an output parameter that will contain a 256-by-3 array of RGB values
that was loaded in the color table.

Here is code for a typical color table using the HSL color system. The output is shown
in Figure 14.

IDL> HLS, 0, 100, 50, 100, 0, 1, rgb

The HSV Color System
The HSV color system is often preferred by artists because of its similarities to the
way humans perceive color. It is often visualized as a conical object in which the value
is a number from the tip of the cone to the other end, saturation is the distance from the

1. Image downloaded from Wikipedia and used under the terms of the GNU Free Documentation License.

Figure 13: A representation of the HSL color system cone or spiral.
19

Working with Color
axis of the cone, and hue is the rotation about the cone. You see a representation of the
HSV color system in Figure 15.1

To produce a green temperature scale color table in the HSV color system, you would
type a command like this:

IDL> HSV, 0, 100, 0, 100, 120, 0, rgb

You see the results of loading this color table in Figure 16.

If you receive HSL or HSV values from elsewhere, and you wish to load them into an
IDL color table, you can use the Color_Convert command to convert values in these
systems into RGB colors, and visa versa. Your code will look something like this.

Figure 14: A typical HLS color table created with the HLS command.

1. Image downloaded from Wikipedia and used under the terms of the GNU Free Documentation License.

Figure 15: A representation of the HSV color space.
20

Working with Color Tables
Convert_Coord, hue, sat, light, r, g, b, /HSV_RGB

The first three parameters are input parameters, and the next three are output
parameters containing the vectors after conversion. You must set the proper keyword
to switch from one color system to another. See the on-line help for Color_Convert for
more details.

Figure 16: A green temperature scale color table created with the HSV color system.
21

	Working with Color
	Chapter Overview
	For Proper UNIX Colors, Start Correctly
	Be Sure You Are In a TrueColor Visual Class

	Understanding IDL Color Models
	Specifying Colors in a Device Independent Way
	Color Models Also Affect Image Display
	Displaying 24-bit Images

	Working with Color Tables
	Loading Color Tables Interactively
	Creating Your Own Color Tables
	Saving a Color Table
	Using Other Color Systems
	HLS Color System
	The HSV Color System

