
IDL Version 7.1
May 2009 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

User Interface
Programming

0509IDL71UIP

Restricted Rights Notice
The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to
the restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document
at any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
The software and associated documentation are subject to U.S. export controls including the United States Export Administration
Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These
laws include restrictions on destinations, end users, and end use.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

ESRI®, ArcGIS®, ArcView®, and ArcInfo® are registered trademarks of ESRI.

Portions of this work are Copyright © 2008 ESRI. All rights reserved.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

QUAC and FLAASH are licensed from Spectral Sciences, Inc. under U.S. Patent No. 6,909,815 and U.S. Patent No. 7,046,859 B2.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Chapter 1
Overview of User Interface Options .. 7
User Interface Options in IDL ... 8
Creating an iTool Interface .. 9
Creating a Widget Interface .. 10
Creating a Custom iTool Interface .. 11

Chapter 2
Creating Widget Applications .. 13
About Widgets ... 14
About Widget Applications ... 15
Types of Widgets ... 16
Widget Programming Concepts .. 18
Example: A Simple Widget Application ... 21
Widget Application Lifecycle ... 23
Manipulating Widgets ... 26
User Interface Programming 3

4

Working With Widget IDs ... 31
Widget User Values ... 33
Widget Event Processing ... 34
Example: Event Processing and User Values .. 40
Managing Application State .. 42
Creating a Compound Widget ... 46
Example: Compound Widget ... 49
Debugging Widget Applications .. 53

Chapter 3
Widget Application Techniques .. 55
Working with Widget Events ... 56
Using Multiple Widget Hierarchies ... 61
Creating Menus .. 64
Widget Sizing ... 76
Tips on Creating Widget Applications .. 82
Enhancing Widget Application Usability .. 84

Chapter 4
Using Widget Buttons .. 101
About Button Widgets ... 102
Bitmap Button Labels .. 103
Tooltips .. 106
Exclusive and Non-Exclusive Buttons ... 107

Chapter 5
Using Draw Widgets ... 109
About Draw Widgets ... 110
Using Direct Graphics in Draw Widgets ... 111
Using Object Graphics in Draw Widgets ... 112
Scrolling Draw Widgets ... 113
Context Events in Draw Widgets ... 119
Draw Widget Example ... 120
Accessing Draw Widget Events ... 121
Implementing Drag and Drop Functionality .. 123
Contents User Interface Programming

5

Chapter 6
Using Property Sheet Widgets ... 127
About Property Sheet Widgets .. 128
Registering Properties ... 129
Selecting Properties ... 130
Changing Properties .. 133
User-defined Properties ... 135
Property Sheet Sizing .. 136
Property Sheet Example .. 138
Multiple Properties Example ... 152

Chapter 7
Using Table Widgets ... 155
About Table Widgets ... 156
Default Table Size ... 157
Selection Modes .. 158
Data Types ... 160
Data Retrieval .. 161
Edit Mode .. 164
Cell Attributes ... 165
Example: Single Data Type Data .. 172
Example: Structure Data ... 176

Chapter 8
Using Tab Widgets .. 179
About Tab Widgets ... 180
Example: A Simple Tab Widget ... 181
Tab Sizing and Multiline Behavior ... 182
Example: Retrieving Values .. 184

Chapter 9
Using Tree Widgets ... 187
About Tree Widgets .. 188
Types of Tree Widgets .. 189
Example: A Simple Tree ... 190
Setting the Tree Selection State ... 191
Making a Tree Entry Visible ... 192
User Interface Programming Contents

6

Replacing the Default Bitmaps .. 193
Dragging and Dropping Tree Nodes .. 195
Tree Widget Drag and Drop Examples .. 207
Positioning Tree Nodes .. 209

Index .. 211
Contents User Interface Programming

Chapter 1

Overview of User
Interface Options
The following topics are covered in this chapter:
User Interface Options in IDL 8
Creating an iTool Interface 9

Creating a Widget Interface 10
Creating a Custom iTool Interface 11
User Interface Programming 7

8 Chapter 1: Overview of User Interface Options
User Interface Options in IDL

When creating a user-interface in IDL, you have several choices. In order of
increasing complexity, you can use any of the following:

• IDL command-line interface — using the IDL command line as a non-
graphical user interface to display Direct graphics visualizations, or data in the
IDL output log.

• Existing iTool Interface — using an existing iTool provides quick data display
and manipulation capabilities for image, plot, surface, volume and map data.
See “Creating an iTool Interface” on page 9 for more information.

• Custom Widget Interface — using widgets offers complete control over user
interface design. However, in a traditional widget application, you must code
all underlying functionality. There is an option of creating a hybrid widget-
iTool application, but this requires additional programming expertise. See
“Creating a Widget Interface” on page 10 for more information.

• Custom iTool — using a custom iTool interface allows you to expand on the
capabilities of the standard iTool design, and configure the appearance of the
tool. This requires the most programming expertise of the three options. It is
likely that one of the other two options will meet the needs of the majority of
the applications, but this level of customization is available for those who
require it. See “Creating a Custom iTool Interface” on page 11 for more
information.
User Interface Options in IDL User Interface Programming

Chapter 1: Overview of User Interface Options 9
Creating an iTool Interface

Using an existing iTool user interface for data display and modification is the easiest
way to allow your user to access, visualize and modify supported plot, volume,
surface, map and image data. See Chapter 1, “Introducing the IDL iTools” (iTool
User’s Guide) for information on using the iTools.

If you need functionality beyond that provided by an existing iTool, you can expand
the functionality by adding:

• Custom operations or manipulators to standard visualization types

• Custom file writers or file readers

• Custom messages

Using an existing iTool lets to provide your users with a great deal of pre-built
functionality. For information on expanding the iTool functionality mentioned above,
see the following sections in the iTool Programming:

• Chapter 7, “Creating an Operation” and Chapter 8, “Creating a Manipulator”

• Chapter 9, “Creating a File Reader” and Chapter 10, “Creating a File Writer”

• Chapter 12, “Using iTool User Interface Elements”
User Interface Programming Creating an iTool Interface

10 Chapter 1: Overview of User Interface Options
Creating a Widget Interface

IDL allows you to construct and manipulate graphical user interfaces using widgets.
Widgets (or controls, in the terminology of some development environments) are
simple graphical objects such as pushbuttons or sliders that allow user interaction via
a pointing device (usually a mouse) and a keyboard. Consider developing a widget
application when you want complete control over the interface layout and the
available UI elements, or when you want to design a workflow of data modification.
In addition to this chapter (Chapter 1, “Overview of User Interface Options”), see the
following for more information on creating a widget application:

• Chapter 3, “Widget Application Techniques”

• Chapter 4, “Using Widget Buttons”

• Chapter 5, “Using Draw Widgets”

• Chapter 6, “Using Property Sheet Widgets”

• Chapter 7, “Using Table Widgets”

• Chapter 8, “Using Tab Widgets”

• Chapter 9, “Using Tree Widgets”

A widget application can include iTool elements, described in the following section.
Creating a Widget Interface User Interface Programming

Chapter 1: Overview of User Interface Options 11
Creating a Custom iTool Interface

Each of the standard iTools (such as the iPlot or iImage tools) have the same basic
interface style. Beyond adding operations or manipulators, you can further modify
the existing iTool interface by adding:

• Modal dialogs, implemented through a user interface service

• iTool panels, which provide a set of controls that are attached to a visualization
window and are always available

Beyond this, you also have the option of modifying the standard iTool interface.
Standard iTools are constructed of a number of compound widgets designed to work
explicitly within the iTool architecture. You can modify the standard iTool interface
by creating a custom iTool-widget interface, a hybrid tool that combines traditional
widget functionality and iTool compound widgets. This requires knowledge of
widget programming, how to create an iTool, how to create a UI service, and how to
use the iTool compound widgets. For more information on the previous topics, see
the following sections in the iTool Programming:

• Chapter 13, “Creating a User Interface Service”

• Chapter 14, “Creating a User Interface Panel”

• Chapter 15, “Creating a Custom iTool Widget Interface”
User Interface Programming Creating a Custom iTool Interface

12 Chapter 1: Overview of User Interface Options
Creating a Custom iTool Interface User Interface Programming

Chapter 2

Creating Widget
Applications
The following topics are covered in this chapter:
About Widgets . 14
About Widget Applications 15
Types of Widgets . 16
Widget Programming Concepts 18
Example: A Simple Widget Application . . . 21
Widget Application Lifecycle 23
Manipulating Widgets 26
Working With Widget IDs 31

Widget User Values 33
Widget Event Processing 34
Example: Event Processing and User Values 40
Managing Application State 42
Creating a Compound Widget 46
Example: Compound Widget 49
Debugging Widget Applications 53
User Interface Programming 13

14 Chapter 2: Creating Widget Applications
About Widgets

IDL allows you to construct and manipulate graphical user interfaces using widgets.
Widgets (or controls, in the terminology of some development environments) are
simple graphical objects such as pushbuttons or sliders that allow user interaction via
a pointing device (usually a mouse) and a keyboard. This style of graphical user
interaction offers many significant advantages over traditional command-line based
systems. (See Chapter 1, “Overview of User Interface Options” for information on
the different types of user interfaces you can create in IDL.)

IDL widgets are significantly easier to use than other alternatives, such as writing a C
language program using the native window system graphical interface toolkit directly.
IDL handles much of the low-level work involved in using such toolkits. The
interpretive nature of IDL makes it easy to prototype potential user interfaces. In
addition to the user interface, the author of a program written in a traditional
compiled language also must implement any computational and graphical code
required by the program. IDL widget programs can draw on the full computational
and graphical abilities of IDL to supply these components.

The style of widgets IDL creates depends on the windowing system supported by
your host computer. Unix hosts use Motif widgets, while Microsoft Windows systems
use the native Windows toolkit. Although the different toolkits produce applications
with a slightly different look and feel, most properly-written widget applications
work on all systems without change.

IDL graphical user interfaces are constructed by combining widgets in a treelike
hierarchy. Each widget has one parent widget and zero or more child widgets. There
is one exception: the topmost widget in the hierarchy (called a top-level base) is
always a base widget and has no parent.
About Widgets User Interface Programming

Chapter 2: Creating Widget Applications 15
About Widget Applications

The flow of control in a widget application is fundamentally different than in other
IDL programs. A program written to be used from the IDL command line generally
accepts its inputs when the program is invoked. The program then proceeds in a well-
defined order to process those inputs and provide some output — a calculated value, a
plot, an image, etc. In contrast, widget applications are event driven.

In an event driven system, the program creates an interface and then waits for
messages (events) to be sent to it from the window system. Events are generated in
response to user manipulation, such as pressing a button or moving a slider. The
program responds to events by carrying out the action or computation specified by the
programmer, and then waiting for the next event.

This approach to computing is fundamentally different from the traditional
command-based approach. Actions occur in the order specified by the user at
runtime, rather than in the order determined by the programmer. The widget
application model and programming techniques are discussed later in this chapter.
Events from IDL widgets are generated in the form of an IDL structure variable
specific to the widget. Widget events and event-processing are also discussed in
detail.

This chapter discusses topics related to creating widget user interfaces, controlling
widgets, processing events generated by user interaction, and managing the
application state of a widget application. Chapter 3, “Widget Application
Techniques” explores the use of specific types of widgets in widget applications and
discusses methods for creating specific types of interfaces and applications.

Running the Example Code

The example code used in this chapter and in Chapter 3, “Widget Application
Techniques” is part of the IDL distribution. All of the examples developed in the text
of these chapters are included as .pro files in the examples/doc/widgets
subdirectory of the IDL distribution. By default, this directory is part of IDL’s path; if
you have not changed your path, you will be able to run the examples as described
here. See “!PATH” (IDL Reference Guide) for information on IDL’s path.

In addition to the examples developed here, a number of simple examples of widget
programming can be seen by running the IDL program wexmaster.pro, located in
the /examples/widgets/wexmast folder of the IDL distribution. A widget
interface with a pulldown menu of small widget applications should appear.
User Interface Programming About Widget Applications

16 Chapter 2: Creating Widget Applications
Types of Widgets

IDL supports several types of widgets and widget-like interface elements that can be
used in your widget application:

Type Descriptions

Widget
Primitives

Widget primitives are the base interface elements used to
create widget applications. They are used to display
visualizations, to allow the user to make selections within a
UI, and to generate events. IDL widget primitives include
standard interface elements such as buttons, combo boxes,
lists, tables and labels. You can also add tables, trees, ActiveX
controls, drawing areas and property sheets to a widget
application.

See “Widget Routines” (IDL Quick Reference) for a list of
widget primitives and related widget routines.

Compound
Widgets

Compound widgets are more complex interface elements built
from the widget primitives. A compound widget is a complete,
self-contained, reusable widget sub-tree that behaves to a large
degree just like a widget primitive, but which is written in the
IDL language. Compound widgets allow the development of
reusable widget code, much like a GUI subroutine.

Compound widget routines provided with IDL can be found
(along with many other routines that use the widgets) in the
lib subdirectory of the IDL distribution. All compound
widgets supplied along with IDL have filenames beginning
with “CW_” to make them easier to identify.

See “Widget Routines, Compound” (IDL Quick Reference) for
a list of the compound widget routines provided in IDL.

Note - See “Creating a Compound Widget” on page 46 for
information on writing your own compound widgets.

Table 2-1: Introduction to Widget Types in IDL
Types of Widgets User Interface Programming

Chapter 2: Creating Widget Applications 17
Dialogs Dialogs are widget-like elements that can be called from any
IDL application (whether or not it uses other widgets), but
which do not belong to a widget hierarchy. Dialogs are useful
for informing users of changes in the application state or
collecting relatively simple input, such as the answer to a “Yes
or No” question or the name of a file. They have short
lifetimes, and disappear after serving their purpose.

Dialogs are modal (or “blocking”), which means that when a
dialog is displayed, no other interface elements (widgets or
compound widgets) can be manipulated until the user
dismisses the dialog. While the dialog is not part of any widget
hierarchy, you can specify a widget over which the dialog will
be centered on screen, making it possible to visually associate
the dialog with a specific widget application.

See “Dialog Routines” (IDL Quick Reference) for a list of
available routines.

Utilities Utilities are self-contained widget applications written in the
IDL language that can be invoked from the IDL command line
or called from within an application. Most names of utility
routines are prefaced with the letter “X”.

Although utility routines cannot be inserted directly into a
widget application (becoming part of the application’s widget
hierarchy), they can be linked to a widget application in such a
way (via the GROUP keyword) that when the widget
application is iconized or destroyed, the utility is iconized or
destroyed as well. Utility routines can also be configured as
modal applications, requiring that the user exit from the utility
before returning to the widget application that called it. See
“Using Multiple Widget Hierarchies” in Chapter 3 for further
discussion of grouping and modal behaviors.

See “Utilities” (IDL Quick Reference) for a list of available
routines.

Type Descriptions

Table 2-1: Introduction to Widget Types in IDL (Continued)
User Interface Programming Types of Widgets

18 Chapter 2: Creating Widget Applications
Widget Programming Concepts

This section discusses some basic ideas and concepts that are central to the process of
writing IDL widget applications.

Widget Values

Many widget primitives and compound widgets have widget values associated with
them. Depending on the type of widget, the widget value may represent a static item
set by the programmer (the label of a button widget, for example) or a dynamic value
set by the user (the numerical value of a slider widget, for example).

Widget values are retrieved from a widget using the GET_VALUE keyword to the
WIDGET_CONTROL procedure, and set either when the widget is created or using
the SET_VALUE keyword to WIDGET_CONTROL. Descriptions of widget value
data types and default values are included along with the descriptions of individual
widgets in the following sections. (See “Manipulating Widgets” on page 26 for
details on using WIDGET_CONTROL.)

Widgets can also have user values. A widget’s user value is an IDL variable, and can
thus be of any of IDL’s data types. User values can contain any information the
programmer wants to include; they are not examined or used by IDL except as
specified by the widget application programmer. User values and their role in widget
programming are discussed in “Widget User Values” on page 33.

Note
If a widget value is a string (as for a button label), you can use language catalogs to
internationalize the widget with sets of strings in particular languages. For more
information, see “Using Language Catalogs” on page 473.

Widget IDs

IDL widgets are uniquely identified via their widget IDs. The widget ID is a long
integer assigned to the widget when it is first created; this integer is returned as the
value of the widget creation function. For example, you might create a base widget
with the following IDL command:

base = WIDGET_BASE()

Here, the IDL variable base receives the widget ID of the newly-created top-level
base widget.
Widget Programming Concepts User Interface Programming

Chapter 2: Creating Widget Applications 19
Routines within your widget application that need to retrieve data from widgets or
change their appearance need access to the widgets’ IDs. Techniques for passing
widget IDs between independent routines in your widget application are discussed in
“Working With Widget IDs” on page 31.

Widget Parent/Child Relationships

With one exception (described below), when you create a new widget using one of
the WIDGET_* functions, you specify the widget ID of the new widget’s parent
widget. This parent-child relationship defines a widget hierarchy.

For example, suppose you have created a base widget whose widget ID is contained
in the IDL variable base. The following IDL command creates a button widget that
is a child of the base widget whose widget ID is stored in the variable base:

button1 = WIDGET_BUTTON(base, VALUE='Test button')

In addition to being below base in the widget hierarchy, button1 appears inside
base1 when the base widget is realized on the screen.

The exception to this parent-child rule is a special instance of a base widget called a
top-level base. A top-level base is different from an “ordinary” base widget in the
following ways:

• It does not have a parent widget

• It serves as the top of a widget hierarchy

• Its widget ID is included in the TOP field of every widget event structure
generated by other widgets in its hierarchy

In practice, a widget application always begins with a top-level base. The fact that the
widget ID of the top-level base widget is always available in the event structure of
widget events is very useful for managing the state of a widget application. This topic
is discussed in depth in “Managing Application State” on page 42.

Instantiating and Displaying Widgets

When you call a routine that creates a widget, IDL “creates” the widget and assigns it
a unique identifier (the widget ID). For example, the following IDL statements create
a base widget that holds a button widget, and stores the widgets’ identifiers in the
variables base and button:

base = WIDGET_BASE()
button = WIDGET_BUTTON(base, VALUE='My Button')
User Interface Programming Widget Programming Concepts

20 Chapter 2: Creating Widget Applications
At this point, the widgets are nothing more than data structures (referred to as widget
records) in IDL’s memory. Nothing appears on screen, and in fact IDL has yet to
calculate the sizes of the widgets or the way they will appear.

In order to instantiate the widget — that is, to create the final form of the widget that
will be displayed from components supplied by the platform-specific user interface
toolkit and (in most cases) make it appear on screen — the widgets must be realized.
Realization occurs with a call to the WIDGET_CONTROL procedure, using the
REALIZE keyword:

WIDGET_CONTROL, base, /REALIZE

After this command has been issued, the widgets appear on the computer screen. (See
“Manipulating Widgets” on page 26 for details on using WIDGET_CONTROL.)
Between the time when the widget is created as an IDL widget record and when it is
realized as a platform-specific interface element, you have control over many, but not
all, aspects of the widget’s state. Some details of the final realized widget’s state
(such as its exact screen geometry) may remain undetermined until the widget is
instantiated. Realization, and the related concepts of mapping and sensitivity, are
discussed in greater in following sections.

It is important to note that unrealized widgets in a widget hierarchy can be
manipulated programmatically. Examples of attributes you can manipulate before
realization are the overall geometry of the user interface, widget values, and user
values. You can even retrieve widget values before the widgets are realized.
Unrealized widgets do not, however, generate widget events, since the actual
platform-specific user interface has yet to be created.

Once a widget has been realized, its corresponding platform-specific user interface
toolkit element is instantiated. The native toolkit determines the widget’s exact screen
geometry. If the widget is then mapped, it becomes visible on the computer screen,
can be manipulated by a user, and generates widget events.

Note
Widgets are mapped by default. This means that when you realize a widget
hierarchy, the widgets included in that hierarchy will usually be displayed on screen
immediately. You can control the visibility of widget hierarchies — before or after
realization — using the MAP keyword to WIDGET_CONTROL. See “Controlling
Widget Visibility” on page 27 for details.

Note also that widgets that are visible on screen can be made unavailable to the user
by setting the SENSITIVE keyword to WIDGET_CONTROL. See “Sensitizing
Widgets” on page 28 for details.
Widget Programming Concepts User Interface Programming

Chapter 2: Creating Widget Applications 21
Example: A Simple Widget Application

The following example demonstrates the simplicity of widget programming. The
example program creates a base widget containing a single button, labelled “Done.”
When you position the mouse cursor over the button and click, the widget is
destroyed.

Note
If you are new to IDL widget programming, don’t be dismayed if parts of this
example are not immediately clear to you. As you read further through this chapter,
the principles of the event-driven programming model and IDL’s specific
implementation of that model will become clearer.

Example Code
This example is included in the file doc_widget1.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering doc_widget1 at the IDL command prompt or view the file
in an IDL Editor window by entering .EDIT doc_widget1.pro. See “Running
the Example Code” on page 15 if IDL does not run the program as expected.

PRO doc_widget1_event, ev
IF ev.SELECT THEN WIDGET_CONTROL, ev.TOP, /DESTROY

END

PRO doc_widget1
base = WIDGET_BASE(/COLUMN)
button = WIDGET_BUTTON(base, value='Done')
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'doc_widget1', base

END

While this simple example does nothing particularly useful, it does illustrate some
basic concepts of event-driven programming. Let’s examine how the example is
constructed.

First, note that the “application” consists of two parts: an event handling routine and a
creation routine. Let’s first examine the second part — the creation routine —
contained in the doc_widget1 procedure.
User Interface Programming Example: A Simple Widget Application

javascript:doIDL("doc_widget1")
javascript:doIDL(".edit doc_widget1.pro")

22 Chapter 2: Creating Widget Applications
The doc_widget1 procedure does the following:

1. Creates a top-level base widget whose widget ID is stored in the variable base.
All widget applications have at least one base.

2. Creates a button widget whose widget ID is stored in the variable button. The
button widget has base as its parent. The value “Done” is assigned to the
button. The value of a button widget is the text that appears on the button’s
face.

3. Realizes the widget hierarchy built on base by calling WIDGET_CONTROL
with the /REALIZE keyword. Realizing the widget hierarchy displays the
widget on your computer screen.

4. Invokes the XMANAGER routine to manage the widget event loop, providing
the name of the calling routine (doc_widget1) and the widget ID of the top-
level base on which the widget hierarchy is built (base).

The doc_widget1_event procedure is the event handling routine for the
application. By convention, the XMANAGER procedure looks for an event handling
procedure with the same name as the procedure that creates the widgets, with
“_event” appended to the end. (This default can be overridden by specifying an event
handler directly using the EVENT_HANDLER keyword to XMANAGER.) When an
event is received by XMANAGER, the event structure is passed to the
doc_widget1_event procedure via the ev argument.

In this example, all the event handling routine does is check the event structure to see
if the event passed to it was a select event generated by the button widget. If a SELECT
event is received, the routine calls WIDGET_CONTROL with the DESTROY keyword to
destroy the widget hierarchy built on the top-level base widget (specified in the TOP
field of the event structure).

For further discussion of widget events and event structures, see “Widget Event
Processing” on page 34. For details about the event structures returned by different
widgets, see the documentation for each widget in the IDL Reference Guide.
Example: A Simple Widget Application User Interface Programming

Chapter 2: Creating Widget Applications 23
Widget Application Lifecycle

When you create and use a widget application, you do the following things:

1. Construct the Widget Hierarchy

2. Provide an Event-Handling Routine

3. Realize the Widgets

4. Register the Program with the XMANAGER

5. Interact with the Application

6. Destroy the Widgets

Construct the Widget Hierarchy

You must first build a widget hierarchy using the WIDGET_* functions. Start by
creating a top-level base with the WIDGET_BASE function.

Combine other widget creation functions — WIDGET_BUTTON, CW_PDMENU,
etc. — to create and organize the user interface of your widget application. At this
point, the widgets are unrealized — they exist only as IDL widget records — and
nothing has been created or displayed on the screen.

Note
Widget applications can include multiple widget hierarchies headed by multiple
top-level base widgets. See “Using Multiple Widget Hierarchies” on page 61 for
more on creating a hierarchy of widget hierarchies.

Provide an Event-Handling Routine

In order for a widget application to do anything, you must provide a routine that
examines events, determines what action to take, and implements that action. Actions
may involve computation, graphics display, or updates to the widget interface itself.

For best performance, event processing routines must run and return to the calling
routine as quickly as possible. Widgets won’t respond to user input while the event-
processing routine is running. Widget-based programs should wait for user-generated
events, handle them as quickly as possible, and return to wait for more events. Event
processing is discussed in detail in “Widget Event Processing” on page 34.
User Interface Programming Widget Application Lifecycle

24 Chapter 2: Creating Widget Applications
Event handling routines can manipulate widgets via the WIDGET_CONTROL
procedure. Possible actions include the following:

• Obtain or change the value of a widget (see “Widget Values” on page 18) using
the APPEND, GET_VALUE, and SET_VALUE keywords.

• Obtain or change the value of a widget’s user value using the GET_UVALUE
and SET_UVALUE keywords. (User values are discussed in “Widget User
Values” on page 33)

• Map and unmap widgets using the MAP keyword. Unmapped widgets are
removed from the screen and become invisible, but they still exist in memory.

• Change a widget’s sensitivity using the SENSITIVE keyword. A widget
indicates that it is insensitive by changing its appearance (often by graying
itself or displaying text with dashed lines) and ignoring any user input. It is
useful to make widgets insensitive at points where it would be inconvenient to
get events from them (for example, if your program is waiting for input from
another source).

• Change the settings of toggle buttons using the SET_BUTTON keyword.

• Push a widget hierarchy behind the other windows on the screen, or pull it in
front, using the SHOW keyword.

• Display the “hourglass” cursor while the application is busy and not able to
respond to user actions by setting the HOURGLASS keyword. (See
“Indicating Time-Consuming Operations” on page 28.)

Realize the Widgets

To convert the IDL widget records representing your widget hierarchy into a set of
platform-specific user interface toolkit elements, use the REALIZE keyword to the
WIDGET_CONTROL procedure. Unless you have specifically unmapped the
widgets before realizing them, the REALIZE keyword causes the widgets to be
displayed on screen. See “Manipulating Widgets” on page 26 for additional details.

Register the Program with the XMANAGER

Your widget application waits for events to be reported to it and reacts as specified in
the event handling routine after being registered with the XMANAGER procedure.

Events are obtained by XMANAGER via the WIDGET_EVENT function and passed
to the calling routine (your event handler) in the form of an IDL structure variable.
Each type of widget returns a different type of structure, as described in the
documentation for the individual widget creation functions in the IDL Reference
Widget Application Lifecycle User Interface Programming

Chapter 2: Creating Widget Applications 25
Guide. Every event structure has three common elements: long integers named ID,
TOP, and HANDLER:

• ID is the widget ID of the widget generating the event.

• TOP is the widget ID of the top-level base containing the widget that generated
the event.

• HANDLER is important for event handler functions, which are discussed later in
this chapter.

When an event occurs, XMANAGER arranges for the event structure to be passed to
an event-handling procedure specified by the program, and the event handler takes
some appropriate action based on the event. This means that multiple widget
applications can run simultaneously — XMANAGER arranges for the events be
dispatched to the appropriate routine.

Interact with the Application

Once the widget application has been realized and registered with XMANAGER, the
user can interact with the application to accomplish whatever tasks the application is
designed to accomplish.

Destroy the Widgets

When the application has finished (usually when the user clicks on a “Done” or
“Quit” button), destroy the widget hierarchy using the DESTROY keyword to the
WIDGET_CONTROL procedure. This causes all resources related to the hierarchy to
be freed and removes it from the screen.
User Interface Programming Widget Application Lifecycle

26 Chapter 2: Creating Widget Applications
Manipulating Widgets

IDL provides several routines that allow you to manipulate and manage widgets
programmatically:

• WIDGET_CONTROL allows you to realize widget hierarchies, manipulate
them, and destroy them.

• WIDGET_EVENT allows you to process events generated by a specific
widget hierarchy.

• WIDGET_INFO allows you to obtain information about the state of a specific
widget or widget hierarchy.

• XMANAGER provides an event loop and manages events generated by all
existing widget hierarchies.

• XREGISTERED allows you to test whether a specific widget is currently
registered with XMANAGER.

These widget manipulation routines are discussed in more detail in the following
sections.

WIDGET_CONTROL

The WIDGET_CONTROL procedure allows you to realize, manage, and destroy
widget hierarchies. It is often used to change the default behavior or appearance of
previously-realized widgets.

Keywords to WIDGET_CONTROL may affect only certain types of widgets, any
type of widget, or the widget system in general. See “WIDGET_CONTROL” (IDL
Reference Guide) for complete details. We discuss here only a few of the more
common uses of this procedure.

Realizing Widget Hierarchies

IDL widgets are actually widget records that represent platform-specific user
interface toolkit elements. In order to instantiate the platform-specific toolkit
elements, widgets must be realized with the following statement:

WIDGET_CONTROL, base, /REALIZE

where base is the widget ID of the top-level base widget for your widget hierarchy.
Manipulating Widgets User Interface Programming

Chapter 2: Creating Widget Applications 27
Destroying Widget Hierarchies

The standard way to destroy a widget hierarchy is with the statement:

WIDGET_CONTROL, base, /DESTROY

where base is the widget ID of the top-level base widget of the hierarchy to be killed.
Usually, IDL programs that use widgets issue this statement in their event-handling
routine in response to the user’s clicking on a “Done” button in the application.

In addition, some window managers place a pulldown menu on the frame of the top-
level base widget that allows the user to kill the entire hierarchy. Using the window
manager to kill a widget hierarchy is equivalent to using the DESTROY keyword to
the WIDGET_CONTROL procedure.

When designing widget applications, you should always include a “Done” button (or
some other widget that allows the user to exit) in the application itself, since some
window managers do not provide the user with a kill option from the outer frame.

Retrieving or Changing Widget Values

You can use WIDGET_CONTROL to retrieve or change widget values using the
GET_VALUE and SET_VALUE keywords. Similarly, you can retrieve or change
widget user values with the GET_UVALUE and SET_UVALUE keywords.

For example, you could use the following commands to retrieve the value of a draw
widget whose widget ID is stored in the variable drawwid, and to make that draw
widget the current graphics window:

WIDGET_CONTROL, drawwid, GET_VALUE=draw
WSET, draw

Similarly, you could use the following command in an event handling procedure to
save the user value of the widget that generates an event into an IDL variable named
uval:

WIDGET_CONTROL, event.id, GET_UVALUE=uval

For more on widget user values, see “Widget User Values” on page 33.

Controlling Widget Visibility

You can display or remove realized widgets from the screen by mapping or
unmapping them. Unmapped widgets still exist in the widget hierarchy, but they are
not displayed and do not generate events.
User Interface Programming Manipulating Widgets

28 Chapter 2: Creating Widget Applications
Set the MAP keyword to WIDGET_CONTROL equal to zero to hide a widget, or to a
nonzero value to display it again. For example, to hide the base1 widget and all its
child widgets from view, use the following command:

WIDGET_CONTROL, base1, MAP=0

By default, widgets are mapped automatically when they are realized. You can
prevent a widget from appearing on screen when you realize it by setting MAP=0
before realizing the widget hierarchy.

Note
While it is possible to call WIDGET_CONTROL, MAP=0 with the widget ID of
any widget, only base widgets can actually be unmapped. If you specify a widget ID
that is not from a base widget, IDL searches upward in the widget hierarchy until it
finds the closest base widget. The map operation is applied to that base.

Sensitizing Widgets

Use sensitivity to control when a user is allowed to manipulate a widget. When a
widget is sensitive, it has a normal appearance and can receive user input. When a
widget is insensitive, it ignores any input directed at it. Note that while most widgets
change their appearance when they become insensitive, some simply stop generating
events.

Set the SENSITIVE keyword equal to zero to desensitize a widget, or to a nonzero
value to make it sensitive. For example, you might wish to make a group of buttons
contained in a base whose widget ID is stored in the variable bgroup insensitive after
some user input. You would use the following command:

WIDGET_CONTROL, bgroup, SENSITIVE=0

Indicating Time-Consuming Operations

In an event driven environment, it is important that the interface be highly responsive
to the user’s manipulations. Widget event handlers should be written to execute
quickly and return. However, sometimes the event handler has no option but to
perform an operation that is slow. In such a case, it is a good idea to give the user
feedback that the system is busy. This is easily done using the HOURGLASS
keyword just before the expensive operation is started:

WIDGET_CONTROL, /HOURGLASS

This command causes IDL to turn on an hourglass-shaped cursor for all IDL widgets
and graphics windows. The hourglass remains active until the next event is processed,
at which point the previous cursor is automatically restored.
Manipulating Widgets User Interface Programming

Chapter 2: Creating Widget Applications 29
WIDGET_EVENT

The WIDGET_EVENT function returns events for the widget hierarchy rooted at
Widget_ID. Events are generated when a button is pressed, a slider position is
changed, and so forth. In most cases, you will not use WIDGET_EVENT directly, but
instead will use the XMANAGER routine to manage widget events. Event processing
is discussed in detail in “Widget Event Processing” on page 34. See also
“WIDGET_EVENT” (IDL Reference Guide) for additional details.

WIDGET_INFO

The WIDGET_INFO function is used to obtain information about the widget
subsystem and individual widgets. You supply the widget ID of a widget for which
you want to retrieve some information, along with a keyword that specifies the type
of information. For example, to determine the index of the selected item in a list
widget whose widget ID is contained in the variable list, you would use a
command like the following:

listindex = WIDGET_INFO(list, /LIST_SELECT)

Finding Widget IDs using WIDGET_INFO

One noteworthy use of WIDGET_INFO is to locate the widget ID of a widget with a
specified user name. (A user name is a part of the widget’s widget record that
contains a text identifier, specified by the programmer.) See “Working With Widget
IDs” on page 31 for more information on this technique.

See “WIDGET_INFO” (IDL Reference Guide) for more information.

XMANAGER

The XMANAGER procedure provides the main event loop registration and widget
management. Calling XMANAGER “registers” a widget program with the
XMANAGER event handler. XMANAGER takes control of event processing until all
widgets have been destroyed.

Using XMANAGER allows you to run multiple widget applications and work at the
IDL command line at the same time. While it is possible to use WIDGET_EVENT
directly to manage events in your application, it is almost always easier to use
XMANAGER.

See “XMANAGER” (IDL Reference Guide) for complete details.
User Interface Programming Manipulating Widgets

30 Chapter 2: Creating Widget Applications
XREGISTERED

The XREGISTERED function returns True if the widget specified by its argument is
currently registered with the XMANAGER.

One use of the XREGISTERED function is to control the number of instances of a
given widget application that run at a given time. For example, suppose that you have
a widget program that registers itself with the XMANAGER with the command:

XMANAGER, 'mywidget', base

You could limit this widget to one instantiation by adding the following line as the
first line (after the procedure definition statement) of the widget creation routine:

IF (XREGISTERED('mywidget') NE 0) THEN RETURN

See “XREGISTERED” (IDL Reference Guide) for complete details.
Manipulating Widgets User Interface Programming

Chapter 2: Creating Widget Applications 31
Working With Widget IDs

Any widget application capable of doing real work will include one or more routines
that are separate from the routine that creates the widget hierarchy, designed to
handle and respond to user-generated events. Event processing routines — the
routines that process information contained in widget event structures and respond
accordingly — often retrieve information contained in the widget values of the
widgets that make up the interface, perform calculations, and modify the widget
interface itself in response to user actions.

Since a widget ID is required to retrieve information from or set values in a widget,
you will need a way for your event processing routines to retrieve the ID of a
specified widget. This section describes techniques you can use to pass widget IDs
between the routines in your widget application — most notably between the widget
creation routine (where widget IDs are generated) and the event processing routines.

Use the Widget Event Structure

Every time a user interacts with a widget using the mouse or keyboard, a widget event
structure is generated. Widget event structures contain the widget ID of the widget
that generated the event. In addition, widget event structures provide the widget ID of
the top-level base in the widget hierarchy to which the widget the generated the event
belongs.

Getting the widget ID of the appropriate widget from the event structure is almost
always the preferred method for passing a widget ID from one routine to another
within your application. Widget event processing is discussed in detail in “Widget
Event Processing” on page 34.

Pass the Widget ID Using a Widget User Value

The widget event structure always includes two widget IDs: the ID of the widget that
generated the event, and the ID of the top-level base widget. If you need to pass
multiple widget IDs between routines, it is often useful to place the widget ID values
in the user value of the top-level base widget. Widget user values are discussed in
“Widget User Values” on page 33.

Use a User Name to Locate the Widget

One of the pieces of information you can specify when you create a widget is a user
name. You can associate a name with each widget in a specific hierarchy, and then
use that name to query the widget hierarchy and get the correct widget ID. To specify
User Interface Programming Working With Widget IDs

32 Chapter 2: Creating Widget Applications
a user name, set the UNAME keyword to the widget creation routine equal to a string
that can be used to identify the widget in your code.

To query the widget hierarchy, use the WIDGET_INFO function with the widget ID
of the top-level base widget and the FIND_BY_UNAME keyword. Note that user
names must be unique within the widget hierarchy, because the FIND_BY_UNAME
keyword returns the ID of the first widget with the specified name.

Pass the Widget ID Explicitly

In some cases, you may need to pass a specific widget ID available in one routine to a
second routine. In this case, you can specify the widget ID as a parameter when
calling the second routine from the first. While this method is not so general as using
the widget event structure, it is useful in some circumstances.

Use a COMMON Block

In rare cases, it may be useful to store widget IDs in a COMMON block, making
them available to all routines in the application. While using a COMMON block may
seem like a good strategy on first inspection, this method has several drawbacks.
Most importantly, using a COMMON block to hold widget IDs means that only one
instance of a given widget application can be running at once.
Working With Widget IDs User Interface Programming

Chapter 2: Creating Widget Applications 33
Widget User Values

Every widget primitive and compound widget can carry a user-specified value of any
IDL data type and organization; that is, every widget contains a variable that can store
arbitrary information. This value is ignored by the widget and is for the programmer’s
convenience only.

The initial user value is specified using the UVALUE keyword to the widget creation
function. If no initial value is specified, the user value is undefined. Once the widget
exists, its user value can be examined and/or changed using the GET_UVALUE and
SET_UVALUE keywords to the WIDGET_CONTROL procedure.

Note
The widget user value should not be confused with the widget value, described in
“Widget Values” on page 18.

User Values Simplify Event Handling

User values can be used to simplify event-handling. If each widget has a distinct user
value, you need only check the user value of any event to determine which widget
generated it. In practice, this means you do not need to keep track of the widget IDs
of all the widgets in your widget hierarchy in order to determine what to do with a
given event.

User Values can be Accessible Throughout a Widget
Application

Another use for user variables is to simulate a variable that is available in more than
one IDL routine. For example, you can set the user value of a top-level base widget
equal to one or more widget IDs. You then have an easy way to pass the widget IDs
from your widget creation routine to your event handling routine.

We will take advantage of both of these aspects of user values in “Example: Event
Processing and User Values” on page 40.
User Interface Programming Widget User Values

34 Chapter 2: Creating Widget Applications
Widget Event Processing

The concepts of events and event processing underlie every aspect of widget
programming. It is important to understand how IDL handles widget events in order
to use widgets effectively.

This section discusses the following topics:

• What are Widget Events?

• Structure of Widget Events

• Managing Widget Events with XMANAGER

• Event Processing and Callbacks

For a discussion of techniques you can use to detect and respond to specific types of
events, see “Working with Widget Events” in Chapter 3.

What are Widget Events?

A widget event is a message returned from the window system when a user
manipulates a widget. In response to an event, a widget program usually performs
some action (e.g., opens a file, updates a plot).

Structure of Widget Events

As events arrive from the window system, IDL saves them in a queue for the target
widget. The WIDGET_EVENT function delivers these events to the IDL program as
IDL structures. Every widget event structure has the same first three fields: these are
long integers named ID, TOP, and HANDLER:

• ID is the widget ID of the widget that generated the event.

• TOP is the widget ID of the top-level base containing ID.

• HANDLER is the widget ID of the widget associated with the event handling
routine. The importance of HANDLER will become apparent when we discuss
event routines and compound widgets, below.

Event structures for different widgets may contain other fields as well. The exact
form of the event structure for any given widget is described in the documentation for
that widget’s creation function in the IDL Reference Guide.
Widget Event Processing User Interface Programming

Chapter 2: Creating Widget Applications 35
Managing Widget Events with XMANAGER

The XMANAGER procedure provides a convenient, simplified interface IDL’s event-
handling capabilities. At the highest level, creating a widget application consists of
the following steps:

1. Creating routines to react to widget events.

2. Creating the widgets that make up the application’s interface.

3. Realizing the widgets.

4. Calling XMANAGER to manage events flowing from the widget interface.

XMANAGER arranges for an event-handling procedure supplied by the application
to be called when events for it arrive. The application is shielded from the details of
calling the underlying WIDGET_EVENT function and interacting with other widget
applications that may be running simultaneously.

Note
While it is possible for a user-written program to call the WIDGET_EVENT
function directly, in practice this is very unusual. For details on how events are
handled at a low level, see “The WIDGET_EVENT Function” on page 37.

The file xmng_tmpl.pro, found in the lib subdirectory of the IDL distribution, is a
template for writing widget applications that use XMANAGER.

XMANAGER and Blocking

The term blocking is used to describe a situation in which processing by IDL is
suspended until some event or action takes place. Unless you specifically arrange
otherwise, IDL will only allow one user interface (the IDL command line or a single
widget application) to be active at one time. XMANAGER simplifies the process of
arranging things so that multiple user interfaces can run at the same time — that is,
managing events so that applications do not need to block in order to be assured of
receiving the correct event information.

IDL’s blocking behavior is discussed in detail in “XMANAGER” (IDL Reference
Guide). In most cases, specifying the NO_BLOCK keyword when calling
XMANAGER will allow your application to “play nicely with others,” but you
should keep the following things in mind when writing widget applications:

Active Command Line

IDL can provide an active command line. If the command line is active, IDL will
execute commands entered at the command line even if one or more widget
User Interface Programming Widget Event Processing

36 Chapter 2: Creating Widget Applications
applications are already running. In order for IDL to behave in this way, all widget
applications must be run via XMANAGER with the NO_BLOCK keyword set. See
“Active Command Line” under “XMANAGER” (IDL Reference Guide) for details

Blocking and Non-Blocking Applications

By default, widget applications — even those managed with XMANAGER — will
block. To enable your application to run without blocking other widget applications
or the IDL command line, you must explicitly set the NO_BLOCK keyword to
XMANAGER when registering the application. Put another way, any running widget
application that does not have this keyword set will block all event processing for
widget applications and the IDL command line. See “Blocking vs. Non-blocking
Applications” under “XMANAGER” (IDL Reference Guide) for details.

Registering Applications Without Processing Their Events

In order to allow multiple widget applications to run simultaneously, each application
must be registered with XMANAGER, so it knows how to recognize events generated
by the application. In most cases, the registration step takes place automatically when
XMANAGER is called to begin processing events for the application.

In some cases, however, it may be useful to register an application with
XMANAGER before asking it to begin processing the application’s events. In these
cases, you can use the JUST_REG keyword to XMANAGER; the application is
added to XMANAGER’s list of known applications without starting event
processing, and XMANAGER returns immediately. See “JUST_REG vs.
NO_BLOCK” under “XMANAGER” (IDL Reference Guide) for details.

Tips on Working With XMANAGER

Because XMANAGER buffers you from direct handling of widget events, you cannot
explicitly specify an event-handling function or procedure for the top-level base using
the EVENT_FUNC or EVENT_PRO keywords to WIDGET_BASE or
WIDGET_CONTROL. Event handlers for top-level bases specified via these
keywords will be overwritten by XMANAGER.

Instead, provide the name of the event handler routine to XMANAGER via the
EVENT_HANDLER keyword. If you do not supply the name of an event handler via
the EVENT_HANDLER keyword, XMANAGER will construct a default name by
adding the suffix “_event” to the Name argument.

Note that this guideline applies only to top-level bases (base widgets created with no
parent widget). Child base widgets should use the EVENT_FUNC or EVENT_PRO
keywords to specify event handling routines, if necessary.
Widget Event Processing User Interface Programming

Chapter 2: Creating Widget Applications 37
In addition, it is often convenient to specify the death-notification routine for the top-
level base of a widget application via the CLEANUP routine to XMANAGER rather
than via the KILL_NOTIFY keyword to WIDGET_BASE or WIDGET_CONTROL.
Either method will work, but the last routine specified is the routine that will be
called when the base widget is destroyed. Since the call to XMANAGER is often the
last call made when creating a widget application, using the CLEANUP keyword to
specify the routine to be called when the application ends is preferred.

The XREGISTERED Function

The XMANAGER procedure allows multiple instances of a widget application to run
simultaneously. In some cases, however, you may wish to ensure that only a single
instance of application can run at a given time. An obvious example of this is an
application that uses a COMMON block to maintain its current state (see “Managing
Application State” on page 42).

The XREGISTERED function can be used in such applications to ensure that only a
single copy of the application run at a time. Place the following statement at the start
of the widget creation routine:

IF (XREGISTERED('routine_name') NE 0) THEN RETURN

where routine_name is the name of the widget application.

See “XREGISTERED” (IDL Reference Guide) for further information.

The WIDGET_EVENT Function

All widget event processing in IDL is eventually handled by the WIDGET_EVENT
function. Note that while we will discuss WIDGET_EVENT here for completeness,
in most cases you will not want to call WIDGET_EVENT directly. The
XMANAGER routine provides a convenient, simplified interface to
WIDGET_EVENT and allows IDL to take over the task of managing multiple widget
applications.

In its simplest form, the WIDGET_EVENT function is called with a widget ID
(usually, the ID of a base widget) as its argument. WIDGET_EVENT checks the
queue of undelivered events for that widget or any of its children. If an event is
present, it is immediately dequeued and returned. If no event is available,
WIDGET_EVENT blocks all other processing by IDL until an event arrives, and then
returns it. Typically, the request is made for a top-level base, so WIDGET_EVENT
returns events for any widget in the widget hierarchy rooted at that base widget.

This simple usage suffers from a major weakness. Since each call to
WIDGET_EVENT is looking for events from a specified widget hierarchy, it is not
possible to receive events for more than one widget hierarchy at a time. It is important
User Interface Programming Widget Event Processing

38 Chapter 2: Creating Widget Applications
to be able to run multiple widget applications (each with a separate top-level base)
simultaneously. An example would be an image processing application, a color table
manipulation tool, and an on-line help reader all running together.

One solution to this problem is to call WIDGET_EVENT with an array of widget
identifiers instead of a single ID. In this case, WIDGET_EVENT returns events for
any widget hierarchy in the list. This solution is effective, but it still requires that you
maintain a complete list of all interesting top-level base identifiers, which implies that
all cooperating applications need to know about each other.

The most powerful way to use WIDGET_EVENT is to call it without any arguments
at all. Called this way, it will return events for any currently-realized widgets that
have expressed an interest in being managed. (You specify that a widget wants to be
managed by setting the MANAGED keyword to the WIDGET_CONTROL
procedure.) This form of WIDGET_EVENT is especially useful when used in
conjunction with widget event callback routines, discussed in “Event Processing and
Callbacks” on page 38.

Event Processing and Callbacks

Previously, we mentioned that when IDL receives an event, the event is queued until a
call to WIDGET_EVENT is made (either explicitly by the user program or by
XMANAGER), whereupon the event is dequeued and returned. The following is a
more complete description of what actually happens in IDL’s event loop.

Events for a given widget are processed in the order that they are generated. The
event processing performed by WIDGET_EVENT consists of the following steps,
applied iteratively:

1. Wait for an event from one of the specified widgets to arrive.

2. Starting with the widget that generated the event, search up the widget
hierarchy for a widget with an associated event-handling procedure or
function.

Event-handling routines associated with widgets are known as callback
routines. Other cases where an IDL system routine (WIDGET_EVENT, in this
instance) calls a user-specified, user-written routine include routines specified
via the KILL_NOTIFY or NOTIFY_REALIZE keywords to the widget
creation functions and WIDGET_CONTROL, as well as the corollary
keywords to XMANAGER.

3. If an event-handling procedure is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the widget
associated with the handling procedure. When the procedure returns,
Widget Event Processing User Interface Programming

Chapter 2: Creating Widget Applications 39
WIDGET_EVENT returns to the first step above and starts searching for
events. Hence, event-handling procedures are said to “swallow” events.

4. If an event-handling function is found, it is called with the event as its
argument. The HANDLER field of the event is set to the widget ID of the widget
associated with the handling function.

When the function returns, its value is examined. If the value is not a structure,
it is discarded and WIDGET_EVENT returns to the first step. This behavior
allows event-handling functions to selectively act like event-handling
procedures and “swallow” events.

If the returned value is a structure, it is checked to ensure that it has the
standard first three fields: ID, TOP, and HANDLER. If any of these fields is
missing, IDL issues an error. Otherwise, the returned value replaces the event
found in the first step and WIDGET_EVENT continues moving up the widget
hierarchy looking for another event handler routine, as described in step 2,
above.

In situations where an event structure is returned, event functions are said to
“rewrite” events. This ability to rewrite events is the basis of compound
widgets, which combine several widgets to give the appearance of a single,
more complicated widget. Compound widgets are an important widget
programming concept. For more information, see “Creating a Compound
Widget” on page 46.

5. If an event reaches the top of a widget hierarchy without being swallowed by
an event handler, it is returned as the value of WIDGET_EVENT.

6. If WIDGET_EVENT was called without an argument, and there are no
widgets left on the screen that are being managed (as specified via the
MANAGED keyword to the WIDGET_CONTROL procedure) and could
generate events, WIDGET_EVENT ends the search and returns an empty event
(a standard widget event structure with the top three fields set to zero).
User Interface Programming Widget Event Processing

40 Chapter 2: Creating Widget Applications
Example: Event Processing and User Values

The following example demonstrates how user values can be used to simplify event
processing and to pass values between routines. It creates a base widget with three
buttons and a text field that reports which button was pressed.

Note
If you are new to IDL widget programming, don’t be worried if parts of this
example are not immediately clear to you. As you read further through this chapter,
the principles of the event-driven programming model and IDL’s specific
implementation of that model will become clearer.

Example Code
This example is included in the file doc_widget2.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering doc_widget2 at the IDL command prompt or view the file
in an IDL Editor window by entering .EDIT doc_widget2.pro. See “Running
the Example Code” on page 15 if IDL does not run the program as expected.

PRO doc_widget2_event, ev
WIDGET_CONTROL, ev.TOP, GET_UVALUE=textwid
WIDGET_CONTROL, ev.ID, GET_UVALUE=uval
CASE uval OF

'ONE' : WIDGET_CONTROL, textwid, SET_VALUE='Button 1 Pressed'
'TWO' : WIDGET_CONTROL, textwid, SET_VALUE='Button 2 Pressed'
'DONE': WIDGET_CONTROL, ev.TOP, /DESTROY

ENDCASE
END

PRO doc_widget2
base = WIDGET_BASE(/COLUMN)
button1 = WIDGET_BUTTON(base, VALUE='One', UVALUE='ONE')
button2 = WIDGET_BUTTON(base, VALUE='Two', UVALUE='TWO')
text = WIDGET_TEXT(base, XSIZE=20)
button3 = WIDGET_BUTTON(base, value='Done', UVALUE='DONE')
WIDGET_CONTROL, base, SET_UVALUE=text
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'doc_widget2', base

END

Let’s examine the creation routine, doc_widget2, first. We first create a top-level
base, this time specifying the COLUMN keyword to ensure that the widgets
contained in the base are stacked vertically. We create two buttons with values “One”
and “Two,” and user values “ONE” and “TWO.” Remember that the value of a button
widget is also the button’s label. We create a text widget, and specify its width to be
Example: Event Processing and User Values User Interface Programming

javascript:doIDL("doc_widget2")
javascript:doIDL(".edit doc_widget2.pro")

Chapter 2: Creating Widget Applications 41
20 characters using the XSIZE keyword. The last button is the “Done” button, with a
the user value “DONE.”

Next follow two calls to the WIDGET_CONTROL procedure. The first call sets the
user value of the top-level base widget equal to the widget ID of our text widget,
allowing easy access to the text widget from the event handling routine. The second
call realizes the top-level base and all its child widgets. Finally, we invoke the
XMANAGER to manage the widget application.

The doc_widget2_event routine is slightly more complicated than the event
handler in “Example: A Simple Widget Application” on page 21, but it is still
relatively simple. We begin by using WIDGET_CONTROL to retrieve the widget ID
of our text widget from the user value of the top-level base. We can do this because
the widget ID of our top-level base is contained in the TOP field of the widget event
structure. We use the GET_UVALUE keyword to store the widget ID of the text
widget in the variable textwid.

Next, we use WIDGET_CONTROL with the GET_UVALUE keyword to retrieve the
user value of the widget that generated the event. Again, we can do this because we
know that the widget ID of the widget that generated the event is stored in the ID field
of the event structure. We then use a CASE statement to compare the user value of the
widget, now stored in the variable uval, with the list of possible user values to
determine which button was pressed and act accordingly.

In the CASE statement, we check to see if uval is the user value associated with
either button one or button two. If it is, we use WIDGET_CONTROL and the
SET_VALUE keyword to alter the value of the text widget, whose ID we stored in the
variable textwid. If uval is 'DONE', we recognize that the user has clicked on the
“Done” button and use WIDGET_CONTROL to destroy the widget hierarchy.
User Interface Programming Example: Event Processing and User Values

42 Chapter 2: Creating Widget Applications
Managing Application State

A widget application is usually divided into at least two separate routines, one that
creates and realizes the application and another that handles events. These multiple
routines need shared access to certain types of information, such as the widget IDs of
the application’s widgets and data being used by the application. This shared
information is referred to as the application state.

Techniques for Preserving Application State

The following are some techniques you can use to preserve and share application
state data between routines.

Using COMMON Blocks

One obvious answer to this problem is to use a COMMON block to hold the state.
However, this solution is generally undesirable because it prevents more than a single
copy of the application from running at the same time. It is easy to imagine the chaos
that would ensue if multiple instances of the same application were using the same
common block without some sort of interlocking.

Using a State Structure in a User Value

A better solution to this problem is to use the user value of one of the widgets to store
state information for the application.Using this technique, multiple instances of the
same widget code can exist simultaneously. Since this user value can be of any type, a
structure can be used to store any number of state-related values.

For example, consider the following example widget code:

PRO my_widget_event, event
WIDGET_CONTROL, event.TOP, GET_UVALUE=state, /NO_COPY

Event-handling code goes here

WIDGET_CONTROL, event.TOP, SET_UVALUE=state, /NO_COPY
END

PRO my_widget
; Create some widgets
wBase = WIDGET_BASE(/COLUMN)
wDraw = WIDGET_DRAW(wBAse, XSIZE=300, YSIZE=300)

; Realize the base widget and retrieve the widget ID
; of the drawable area.
Managing Application State User Interface Programming

Chapter 2: Creating Widget Applications 43
WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=idxDraw

; Create a state structure variable and set the user
; value of the top-level base equal to the state variable.
state = {wDraw:wDraw, idxDraw:idxDraw}
WIDGET_CONTROL, wBase, SET_UVALUE=state

; Use XMANAGER to manage the widgets
XMANAGER, 'my_widget', wBase

END

In this example, we store state information (the widget ID of the draw widget and the
index of the drawable area) in a structure variable, and set the user value of the top-
level base widget equal to that structure variable. This makes it possible to retrieve
the structure using the widget ID contained in the TOP field of any widget event
structure that arrives at the event handler routine.

Notice the use of the NO_COPY keyword to WIDGET_CONTROL in the example.
This keyword prevents IDL from duplicating the memory used by the user value
during the GET_UVALUE and SET_UVALUE operations. This is an important
efficiency consideration if the size of the state data is large. (In this example the use
of NO_COPY is not really necessary, as the state data consists only of the two long
integers that represent the widget IDs being passed in the state variable.)

While it is important to consider efficiency, the use of the NO_COPY keyword does
have the side effect of causing the user value of the widget to become undefined when
it is retrieved using the GET_UVALUE keyword. If the user value is not replaced
before the event handler exits, the next execution of the event routine will fail, since
the user value will be undefined.

Using a Pointer to the State Structure

A variation on the above technique uses an IDL pointer to contain the state variable.
This eliminates the duplication of data and the need for the use of the NO_COPY
keyword.

Consider the following example widget code:

PRO my_widget_event, event
WIDGET_CONTROL, event.TOP, GET_UVALUE=pState

Event-handling code goes here, accessing the state
structure via the retrieved pointer.

END

PRO my_widget_cleanup, wBase
User Interface Programming Managing Application State

44 Chapter 2: Creating Widget Applications
; This routine is called when the application quits.
; Retrieve the state variable and free the pointer.
WIDGET_CONTROL, wBase, GET_UVALUE=pState
PTR_FREE, pState

END

PRO my_widget
; Create some widgets.
wBase = WIDGET_BASE(/COLUMN)
wDraw = WIDGET_DRAW(wBAse, XSIZE=300, YSIZE=300)

; Realize the base widget and retrieve the widget ID
; of the drawable area.
WIDGET_CONTROL, wBase, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=idxDraw

; Create a state structure variable.
state = {wDraw:wDraw, idxDraw:idxDraw}

; Place the state structure in a pointer and set the user
; value of the top-level base widget equal to the pointer.
pState = PTR_NEW(state, /NO_COPY)
WIDGET_CONTROL, wBase, SET_UVALUE=pState, /NO_COPY

; Call XMANAGER to manage the widgets, specifying the routine
; to be called when the application quits.
XMANAGER, 'my_widget', wBase, CLEANUP='my_widget_cleanup'

END

Notice the following differences between this technique and the technique shown in
the previous example:

• This method eliminates the removal of the user value from the top-level base
widget by removing the use of the NO_COPY keyword with the
GET_UVALUE keyword to WIDGET_CONTROL. Since only the pointer (a
long integer) is passed to the event routine, the efficiency issues connected
with copying the value are small enough to ignore. (Note that we do use the
NO_COPY keyword when creating the pointer and when initially setting the
user value of the top-level base widget; since these statements are executed
only once, we don’t worry about the fact that the state or pState variables
become undefined.)

• The state structure contained in the pointer must now be referenced using
pointer-dereferencing syntax. For example, to refer to the idxDraw field of the
state structure within the event-handling routine, you would use the syntax

(*pState).idxDraw
Managing Application State User Interface Programming

Chapter 2: Creating Widget Applications 45
• The pointer allocated to store the state structure must be freed when the widget
application quits. We do this by specifying a cleanup routine via the
CLEANUP keyword to XMANAGER. It is the cleanup routine’s responsibility
to free the pointer.

Each of the above techniques has advantages. Choose a method based on the
complexity of your application and your level of comfort with features like IDL
pointers and the NO_COPY keyword.
User Interface Programming Managing Application State

46 Chapter 2: Creating Widget Applications
Creating a Compound Widget

Widget primitives can be used to construct many varied user interfaces, but complex
programs written with them suffer the following drawbacks:

• Large widget applications become difficult to maintain. As an application
grows, it becomes more difficult to properly write and test. The resulting
program suffers from poor organization.

• Good ideas can be difficult to reuse. Most larger applications are constructed
from smaller sub-units. For example, a color table editor might contain control
panel, color selection and color-index selection sub-units. These sub-units are
often complicated tools that could be used profitably in other programs. To
reuse such sub-units, the programmer must understand the existing application
and then transplant the interesting parts into the new program — at best a
tedious and error-prone proposition.

Compound widgets solve these problems. A compound widget is a complete, self-
contained, reusable widget sub-tree that behaves to a large degree just like a primitive
widget. Complex widget applications written with compound widgets are much
easier to maintain than the same application written without them. Using compound
widgets is analogous to using subroutines and functions in programming languages.

Writing Compound Widgets

Compound widgets are written in the same way as any other widget application. They
are distinguished from regular widget applications in the following ways:

• Compound widgets usually have a base widget at the root of their hierarchies.
This base contains the subwidgets that make up the compound widget. From
the user’s point of view, this single widget is the compound widget — its
children are not programmatically accessible on their own.

Notice that the base widget at the root of a compound widget is not a top-level
base. When used, a compound widget must always have a parent widget.

• It is important that the compound widget not make use of the base’s user value.
In order to preserve the illusion that the compound widget works just like any
of the widget primitives, the user value of the compound widget’s top-level
base should be reserved for use by the caller of the compound widget. Instead,
the compound widget should use the user value of one of its child widgets.

• The widget at the root of the compound widget’s hierarchy always has an event
handler function associated with it via the EVENT_FUNC keyword to the
Creating a Compound Widget User Interface Programming

Chapter 2: Creating Widget Applications 47
widget creating function or the WIDGET_CONTROL procedure. This event
handler manages events from its sub-widgets and generates events for the
compound widget. By swallowing events from the widgets that comprise the
compound widget and generating events that represent the compound widget,
it presents the illusion that the compound widget is acting like a widget
primitive.

• If the compound widget has a value that can be set, it should be assigned a
value setting procedure via the PRO_SET_VALUE keyword to the widget
creating function or the WIDGET_CONTROL procedure.

• If the compound widget has a value that can be retrieved, it should be assigned
a value retrieving function via the FUNC_GET_VALUE keyword to the
widget creating function or the WIDGET_CONTROL procedure.

For an example of how a compound widget might be written, see “Example:
Compound Widget” on page 49.

The HANDLER Field of the Widget Event Structure

Recall that when WIDGET_EVENT finds an event to return, it moves up the widget
hierarchy looking for an event-handling routine registered to the widgets in between
its current position and the top-level base of the widget application. If such a routine
is found, it is called with the event as its argument, and the HANDLER field of this
event is set to the widget ID of the widget where the event routine was found. Since
compound widgets have event handlers associated with their root widget, the
HANDLER field gives the event handler the widget ID of the root widget. This allows
the event handler for a compound widget instance to easily locate the location of its
state information relative to this root.

Storing State Information

IDL programmers are often tempted to store the state information directly in the user
value of the root widget, but this is not a good idea. The user value of a compound
widget is reserved for the user of the widget, just like any basic widget. Therefore,
you should store the state information in the user value of one of the child widgets
below the root. As a convention, the user value of the first child is often used, leading
to event handlers structured as follows:

FUNCTION EVENT_FUNC, event
; Get state from the first child of the compound widget root:
child = WIDGET_INFO(event.HANDLER, /CHILD)
WIDGET_CONTROL, child, GET_UVALUE=state, /NO_COPY

; Execute event-handling code here.
User Interface Programming Creating a Compound Widget

48 Chapter 2: Creating Widget Applications
; Restore the state information before exiting routine:
WIDGET_CONTROL, child, SET_UVALUE=state, /NO_COPY

; Return result of function
RETURN, result

END

Sometimes, an application will find that it needs to use the user value of all its child
widgets for some other purpose, and there is no convenient place to keep the state
information. One way to work around this problem is to interpose an extra base
between the root base and the rest of the widgets:

ROOT = WIDGET_BASE(parent)
EXTRA = WIDGET_BASE(root)

In such an approach, the remaining widgets would all be children of EXTRA rather
than ROOT.
Creating a Compound Widget User Interface Programming

Chapter 2: Creating Widget Applications 49
Example: Compound Widget

The following example incorporates ideas from the previous sections to show how
you might approach the task of writing a compound widget. The widget is called
CW_DICE, and it simulates a single six-sided die. Figure 2-1 shows the appearance
of XDICE, an application that uses two instances of CW_DICE. XDICE is discussed
in “Using CW_DICE in a Widget Program” on page 51.

Example Code
The cw_dice.pro can be found in the lib subdirectory of the IDL distribution.
xdice.pro can be found in the examples/doc/widgets subdirectory of the
IDL distribution. Run this example procedure by entering cw_dice at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
cw_dice.pro. You should examine these files for additional details and comments
not included here. We present sections of the code here for didactic purposes—there
is no need to re-create either of these files yourself.

The CW_DICE compound widget has the following features:

• It uses a button widget. The current value of the die is displayed as a bitmap
label on the button itself. When the user presses the button, the die “rolls” itself
by displaying a sequence of bitmaps and then settles on a final value. An event
is generated that returns this final value.

• Timer events are used to create the rolling effect. This allows the dice to give
the same appearance on machines of varying performance levels. (Timer
events are discussed in “Working with Widget Events” in Chapter 3.)

• The die can be set to a specific value via the SET_VALUE keyword to the
WIDGET_CONTROL procedure. If the desired value is outside of the range 1
through 6, the die is rolled as if the user had pressed the button and a final
value is selected randomly. Using WIDGET_CONTROL to set the value of the
widget in this manner does not cause an event to be issued — IDL’s convention
is that user actions cause events, while programmatic changes do not.

• The current value of the die can be obtained via the GET_VALUE keyword to
the WIDGET_CONTROL procedure.

Almost any compound widget will have an associated state. The following
information is used by an instantiation of the CW_DICE compound widget:

1. The current value.

2. The number of times the die should “tumble” before settling on a final value.
User Interface Programming Example: Compound Widget

50 Chapter 2: Creating Widget Applications
3. The amount of time to take between tumbles.

4. A count of how many tumbles are left before a final value is displayed, while a
roll is in progress.

5. The bitmaps to use for the 6 possible die values.

6. The seed to use for the random number generator.

The first four items are stored in a per-widget structure kept in one of the child
widget’s user values. Since the bitmaps never change, it makes sense to keep them in
a COMMON block to be accessed freely by all the CW_DICE routines. It also makes
sense to use a single random number seed for the entire CW_DICE class rather than
one per instance to avoid the situation where multiple dice, having been created at the
same time, have the same seed and thus display the same value on each roll.

Note
It is rare that the use of a COMMON block in a compound widget makes sense.
Notice, however, that we are not storing widget state information, but read-only
data (bitmaps) and data that can be overwritten at any time with no negative effects
(random number generator seed). The use of a COMMON block in this situation
means that the read-only data can be created once and used by any number of
instantiations of the CW_DICE widget. See “Managing Application State” on
page 42 for a discussion of techniques (including the per-widget structure used
here) you can use to store and access widget-specific state information.

Given the above decisions, it is now possible to write the CW_DICE procedure.

Example Code
The following sections discuss elements of the procedure’s source code, located in
cw_dice.pro in the lib subdirectory of the IDL distribution. Run this example
procedure by entering cw_dice at the IDL command prompt or view the file in an
IDL Editor window by entering .EDIT cw_dice.pro.

In the CW_DICE function, beginning with function CW_DICE, parent,
value, UVALUE=uvalue, notice that the code makes reference to two routines
named CW_DICE_SET_VAL and CW_DICE_GET_VAL.

By using the FUNC_GET_VALUE and PRO_SET_VALUE keywords to
WIDGET_BASE, WIDGET_CONTROL can call these routines whenever the user
makes a WIDGET_CONTROL, SET_VALUE or GET_VALUE request. See the
functions, cw_dice_set_val and cw_dice_get_val in the for details.
Example: Compound Widget User Interface Programming

Chapter 2: Creating Widget Applications 51
CW_DICE_SET_VALUE makes reference to a procedure named CW_DICE_ROLL
that does the actual dice rolling. Rolling is implemented as follows:

1. If this is the initial call to CW_DICE_ROLL, then pick the final value that will
end up being displayed and enter this into the widget’s state. Hence,
WIDGET_CONTROL, /GET_VALUE reports the final value instead of one of
the intermediate “tumble” values no matter when it is called.

2. If this is not the final tumble, pick a random intermediate value and display
that. Then, make another timer event request for the next tumble.

3. If this is the final tumble, use the saved final value.

4. CW_DICE_ROLL works in cooperation with the event handler function for
CW_DICE. Each timer event causes the event handler to be called and the
event handler in turn calls CW_DICE_ROLL to process the next tumble.

The CW_DICE_ROLL procedure leads us to the event handler function,
CW_DICE_EVENT. This event handler expects to see button press events generated
from a user action as well as TIMER events from CW_DICE_ROLL. We only want
to issue events for the button presses so if the tag name in the event structure is not
WIDGET_TIMER, then create an event.

Using CW_DICE in a Widget Program

We can use CW_DICE to implement an application named XDICE. XDICE displays
two dice as well as a “Roll” button. Pressing either die causes it to roll individually.
Pressing the “Roll” button causes both dice to roll together. A text widget at the
bottom displays the current value.

Figure 2-1: The XDICE Example Program
User Interface Programming Example: Compound Widget

52 Chapter 2: Creating Widget Applications
Example Code
xdice.pro can be found in the examples/doc/widgets subdirectory of the
IDL distribution. Run this example procedure by entering xdice at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
xdice.pro. See “Running the Example Code” on page 15 if IDL does not run the
program as expected.
Example: Compound Widget User Interface Programming

Chapter 2: Creating Widget Applications 53
Debugging Widget Applications

In addition to the “normal” debugging tasks associated with any IDL program, widget
applications also require you to debug errors in the widget event loop. If your widget
application experiences errors in an event handling routine, keep the following points
in mind:

• By default, XMANAGER catches errors and continues processing (see
“CATCH” (IDL Reference Guide)). If you are using XMANAGER to manage
your widget application (as in most cases you should), calling XMANAGER
with CATCH=0 will cause XMANAGER to halt when it encounters an error.

Setting CATCH=0 is useful during debugging, but finished programs should
run with the default setting (CATCH=1) and refrain from setting it explicitly.

• CATCH is only effective if XMANAGER is blocking to dispatch errors.
During debugging, make sure to call XMANAGER with NO_BLOCK=0 (the
default).

Setting NO_BLOCK=0 is useful during debugging, but in many cases you will
want your finished program to set NO_BLOCK=1 in order to allow other
widget programs (and the IDL command line) to remain active while your
application is running.

If a widget application stops responding, you can restart event processing by doing
the following:

1. Enter RETALL at the IDL prompt to return to the main program level.

2. Optionally, modify the code to fix the error and re-compile.

3. If one or more of the applications you are running blocks the active command
line, enter XMANAGER at the IDL prompt in order to have it resume processing
events in the blocking mode. If all applications have NO_BLOCK=1 set, a call
to XMANAGER will immediately return, and can be safely omitted.

See Chapter 8, “Debugging and Error-Handling” for complete details about
debugging IDL programs.
User Interface Programming Debugging Widget Applications

54 Chapter 2: Creating Widget Applications
Debugging Widget Applications User Interface Programming

Chapter 3

Widget Application
Techniques
The following topics are covered in this chapter:
Working with Widget Events 56
Using Multiple Widget Hierarchies 61
Creating Menus . 64

Widget Sizing . 76
Tips on Creating Widget Applications 82
Enhancing Widget Application Usability . . 84
User Interface Programming 55

56 Chapter 3: Widget Application Techniques
Working with Widget Events

Widget events and the process of establishing a widget event loop for your
application are described in “Widget Event Processing” on page 34. This section
discusses additional topics that may be useful when creating event-driven
applications, including:

• “Interrupting the Event Loop”

• “Identifying Widget Type from an Event” on page 57

• “Keyboard Focus Events” on page 57

• “Timer Events” on page 58

• “Tracking Events” on page 59

• “Context Menu Events” on page 60

Interrupting the Event Loop

Beginning with IDL version 5, IDL has the ability to process commands from the
IDL command line while simultaneously processing widget events. This means that
the IDL command line will remain active even when widget applications are running.

It is possible to interrupt the event function by sending the interrupt character
(Control-C). However, you may find that even after sending the interrupt character,
IDL does not immediately interrupt the event loop. IDL will interrupt the process that
is “on top”—that is, if several applications are running at once, the interrupt will be
handled by the first application to receive it.

If your widget application is the only active application, and sending the interrupt
does not cause it to break, move the mouse cursor across (or click on) one of the
widgets.

This works because when IDL is in the event function, it only checks for the interrupt
between event notifications from the window system. Such events do not necessarily
translate one-to-one into IDL widget events because the window system typically
generates a large number of events related to the window system’s operation that IDL
quietly handles. Moving the mouse cursor across the widgets typically generates
some of these events which gives IDL a chance to notice the interrupt and act on it.
Working with Widget Events User Interface Programming

Chapter 3: Widget Application Techniques 57
Identifying Widget Type from an Event

Given a widget event structure, often you need to know what type of widget
generated it without having to match the widget ID in the event structure to all the
current widgets. This information is available by specifying the
STRUCTURE_NAME keyword to the TAG_NAMES function:

PRINT, 'Event structure type: ', TAG_NAMES(EVENT, /STRUCTURE_NAME)

This works because each widget type generates a different event structure. The event
structure generated by a given widget type is documented in the description of the
widget creation function in the IDL Reference Guide.

When using this technique, be aware that although all the basic widgets use named
structures for their events, many compound widgets return anonymous structures.
This technique does not work well in that case because anonymous structures lack a
recognizable name.

An alternative technique involves using the TYPE keyword to the WIDGET_INFO
function. This method is useful when the widget event name does not specify the
widget from which the event originated. Timer events are an example; although the
events originate from a widget, the event structure’s name is WIDGET_TIMER. The
following statement checks to see if the event is a timer event and, if it is, prints the
type code of the widget that generated the event.

IF ((TAG_NAMES(EVENT, /STRUCTURE) EQ 'WIDGET_TIMER') THEN $
PRINT, WIDGET_INFO(EVENT.ID, /TYPE)

Such a check would be useful if a given widget could generate either a timer event or
a “normal” event, and you wanted to differentiate between the two.

Note
Always check for a distinct type of widget event. IDL will continue to add new
widgets with new event structures, so it is important not to make assumptions about
the contents of a random widget event structure. The structure of existing widget
events will remain stable, (although new fields may be added) so checking for a
particular type of widget event will always work.

Keyboard Focus Events

Base, table, and text widgets can be set to generate keyboard focus events. Generating
and examining keyboard focus events allows you to determine when a given widget
has either gained or lost the keyboard focus—that is, when it is brought to the
foreground or when it is covered by another window.
User Interface Programming Working with Widget Events

58 Chapter 3: Widget Application Techniques
Set the KBRD_FOCUS_EVENTS keyword to WIDGET_BASE, WIDGET_TABLE,
or WIDGET_TEXT to generate keyboard focus events. (You can also modify an
existing base, table, or text widget to generate keyboard focus events using the
KBRD_FOCUS_EVENTS keyword to WIDGET_CONTROL.) You can then use your
event-handling procedure to cache the widget ID of the last widget (with keyboard
focus events enabled) to have the keyboard focus. One situation where this is useful is
when you have an application menu (created with the MBAR keyword to
WIDGET_BASE) and you wish to perform an action in a text widget based on the
menu item selected. Although the event generated by the user’s menu selection has
the menu’s base as its top-level widget ID, if you generate and track keyboard focus
events for the text widget, you can “remember” which widget the action triggered by
the menu selection should affect. Note that in this example, keyboard focus events are
not generated for the menubar’s base.

Timer Events

In addition to the normal widget events discussed previously, IDL allows the user to
make timer event requests by using the TIMER keyword. Such events are useful in
many applications that are time dependent, such as animation. The syntax for making
such a request is:

WIDGET_CONTROL, Widget_Id, TIMER=interval_in_seconds

Widget_Id can be the ID of any type of widget. When such a request is made, IDL
generates a timer request after the requested time interval has passed. Timer events
consist of a structure with only the standard three fields — no additional information is
provided.

Note
At most one timer event request can be associated with a given widget ID. If
multiple timer event requests are associated with a single widget, the last request
made takes precedence.

It is up to the programmer to differentiate between a normal event and a timer event
for a given widget. One way to solve this problem is to make timer requests for
widgets that do not otherwise generate events, such as base or label widgets.

Each timer request causes a single event to be generated. To generate a steady stream
of timer events, you must make a new timer request in the event handler routine each
Working with Widget Events User Interface Programming

Chapter 3: Widget Application Techniques 59
time a timer event is delivered. The following example demonstrates how to check for
a timer event and generate a new timer event each time a timer event occurs:

PRO timer_example_event, ev

WIDGET_CONTROL, ev.ID, GET_UVALUE=uval
IF (TAG_NAMES(ev, /STRUCTURE_NAME) EQ 'WIDGET_TIMER') THEN BEGIN

PRINT, 'Timer Fired'
WIDGET_CONTROL, ev.TOP, TIMER=2

ENDIF

CASE uval OF
'timer' : BEGIN

WIDGET_CONTROL, ev.TOP, TIMER=2
END

'exit' : WIDGET_CONTROL, ev.TOP, /DESTROY
ELSE:
ENDCASE

END

PRO timer_example
base = WIDGET_BASE(/COLUMN, UVALUE='base')
b1 = WIDGET_BUTTON(base, VALUE='Fire event', UVALUE='timer')
b2 = WIDGET_BUTTON(base, VALUE='Exit', UVALUE='exit')
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'timer_example', base, /NO_BLOCK

END

See “Draw Widget Example” on page 120 for a larger example using timer events.

Tracking Events

Tracking events allow you to determine when the mouse pointer has entered or left
the area of the computer screen covered by a given widget. You can use tracking
events to allow your interface to react as the user moves the mouse pointer over
different interface elements. Tracking events are generated for a widget when the
widget creation routine is called with the TRACKING_EVENTS keyword set.

The event structure of a tracking event includes a field named ENTER that contains a
1 (one) if the mouse pointer entered the region covered by the widget, or 0 (zero) if
the mouse pointer left the region covered by the widget. The following example
demonstrates how to check for tracking events and modify the value of a button
widget when the mouse cursor is positioned over it.

PRO tracking_demo_event, event
IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_TRACKING') $
THEN BEGIN
User Interface Programming Working with Widget Events

60 Chapter 3: Widget Application Techniques
IF (event.ENTER EQ 1) THEN BEGIN
WIDGET_CONTROL, event.ID, SET_VALUE='Press to Quit'

ENDIF ELSE BEGIN
WIDGET_CONTROL, event.ID, $
SET_VALUE='What does this button do?'

ENDELSE
ENDIF ELSE BEGIN

WIDGET_CONTROL, event.TOP, /DESTROY
ENDELSE

END

PRO tracking_demo
base = WIDGET_BASE(/COLUMN)
button = WIDGET_BUTTON(base, $

VALUE='What does this button do?', /TRACKING_EVENTS)
WIDGET_CONTROL, base, /REALIZE
XMANAGER, 'tracking_demo', base

END

Context Menu Events

Base, list, text, table and tree widgets can be set to generate context menu events.
Generating and examining context menu events allows you to determine when the
user has clicked the right-hand mouse button over a given widget, which in turn
allows you to display a “context menu.” (Draw widgets can also generate events when
the right-hand mouse button is clicked, using the general BUTTON_EVENTS
mechanism.) See “Context-Sensitive Menus” on page 69 for a detailed description.
Working with Widget Events User Interface Programming

Chapter 3: Widget Application Techniques 61
Using Multiple Widget Hierarchies

Using widgets, you can create IDL applications with graphical user interfaces.
Although widget applications are running “inside” IDL, a well-designed program can
behave and appear just like a stand-alone application.

While a simple application may consist of a single widget hierarchy headed by a
single top-level base widget, more complex applications can include multiple widget
hierarchies, each with their own top-level base. Widget applications that include
multiple widget hierarchies consist of a group of top-level base widgets organized
hierarchically. The individual widgets that make up the widget application’s interface
have as their parent widget either one of the top-level bases or a base that is a child of
one of the top-level bases.

Groups of widgets are defined by setting the GROUP_LEADER keyword when
creating the widget. Group membership controls how and when widgets are iconized,
which layer they appear in, and when they are destroyed.

Figure 3-1 depicts a widget application group hierarchy consisting of six top-level
bases in three groups: base 1 leads all six bases, base 2 leads bases 4 and 5, and base
3 leads base 6. What does this mean? Operations like inconization or destruction that
affect base 2 also affect bases 4 and 5. Operations that affect base 3 also affect base 6.
Operations that affect base 1 affect all six bases—that is, a group includes not only
those bases that explicitly claim one base as their leader, but also all bases led by
those member bases.

Figure 3-1: A widget application group hierarchy with six top-level bases.
User Interface Programming Using Multiple Widget Hierarchies

62 Chapter 3: Widget Application Techniques
The following IDL commands would create this hierarchy:

base1 = WIDGET_BASE()
base2 = WIDGET_BASE(GROUP_LEADER=base1)
base3 = WIDGET_BASE(GROUP_LEADER=base1)
base4 = WIDGET_BASE(GROUP_LEADER=base2)
base5 = WIDGET_BASE(GROUP_LEADER=base2)
base6 = WIDGET_BASE(GROUP_LEADER=base3)

Widget Group Behaviors

Groups of widgets are displayed and destroyed according to the following principles:

Iconization

Bases and groups of bases can be iconized (or minimized) by clicking the system
minimize control. When a group leader is iconized, all members of the group are
minimized as well.

Layering

Layering is the process by which groups of widgets seem to share the same plane on
the display screen. Within a layer on the screen, widgets have a Z-order, or front-to-
back order, that defines which widgets appear to be on top of other widgets.

All widgets within a group hierarchy share the same layer—that is, when one group
member has the input focus, all members of the group hierarchy are displayed in a
layer that appears in front of all other groups or applications. Within the layer, the
widgets can have an arbitrary Z-order, determined by the programmer.

Destruction

When a group leader widget is destroyed, either programmatically or by clicking on
the system “close” button, all members of the group are destroyed as well.

See “Iconizing, Layering, and Destroying Groups of Top-Level Bases” under
“WIDGET_BASE” (IDL Reference Guide) for detailed information on how group
membership defines widget behavior on different platforms.

Titlebar Icon Inheritance

On Microsoft Windows platforms, if the group leader has the BITMAP keyword set,
the same titlebar icon is used for all group members. (Titlebar icons are not supported
on Motif platforms.)
Using Multiple Widget Hierarchies User Interface Programming

Chapter 3: Widget Application Techniques 63
Floating bases

Top-level base widgets created with the FLOATING keyword set will float above
their group leaders, even though they share the same layer. Floating bases and their
group leaders are iconized in a single icon (on platforms where iconization is
possible). Floating bases are destroyed when their group leaders are destroyed.

Modal bases

Top-level base widgets created with the MODAL keyword will float above their
group leaders, and will suspend processing in the widget application until they are
dismissed. (Dialogs are generally modal.) Modal bases cannot be iconized, and on
some platforms other bases cannot be moved or iconized while the modal dialog is
present. Modal bases cannot have scroll bars or menubars.

Menubars

Widget applications can have an application-specific menubar, created by the MBAR
keyword to WIDGET_BASE. Menus and menubars are discussed in detail in
“Creating Menus” on page 64.
User Interface Programming Using Multiple Widget Hierarchies

64 Chapter 3: Widget Application Techniques
Creating Menus

Menus allow a user to select one or more options from a list of options. IDL widgets
allow you to build a number of different types of menus for your widget application.

This section discusses the following different types of menus:

• Button Groups

• Lists

• Pulldown Menus

• Menus on Top-Level Bases

• Context-Sensitive Menus

Button Groups

One approach to menu creation is to build an array of buttons. With a button menu, all
options are visible to the user all the time. To create a button menu, do the following:

1. Call the WIDGET_BASE function to create a base to hold the buttons. Use the
COLUMN and ROW keywords to determine the layout of the buttons.

2. Call the WIDGET_BUTTON function once for each button to be added to the
base created in the previous step.

Because menus of buttons are common, IDL provides a compound widget named
CW_BGROUP to create them. Using CW_BGROUP rather than a series of calls to
WIDGET_BUTTON simplifies creation of a menu of buttons and also simplifies
event handling by providing a single event structure for the group of buttons. For
example, the following IDL statements create a button menu with five choices:

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE()
bgroup = CW_BGROUP(base, values, /COLUMN)
WIDGET_CONTROL, base, /REALIZE

In this example, one call to CW_BGROUP replaces five calls to
WIDGET_BUTTON.

Exclusive or Nonexclusive Buttons

Buttons in button groups normally act as independent entities, returning a selection
event (a one in the select field of the event structure) or similar value when pressed.
Groups of buttons can also be made to act in concert, as either exclusive or non-
Creating Menus User Interface Programming

Chapter 3: Widget Application Techniques 65
exclusive groups. In contrast to normal button groups, both exclusive and non-
exclusive groups display which buttons have been selected.

Exclusive button groups allow only one button to be selected at a given time. Clicking
on an unselected button deselects any previously-selected buttons. Non-exclusive
button groups allow any number of buttons to be selected at the same time. Clicking
on the same button repeatedly selects and deselects that button. The following code
creates three button groups. The first group is a “normal” button group as created in
the previous example. The next is an exclusive group, and the third is a non-exclusive
group.

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE(/ROW)
bgroup1 = CW_BGROUP(base, values, /COLUMN, $

LABEL_TOP='Normal', /FRAME)
bgroup2 = CW_BGROUP(base, values, /COLUMN, /EXCLUSIVE, $

LABEL_TOP='Exclusive', /FRAME)
bgroup3 = CW_BGROUP(base, values, /COLUMN, /NONEXCLUSIVE, $

LABEL_TOP='Nonexclusive', /FRAME)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Figure 3-2: Normal Menus (left), Exclusive Menus (center) and
Non-exclusive Menus (right)
User Interface Programming Creating Menus

66 Chapter 3: Widget Application Techniques
Lists

A second approach to menu creation is to provide the user with a list of options in the
form of a scrolling or drop-down list. A scrolling list is always displayed, although it
may not show all items in the list at all times. A drop-down list shows only the
selected item until the user clicks on the list, at which time it displays the entire list.
Both lists allow only a single selection at a time.

The following example code uses the WIDGET_LIST and WIDGET_DROPLIST
functions to create two menus of five items each. While both lists contain five items,
the scrolling list displays only three at a time, because we specify this with the YSIZE
keyword.

values = ['One', 'Two', 'Three', 'Four', 'Five']
base = WIDGET_BASE(/ROW)
list = WIDGET_LIST(base, VALUE=values, YSIZE=3)
drop = WIDGET_DROPLIST(base, VALUE=values)
WIDGET_CONTROL, base, /REALIZE

The widget created by this code is shown in the following figure:

Pulldown Menus

A third approach to menu creation involves menus that appear as a single button until
the user selects the menu, at which time the menu pops up to display the list of
possible selections. Buttons in such a pulldown menu can activate other pulldown
menus to any desired depth. The method for creating a pulldown menu is as follows:

1. The topmost element of any pulldown menu is a button, created with the
MENU keyword to the WIDGET_BUTTON function.

Figure 3-3: Scrolling and drop-down lists.
Creating Menus User Interface Programming

Chapter 3: Widget Application Techniques 67
2. The top-level button has one or more child widget buttons attached. (That is,
one or more buttons specify the first button’s widget ID as their “parent.”) Each
button can either be used as is, in which case pressing it causes an event to be
generated, or it can be created with the MENU keyword and have further child
widget buttons attached to it. If it has child widgets, pushing it causes a
pulldown menu containing the child buttons to pop into view.

3. Menu buttons can be the parent of other buttons to any desired depth.

Because pulldown menus are common, IDL provides a compound widget named
CW_PDMENU to create them. Using CW_PDMENU rather than a series of calls to
WIDGET_BUTTON simplifies creation of a pulldown menu in the same way the
CW_BGROUP simplifies the creation of button menus.

The following example uses CW_PDMENU to create a pulldown menu. First, we
create an array of anonymous structures to contain the menu descriptions.

desc = REPLICATE({ flags:0, name:'' }, 6)

The desc array contains six copies of the empty structure. Each structure has two
fields: flags and name. Next, we populate these fields with values:

desc.flags = [1, 0, 1, 0, 2, 2]
desc.name = ['Operations', 'Predefined', 'Interpolate', $

'Linear', 'Spline', 'Quit']

The value of the flags field specifies the role of each button. In this example, the first
and third buttons start a new sub-menu (values are 1), the second and fourth buttons
are plain buttons with no other role (values are 0), and the last two buttons end the
current sub-menu and return to the previous level (values are 2). The value of the
name field is the value (or label) of the button at each level.

base = WIDGET_BASE()
menu = CW_PDMENU(base, desc)
WIDGET_CONTROL, base, /REALIZE

The format of the menu description used by CW_PDMENU in the above example
requires some explanation. CW_PDMENU views a menu as consisting of a series of
buttons, each of which can optionally lead to a sub-menu. The description of each
button consists of a structure supplying its name and a flag field that tells what kind
of button it is (starts a new sub-menu, ends the current sub-menu, or a plain button
within the current sub-menu). The description of the complete menu consists of an
array of such structures corresponding to the flattened menu.
User Interface Programming Creating Menus

68 Chapter 3: Widget Application Techniques
Compare the description used in the code above with the result shown in the
following figure.

Menus on Top-Level Bases

A fourth approach to providing menus in your widget application is to attach the
menus directly to the top-level base widget. Menus attached to a top-level base
widget are created just like pulldown menus created from button widgets, but they do
not appear as buttons. Menus created in this way are children of a special sub-base of
the top-level base, created by specifying the MBAR keyword when the top-level base
is created.

For example, the following code creates a top-level base widget and attaches a menu
titled MENU1 to it. MENU1 contains the choices ONE, TWO, and THREE.

base = WIDGET_BASE(MBAR=bar)
menu1 = WIDGET_BUTTON(bar, VALUE='MENU1', /MENU)
button1 = WIDGET_BUTTON(menu1, VALUE='ONE')
button2 = WIDGET_BUTTON(menu1, VALUE='TWO')
button3 = WIDGET_BUTTON(menu1, VALUE='THREE')
draw = WIDGET_DRAW(base, XSIZE=100, YSIZE=100)
WIDGET_CONTROL, base, /REALIZE

Figure 3-4: Pulldown menus created with CW_PDMENU.
Creating Menus User Interface Programming

Chapter 3: Widget Application Techniques 69
The resulting widget is shown in the following figure:

Context-Sensitive Menus

Context-sensitive menus (also referred to as context menus or pop-up menus) are
hidden until a user performs an action to display the menu. When summoned, the
appearance of a context menu is similar to that of a menu created in a floating, modal
base. The behavior of a context menu is the same as that of a menu on a menu bar;
when the user clicks one of the menu’s buttons, a button event is generated and the
menu is dismissed. If the user clicks outside the context menu, it is dismissed without
generating any events.

Figure 3-5: Menus attached to a top-level base.

Figure 3-6: Widget Context Menus.
User Interface Programming Creating Menus

70 Chapter 3: Widget Application Techniques
By convention, context-sensitive menus in IDL widget applications are displayed
when the user clicks the right mouse button. Several IDL widget primitives — base,
draw, list, table, text, and tree widgets — can be configured to generate events when
this occurs. The mechanism used to generate right mouse button events is different
for draw widgets than for the other types; these differences are discussed below.

Note
While it is customary to display context-sensitive menus when the user clicks the
right mouse button, IDL’s mechanism for displaying the menus is quite general, and
can be invoked under many circumstances. Examples in this section will discuss the
common usage.

To create a context-sensitive menu in a widget application, do the following:

1. Create a Context Menu

2. Generate and Handle Context Events

3. Display the Context Menu

4. Process Button Events

Create a Context Menu

Context menus are contained within a special base widget created with the
CONTEXT_MENU keyword. A base widget used as the base for a context menu
must have as its parent widget one of the following widget types:

• Base widget

• Draw widget

• List widget

• Property sheet widget

• Table widget

• Text widget

• Tree widget

The process for creating a context menu is similar to that for creating a menu for a
top-level base (a menubar). Create menu entries on the base widget using the
WIDGET_BUTTON function. Context menu entries can display sub-menus (using
the MENU keyword to WIDGET_BUTTON or the CW_PDMENU compound
widget) or appear as separators (using the SEPARATOR keyword to
WIDGET_BUTTON).
Creating Menus User Interface Programming

Chapter 3: Widget Application Techniques 71
The following code snippet illustrates a very simple context menu attached to a base
widget:

topLevelBase = WIDGET_BASE(/CONTEXT_EVENTS)
contextBase = WIDGET_BASE(topLevelBase, /CONTEXT_MENU)
button1 = WIDGET_BUTTON(contextBase, VALUE='First button')
button2 = WIDGET_BUTTON(contextBase, VALUE='Second button')

Generate and Handle Context Events

Generating Right Mouse Button Events

In order to display the context menu at the appropriate time, the widget that serves as
the parent for the context menu base must be configured to generate an event when
the user clicks the right mouse button over that widget. For base, list, property sheet,
table, text, and tree widgets, this is accomplished by setting the
CONTEXT_EVENTS keyword when creating the widget, or by enabling context
events by setting the CONTEXT_EVENTS keyword to WIDGET_CONTROL. When
a user clicks the right mouse button over an appropriately configured base, list, text,
or tree widget, a widget event with the following structure is generated:

{WIDGET_CONTEXT, ID:0L, TOP:0L, HANDLER:0L, X:0L, Y:0L,
 ROW:0L, COL:0L}

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, measured from the
upper left corner of the base widget. The ROW and COL fields return meaningful
information for table widgets and values of zero (0) for other widgets.

For table widgets, ROW and COL indicate the zero-based index of the cell that was
clicked on when the context menu was initiated. The upper-left data cell has a row
and column index of 0,0. Row and column headers have indices of -1. If the context
menu event takes place outside of all table cells and headers, then both ROW and
COL will have values of -1.

Note
When working with context menu events, it is important to notice that the event
structure does not have a TYPE field, so special code is needed for the property
sheet event handler. Instead of keying off the TYPE field, use the structure’s name.
An example is provided in the WIDGET_PROPERTYSHEET “Example” section
in the IDL Reference Guide.
User Interface Programming Creating Menus

72 Chapter 3: Widget Application Techniques
For draw widgets, button events are handled differently. Set the BUTTON_EVENTS
keyword to WIDGET_DRAW (or the DRAW_BUTTON_EVENTS keyword to
WIDGET_CONTROL) to generate widget events with the following structure:

{ WIDGET_DRAW, ID:0L, TOP:0L, HANDLER:0L, TYPE: 0, X:0L, Y:0L,
PRESS:0B, RELEASE:0B, CLICKS:0, MODIFIERS:0L, CH:0, KEY:0L }

The first three fields are the standard fields found in every widget event. The X and Y
fields give the device coordinates at which the event occurred, measured from the
lower left corner of the drawing area. PRESS and RELEASE are bitmasks that
represent which of the left, center, or right mouse button was pressed: that is, a value
of 1 (one) represents the left button, 2 represents the middle button, and 4 represents
the right button. (See “Widget Events Returned by Draw Widgets” (IDL Reference
Guide) for a complete description of the WIDGET_DRAW event structure.)

Detecting Right Mouse Button Events

Once the parent widget of your context menu is configured to generate events when
the user clicks the right mouse button, you must detect the events in your event
handler routine. For base, list, text, and tree widgets, your event handler should
examine the event structure name to determine the type of event; if the event is of
type WIDGET_CONTEXT, you know that the right mouse button was pressed.

To detect a right mouse button click in a base, list, text, or tree widget (with context
events enabled), use the following test:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT') THEN
BEGIN

; process event here
ENDIF

For draw widgets, your event handler should examine the WIDGET_DRAW event
structure; if the value of the RELEASE field is equal to four, you know that the right
mouse button was pressed and released.

To detect a right mouse button click in a draw widget (with button events enabled),
use the following test:

IF (event.release EQ 4) THEN BEGIN
; process event here

ENDIF
Creating Menus User Interface Programming

Chapter 3: Widget Application Techniques 73
Note that in a complex widget application, your event handler may first need to
determine whether the event came from a draw widget. In this case, you may need a
test that looks like this:

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_DRAW') THEN BEGIN
IF (event.release EQ 4) THEN BEGIN

; process event here
ENDIF

ENDIF

Display the Context Menu

When your event handler routine detects a right mouse button click, use the
WIDGET_DISPLAYCONTEXTMENU procedure to display the context menu. This
routine takes as its parameters the widget ID of the widget for which the context
menu is to be displayed, the X and Y coordinates at which the menu should be
displayed, and the widget ID of the context menu base widget that holds the context
menu. See “WIDGET_DISPLAYCONTEXTMENU” (IDL Reference Guide) for
additional information.

In all cases, the ID field of the event structure generated by the right mouse button
click contains the widget ID of the widget whose context menu is to be displayed.
Similarly, the event structure contains the location of the mouse click in the X and Y
fields; in most cases, this is where you will want to display the context menu.

The following code fragment would display a context menu held in a base widget
whose widget ID is contextBase at the location of the user’s right mouse click:

WIDGET_DISPLAYCONTEXTMENU, event.ID, event.X, $
event.Y, contextBase

In a simple application with only one context menu, you know the widget ID of the
context menu base widget to be displayed. In a real application, however, it is likely
that more than one context menu exists. See “Determining Which Context Menu to
Display”, below, for tips on dealing with multiple context menus.

Process Button Events

Once the context menu is displayed, processing events that flow from it is the same as
processing events from any other menu. The individual buttons that make up the
menu can have event handler routines associated with them; these routines are then
invoked when the user clicks on one of the menu buttons. See the “Context Menu
Example” below for a simple illustration of menu button event processing.
User Interface Programming Creating Menus

74 Chapter 3: Widget Application Techniques
Determining Which Context Menu to Display

In a real application, you may have multiple context menus available to display when
the user right-clicks on different portions of the user interface. One way to handle this
situation is to have your event handler keep track of which context menu should be
displayed for each widget. Consider a widget hierarchy that contains a text widget
and a list widget, both of which have associated context menus:

topLevelBase = WIDGET_BASE(/COLUMN, XSIZE = 120, YSIZE = 80)
wText = WIDGET_TEXT(topLevelBase, VALUE="Context Menu Test", $

/CONTEXT_EVENTS)
wList = WIDGET_LIST(topLevelBase, VALUE=['one','two', 'three'], $

/CONTEXT_EVENTS)
contextBase1 = WIDGET_BASE(wText, /CONTEXT_MENU, $

UNAME="tContextMenu")
contextBase2 = WIDGET_BASE(wList, /CONTEXT_MENU, $

UNAME="lContextMenu")

Now the application’s event handler, after detecting a right mouse button click with
the

IF (TAG_NAMES(event, /STRUCTURE_NAME) EQ 'WIDGET_CONTEXT')

test, must somehow determine whether the user had clicked on the text widget or the
list widget. To make this determination, you could use the WIDGET_INFO function
to search the widget hierarchy starting with the widget at the top of the event structure
for a widget with the correct UNAME value:

IF (WIDGET_INFO(event.id, FIND_BY_UNAME = 'tContextMenu') GT 0) $
THEN BEGIN
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, event.y, $

WIDGET_INFO(event.id, FIND_BY_UNAME = 'tContextMenu')
ENDIF
IF (WIDGET_INFO(event.id, FIND_BY_UNAME = 'lContextMenu') GT 0) $

THEN BEGIN
WIDGET_DISPLAYCONTEXTMENU, event.id, event.x, event.y, $

WIDGET_INFO(event.id, FIND_BY_UNAME = 'lContextMenu')
ENDIF

While this method will always work, it may involve a substantial amount of code, and
must search the widget hierarchy multiple times to find the widget ID of the base for
the context menu. If, however, your application has at most one context menu for
each base, draw, list, or text widget, you can streamline the code significantly by
using a common UNAME value for all of the context menus. For example, if the
definitions of the context menu bases change to this:

contextBase1 = WIDGET_BASE(wText, /CONTEXT_MENU, $
UNAME="contextMenu")

contextBase2 = WIDGET_BASE(wList, /CONTEXT_MENU, $
Creating Menus User Interface Programming

Chapter 3: Widget Application Techniques 75
UNAME="contextMenu")

then the code detecting and displaying the context menu becomes:

contextBase = WIDGET_INFO(event.ID, FIND_BY_UNAME = 'contextMenu')

WIDGET_DISPLAYCONTEXTMENU, event.ID, event.X, $
event.Y, contextBase

Since the context menu base is a child of the text or list widget, the call to
WIDGET_INFO finds the appropriate base by searching for the UNAME value
“contextMenu”, starting at the widget specified by event.ID.

Context Menu Example

The context menu example defines a simple application with two context menus, one
each for a list widget and a text widget. When a menu item on one of the context
menus is selected, IDL prints an informational message.

Example Code
See the file context_menu_example.pro in the examples/doc/widgets
subdirectory of the IDL distribution for the example code. Run this example
procedure by entering context_menu_example at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
context_menu_example.pro. See “Running the Example Code” on page 15 if
IDL does not run the program as expected.

Example Code
Additional examples using the context menu in various situations can be found in
the examples/doc/widgets subdirectory of the IDL distribution:

context_tlbase_example.pro
context_draw_example.pro
context_list_example.pro
context_text_example.pro
User Interface Programming Creating Menus

76 Chapter 3: Widget Application Techniques
Widget Sizing

This section explains how IDL widgets size themselves, widget geometry concepts,
and how to explicitly size and position widgets.

Widget Geometry Terms and Concepts

Widget size and layout is determined by many interrelated factors. In the following
discussion, the following terms are used:

• Geometry: The size and position of a widget.

• Natural Size: The natural, or implicit, size of a widget is the size a widget has
if no external constraints are placed on it. For example, a label widget has a
natural size that is determined by the size of the text it is displaying and space
for margins. These values are influenced by such things as the size of the font
being displayed and characteristics of the low-level (i.e., operating-system
level) widget or control used to implement the IDL widget.

• Explicit Size: The explicit, or user-specified, size of a widget is the size set
when an IDL programmer specifies one of the size keywords to an IDL widget
creation function or WIDGET_CONTROL.

Note
To retrieve information about the geometry of an existing widget, use the
GEOMETRY keyword to the WIDGET_INFO function.

How Widget Geometry is Determined

IDL uses the following rules to determine the geometry of a widget:

• The explicit size of a widget, if one is specified, takes precedence over the
natural size. That is, the user-specified size is used if available.

• If an explicit size is not specified, the natural size of the widget—at the time
the widget is realized—is used. Once realized, the size of a widget does not
automatically change when the value of the widget changes, unless the
widget’s dynamic resize property has been set. Dynamic resizing is discussed
in more detail below. Note that any realized widget can be made to change its
size by calling WIDGET_CONTROL with any of the sizing keywords.
Widget Sizing User Interface Programming

Chapter 3: Widget Application Techniques 77
• Children of a “bulletin board” base (i.e., a base that was created without setting
the COLUMN or ROW keywords) have an offset of (0,0) unless an offset is
explicitly specified via the XOFFSET or YOFFSET keywords.

• The offset keywords to widgets that are children of ROW or COLUMN bases
are ignored, and IDL calculates the offsets to lay the children out in a grid. This
calculation can be influenced by setting any of the ALIGN or BASE_ALIGN
keywords when the widgets are created.

Dynamic Resizing

Realized widgets, by default, do not automatically resize themselves when their
values change. This is true whether the widget was created with an explicit size or the
widget was allowed to size itself naturally. This behavior makes it easy to create
widget layouts that don’t change size too frequently or “flicker” due to small changes
in a widget’s natural size.

This default behavior can be changed for label, button, and droplist widgets. Set the
DYNAMIC_RESIZE keyword to WIDGET_LABEL, WIDGET_BUTTON, or
WIDGET_DROPLIST to make a widget that automatically resizes itself when its
value changes. Note that the XSIZE and YSIZE keywords should not be used with
DYNAMIC_RESIZE. Setting explicit sizing values overrides the dynamic resize
property and creates a widget that will not resize itself.

Explicitly Specifying the Size and Location of
Widgets

The XSIZE (and SCR_XSIZE), YSIZE (and SCR_YSIZE), XOFFSET, and
YOFFSET keywords, when used with a standard base widget parent (a base created
without the COLUMN or ROW keywords—also called a “bulletin board” base),
allow you to specify exactly how the child widgets should be positioned. Sometimes
this is a very useful option. However, in general, it is best to avoid this style of
programming. Although these keywords are usually honored, they are merely hints to
the widget toolkit and might be ignored.

Note
Draw widgets are the exception to this recommendation. In almost all cases, you
will want to set the size of draw widgets explicitly, using the sizing keywords.

Explicitly specifying the size and offset makes a program inflexible and unable to run
gracefully on various platforms. Often, a layout of this type will look good on one
platform, but variations in screen size and how the toolkit works will cause widgets to
User Interface Programming Widget Sizing

78 Chapter 3: Widget Application Techniques
overlap and not look good on another platform. The best way to handle this situation
is to use nested row and column bases to hold the widgets and let the widgets arrange
themselves. Such bases are created using the COLUMN and ROW keywords to the
WIDGET_BASE function.

Sizing Keywords

When explicitly setting the size of a widget, IDL allows you to control three aspects
of the size:

• The virtual size is the size of the potentially viewable area of the widget. The
virtual size may be larger than the actual viewable area on your screen. The
virtual size of a widget is determined by either the widget’s value, or the
XSIZE and YSIZE keywords to the widget creation routine.

• The viewport size is the size of the viewable area on your screen. If the
viewport size is smaller than the virtual size, scroll bars may be present to
allow you to view different sections of the viewable area. When creating
widgets for which scroll bars are appropriate, you can add scroll bars by setting
the either SCROLL keyword or the APP_SCROLL keyword to the widget
creation routine. (For information on the difference, see “Scrolling Draw
Widgets” on page 113.) You can explicitly set the size of the viewport area
using the X_SCROLL_SIZE and Y_SCROLL_SIZE keywords when creating
base, draw, and table widgets.

• The screen size is the size of the widget on your screen. You can explicitly
specify a screen size using the SCR_XSIZE and SCR_YSIZE keywords to the
widget creation routine. Explicitly-set viewport sizes (set with
X_SCROLL_SIZE or Y_SCROLL_SIZE) are ignored if you specify the
screen size.

The following code shows an example of the WIDGET_DRAW command:

draw = WIDGET_DRAW(base, XSIZE=384, YSIZE=384,$
X_SCROLL_SIZE=192, Y_SCROLL_SIZE = 192, SCR_XSIZE=200)
Widget Sizing User Interface Programming

Chapter 3: Widget Application Techniques 79
This results in the following:

In this case, the XSIZE and YSIZE keywords set the virtual size to 384 x 384 pixels.
The X_SCROLL_SIZE and Y_SCROLL_SIZE keywords set the viewport size to 192
x 192 pixels. Finally, the SCR_XSIZE keyword overrides the X_SCROLL_SIZE
keyword and forces the screen size of the widget (in the X-dimension) to 200 pixels,
including the scroll bar.

Controlling Widget Size after Creation

A number of keywords to the WIDGET_CONTROL procedure allow you to change
the size of a widget after it has been created. (You will find a list of the keywords to
WIDGET_CONTROL that apply to each type of widget at the end of the widget
creation routine documentation.) Note that keywords to WIDGET_CONTROL may
not control the same parameters as their counterparts associated with widget creation
routines. For example, while the XSIZE and YSIZE keywords to WIDGET_DRAW
control the virtual size of the draw widget, the XSIZE and YSIZE keywords to
WIDGET_CONTROL (when called with the widget ID of a draw widget) control the
viewport size of the draw widget. See the IDL Reference Guide for details.

Figure 3-7: Visual description of widget sizes.

Virtual Size (XSIZE & YSIZE)

Screen Size (SCR_XSIZE)

V
ie

w
 S

iz
e

(Y
_S

C
R

O
L

L
_S

IZ
E

)

Virtual Size (XSIZE & YSIZE)
User Interface Programming Widget Sizing

80 Chapter 3: Widget Application Techniques
Units of Measurement

You can specify the unit of measurement used for most widget sizing operations.
When using a widget creation routine, or when using WIDGET_CONTROL or
WIDGET_INFO, set the UNITS keyword equal to 0 (zero) to specify that all
measurements are in pixels (this is the default), to 1 (one) to specify that all
measurements are in inches, or to 2 (two) to specify that all measurements are in
centimeters.

Note
The UNITS keyword does not affect all sizing operations. Specifically, the value of
UNITS is ignored when setting the XSIZE or YSIZE keywords to WIDGET_LIST,
WIDGET_TABLE, or WIDGET_TEXT.

Finding the Size of the Screen

When creating the top-level base for an application, sometimes it is useful to know
the size of the screen. This information is available via the GET_SCREEN_SIZE
function. GET_SCREEN_SIZE returns a two-element floating-point array specifying
the size of the screen, in pixels. See “GET_SCREEN_SIZE” (IDL Reference Guide)
for details.

Preventing Layout Flicker

After a widget hierarchy has been realized, adding or destroying widgets in that
hierarchy causes IDL to recalculate and set new geometries for every widget in the
hierarchy. When a number of widgets are added or destroyed, these calculations
occur between each change to the hierarchy, resulting in unpleasant screen “flashing”
as the user sees a brief display of each intermediate widget configuration. This
behavior can be eliminated by using the UPDATE keyword to WIDGET_CONTROL.

The top-level base of every widget hierarchy has an UPDATE attribute that
determines whether or not changes to the hierarchy are displayed on screen. Setting
UPDATE to 0 turns off immediate updates and allows you to make a large number of
changes to a widget hierarchy without updating the screen after each change. After all
of your changes have been made, setting UPDATE to 1 causes the final widget
configuration to be displayed on screen.

For example, consider the following main-level program that realizes an unmapped
base, then adds 200 button widgets to the previously-realized base:

time = SYSTIME(1)
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE
Widget Sizing User Interface Programming

Chapter 3: Widget Application Techniques 81
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP
PRINT, 'time used: ', SYSTIME(1) - time
END

This program takes approximately 1.5 seconds to run on a Red Hat linux workstation.
If the base had been mapped, the user would see the base “flashing” as each button
was added to the base. Altering the example to use the UPDATE keyword reduces the
execution time to approximately 0.1 seconds and eliminates the flashing:

time = SYSTIME(1)
b = WIDGET_BASE(/COLUMN, XSIZE=400, YSIZE=400, MAP=0)
WIDGET_CONTROL, b, /REALIZE, UPDATE=0
FOR i = 0, 200 DO button = WIDGET_BUTTON(b, VALUE=STRING(i))
WIDGET_CONTROL, b, /MAP, /UPDATE
PRINT, 'time used: ', SYSTIME(1) - time
END

Note
Do not attempt to resize a widget on the Windows platform while UPDATE is
turned off. Doing so may prevent IDL from updating the screen properly.
User Interface Programming Widget Sizing

82 Chapter 3: Widget Application Techniques
Tips on Creating Widget Applications

The following are some ideas to keep in mind when writing widget applications in
IDL.

• When writing new applications, decompose the problem into sub-problems
and write reusable compound widgets to implement them. In this way, you will
build a collection of reusable widget solutions to general problems instead of
hard-to-modify, monolithic programs.

• Use the GROUP_LEADER keyword to WIDGET_BASE to define the
relationships between parts of your application. Group leadership/membership
relationships make it easy to group widgets appropriately for iconization,
layering, and destruction.

• Use the MBAR keyword to WIDGET_BASE to create application-specific
menubars. Use keyboard focus events to track which widget menu options
should affect.

• Use existing compound widgets when possible. In particular, use the
CW_BGROUP and CW_PDMENU compound widgets to create menus. These
functions are easier to use than writing the menu code directly, and your intent
will be more quickly understood by others reading your code.

• The many advantages of the XMANAGER procedure dictate that all widget
programs should use it. There are few if any reasons to call the
WIDGET_EVENT procedure directly.

• Use CATCH to handle any unanticipated errors. The CATCH branch can free
any pointers, pixmaps, logical units, etc., to which the calling routine will not
have access, and restore IDL session-wide settings like color tables and system
variables that were locally modified.

• It can be difficult to write 100% portable widget code that looks good on all
platforms, so let IDL do the layout for you when possible. If all else fails, it is
possible to use the value of the WIDGET_INFO function to execute special-
case code for each platform’s user interface toolkit. It is desirable, however, to
avoid large-scale special-case programming because this makes maintenance
of the finished program more difficult. See “Portability Issues” below for
additional suggestions.

• Use the BITMAP keyword to WIDGET_BASE to add a custom icon to your
base widget (Windows platform only).
Tips on Creating Widget Applications User Interface Programming

Chapter 3: Widget Application Techniques 83
Portability Issues

Although IDL widgets are essentially the same on all supported platforms, there are
some differences that can complicate writing applications that work well everywhere.
The following hints should help you write such applications:

• Avoid specifying the absolute size and location of widgets whenever possible.
(That is, avoid using the XSIZE, YSIZE, XOFFSET, and YOFFSET
keywords.) The different user interface toolkits used by different platforms
create widgets with slightly different sizes and layouts, so it is best to use bases
that order their child widgets in rows or columns and stay away from explicit
positioning. If you must use these keywords, try to isolate the affected widgets
in a sub-base of the overall widget hierarchy to minimize the overall effect.

• When using a bitmap to specify button labels, be aware that some toolkits
prefer certain sizes and give sub-optimal results with others.

• Try to place text, label, and list widgets in locations where their absolute size
can vary without making the overall application look bad. The fonts used by
the different toolkits have different physical sizes that can cause these widgets
to have different proportions.

It is reasonably easy to write applications that will work in all environments without
having to resort to much special-case programming. It is very helpful to have a
machine running each environment available so that the design can be tested on each
iteratively until a suitable layout is obtained.

Note
Also see “Widgets in Cross-Platform Programs” on page 174 for additional
information.
User Interface Programming Tips on Creating Widget Applications

84 Chapter 3: Widget Application Techniques
Enhancing Widget Application Usability

Implementing features such as tabbing and keyboard accelerators into applications
that require extensive user-interaction with widget elements can improve application
usability. This allows power-users to quickly make selections and initiate actions
using the keyboard instead of the mouse. See the following sections for details:

• “Tabbing in Widget Applications” in the following section describes the
tabbing functionality and the differences in this functionality between
platforms.

• “Assigning Accelerators in Widget Applications” on page 92 describes
implementing keyboard accelerators for button widgets including menu items.

Tabbing in Widget Applications

Microsoft Windows and UNIX platforms support using the Tab key to navigate
between IDL widgets (except draw widgets, label widgets and property sheet widgets
on Windows). Under Windows, the TAB_MODE keyword determines how IDL
widgets are affected by tabbing in an application. Under UNIX, the Motif library
controls what widgets can receive and lose focus through tabbing. The TAB_MODE
keyword is ignored when running a widget application on the UNIX platform.

Note
It is not possible to tab to disabled (SENSITIVE=0) or hidden (MAP=0) widgets.
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 85
The following table highlights other differences in tabbing functionality between the
two platforms.

Widget Description

 WIDGET_BUTTON
(Grouped, exclusive
button widgets, also
known as radio
buttons)

• On Windows – radio buttons can receive and lose
focus through tabbing as long as there is a selected
button within the group. Use the arrow keys to
change the selection within the group.

• On UNIX — the Motif library controls tabbing
functionality.

WIDGET_BUTTON
(Grouped, non-
exclusive button
widgets also known as
check boxes)

• On Windows — toggle buttons (or check boxes) can
individually receive and lose focus through tabbing.
Use the Space key to select or deselect a check box.

• On UNIX — the Motif library controls tabbing
functionality.

WIDGET_DROPLIST • On Windows — droplist widgets can receive and lose
focus through tabbing.

• On UNIX — the Motif library controls tabbing
functionality.

WIDGET_TABLE • On Windows — table widgets can receive and lose
focus through tabbing, but the focus is not clearly
depicted.

• On UNIX — the Motif library controls tabbing
functionality.

Table 3-1: Tabbing Behavior in Windows and UNIX
Widget Applications
User Interface Programming Enhancing Widget Application Usability

86 Chapter 3: Widget Application Techniques
Note
WIDGET_LABEL, WIDGET_PROPERTYSHEET, WIDGET_DRAW, and menu-
related widgets do not support receiving or losing focus through tabbing. See the
TAB_MODE keyword for each widget in the IDL Reference Guide for special
behavior and navigation notes.

Defining Tabbing Behavior in a Windows Application

The TAB_MODE keyword provides control over tabbing behavior in a Windows
application. This keyword controls navigation by specifying how a given widget
should respond to the Tab key.

WIDGET_TEXT • On Windows — text widgets can receive and lose
focus through tabbing. When a text widget can lose
focus via tabbing, keypress events are not generated
for the Tab key and tab characters are not inserted
into the text field.

• On UNIX — tabbing behavior is controlled by the
Motif library, and may vary from platform to
platform. For single-line text widgets, the value of
the TAB_MODE keyword is ignored, keypress
events are not generated for the Tab key, and tab
characters are not inserted into the text field. For
multi-line text widgets, the behavior is the same as
under Windows.

WIDGET_TREE • On Windows — tree widgets can receive and lose
focus through tabbing. Use the arrow keys to select
higher or lower level nodes.

• On UNIX — the Motif library controls tabbing
functionality.

Widget Description

Table 3-1: Tabbing Behavior in Windows and UNIX
Widget Applications (Continued)
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 87
Allowable values are:

Note
Widgets including top level bases have a TAB_MODE value of zero by default.

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

Many compound widgets also support the TAB_MODE keyword. See each CW_*
widget in the IDL Reference Guide for more information.

Navigation Among Widgets Using Tabbing

Navigation among widgets follows the widget hierarchy. Although it is not possible
to specify a tab order, the widget tree hierarchy provides a natural progression among
the widgets. Traversal is depth-first, meaning that once a widget receives focus
through tabbing, additional tabbing will navigate through the interior nodes of the
widget if possible before traversing to the next widget.

The TAB_MODE is either inherited from a parent base or explicitly set on a widget.
However, to understand the effective range of a TAB_MODE setting, the
TAB_MODE keyword value and the current focus must be considered.

Value Description

0 Disable navigation onto or off of the widget. This is the default
unless the TAB_MODE has been set on a parent base. Child
widgets automatically inherit the tab mode of the parent base as
described in “Inheriting the TAB_MODE Value” on page 88.

1 Enable navigation onto and off of the widget.

2 Navigate only onto the widget.

3 Navigate only off of the widget.

Table 3-2: TAB_MODE Keyword Options
User Interface Programming Enhancing Widget Application Usability

88 Chapter 3: Widget Application Techniques
• Setting TAB_MODE on a top level base — this setting is inherited by all lower
level bases and child widgets on which TAB_MODE is not explicitly set.

• Setting TAB_MODE on an intermediate base — this setting is inherited by
child widgets if TAB_MODE is not explicitly set on a widget. For example, if
the top level base TAB_MODE=0, but the base associated with a group of
buttons has a TAB_MODE=1, then when any of the buttons in the group is
selected, tabbing will navigate among the buttons. If focus is anywhere other
than on this base’s elements, tabbing is disabled.

• Setting TAB_MODE on a widget — this setting affects tabbing capabilities
only when the widget has focus. For example, if the parent base has a
TAB_MODE=1 (enabling tabbing), but a slider widget has a TAB_MODE=3,
then the slider cannot receive focus through tabbing, it can only lose focus.

Note
Depressing the Tab key navigates down the widget hierarchy or to the right.
Depressing Shift+Tab navigates up the widget hierarchy or to the left.

Specifying and Inheriting TAB_MODE

The TAB_MODE keyword is allowed in most widget creation routines with the
exception of WIDGET_LABEL, WIDGET_PROPERTYSHEET, and
WIDGET_DRAW. The TAB_MODE keyword also cannot be explicitly set for the
following widgets:

• Grouped, exclusive button widgets (radio buttons)

• Menu items or menu bases

Attempting to set TAB_MODE on these widgets will generate an error.

Inheriting the TAB_MODE Value

Tabbing behavior is inherited from a WIDGET_BASE. When TAB_MODE is set on
a base widget, child widgets inherit the setting when they are created. This provides a
quick way of enabling or disabling tabbing for all widgets belonging to a base. This is
especially useful for widgets that do not directly support the TAB_MODE keyword.
For example, attempting to set TAB_MODE for exclusive, grouped button widgets
(radio buttons) will generate an error. Setting the tab mode on the parent base passes
the specified tabbing functionality along to all widget children on that base. In the
following code, the base (base) is defined as one which can receive and lose focus
through tabbing. The child widgets (b1, b2, and b3) inherit this setting and will
receive and lose focus through tabbing as well.
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 89
Note
See the following section for the complete, working example.

; Define a base for the radio buttons.
base = WIDGET_BASE(tlb, /COLUMN, /FRAME, /EXCLUSIVE, TAB_MODE = 1)

b1 = widget_button(base, $
value = "MorphOpen" , UVALUE="Open")

b2 = widget_button(base, $
value = "MorphClose" , UVALUE="Close")

b3 = widget_button(base, $
value = "Dilate ", UVALUE="Dilate")

; Set button one as selected.
WIDGET_CONTROL, b1, /SET_BUTTON

Use WIDGET_CONTROL to make an initial selection within the group of radio
buttons. This needs to be set before the group can receive focus through tabbing.

Note
For a child widget to receive focus through tabbing, the parent base must have a
value of TAB_MODE=1 (receive and lose focus) or TAB_MODE=2 (only receive
focus). A parent base with a TAB_MODE=0 or TAB_MODE=3 insulates child
widgets from receiving focus. Only when focus is on the child widget would the
child’s individual TAB_MODE value be in effect.

Specifying TAB_MODE Values for Individual Widgets

The tab mode of the parent base is inherited by child widgets, but it is possible to
control what widgets can receive or lose focus by specifying different TAB_MODE
values on lower-level bases or individual widgets. For example, consider a top level
base populated with a group of radio buttons, a group of check boxes, and a slider
widget. The top level base has TAB_MODE=1, meaning that this base, and all
widgets that inherit the setting from the base, will be able to receive and lose focus
through tabbing. However, the TAB_MODE of the slider widget is explicitly set to 3
meaning that it can lose, but not receive focus. This excludes the widget from
receiving focus when navigating the widget hierarchy. However, when focus is on a
widget with a TAB_MODE keyword value of 3, and the Tab key is depressed, focus
leaves the current widget and returns to the first widget that accepts focus through
tabbing. The following simple example illustrates these concepts.

pro tabbing_example_event, event

; Return and print the uvalue of the widget with focus.
WIDGET_CONTROL, event.ID, GET_UVALUE = uvalue
User Interface Programming Enhancing Widget Application Usability

90 Chapter 3: Widget Application Techniques
PRINT, 'Event on: ', UVALUE

end

pro tabbing_example

; Create a top level base. Specify a tab mode that allows child
; widgets to receive and lose focus (TAB_MODE=1).
tlb = WIDGET_BASE(/COLUMN, TITLE = "Tabbing Example", $
 XPAD=0, YPAD=10, XOFFSET=25, YOFFSET=25, TAB_MODE=1)

; Create a base with radio buttons that inherits the ability
; to receive and lose focus through tabbing from parent tlb. This
; setting is also inherited by widget children of rbase.
rbase = WIDGET_BASE(tlb, /COLUMN, /FRAME, /EXCLUSIVE)
rb1 = WIDGET_BUTTON(rbase, VALUE = "MorphOpen", UVALUE = "Open")
rb2 = WIDGET_BUTTON(rbase, VALUE = "MorphClose", UVALUE = "Close")
rb3 = WIDGET_BUTTON(rbase, VALUE = "Dilate", UVALUE = "Dilate")

; Mark the first button as selected to enable tabbing to the
; group of radio buttons.
WIDGET_CONTROL, rb1, /SET_BUTTON

; Create a base with check boxes that inherits the ability to
; receive and lose focus through tabbing from tlb. This setting
; is also inherited by widget children of cbase.
cbase = WIDGET_BASE(tlb, /COLUMN, /FRAME, /NONEXCLUSIVE)
b1 = WIDGET_BUTTON(cbase, $
 VALUE = "Structuring Element: 3x3", UVALUE = "se3x3")
b2 = WIDGET_BUTTON(cbase, $
 VALUE = "Structuring Element: 5x5", UVALUE = "se5x5")

; Create a slider widget. Set the tab mode so that it can
; lose focus, but not receive focus through tabbing.
slider = WIDGET_SLIDER(tlb, UVALUE = 'slider', TAB_MODE=3)

; Draw the widgets and activate events.
WIDGET_CONTROL, tlb, /REALIZE
XMANAGER, 'tabbing_example', tlb, /NO_BLOCK

end
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 91
Save and run the above code. This results in a group of widgets similar to the
following figure.

Select a radio button or check box and then depress the Tab key to navigate between
these widgets. With the mouse select and move the slider. Press the Tab key and the
focus shifts to the group of radio buttons.

On Windows, use the arrow keys to navigate among the radio button options. Tab to
the check boxes. Depress the Space key to select or deselect a check box. Use the
Tab key to navigate through the check box options. Once the slider has focus, the
arrow keys, Page Up and Page Down keys can be used to move the slider marker.

On UNIX, the TAB_MODE keyword is ignored. The arrow keys can be used to
navigate between radio buttons, check boxes, and move the slider marker.

Modifying and Accessing the TAB_MODE Keyword

The TAB_MODE keyword value can be changed using WIDGET_CONTROL and
queried using WIDGET_INFO. A change made to TAB_MODE using
WIDGET_CONTROL affects only the widget for which the change is explicitly
made. If changed on a widget base, the change is not propagated to the child widgets
that have already been created. Use WIDGET_CONTROL to change the
TAB_MODE value of any widget that supports the TAB_MODE keyword.

For example, if the TAB_MODE keyword value of the top level base is changed from
1 to 0 after child widgets have been created, tabbing will still be enabled for any
applicable child bases or widgets when they have focus.

Figure 3-8: Navigating Widget Hierarchies Using Tabbing
User Interface Programming Enhancing Widget Application Usability

92 Chapter 3: Widget Application Techniques
WIDGET_CONTROL, tlb, TAB_MODE=0

Use WIDGET_INFO to return any widget’s TAB_MODE keyword value. For
example, the following returns the keyword value of a slider widget, slider.

; Query the tabbing capabilities of a slider widget.
vtabmode = WIDGET_INFO(slider, /TAB_MODE)
print, vtabmode

Note
In widget applications on the UNIX platform, the Motif library controls what
widgets are brought into and released from focus using tabbing. The TAB_MODE
keyword value is always zero, and any attempt to change it is ignored when running
a widget application on the UNIX platform. Tabbing behavior may vary
significantly between UNIX platforms; do not rely on a particular behavior being
duplicated on all UNIX systems.

Assigning Accelerators in Widget Applications

Keyboard accelerators allow the user to activate button widget events using keyboard
key combinations instead of the mouse. On Windows platforms, accelerators can be
defined for menu items and various types of WIDGET_BUTTON. Note, however,
that:

• UNIX and Macintosh platforms support only menu item accelerators

• context menu items do not support accelerators on any platform

Note
Ordinarily, accelerators are processed before keyboard events reach a widget. This
can cause button accelerators to steal keyboard events from widgets that have focus.
If you find that this is an issue, see “Disabling Button Widget Accelerators” on
page 97.

Successfully Implementing Keyboard Accelerators

The following tips should be kept in mind when adding accelerators to button
widgets:

• Additional work is required to enable accelerators using the Alt key to work on
Mac. To get the Apple (command) key to function as the Alt key, see
“Enabling Alt Key Accelerators on Macintosh” on page 93.
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 93
• When an accelerator is implemented, it intercepts keyboard events before they
are passed to the widgets. Widgets will never see keyboard events that are
mapped to accelerators unless the accelerator is disabled as described in
“Disabling Button Widget Accelerators” on page 97. For example, if Ctrl+C is
mapped to a button that creates a contour plot, the key combination will no
longer perform the copy function.

Note
Under Sun operating systems, the Delete key will not function as an
accelerator if a widget has keyboard focus.

• Be mindful of the inherent operating system keyboard combinations when
choosing your accelerators. For example, avoid a Ctrl+Alt+Del accelerator for
an application run on the Windows platform.

• To support the greatest cross-platform portability, consider avoiding mapping
function keys F9 to F12 for the following reasons:

• Sun operating systems have the F11 and F12 keys mapped to SunF36 and
SunF37. Attempting to reassign them can be problematic.

• Mac OS 10.3 with Expose uses F9, F10, F11. Additionally, Insert and Alt
may be unavailable.

Enabling Alt Key Accelerators on Macintosh

Two steps are required to enable accelerators that use the Alt key to work with the
Macintosh Apple key (also known as the Command key):

1. Create a .Xmodmap file in your home folder and add the following three lines
to it:

clear mod1
clear mod2
add mod1 = Meta_L

When Apple’s X11 program starts, this file will automatically be read, and the
Apple key will be mapped to the left meta key , which for IDL’s purposes is
the Alt key. (Windows Alt key accelerators are mapped to the Macintosh
Apple key, not the Option (alt) key.)

2. Run Apple’s X11 program and change its preferences. Under Input in the X11
Preferences dialog, make sure that the following two items are unchecked:

• Follow system keyboard layout

• Enable key equivalents under X11
User Interface Programming Enhancing Widget Application Usability

94 Chapter 3: Widget Application Techniques
Note
You must relaunch Apple’s X11 program for these changes to take effect.

Performing these two steps will also have the benefit of making the IDL Workbench’s
keyboard shortcuts operate in the normal Macintosh fashion. Namely, pressing the
Apple (key) in conjunction with X, C, and V will perform cut, copy and paste.
The IDL Workbench’s other shortcuts will also work. If you distribute your
application to other Macintosh users, they too will need to have an appropriate
.Xmodmap and correct X11 Preferences dialog settings in order for Alt key
accelerators to work.

Specifying WIDGET_BUTTON Accelerators

The ACCELERATOR keyword assigns a key combination that activates a menu item
or button event. The value of the keyword is a case-insensitive string that specifies
zero or more modifier keys (Ctrl, Shift, or Alt) and one other key. (Mac users must
take special steps to enable Alt key accelerators. See “Enabling Alt Key Accelerators
on Macintosh” on page 93 for details.) If there is more than one item in the string, a
“+” must separate them. For example:

base = WIDGET_BASE(tlb, /COLUMN, /FRAME)
bRun = WIDGET_BUTTON(base, VALUE = "Run", ACCELERATOR = "F5")
bPause = WIDGET_BUTTON(base, VALUE = "Pause", $

ACCELERATOR = "Ctrl+F5")
bResume = WIDGET_BUTTON(base, VALUE = "Resume", $

ACCELERATOR = "Ctrl+Shift+F5")

The valid combinations are:

Accelerator Keys Description

Ctrl, Shift, or Alt plus
an alphanumeric key

A modifier key plus any alphabetic character, A-Z
(which is case-insensitive), or a number, 0-9, creates a
valid accelerator.

Ctrl, Shift, or Alt plus a
number pad key

A modifier key plus any key on the number pad can be
used as an accelerator The NumLock key must be
activated for any accelerator using number pad keys to
function properly.

Note - On Windows only, a keyboard accelerator using
the Shift key and a number key on the number pad will
not work.

Table 3-3: Valid ACCELERATOR Keyword Combinations
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 95
Note
Accelerators can be defined for menu items and other types of WIDGET_BUTTON
on Windows. However, UNIX supports only menu item accelerators. Context menu
items do not support accelerators on any platform.

When an accelerator is defined for a menu item, the ACCELERATOR keyword string
is automatically displayed next to the menu item value. The ACCELERATOR
keyword string is not included with a button value. Therefore, the VALUE keyword
of a WIDGET_BUTTON that is not a menu item should also indicate the accelerator
keyboard shortcut so that the user is aware of the option.

The following simple example creates a variety of WIDGET_BUTTON types with
accelerators.

; AcceleratorExample.pro
; Example of the use of keyboard accelerators.

pro acceleratorexample_event, event

Ctrl, Shift, or Alt plus
the BackSpace, Tab or
Space key

These miscellaneous keys need a modifier key in the
accelerator definition.

Navigation keys (Home,
End, PageUp,
PageDown, Up, Down,
Left, Right)

The navigation keys do not require a modifier in the
accelerator definition. Prior and PageUp are equivalent
as are Next and PageDown. Up, Down, Left, and Right
map to the arrow keys.

Function keys (F1 to
F12)

Function keys do not need a modifier key in the
accelerator definition. However, not all platforms
support the use of all function keys as accelerators. See
“Successfully Implementing Keyboard Accelerators” on
page 92 for details.

Return, Escape, Insert,
Del keys

These miscellaneous keys do not need a modifier key in
the accelerator definition. You must specify Return in
the accelerator definition to indicate the Enter key on
Windows. You must specify Del in the accelerator
definition to indicate the Delete key.

Accelerator Keys Description

Table 3-3: Valid ACCELERATOR Keyword Combinations (Continued)
User Interface Programming Enhancing Widget Application Usability

96 Chapter 3: Widget Application Techniques
WIDGET_CONTROL, event.ID, GET_UVALUE = uvalue
PRINT, 'Event on: ', uvalue

IF (uvalue EQ 'Quit') THEN BEGIN
WIDGET_CONTROL, event.TOP, /DESTROY

END

end

pro AcceleratorExample

tlb = WIDGET_BASE(/ROW, $
MBAR = mbar, TITLE = "Accelerator Example", $
XPAD = 10, YPAD = 10, XOFFSET = 25, YOFFSET = 25)

; Create a menu with accelerators. The accelerator string is
; automatically displayed along with the menu item text.
file = WIDGET_BUTTON(mbar, /MENU, $

VALUE = "File")

one = WIDGET_BUTTON(file, $
VALUE = "One", UVALUE = "One", $
ACCELERATOR = "Ctrl+1")

two = WIDGET_BUTTON(file, $
VALUE = "Two", UVALUE = "Two", $
ACCELERATOR = "Ctrl+2")

three = WIDGET_BUTTON(file, $
VALUE = "Three", UVALUE = "Three", $
ACCELERATOR = "Ctrl+3")

quit = WIDGET_BUTTON(file, $
VALUE = "Quit", UVALUE = "Quit", $
ACCELERATOR = "Ctrl+Q")

; Create a base with push buttons. Include the accelerator
; text in the button value so users are aware of it.
base = WIDGET_BASE(tlb, /COLUMN, /FRAME)

b1 = WIDGET_BUTTON(base, $
VALUE = "Affirmative (Ctrl+Y)", UVALUE = "Yes", $
ACCELERATOR = "Ctrl+Y")

b2 = WIDGET_BUTTON(base, $
VALUE = "Negative (Ctrl+N)", UVALUE = "No", $
ACCELERATOR = "Ctrl+N")

; Create a base with radio buttons.
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 97
base = WIDGET_BASE(tlb, /COLUMN, /FRAME, /EXCLUSIVE)

b1 = widget_button(base, $
VALUE = "Owl (Ctrl+O)", UVALUE = "Owl", $
ACCELERATOR = "Ctrl+O")

b2 = WIDGET_BUTTON(base, $
VALUE = "Emu (Shift+E)", UVALUE = "Emu", $
ACCELERATOR = "Shift+E")

b3 = WIDGET_BUTTON(base, $
VALUE = "Bat (Alt+B)", UVALUE = "Bat", $
ACCELERATOR = "Alt+B")

; Create a base with check boxes.
base = WIDGET_BASE(tlb, /COLUMN, /FRAME, /NONEXCLUSIVE)

b1 = WIDGET_BUTTON(base, $
VALUE = "Hello (F3)", UVALUE = "Hello", $
ACCELERATOR = "F3")

b2 = WIDGET_BUTTON(base, $
VALUE = "Goodbye (F4)", UVALUE = "Goodbye", $
ACCELERATOR = "F4")

; Create the widgets and accept events.
WIDGET_CONTROL, tlb, /REALIZE
XMANAGER, 'acceleratorexample', tlb, /NO_BLOCK

end

Save and run the example. The Output Log window reports which button has been
activated using the accelerator.

Note
Menu item accelerators are only operational when the menu is closed.

Disabling Button Widget Accelerators

Keyboard events are intercepted by the accelerators before they are passed along to
widgets. This means that a widget will never see a keyboard event that maps to an
accelerator. This can be resolved using one of the following methods:

• Use the IGNORE_ACCELERATORS keyword on those widgets that you want
to receive keyboard input regardless of defined accelerators. This is the
User Interface Programming Enhancing Widget Application Usability

98 Chapter 3: Widget Application Techniques
recommended method. See “Using IGNORE_ACCELERATORS” on page 98
for details.

• Disable the accelerated item by programmatically desensitizing the item when
the widget that you want to receive events gains focus, and resensitize the item
when the widget loses focus. This allows the keystrokes that would ordinarily
map to the accelerator to reach the desired widget when it has focus.

Using IGNORE_ACCELERATORS

The IGNORE_ACCELERATORS keyword is available on the following widgets:

• WIDGET_COMBOBOX

• WIDGET_DRAW

• WIDGET_PROPERTYSHEET

• WIDGET_TABLE

• WIDGET_TEXT

For each widget with a text area, accelerator overrides are active only when focus is
on an editable text portion. (Accelerator overrides for draw widgets are active when
the drawing area has focus.) For example, when the focus is on a table cell that cannot
be edited, accelerators are still enabled.

Note
Depending on system hardware, the number of widgets that have accelerators, and
the number of accelerators ignored, you may notice a slight performance penalty.

Set the IGNORE_ACCELERATORS equal to the text string of a single accelerator,
an array containing multiple accelerator strings, or 1 (to ignore all accelerators).

Managing Accelerators Example

The following example shows various ways accelerators can be managed. This
example creates several menu items with accelerators. Three text boxes either allow
all accelerators, some accelerators or no accelerators to receive keyboard events.
Additionally you can select a checkbox to desensitize the Delete menu item. When
the menu item is desensitized, the accelerator never receives keyboard events.

PRO manage_accel, event
END

PRO quit_event, event
 WIDGET_CONTROL, event.top, /DESTROY
END
Enhancing Widget Application Usability User Interface Programming

Chapter 3: Widget Application Techniques 99
PRO menu_event, event
 PRINT, WIDGET_INFO(event.id, /UNAME)
END

PRO menu_sense_event, event
 deleteItem = WIDGET_INFO(event.top, FIND_BY_UNAME ="MenuDel")
 WIDGET_CONTROL, deleteItem, SENSITIVE = event.select
END

pro manage_accel

; Create the top level base.
tlb = WIDGET_BASE(/COLUMN, MBAR = mbar, XSIZE = 250, /TAB_MODE)

; Build the menu bar.
edit= WIDGET_BUTTON(mbar, /MENU, VALUE = "Edit")
menuDel = WIDGET_BUTTON(edit, VALUE = "Delete", $
 UNAME = "MenuDel", ACCELERATOR = "Del", $
 EVENT_PRO = "menu_event")
menuCut = WIDGET_BUTTON(edit, VALUE = "Cut", $
 UNAME = "MenuCut", ACCELERATOR = "Ctrl+X", $
 EVENT_PRO = "menu_event")
menuCopy = WIDGET_BUTTON(edit, VALUE = "Copy", $
 UNAME = "MenuCopy", ACCELERATOR = "Ctrl+C", $
 EVENT_PRO = "menu_event")
menuPaste = WIDGET_BUTTON(edit, VALUE = "Paste", $
 UNAME = "MenuPaste", ACCELERATOR = "Ctrl+V", $
 EVENT_PRO = "menu_event")
menuUndo = WIDGET_BUTTON(edit, VALUE = "Undo", $
 UNAME = "MenuUndo", ACCELERATOR = "Ctrl+Z",$
 EVENT_PRO = "menu_event")
quit = WIDGET_BUTTON(edit, VALUE = "Quit", $
 ACCELERATOR = "Ctrl+Q", EVENT_PRO = "quit_event")

; Add text boxes with various levels of disabled accelerators.
text1 = WIDGET_TEXT(tlb, /EDITABLE, $
 VALUE = "Doesn't use IGNORE_ACCELERATORS.")
text2 = WIDGET_TEXT(tlb, /EDITABLE, $
 VALUE = "Receives Delete key and Ctrl+C combinations.", $
 IGNORE_ACCELERATORS = ["Del", "Ctrl+C"])
text3 = WIDGET_TEXT(tlb, /EDITABLE, $
 VALUE = "Receives all accelerator key combinations.", $
 IGNORE_ACCELERATORS = 1)

; Add a check box to desensitize the Delete menu item.
base2 = WIDGET_BASE(tlb, /FRAME, /NONEXCLUSIVE)
check1 = WIDGET_BUTTON(base2, VALUE = "Menu DEL sensitive", $
 EVENT_PRO = "menu_sense_event")
User Interface Programming Enhancing Widget Application Usability

100 Chapter 3: Widget Application Techniques
WIDGET_CONTROL, check1, SET_BUTTON = WIDGET_INFO (menuDel, $
 /SENSITIVE)

; Draw the widget.
WIDGET_CONTROL, tlb, /REALIZE
XMANAGER, "manage_accel", tlb, /NO_BLOCK

END

Compile and run the example. Try highlighting and deleting, or copying and pasting
text in each textbox using accelerators defined in the Edit menu. All keyboard events
are ineffective (stolen by the accelerators) when the first textbox has focus. The
second textbox receives only copy and delete keyboard combinations. The third
textbox receives all accelerators. When the delete menu item is desensitized, the
Delete key can delete text from all textboxes. The IDL Output Log window prints the
name of any menu item that is activated using an accelerator.
Enhancing Widget Application Usability User Interface Programming

Chapter 4

Using Widget Buttons
The following topics are covered in this chapter:
About Button Widgets 102
Bitmap Button Labels 103

Tooltips . 106
Exclusive and Non-Exclusive Buttons . . . 107
User Interface Programming 101

102 Chapter 4: Using Widget Buttons
About Button Widgets

Button widgets allow users to respond to “yes-or-no” type questions via the widget
interface. While button widgets are generally fairly simple to understand and use,
there are numerous options that allow you to fine-tune the appearance and behavior of
buttons in your interface. This section discusses some useful ideas and techniques for
using button widgets. See “WIDGET_BUTTON” (IDL Reference Guide) for a
complete description of the function used to create button widgets.

This section discusses the following topics:

• “Bitmap Button Labels” on page 103

• “Tooltips” on page 106

• “Exclusive and Non-Exclusive Buttons” on page 107

Note
Menus also make use of button widgets. See “Creating Menus” on page 64 for more
information.
About Button Widgets User Interface Programming

Chapter 4: Using Widget Buttons 103
Bitmap Button Labels

In addition to setting the VALUE of a button widget to a text string, you can use a
bitmap image as the label for the button. To us a bitmap image, set VALUE to one of
the following:

• The path to a bitmap image file, if the BITMAP keyword is also specified.

• An n x m byte array converted to a bitmap byte array using the CVTTOBM
function, which displays as a black-and-white bitmap image.

• An n x m x 3 byte array, which displays as a 24-bit color bitmap image.

The following sections describe the process of creating bitmap files, black-and-white
arrays, and color arrays for use as bitmap button labels.

Creating Bitmap Files for Buttons

You can produce appropriate bitmap files (for use with the BITMAP keyword to
WIDGET_BUTTON) using any bitmap editor available on your operating system. Be
sure to save the file as a .bmp file.

Transparent Bitmaps

For 16- and 256-color bitmaps included using the BITMAP keyword, IDL uses the
color of the pixel in the lower left corner as the transparent color. All pixels of this
color become transparent, allowing the button color to show through. This allows you
to use bitmaps that do not appear to be rectangular. For 24-bit bitmaps, there is no
transparent pixel.

If you have a 16- or 256-color rectangular bitmap and you want to maintain the
rectangular shape of a bitmap, you can either draw a border of a different color
around the bitmap (making sure that the lower left pixel is a different color from the
background you want to maintain) or save the bitmap as a 24-bit (TrueColor) image.
If your bitmap also contains text, make sure the border you draw is a different color
than the text, otherwise the text color will become transparent.

Note on 8-bit X Windows Displays

Displaying bitmap buttons on 8-bit color X Windows displays may require using
additional X colormap colors to allocate colors used by the bitmaps. If the required
colormap colors are not available, the button bitmap may not display properly.
User Interface Programming Bitmap Button Labels

104 Chapter 4: Using Widget Buttons
Creating Black-and-White Bitmap Arrays for Buttons

You can produce appropriate black-and-white bitmap arrays in IDL in the following
ways:

• Create a black and white bitmap using an external bitmap editor, and read it
into an IDL byte array using the appropriate procedure (READ_BMP,
READ_JPEG, etc.) and convert the byte array to a bitmap byte array using the
CVTTOBM function.

• On an X-Window system, use the X11 bitmap utility to create a black and
white bitmap byte array and read it in to IDL using the READ_X11_BITMAP
routine.

• Create a black and white bitmap using the XBM_EDIT procedure. This
procedure offers several alternatives for the form of the final bitmap.

• Create an n x m byte array using the BYTARR function and modify array
elements using array operations. Use CVTTOBM to convert the array to a
bitmap byte array.

Creating Color Bitmap Arrays for Buttons

You can produce appropriate color bitmap arrays in IDL in the following ways:

• Create a 24-bit color image using an external bitmap editor, and read it into an
IDL byte array using the appropriate procedure (READ_BMP, READ_JPEG,
etc.). Remember that the image array must be interleaved by plane (n x m 3),
with the planes in the order red, green, blue. Note that image files created by
image editors are often interleaved by pixel rather than by plane; use the
TRANSPOSE function to reformat the array.

For example, if you read a 24-bit color image into an array using the
READ_BMP function, the resulting array will be interleaved by pixel (with
dimensions 3 x n x m), with planes in the order blue, green, red. To create an
array in the proper format for use as a button bitmap, use the following IDL
commands:

button_image = READ_BMP('bitmap_file.bmp', /RGB)
button_image = TRANSPOSE(button_image, [1,2,0])
...
button = WIDGET_BUTTON(base, VALUE=button_image)

Here, the RGB keyword to READ_BMP reorders the color planes to be in the
order red, green, blue; the call to TRANSPOSE puts the array in the proper
format for use in a bitmap button.
Bitmap Button Labels User Interface Programming

Chapter 4: Using Widget Buttons 105
• Create an n x m x 3 byte array using the BYTARR function and modify the
array elements using array operations.

Although IDL places no restriction on the size of bitmap allowed, the various toolkits
may prefer certain sizes.
User Interface Programming Bitmap Button Labels

106 Chapter 4: Using Widget Buttons
Tooltips

You can specify a “tooltip” — a short text string that will appear when the mouse
pointer hovers over a button widget — by specifying the string as the value of the
TOOLTIP keyword to WIDGET_BUTTON.

Note
Tooltips cannot be created for menu sub-items. The topmost button of a pulldown
menu can, however, have a tooltip.

Figure 4-1: A tool tip.
Tooltips User Interface Programming

Chapter 4: Using Widget Buttons 107
Exclusive and Non-Exclusive Buttons

By default, when a user clicks on a button widget, the button appears to be depressed
while the user holds down the mouse button, but the button returns to the undepressed
appearance when the user releases the mouse button. While such “normal” buttons
visually reflect the state of the button (depressed or undepressed), normal buttons are
used to gather a single piece of information: whether the user clicked on the button or
not.

Buttons placed into exclusive or non-exclusive bases (created via the EXCLUSIVE
or NONEXCLUSIVE keywords to WIDGET_BASE procedure) are created as two-
state “toggle” buttons—radio buttons (exclusive) or checkboxes (nonexclusive).
Visually, when a user clicks on an exclusive or nonexclusive button, it remains in the
depressed state, either until the user clicks on it again or (in the case of exclusive
buttons) until another button in the group is depressed. Buttons that toggle in this
manner can be used to gather information about a quantity that has two possible
states.

Exclusive and nonexclusive buttons differ in the following way:

• If a base is created with the EXCLUSIVE keyword, only one button on the
base can be selected at a given time. If one button is selected and another
button pressed, the first button becomes unselected.

• If a base is created with the NONEXCLUSIVE keyword, any number of
buttons can be selected at a given time. Pressing one button has no effect on the
selected/unselected state of other buttons on the base.

Exclusive and nonexclusive buttons take on different appearances, depending on the
type of button and on the windowing toolkit in use (Microsoft Windows or Motif).

Often, it is easier to create groups of buttons (normal, exclusive, or nonexclusive)
using the CW_BGROUP compound widget than it is to program them yourself from
base and button widgets and manage the events from each button individually. See
“Button Groups” on page 64 and “CW_BGROUP” (IDL Reference Guide) for
additional information on using button groups.
User Interface Programming Exclusive and Non-Exclusive Buttons

108 Chapter 4: Using Widget Buttons
Exclusive and Non-Exclusive Buttons User Interface Programming

Chapter 5

Using Draw Widgets
The following topics are covered in this chapter:
About Draw Widgets 110
Using Direct Graphics in Draw Widgets . . 111
Using Object Graphics in Draw Widgets . 112
Scrolling Draw Widgets 113

Context Events in Draw Widgets 119
Draw Widget Example 120
Accessing Draw Widget Events 121
Implementing Drag and Drop Functionality . .
123
User Interface Programming 109

110 Chapter 5: Using Draw Widgets
About Draw Widgets

Draw widgets are graphics windows that appear as part of a widget hierarchy rather
than appearing as an independent window. Like other graphics windows, draw
widgets can be created to use either Direct or Object graphics. (See Chapter 5,
“Graphic Display Essentials” (Using IDL) for a discussion of IDL’s two graphics
modes.) Draw widgets allow designers of IDL graphical user interfaces to take
advantage of the full power of IDL graphics in their displays. See
“WIDGET_DRAW” (IDL Reference Guide) for a complete description of the
function used to create draw widgets.

Figure 5-1: An IDL Draw Widget Displaying a Shaded Surface
About Draw Widgets User Interface Programming

Chapter 5: Using Draw Widgets 111
Using Direct Graphics in Draw Widgets

By default, draw widgets use IDL Direct graphics. (To create a draw widget that uses
Object graphics, set the GRAPHICS_LEVEL keyword to WIDGET_DRAW equal to
two; see “Using Object Graphics in Draw Widgets” on page 112.) Once created, draw
widgets using Direct graphics are used in the same way as standard Direct graphics
windows created using the WINDOW procedure.

All IDL Direct graphics windows are referred to by a window number. Unlike
windows created by the WINDOW procedure, the window number of a Direct
graphics draw widget cannot be assigned by the user. In addition, the window number
of a draw widget is not assigned until the draw widget is actually realized, and thus
cannot be returned by WIDGET_DRAW when the widget is created. Instead, you
must use the WIDGET_CONTROL procedure to retrieve the window number, which
is stored in the value of the draw widget, after the widget has been realized.

Unlike normal graphics windows, creating a draw widget does not cause the current
graphics window to change to the new widget. You must use the WSET procedure to
explicitly make the draw widget the current graphics window. The following IDL
statements demonstrate the required steps:

;Create a base widget.
base = WIDGET_BASE()

;Attach a 256 x 256 draw widget.
draw = WIDGET_DRAW(base, XSIZE = 256, YSIZE = 256)

;Realize the widgets.
WIDGET_CONTROL, /REALIZE, base

;Obtain the window index.
WIDGET_CONTROL, draw, GET_VALUE = index

;Set the new widget to be the current graphics window
WSET, index

If you attempt to get the value of a draw widget before the widget has been realized,
WIDGET_CONTROL returns the value -1, which is not a valid index.
User Interface Programming Using Direct Graphics in Draw Widgets

112 Chapter 5: Using Draw Widgets
Using Object Graphics in Draw Widgets

To create a draw widget that uses Object graphics, set the GRAPHICS_LEVEL
keyword to WIDGET_DRAW equal to two. Once created, draw widgets using Object
graphics are used in the same way as standard IDLgrWindow objects.

All IDL Object graphics windows (that is, IDLgrWindow objects) are referred to by
an object reference. Since you do not explicitly create the IDLgrWindow object used
in a draw widget, you must retrieve the object reference by using the
WIDGET_CONTROL procedure to get the value of the draw widget. As with Direct
graphics draw widgets, the window object is not created—and thus the object
reference cannot be retrieved—until after the draw widget is realized. If you attempt
to retrieve the object reference for a draw widget’s IDLgrWindow object before the
draw widget is realized, IDL returns a null object.
Using Object Graphics in Draw Widgets User Interface Programming

Chapter 5: Using Draw Widgets 113
Scrolling Draw Widgets

Another difference between a draw widget and either a graphics window created with
the WINDOW procedure or an IDLgrWindow object is that draw widgets can include
scroll bars. Setting the APP_SCROLL keyword or the SCROLL keyword to the
WIDGET_DRAW function causes scrollbars to be attached to the drawing widget,
which allows the user to view images or graphics larger than the visible area.

Differences Between SCROLL and APP_SCROLL

The amount of memory used by a draw widget is directly related to the size of the
drawable area of the widget. If a draw widget does not have scroll bars, the entire
drawable area is viewable. In this case, the size of the drawable area is controlled by
the XSIZE and YSIZE keywords to WIDGET_DRAW.

With the addition of scroll bars, it is possible to display an image that is larger than
the viewable area (the viewport) of the draw widget. IDL provides two options for
dealing with images larger than the viewport:

1. Create the draw widget using the SCROLL keyword. This method creates a
draw widget whose drawable area is specified by the XSIZE and YSIZE
keywords, and whose viewable area is specified by the X_SCROLL_SIZE and
Y_SCROLL_SIZE keywords. Since the entire image is kept in memory, IDL
can display the appropriate portions automatically when the scroll bars are
adjusted.

2. Create the draw widget using the APP_SCROLL keyword. This method
creates a draw widget whose drawable area is the same size as its viewable area
(specified by the X_SCROLL_SIZE and Y_SCROLL_SIZE keywords), but
which can be different from the virtual drawable area (specified by the XSIZE
and YSIZE keywords) that is equal to the full size of the image. In this case,
only the portion of the image that is currently visible in the viewport is kept in
memory; the IDL programmer must use viewport events to determine when the
scroll bars have been adjusted and display the appropriate portion of the full
image.

The concept of a virtual drawable area allows you to display portions of very large
images in a draw widget without the need for enough memory to display the entire
image. The price for this facility is the need to manually handle display of the correct
portion of the image in an event-handling routine.
User Interface Programming Scrolling Draw Widgets

114 Chapter 5: Using Draw Widgets
Example Using SCROLL

The following code creates a simple scrollable draw widget and displays an image.

Note
This example is included in the file draw_scroll.pro in the
examples/doc/widgets subdirectory of the IDL distribution. You can either
open the file in an IDL editor window and compile and run the code using items on
the Run menu, or simply enter

draw_scroll
at the IDL command prompt. See “Running the Example Code” on page 15 if IDL
does not run the program as expected. You may need to enter DEVICE, RETAIN=2
at the IDL command prompt before running this example.

; Event-handler routine. Does nothing in this example.
PRO draw_scroll_event, ev

END

; Widget creation routine.
PRO draw_scroll

; Read an image for use in the example.
READ_JPEG, FILEPATH('muscle.jpg', $

SUBDIR=['examples', 'data']), image

; Create the base widget.
base = WIDGET_BASE()

; Create the draw widget. The size of the viewport is set to
; 200x200 pixels, but the size of the drawable area is
; set equal to the dimensions of the image array using the
; XSIZE and YSIZE keywords.
draw = WIDGET_DRAW(base, X_SCROLL_SIZE=200, Y_SCROLL_SIZE=200, $

XSIZE=(SIZE(image))[1], YSIZE=(SIZE(image))[2], /SCROLL)

; Realize the widgets.
WIDGET_CONTROL, base, /REALIZE

; Retrieve the window ID from the draw widget.
WIDGET_CONTROL, draw, GET_VALUE=drawID

; Set the draw widget as the current drawable area.
WSET, drawID

; Load the image.
TVSCL, image
Scrolling Draw Widgets User Interface Programming

Chapter 5: Using Draw Widgets 115
; Call XMANAGER to manage the widgets.
XMANAGER, 'draw_scroll', base, /NO_BLOCK

END

In this example, the drawable area created for the draw widget is the full size of the
displayed image. Since IDL handles the display of the image as the scroll bars are
adjusted, no event-handling is necessary to update the display.

Example Using APP_SCROLL with Direct Graphics

We can easily rework the previous example to use the APP_SCROLL keyword rather
than the SCROLL keyword. Using APP_SCROLL has the following consequences:

1. IDL no longer automatically displays the appropriate portion of the image
when the scroll bars are adjusted. As a result, we must add code to our event-
handling procedure to check for the viewport event and display the appropriate
part of the image. Here is the new event-handler routine:

; Event-handler routine.
PRO draw_app_scroll_event, ev

COMMON app_scr_ex, image

IF (ev.TYPE EQ 3) THEN TVSCL, image, 0-ev.X, 0-ev.Y

END

First, notice that since we need access to the image array in both the widget
creation routine and the event handler, we place the array in a COMMON
block. This is appropriate since the image data itself is not altered by the
widget application.

Second, we check the TYPE field of the event structure to see if it is equal to 3,
which is the code for a viewport event. If it is, we use the values of the X and Y
fields of the event structure as the Position arguments to the TVSCL routine to
display the appropriate portion of the image array.

2. We must add the COMMON block to the widget creation routine.

3. We change the call to WIDGET_DRAW to include the APP_SCROLL
keyword rather than the SCROLL keyword. In this context, the values of the
XSIZE and YSIZE keywords are interpreted as the size of the virtual drawable
area, rather than the actual drawable area.
User Interface Programming Scrolling Draw Widgets

116 Chapter 5: Using Draw Widgets
Example Code
The modified example is included in the file draw_app_scroll.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering draw_app_scroll at the IDL command prompt or view the
file in an IDL Editor window by entering .EDIT draw_app_scroll.pro.

On the surface the two examples appear identical. The difference is that the example
using APP_SCROLL uses only the memory necessary to create the smaller drawable
area described by the size of the viewport, whereas the example using SCROLL uses
the memory necessary to create the full drawable area described by the XSIZE and
YSIZE keywords. While the example image is not so large that this makes much
difference, if the image contained several hundred million pixels rather than a few
hundred thousand, the memory saving could be significant.

Example Using APP_SCROLL with Object Graphics

The following example shows how to use the APP_SCROLL keyword with
WIDGET_DRAW using Object Graphics. As in the previous example,
APP_SCROLL allows only the viewable part of the image to load in memory rather
than loading the entire image at one time.

This example code demonstrates how WIDGET_DRAW's APP_SCROLL keyword
can display an oversized image in a scrollable WIDGET_DRAW widget. In this case,
“oversized” implies a dimension greater than 2048 pixels, which is a limit imposed
by OpenGL for maximum window or pixel map size. The Object Graphics example
in the example is an 864 x 2592 image.

; Event handler for the example application
; Since our application creates an object tree, we must
; explicitly destroy the objects when we destroy the
; top-level base widget.
PRO object_app_scroll_doc_event, event

IF TAG_NAMES(event, /STRUCTURE_NAME) EQ $
'WIDGET_KILL_REQUEST' THEN BEGIN
WIDGET_CONTROL, event.TOP, GET_UVALUE=state
OBJ_DESTROY, state.OWINDOW
WIDGET_CONTROL, event.TOP, /DESTROY
ENDIF

END

; Event handler for WIDGET_DRAW
PRO wdraw_event, event

; Case of the viewport event
IF event.TYPE EQ 3 THEN BEGIN
Scrolling Draw Widgets User Interface Programming

Chapter 5: Using Draw Widgets 117
WIDGET_CONTROL, event.ID, GET_VALUE=oWindow
; By using /GEOMETRY we can deal with viewport scrolling
geom = WIDGET_INFO(event.ID, /GEOMETRY)
viewW = geom.XSIZE < geom.DRAW_XSIZE
viewH = geom.YSIZE < geom.DRAW_YSIZE
; oWindow and oView pass the drawing info
; and close all objects in the graphics hierarchy
; when window is closed.
oWindow->GetProperty, GRAPHICS_TREE=oView
oView->SetProperty, $

VIEWPLANE_RECT=[event.X, event.Y, viewW, viewH]
oWindow->Draw
ENDIF

END

; Widget Creation routine
PRO object_app_scroll_doc

;make a large Object Graphics image to display (8641 X 2592)
xs=864L
ys=3*864L
img1=dist(xs)
img=FLTARR(xs,ys)
img[0,0]=img1
img[0,xs]=SHIFT(img1,200,200)
img[0,xs*2]=SHIFT(img1,400,400)

; Initial viewport size
viewW = 400
viewH = 400

; Define the top level base.
tlb = WIDGET_BASE(/COLUMN, TLB_FRAME_ATTR=1,

/TLB_KILL_REQUEST_EVENTS)
; APP_SCROLL allows XSIZE and YSIZE to handle large dimensions
; because only the part of the image in the viewport
; is loaded at one time.
wDraw = WIDGET_DRAW(tlb, XSIZE=xs, YSIZE=ys, GRAPHICS_LEVEL=2,

$
X_SCROLL_SIZE=viewW, Y_SCROLL_SIZE=viewH, /APP_SCROLL, $
/VIEWPORT_EVENTS, EVENT_PRO='wdraw_event')

; Realize the top level base and draw widgets.
WIDGET_CONTROL, tlb, /REALIZE
WIDGET_CONTROL, wDraw, GET_VALUE=oWindow
oImg = OBJ_NEW('IDLgrImage', img, ORDER=1)
oModel = OBJ_NEW('IDLgrModel')
oView = OBJ_NEW('IDLgrView', PROJECTION=1, EYE=3., $

VIEWPLANE_RECT=[0,0,viewW,viewH], COLOR=[0,0,0])
oModel->Add, oImg
User Interface Programming Scrolling Draw Widgets

118 Chapter 5: Using Draw Widgets
oView->Add, oModel
; Use GRAPHICS_TREE as an alternative to passing all
; the object states to the event handler.
oWindow->SetProperty, GRAPHICS_TREE=oView
oWindow->Draw, oView

state = { oWindow:oWindow }
WIDGET_CONTROL, tlb, SET_UVALUE=state

XMANAGER, 'object_app_scroll_doc', tlb

END

This example routine produces the following display:

Figure 5-2: WIDGET_DRAW using the APP_SCROLL keyword
Scrolling Draw Widgets User Interface Programming

Chapter 5: Using Draw Widgets 119
Context Events in Draw Widgets

The WIDGET_DRAW function does not have a CONTEXT_EVENTS keyword to
specify that context menu events be generated when the user clicks the right mouse
button over a drawable area. Instead, the event structure generated by draw widgets
when the BUTTON_EVENTS keyword is set includes the PRESS and RELEASE
fields, both of which contain information regarding which mouse button was pressed.

See “Context-Sensitive Menus” on page 69 for techniques used to simulate the
generation of context menu events with draw widgets.
User Interface Programming Context Events in Draw Widgets

120 Chapter 5: Using Draw Widgets
Draw Widget Example

The following example program creates a small widget application consisting of a
draw widget and a droplist menu. One of three plots is displayed in the draw widget
depending on the selection made from the droplist. To add to dynamic behavior, we
will use timer events to change the color table used in the draw window every three
seconds.

Example Code
This example is included in the file draw_widget_example.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering draw_widget_example at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
draw_widget_example.pro. See “Running the Example Code” on page 15 if
IDL does not run the program as expected.

This procedure checks the type of event structure returned. See “Identifying Widget
Type from an Event” on page 57 for more on identifying widget types from returned
event structures.

The intent of this example is to demonstrate the use of draw widgets, menus, and
timer events with a minimum of other complicating issues. However, it is easy to
imagine applications wherein a graphics window containing a plot or some other
information is updated periodically by a timer. The method used here can be easily
applied to more realistic situations.
Draw Widget Example User Interface Programming

Chapter 5: Using Draw Widgets 121
Accessing Draw Widget Events

To go beyond merely displaying an image in a draw widget and allow the user to
interact in some way with the displayed image, you must configure the draw widget
to generate either button, motion, wheel, or keyboard events:

• Button events are enabled by setting the BUTTON_EVENTS keyword to
WIDGET_DRAW. Once enabled, button events are generated when the user
clicks on the draw widget.

• Motion events are enabled by setting the MOTION_EVENTS keyword to
WIDGET_DRAW. Once enabled, motion events are generated whenever the
cursor moves over the draw widget.

• Wheel events are enabled by setting the WHEEL_EVENTS keyword to
WIDGET_DRAW. Once enabled, wheel events are generated when the draw
widget has focus and the user rolls the scroll wheel.

Note
Wheel events are enabled only under Microsoft Windows.

• Keyboard events are enabled by setting the KEYBOARD_EVENTS keyword
to WIDGET_DRAW. Once enabled, events are generated when the draw
widget has focus and a keyboard key is pressed.

The following example uses motion events to update the values of several label
widgets as the mouse cursor moves over an image in a draw widget. This and several
other features are discussed in the section following the code.

Example Code
See the file draw_widget_data.pro in the examples/doc/widgets
subdirectory of the IDL distribution for the example code. Run this example
procedure by entering draw_widget_data at the IDL command prompt or view
the file in an IDL Editor window by entering .EDIT draw_widget_data.pro.
See “Running the Example Code” on page 15 if IDL does not run the program as
expected. You may need to enter DEVICE, DECOMPOSED=1 at the IDL command
prompt before running this example.

The following things about this example are worth noting:

• Since we use the image data in both the widget creation routine (where we
display the image) and the event-handler routine (where we retrieve the value
of the data point under the cursor), we need access to the variable that holds the
User Interface Programming Accessing Draw Widget Events

122 Chapter 5: Using Draw Widgets
image in both places. We could pass the entire image array from the creation
routine to the event-handler in the stash structure, but since the image could
be large, we choose to pass a pointer to the image instead. This means we must
dereference the pointer variable every time we need to use the image data. For
more information on pointers and how to dereference them, see Chapter 17,
“Pointers”.

• In this example we have set the MOTION_EVENTS keyword to
WIDGET_DRAW; this causes events to be generated continuously as the
cursor moves across the draw widget. We could have set the
BUTTON_EVENTS keyword instead; this would force the user to click the
draw widget in order to update the text fields.
Accessing Draw Widget Events User Interface Programming

Chapter 5: Using Draw Widgets 123
Implementing Drag and Drop Functionality

In IDL versions 6.3 and later, you can create applications that allow users to drag tree
nodes from a tree widget to a draw widget. Drag and drop functionality is not enabled
by default. When creating an IDL application that incorporates both a tree widget and
a draw widget you can enable drag and drop behavior to drag values from the tree
widget to the draw widget. This section discusses the steps necessary to implement
drag and drop functionality in your application.

Implementing drag and drop functionality in your application entails three steps:

1. Making Nodes Draggable. You must explicitly specify that a node or group of
nodes in the tree widget can be dragged. See “Dragging and Dropping Tree
Nodes” on page 195 for details.

2. Responding to Drag Notifications (Callbacks). When the user drags a tree node
onto a draw widget, IDL generates a notification, which is passed to a callback
function. In most cases, you can use the default callback function, but you can
create your own callback function to handle special or complex situations.
Drag notifications allow you to control if and where drops are allowed.

3. Responding to Drop Events. When the user releases the mouse button to drop
the selected nodes, IDL generates a drop event. You can use the information
contained in the drop event structure to perform an operation, such as loading
an image or other visualization in the draw widget.

Responding to Drag Notifications (Callbacks)

When the user drags a group of selected nodes over a draw widget, IDL automatically
calls the routine defined as the drag notification callback for the draw widget. The
purpose of the drag notification callback is to provide the widget system with
information about where dragged nodes can be dropped, allowing it to change the
cursor display to indicate to the user whether nodes can be dropped at the current
position. You, as an IDL application programmer, cannot respond to the value
returned by the drag notification callback directly, but you can choose to specify your
own version of the callback function to override the default behavior. Drag
notification callbacks are specified via the DRAG_NOTIFY keyword to
WIDGET_DRAW, or the SET_DRAG_NOTIFY keyword to WIDGET_CONTROL.

Drag notifications are also generated when the state of a drag modifier key changes
(either up or down). If you override the default drag notification callback, you can use
this information to update the drag cursor with a plus symbol (+).

If no callback is defined for the draw widget, the default callback will be used.
User Interface Programming Implementing Drag and Drop Functionality

124 Chapter 5: Using Draw Widgets
Drag Notification Callback Return Values

The drag notification callback function returns an integer value calculated by ORing
the following values together:

For example, if the callback returns the value 3, the use can drop onto the draw
widget and the plus indicator will be displayed.

The Default Drag Notification Callback

The default drag notification callback function is used if no function is specified for
the draw widget. The default callback returns 0 if drop events are not enabled
(DROP_EVENTS=0) and 1 otherwise.

Writing Custom Drag Notification Callbacks

In most cases, the default drag notification callback should be adequate for an
application that allows the user to drop tree nodes onto a draw widget. If it proves
inadequate, however, you can create a custom callback to perform extra processing.

The drag notification callback routine has the following signature:

FUNCTION Callback_Function_Name, Destination, Source, $
X, Y, Modifiers, Default

where

• Callback_Function_Name is the name of the callback function. This value is
specified as the value of the DRAG_NOTIFY keyword.

• Destination is the widget ID of the draw widget over which the item is
dragged.

• Source is the widget ID of the source tree, from which a list of widget IDs
representing the list of selected nodes can be retrieved using the
TREE_SELECT or TREE_DRAG_SELECT keywords to WIDGET_INFO.

Value Meaning

0 User cannot drop

1 User can drop onto

2 Show the plus indicator

Table 5-1: Drag Notification Callback Return Values
Implementing Drag and Drop Functionality User Interface Programming

Chapter 5: Using Draw Widgets 125
• X is the position to the right of the lower left corner of the drawable area, in
device coordinates (pixels).

• Y is the position above the lower left corner of the drawable area, in device
coordinates (pixels).

• Modifiers indicates the state of the modifier keys. The widget system generates
them by ORing the following values together for the depressed keys:

Note
For UNIX, the Alt key is the currently mapped MOD1 key.

• Default is the value that the default callback would have returned. A common
usage is to have the callback return its value after modifying it to show the +
indicator.

The return value should indicate where a drop is allowed to take place relative to the
destination widget and whether the “+” symbol should appear with the drag cursor, as
described in Table 5-1. For additional information on writing drag notification
callbacks, see “Dragging and Dropping Tree Nodes” on page 195.

Responding to Drop Events

When the user releases the mouse button over a valid drop target (that is, when the
DROP_EVENTS keyword to WIDGET_DRAW has been set), a WIDGET_DROP
event is generated. Your application’s event handler should recognize this drop event
and perform some action.

The drop event’s information is contained in a WIDGET_DROP structure. (See Drop
Events in the reference section for WIDGET_DRAW for a full definition of the
WIDGET_DROP structure.) The important components of the structure when
responding to drop events are:

Bitmask Modifier Key

1 Shift

2 Control

4 Caps Lock

8 Alt

Table 5-2: Bitmask and Corresponding Key
User Interface Programming Implementing Drag and Drop Functionality

126 Chapter 5: Using Draw Widgets
• ID — The widget ID of the destination node.

• DRAG_ID — The widget ID of the source tree widget. The selected nodes of
this tree are the nodes that are being dragged. You can use the TREE_SELECT
keyword to WIDGET_INFO along with this widget ID to retrieve the list of
selected nodes.

• X and Y — The drop position relative to the lower left corner of the drawable
area.

• MODIFIERS — An integer representing the state of the modifier keys,
calculated by ORing together the values shown in Table 5-2. On some
platforms it is common for the Ctrl key to be used as the copy key, with
simple move operations being performed when Ctrl is not pressed.

Draw Widget Drag and Drop Example

The IDL distribution contains an example that contains a tree widget representing
various image files and a draw widget onto which the tree nodes can be dragged to
display the images.

Example Code
The draw widget drag and drop example is included in the file
drag_and_drop_draw.pro in the examples/doc/widgets subdirectory of
the IDL distribution. Run this example procedure by entering
drag_and_drop_draw at the IDL command prompt or view the file in an IDL
Editor window by entering .EDIT drag_and_drop_draw.pro.
Implementing Drag and Drop Functionality User Interface Programming

Chapter 6

Using Property Sheet
Widgets
The following topics are covered in this chapter:
About Property Sheet Widgets 128
Registering Properties 129
Selecting Properties 130
Changing Properties 133

User-defined Properties 135
Property Sheet Sizing 136
Property Sheet Example 138
Multiple Properties Example 152
User Interface Programming 127

128 Chapter 6: Using Property Sheet Widgets
About Property Sheet Widgets

The purpose of a property sheet (created with WIDGET_PROPERTYSHEET) is to
enable the user to view and edit the properties of an object subclassed from the
IDLitComponent class. (All IDLit* objects and most IDLgr* subclass from the
IDLitComponent class.)

For example, a user may have rendered data as a surface. Using IDL’s iSurface tool,
the user can select the surface and bring up a property sheet that lists all of the
surface’s properties, including color, shading method, etc. To change the color, the
user can go to the property sheet, select the color property, bring up the color picker,
and select a new color. The name of the changed property is placed into an IDL event.
It is in the processing of this event that the object is updated. An existing property
sheet can be assigned a new component, which causes it to reload with the new list of
properties and their values.

The topics in this chapter show how to use the property sheet widget with the iTool’s
paradigm.
About Property Sheet Widgets User Interface Programming

Chapter 6: Using Property Sheet Widgets 129
Registering Properties

In order for a property associated with a component object to be included in the
property sheet for that component, the property must be registered. The property
registration mechanism accomplishes several things:

• It allows you to expose as many or as few of the properties of an underlying
object as you choose.

• It allows you to add user-defined properties to existing objects, and expose
those new properties to users of your application.

Groups of properties of graphical atomic objects can be registered by setting their
REGISTER_PROPERTIES properties to True when the object is initialized. See the
property tables for each graphical atomic object in the IDL Reference Guide.
User Interface Programming Registering Properties

130 Chapter 6: Using Property Sheet Widgets
Selecting Properties

A property sheet consists of rows and columns. The left-most column identifies the
properties, and the other column or columns identify the property values of one or
more objects (also known as components). A select event is generated whenever a
cell containing a property name or a property value is selected by left-clicking on it
using the mouse. When a single property value is clicked on, the associated property
name appears indented. Only a single property value can be selected at one time.
However, when the MULTIPLE_PROPERTIES keyword is set, multiple properties
can be selected in a property sheet using the Ctrl key to make nonadjacent selections
or using the Shift key to make adjacent selections.

Note
Setting the EDITABLE keyword to 0 (zero) allows the user to select, but not modify
properties. See “WIDGET_PROPERTYSHEET” (IDL Reference Guide) for
details.

Figure 6-1: Property Sheet Selection

Property
(Identifier)

Object
(Component)

Property
Value
Selecting Properties User Interface Programming

Chapter 6: Using Property Sheet Widgets 131
When the property sheet is initially realized, no properties are selected by default.
However a single property or multiple properties can be selected programmatically
using the PROPERTYSHEET_SETSELECTED keyword to the
WIDGET_CONTROL procedure.

Set the PROPERTYSHEET_SETSELECTED keyword to a string or an array of
strings identifying the properties to appear selected. The strings should match valid
property identifiers. When this keyword is set to an empty string or an array that
contains only an empty sting, it clears all property selections. For example, the
following code pre-selects two properties in a property sheet:

; Create the property sheet.
oComp = OBJ_NEW('IDLitVisAxis')
wPropAxis = WIDGET_PROPERTYSHEET(base, VALUE = oComp, $
 EVENT_PRO = 'PropertyEvent', UNAME = 'PropSheet', $

/MULTIPLE_PROPERTIES)

; Pre-select the color and transparency properties of
; axis component.
WIDGET_CONTROL, wPropAxis,
 PROPERTYSHEET_SETSELECTED=['Color', 'Transparency']

Accessing Property Sheet Selection Events

The event structure (WIDGET_PROPSHEET_SELECT) provided when selection
occurs contains a COMPONENT tag, an IDENTIFIER tag, and a NSELECTED tag.

{WIDGET_PROPSHEET_SELECT, ID:0L, TOP:0L, HANDLER:0L, TYPE:0L,
 COMPONENT:OBJREF, IDENTIFIER:"", NSELECTED:0L }

The COMPONENT tag is a reference to the object associated with the selected
property value. When multiple objects (also known as components) are associated
with the property sheet, this member indicates which one object had one of its
property values selected. If a property (instead of a property value) is selected, the
COMPONENT tag always contains an object reference to the first object, even if
there are multiple objects in the property sheet. The IDENTIFIER tag uniquely
identifies the property. This identifier is unique among all of the component’s
properties. The component and identifier can be used to obtain the value of the
selected property:

isDefined = event.component-> $
GetPropertyByIdentifier(event.identifier, value)

where event is the event structure, isDefined is a 1 if the value is defined (0,
otherwise), and value receives the property’s value.
User Interface Programming Selecting Properties

132 Chapter 6: Using Property Sheet Widgets
The NSELECTED tag returns the number of currently selected properties. When
more than a single property is selected, the IDENTIFIER field holds the identifier of
the first item selected. This is not the first item selected with the mouse, but the first
item encountered in the property sheet definition among those which are selected.
The NSELECTED tag is equivalent to calling WIDGET_INFO with the
/PROPERTYSHEET_NSELECTED keyword.

Using WIDGET_INFO, it is also possible to return the identifiers of all selected
properties using the /PROPERTYSHEET_SELECTED keyword. This returns a
string or string array containing the identifiers of the selected properties.

; Return information about single or multiple property
; selections.
vNumSelected = WIDGET_INFO(event.ID, /PROPERTYSHEET_NSELECTED)
vSelected = WIDGET_INFO(event.ID, /PROPERTYSHEET_SELECTED)
PRINT, 'Number properties selected: ' + STRING(vNumSelected)
PRINT, 'Selected properties: '
PRINT, vSelected

Controlling When Properties are Selectable

Three things that determine the appearance of a property sheet data cells. They are, in
order of greatest to least precedence:

1. Sensitivity of the entire widget — If SENSITIVE=0 for
WIDGET_PROPERTYSHEET then no selection or scrolling is possible.

2. Editability of the entire widget — If EDITABLE=0 for the property sheet
(meaning it is marked as read-only), cells can be selected but cannot be
changed. If EDITABLE=1 (the default value meaning properties can be
selected and modified), then the editability of individual properties is
controlled by their individual sensitivity values.

3. Sensitivity of an individual property — If SENSITIVE=0 for an individual
property (set using the RegisterProperty or SetPropertyAttribute methods of
IDLitComponent), then the individual property cannot be selected or changed.
Selecting Properties User Interface Programming

Chapter 6: Using Property Sheet Widgets 133
Changing Properties

A change event is generated whenever a new value is entered for a property. It is also
used to signal that a user-defined property needs changing. The event structure
(WIDGET_PROPSHEET_CHANGE) provided when a change occurs contains a
COMPONENT, an IDENTIFIER, a PROPTYPE, and a SET_DEFINED tag. The
COMPONENT tag contains a reference to the object associated with the property
sheet. When multiple objects are associated with the property sheet, this member
indicates which object is to change. The IDENTIFIER tag specifies the value of the
property’s identifier attribute. This identifier is unique among all of the component’s
properties. The PROPTYPE tag indicates the type of the property (integer, string,
etc.). Integer values for these types can be found in the documentation for
components. The SET_DEFINED tag indicates whether or not an undefined property
is having its value set. In most circumstances, along with its new value, the property
should have its ‘UNDEFINED’ attribute set to zero. If a property is never marked as
undefined, this field can be ignored.

Although the component’s object reference is included in the event structure, it can
also be retrieved via the following call:

WIDGET_CONTROL, event.id, GET_VALUE = obj

where event is the event structure and obj is the object reference of the component.

The PROPTYPE field is provided for convenience. The property type should be
known implicitly based on IDENTIFIER, but can be retrieved (in integer form) by:

obj->GetPropertyAttribute, event.identifier, TYPE = type

where obj is the object reference of the component, event is the event structure, and
type represents the data type of the property. Here, the value returned in by the
TYPE keyword is the same as the value of the PROPTYPE field of the widget event
structure.

Properties can use their UNDEFINED attribute to show an indeterminate state (set
attribute UNDEFINED = 1). This might arise after the aggregation of two or more
properties. One could imagine a COLOR property representing both the border and
the interior color of a polygon so that just one color property is displayed in the
property sheet. When set, the chosen color would be applied to both, and then the
following code could be used to mark the property as defined:

IF (event.set_defined) THEN $
event.component->SetPropertyAttribute, $

event.identifier, UNDEFINED = 0
WIDGET_CONTROL, event.id, REFRESH_PROPERTY = event.identifier
User Interface Programming Changing Properties

134 Chapter 6: Using Property Sheet Widgets
where event is the event structure.

Note
The REFRESH_PROPERTY keyword to WIDGET_CONTROL is used to refresh
the property sheet. This is necessary because although the property sheet knows
about its component, it does not directly change the component itself. Just as with
changing properties values, the property sheet and underlying component have a
clear boundary and can only affect each other through IDL statements.

Properties can also be hidden (removing them from the property sheet entirely) or
desensitized (displaying the property in the property sheet, but not allowing the user
to change its value). See “Property Attributes” (Chapter 4, iTool Developer’s Guide)
for additional details.

Updating the Component

When a value has been changed in the property sheet, you can access this resulting
value through the WIDGET_INFO function:

value = WIDGET_INFO(event.id, PROPERTY_VALUE = event.identifier)

where event is the event structure. This value can then be used to update the
changed property in the component object by calling its SetPropertyByIdentifier
method:

event.component->SetPropertyByIdentifier, event.identifier, $
value

where event is the event structure and value is the modified property value.
Changing Properties User Interface Programming

Chapter 6: Using Property Sheet Widgets 135
User-defined Properties

User-defined properties allow IDL programmers to provide their own custom means
for editing a property. One significant difference from other types of properties is that
user-defined properties must have a string version of their value. This string value is
stored in the USERDEF attribute of the property and must be explicitly updated. The
string value is the value displayed in the property sheet. See Chapter 4, “Property
Management” (iTool Developer’s Guide) for further discussion of user-defined
properties.

Updating User-defined Properties

Like other property types, user-defined properties generate IDL property sheet
change events. The difference is that the IDL event handler cannot query the property
sheet for the new value. It must use some other means to determine a new value.
Typically this is done through widget code, in which the user is asked to set a value,
but virtually any other technique is valid.

When handling change events, determine the property’s type using the PROPTYPE
field of the widget event structure. Once a value has been acquired, update the
component using its SetProperty method. In addition, the string version of the user-
defined property’s value should be updated. This is done by executing a statement
similar to the following example:

eventBase.component->SetPropertyAttribute, $
eventBase.identifier, USERDEF = userDefValue

where eventBase is the event structure of the top-level-base and userDefValue is
the string representing the user-defined value when the property sheet is refreshed.

Once the underlying component has been updated, the property sheet is ready to be
refreshed. Execute a call to update a given property with the current value:

WIDGET_CONTROL, propsheet, REFRESH_PROPERTY = eventBase.identifier

where propsheet is the widget ID of the property sheet widget and eventBase is
the event structure of the top-level-base.
User Interface Programming User-defined Properties

136 Chapter 6: Using Property Sheet Widgets
Property Sheet Sizing

Property sheets without a size definition (lacking a specified SCR_XSIZE or XSIZE
keyword value) are naturally sized. Column widths are dependent upon the cell
contents of the components. Naturally sized property sheets allow the full contents of
the longest cell to be visible in a column as shown in the left-hand image in the
following figure. When a size definition is provided, selecting the cell displays the list
contents in a drop-down box that is wide enough for the longest item as shown in the
right-hand image in the following figure.

Note
If you manually change the width of a property sheet column, natural resizing
functionality is overridden. Dynamic resizing is not supported when the property
sheet is refreshed or loaded with different data. Natural sizing can be recovered by
destroying and recreating the property sheet.

The following elements are considered when determining column width in a naturally
sized property sheet:

• The column width is dependent upon the length of the longest cell value
(regardless of cell type) or longest component name. If the length is excessive,
a reasonable default is used. When there are multiple components, only the
data in the first three component columns are considered when determining
column width. All columns will be the same width.

• If a text cell contains the longest value, approximately 25 characters will be
displayed. When you click in the cell, a drop-down box shows any additional
text. A scroll bar is provided to show text beyond that displayed in the drop-
down box.

Figure 6-2: Property Sheet Column Sizing
Property Sheet Sizing User Interface Programming

Chapter 6: Using Property Sheet Widgets 137
• If a drop-down list contains the longest value, the width of the longest
enumerated value will determine the column width.

• If a number cell contains the longest value, ten digits plus the “.” and “–”
characters will be displayed.

• If the longest cell value is in a cell containing color, symbol, line thickness, or
line style items, then the column width is intelligently sized to allow the
minimal width required for user identification and selection.

When a property sheet size is explicitly defined, the column width may crop the
display of the full cell contents. However, when you select the cell, the full contents
will be visible as follows:

• A drop-down list box will expand to show the longest item if the column width
is less than the width of the longest item.

• A drop-down edit box will wrap text and provide a vertical scrollbar as
necessary.
User Interface Programming Property Sheet Sizing

138 Chapter 6: Using Property Sheet Widgets
Property Sheet Example

The following example provides a property sheet containing all the available controls,
including user-defined properties of a custom component.

Enter the following text into the IDL Editor:

; Property Sheet Demo
;
; This program contains these sections of code:
;
; (1) Definition of the IDLitTester class.
; (2) Methods for handling the user-defined data type.
; (3) Event handlers and main widget program.

;==
; (1) Definition of the IDLitTester class.
;--
; IDLitTester
;
; Superclasses:
; IDLitComponent
;
; Subclasses:
; none
;
; Interfaces:
; IIDLProperty
;
; Intrinsic Methods:
; none (because it contains no objects)

;--
; IDLitTester::Init

FUNCTION IDLitTester::Init, _REF_EXTRA = _extra

compile_opt idl2

; Initialize the superclass.
IF (self->IDLitComponent::Init() ne 1) THEN $

RETURN, 0

; Create IDLitTester.
; Nothing to do, for now.

; Register properties.
;

Property Sheet Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 139
; * Only registered properties will show up in the property sheet.
; * <identifier> must match self.<identifier>.

self->RegisterProperty, 'BOOLEAN', /BOOLEAN , $
NAME = 'Boolean', DESCRIPTION = 'TRUE or FALSE'

self->RegisterProperty, 'COLOR', /COLOR, $
NAME = 'Color', DESCRIPTION = 'Color (RGB)'

self->RegisterProperty, 'USERDEF', USERDEF = '', $
NAME = 'User Defined', DESCRIPTION = 'User defined property'

self->RegisterProperty, 'NUMBER1', /INTEGER , $
NAME = 'Integer', DESCRIPTION = 'Integer in [-100, 100]', $
valid_range = [-100, 100]

self->RegisterProperty, 'NUMBER2', /FLOAT, $
NAME = 'Floating Point', DESCRIPTION = 'Number trackbar', $
valid_range = [-19.0D, 6.0D, 0.33333333333333D]

self->RegisterProperty, 'NUMBER3', /FLOAT, $
NAME = 'Floating Point', $
DESCRIPTION = 'Double in [-1.0, 1.0]', $
valid_range = [-1.0D, 1.0D]

self->RegisterProperty, 'LINESTYLE', /LINESTYLE, $
NAME = 'Line Style', DESCRIPTION = 'Line style'

self->RegisterProperty, 'LINETHICKNESS', /THICKNESS , $
NAME = 'Line Thickness', $
DESCRIPTION = 'Line thickness (pixels)'

self->RegisterProperty, 'STRINGOLA', /STRING , $
NAME = 'String', DESCRIPTION = 'Just some text'

self->RegisterProperty, 'SYMBOL', /SYMBOL , $
NAME = 'Symbol', DESCRIPTION = 'Symbol of some sort'

self->RegisterProperty, 'STRINGLIST', $
NAME = 'String List', DESCRIPTION = 'Enumerated list', $
enumlist = ['dog', 'cat', 'bat', 'rat', 'nat', $
'emu', 'owl', 'pig', 'hog', 'ant']

; Set any property values.
self->SetProperty, _EXTRA = _extra

RETURN, 1
END
User Interface Programming Property Sheet Example

140 Chapter 6: Using Property Sheet Widgets
;--
; IDLitTester::Cleanup

PRO IDLitTester::Cleanup

compile_opt idl2

self->IDLitComponent::Cleanup

END

;--
; IDLitTester::GetProperty
;
; Implemention for IIDLProperty interface

PRO IDLitTester::GetProperty, $
boolean = boolean, $
color = color, $
userdef = userdef, $
font = font, $
number1 = number1, $
number2 = number2, $
number3 = number3, $
linestyle = linestyle, $
linethickness = linethickness, $
stringola = stringola, $
stringlist = stringlist, $
symbol = symbol, $
_REF_EXTRA = _extra

compile_opt idl2

IF (arg_present(boolean)) THEN boolean = self.boolean
IF (arg_present(color)) THEN color = self.color
IF (arg_present(userdef)) THEN userdef = self.userdef
IF (arg_present(font)) THEN font = self.font
IF (arg_present(number1)) THEN number1 = self.number1
IF (arg_present(number2)) THEN number2 = self.number2
IF (arg_present(number3)) THEN number3 = self.number3
IF (arg_present(linestyle)) THEN linestyle = self.linestyle
IF (arg_present(linethickness)) $

THEN linethickness = self.linethickness
IF (arg_present(stringola)) THEN stringola = self.stringola
IF (arg_present(stringlist)) THEN stringlist = self.stringlist
IF (arg_present(symbol)) THEN symbol = self.symbol

; Superclass' properties:
IF (n_elements(_extra) gt 0) THEN $
Property Sheet Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 141
self->IDLitComponent::GetProperty, _EXTRA = _extra

END

;--
; IDLitTester::SetProperty
;
; Implementation for IIDLProperty interface

PRO IDLitTester::SetProperty, $
boolean = boolean, $
color = color, $
userdef = userdef, $
font = font, $
number1 = number1, $
number2 = number2, $
number3 = number3, $
linestyle = linestyle, $
linethickness = linethickness, $
stringola = stringola, $
stringlist = stringlist, $
symbol = symbol, $
_REF_EXTRA = _extra

compile_opt idl2

IF (n_elements(boolean) ne 0) THEN self.boolean = boolean
IF (n_elements(color) ne 0) THEN self.color = color
IF (n_elements(userdef) ne 0) THEN self.userdef = userdef
IF (n_elements(font) ne 0) THEN self.font = font
IF (n_elements(number1) ne 0) THEN self.number1 = number1
IF (n_elements(number2) ne 0) THEN self.number2 = number2
IF (n_elements(number3) ne 0) THEN self.number3 = number3
IF (n_elements(linestyle) ne 0) THEN self.linestyle = linestyle
IF (n_elements(linethickness) ne 0) THEN $

self.linethickness = linethickness
IF (n_elements(stringola) ne 0) THEN self.stringola = stringola
IF (n_elements(stringlist) ne 0) THEN self.stringlist = stringlist
IF (n_elements(symbol) ne 0) THEN self.symbol = symbol

self->IDLitComponent::SetProperty, _EXTRA = _extra

END

;--
; IDLitTester__Define

PRO IDLitTester__Define
User Interface Programming Property Sheet Example

142 Chapter 6: Using Property Sheet Widgets
compile_opt idl2, hidden

struct = {$
IDLitTester, $
inherits IDLitComponent, $
boolean:0L, $
color:[0B,0B,0B], $
userdef:"", $
number1:0L, $
number2:0D, $
number3:0D, $
linestyle:0L, $
linethickness:0L, $
stringola:"", $
stringlist:0L, $
symbol:0L $
}

END

;==
; (2) Methods for handling the user-defined data type.
;--
; UserDefEvent
;
; This procedure is just part of the widget code for
; the user defined property.

PRO UserDefEvent, e

IF (tag_names(e, /structure_name) eq 'WIDGET_BUTTON') $
THEN BEGIN

widget_control, e.top, get_uvalue = uvalue
widget_control, e.id, get_uvalue = numb_ness

propsheet = uvalue.propsheet
component = uvalue.component
identifier = uvalue.identifier

; Set the human readable value.
component->SetPropertyAttribute, $

identifier, userdef = numb_ness

; Set the real value of the component.
component->SetPropertyByIdentifier, identifier, numb_ness

WIDGET_CONTROL, propsheet, refresh_property = identifier
PRINT, 'Changed: ', uvalue.identifier, ': ', numb_ness
Property Sheet Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 143
WIDGET_CONTROL, e.top, /destroy

ENDIF

END

;--
; GetUserDefValue
;
; Creates widgets used to modify the user defined property's
; value. The value is actually set in UserDefEvent.

PRO GetUserDefValue, e

base = WIDGET_BASE(/row, title = 'Pick a Number', $
/modal, group_leader = e.top)

one = WIDGET_BUTTON(base, value = 'one', uvalue = 'oneness')
two = WIDGET_BUTTON(base, value = 'two', uvalue = 'twoness')
six = WIDGET_BUTTON(base, value = 'six', uvalue = 'sixness')
ten = WIDGET_BUTTON(base, value = 'ten', uvalue = 'tenness')

; We will need this info when we set the value
WIDGET_CONTROL, base, $

SET_UVALUE = {propsheet:e.id, $
component:e.component, $
identifier:e.identifier}

WIDGET_CONTROL, base, /REALIZE

XMANAGER, 'UserDefEvent', base, event_handler = 'UserDefEvent'

END

;==
; (3) Event handlers and main widget program.
;--
;
; Event handling code for the main widget program and
; the main widget program.

;--
; prop_event
;
; The property sheet generates an event whenever the user changes
; a value. The event holds the property's identifier and type, and
; an object reference to the component.
;
; Note: widget_control, e.id, get_value = objref also retrieves an
User Interface Programming Property Sheet Example

144 Chapter 6: Using Property Sheet Widgets
; object reference to the component.

PRO prop_event, e

IF (e.type eq 0) THEN BEGIN ; Value changed

; Get the value of the property identified by e.identifier.

IF (e.proptype ne 0) THEN BEGIN

; Get the value from the property sheet.
value = widget_info(e.id, property_value = e.identifier)

; Set the component's property's value.
e.component->SetPropertyByIdentifier, e.identifier, $

value

; Print the change in the component's property value.
PRINT, 'Changed', e.identifier, ': ', value

ENDIF ELSE BEGIN

; Use alternative means to get the value.
GetUserDefValue, e

ENDELSE

ENDIF ELSE BEGIN ; selection changed

PRINT, 'Selected: ' + e.identifier
r = e.component->GetPropertyByIdentifier(e.identifier, value)
PRINT, ' Current Value: ', value

ENDELSE

END

;--
; refresh_event

PRO refresh_event, e

WIDGET_CONTROL, e.id, get_uvalue = uvalue

uvalue.o->SetProperty, boolean = 0L
uvalue.o->SetProperty, color = [255, 0, 46]
uvalue.o->SetPropertyAttribute, 'userdef', userdef = "Yeehaw!"
uvalue.o->SetProperty, number1 = 99L
uvalue.o->SetProperty, number2 = -13.1
uvalue.o->SetProperty, number3 = 6.5
Property Sheet Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 145
uvalue.o->SetProperty, linestyle = 6L
uvalue.o->SetProperty, stringola = 'It worked!'
uvalue.o->SetProperty, stringlist = 6L
uvalue.o->SetProperty, symbol = 6L

uvalue.o->SetPropertyAttribute, 'Number1', sensitive = 1
uvalue.o->SetPropertyAttribute, 'Number2', sensitive = 1

WIDGET_CONTROL, uvalue.prop, $
REFRESH_PROPERTY = ['boolean', 'color', 'userdef', $
'number1', 'number2', 'number3', 'linestyle', $
'stringola', 'stringlist', 'symbol']

END

;--
; reload_event

PRO reload_event, e

WIDGET_CONTROL, e.id, GET_UVALUE = uvalue

LoadValues, uvalue.o

WIDGET_CONTROL, uvalue.prop, SET_VALUE = uvalue.o

update_state, e.top, 1

END

;--
; hide_event

PRO hide_event, e

WIDGET_CONTROL, e.id, get_uvalue = uvalue

uvalue.o->SetPropertyAttribute, 'color', /HIDE

WIDGET_CONTROL, uvalue.prop, refresh_property = 'color'

END

;--
; show_event

PRO show_event, e

WIDGET_CONTROL, e.id, get_uvalue = uvalue
User Interface Programming Property Sheet Example

146 Chapter 6: Using Property Sheet Widgets
uvalue.o->SetPropertyAttribute, 'color', hide = 0

WIDGET_CONTROL, uvalue.prop, REFRESH_PROPERTY = 'color'

END

;--
; clear_event

PRO clear_event, e

update_state, e.top, 0

WIDGET_CONTROL, e.id, GET_UVALUE = uvalue

WIDGET_CONTROL, uvalue.prop, SET_VALUE = OBJ_NEW()

END

;--
; psdemo_large_event
;
; Handles resize events for the property sheet demo program.

PRO psdemo_large_event, e

WIDGET_CONTROL, e.id, GET_UVALUE = base
geo_tlb = WIDGET_INFO(e.id, /GEOMETRY)

WIDGET_CONTROL, base.prop, $
 SCR_XSIZE = geo_tlb.xsize - (2*geo_tlb.xpad), $
 SCR_YSIZE = geo_tlb.ysize - (2*geo_tlb.ypad)

END

;--
; sensitivity_event
;
; Procedure to test sensitizing and desensitizing

PRO sensitivity_event, e

WIDGET_CONTROL, e.id, GET_UVALUE = uvalue, GET_VALUE = value

IF (value eq 'Desensitize') THEN b = 0 $
ELSE b = 1

uvalue.o->SetPropertyAttribute, 'Boolean', sensitive = b
Property Sheet Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 147
uvalue.o->SetPropertyAttribute, 'Color', sensitive = b
uvalue.o->SetPropertyAttribute, 'UserDef', sensitive = b
uvalue.o->SetPropertyAttribute, 'Number1', sensitive = b
uvalue.o->SetPropertyAttribute, 'Number2', sensitive = b
uvalue.o->SetPropertyAttribute, 'Number3', sensitive = b
uvalue.o->SetPropertyAttribute, 'LineStyle', sensitive = b
uvalue.o->SetPropertyAttribute, 'LineThickness', sensitive = b
uvalue.o->SetPropertyAttribute, 'Stringola', sensitive = b
uvalue.o->SetPropertyAttribute, 'Symbol', sensitive = b
uvalue.o->SetPropertyAttribute, 'StringList', sensitive = b

WIDGET_CONTROL, uvalue.prop, $
refresh_property = ['Boolean', 'Color', 'UserDef', $
'Number1', 'Number2', 'Number3', 'LineStyle', $
'LineThickness', 'Stringola', 'Symbol', 'StringList']

END

;--
; LoadValues

PRO LoadValues, o

o->SetProperty, boolean = 1L ; 0 or 1
o->SetProperty, color = [200, 100, 50] ; RGB
o->SetPropertyAttribute, 'userdef', userdef = ""
; to be set later
o->SetProperty, number1 = 42L ; integer
o->SetProperty, number2 = 0.0 ; double
o->SetProperty, number3 = 0.1 ; double
o->SetProperty, linestyle = 4L ; 5th item (zero based)
o->SetProperty, linethickness = 4L ; pixels
o->SetProperty, stringola = "This is a silly string."
o->SetProperty, stringlist = 3L ; 4th item in list
o->SetProperty, symbol = 4L ; 5th symbol in list

END

;--
; quit_event

PRO quit_event, e

WIDGET_CONTROL, e.top, /DESTROY

END

;--
; update_state
User Interface Programming Property Sheet Example

148 Chapter 6: Using Property Sheet Widgets
PRO update_state, top, sensitive

WIDGET_CONTROL, top, GET_UVALUE = uvalue

FOR i = 0, n_elements(uvalue.b) - 1 do $
WIDGET_CONTROL, uvalue.b[i], sensitive = sensitive

END

;--
; psdemo_large

PRO psdemo_large

; Create and initialize the component.

o = OBJ_NEW('IDLitTester')

LoadValues, o

; Create some widgets.

base = WIDGET_BASE(/COLUMN, /TLB_SIZE_EVENT, $
TITLE = 'Property Sheet Demo (Large)')

prop = WIDGET_PROPERTYSHEET(base, value = o, $
YSIZE = 13, /FRAME, event_pro = 'prop_event')

b1 = WIDGET_BUTTON(base, value = 'Refresh', $
uvalue = {o:o, prop:prop}, $
event_pro = 'refresh_event')

b2 = WIDGET_BUTTON(base, value = 'Reload', $
uvalue = {o:o, prop:prop}, $
event_pro = 'reload_event')

b3 = WIDGET_BUTTON(base, value = 'Hide Color', $
uvalue = {o:o, prop:prop}, $
event_pro = 'hide_event')

b4 = WIDGET_BUTTON(base, value = 'Show Color', $
uvalue = {o:o, prop:prop}, $
event_pro = 'show_event')

b5 = WIDGET_BUTTON(base, value = 'Clear', $
uvalue = {o:o, prop:prop}, $
event_pro = 'clear_event')
Property Sheet Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 149
b6 = WIDGET_BUTTON(base, value = 'Desensitize', $
uvalue = {o:o, prop:prop}, $
event_pro = 'sensitivity_event')

b7 = WIDGET_BUTTON(base, value = 'Sensitize', $
uvalue = {o:o, prop:prop}, $
event_pro = 'sensitivity_event')

b8 = WIDGET_BUTTON(base, value = 'Quit', $
EVENT_PRO = 'quit_event')
; Buttons that can't be pushed after clearing:
b = [b1, b3, b4, b5, b6, b7]

; Activate the widgets.

WIDGET_CONTROL, base, SET_UVALUE = {prop:prop, b:b}, /REALIZE

XMANAGER, 'psdemo_large', base, /NO_BLOCK

END

The following figure displays the output of this example:

Figure 6-3: User-Defined Property Sheet Example
User Interface Programming Property Sheet Example

150 Chapter 6: Using Property Sheet Widgets
To demonstrate the controls available from the WIDGET_PROPERTYSHEET, do
the following and note the Selected and Changed messages in the IDL Output
Log:

• Change the Boolean field to False.

• Select a new Color from the color picker.

• Select a new “numberness” value in the User Defined field.

• Change the Integer field to a new value. Note that this field has been restricted
to integers in the range -100 to 100.

• Change the first Floating Point field to a new value by moving the slider.

• Change the second Floating Point field to a new value by editing the text.
Note that this field has been restricted to floating point numbers in the range -
1.0 to 1.0.

• Change the Line Style field to a new style.

• Change the Line Thickness field to a new thickness.

• Select a new symbol in the Symbol field.

• Select a new string from the String List.

Click the eight buttons at the bottom of the property sheet to initiate the following
events:

• The Refresh button loads the data specified in refresh_event into the
property sheet, using the REFRESH_PROPERTY keyword to
WIDGET_CONTROL.

• The Reload button reloads the data specified in LoadValues into the property
sheet, using the SET_VALUE keyword to WIDGET_CONTROL.

• The Hide Color button runs hide_event, which sets the HIDE attribute for
the color property to one.

• The Show Color button runs show_event, which sets the HIDE attribute for
the color property to zero.

• The Clear button runs clear_event, which creates a new set of empty
objects, deactivating all but the Reload button.

• The Desensitize button runs sensitivity_event, which deactivates the
displayed fields.

• The Sensitize button runs sensitivity_event, which reactivates the
displayed fields.
Property Sheet Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 151
• The Quit button runs quit_event, which destroys the top-level base and
ends the program.
User Interface Programming Property Sheet Example

152 Chapter 6: Using Property Sheet Widgets
Multiple Properties Example

The following example shows how to create a property sheet for multiple
components.

Enter the following text in the IDL Editor:

; ExMultiSheet.pro
;
; Provides an example of a property sheet that is
; associated with more than one object. In this case,
; multiple IDLitVisAxis objects are used, with random
; colors and hidden cells, just for fun.

PRO PropertyEvent, event

IF (event.type EQ 0) THEN BEGIN ; Value changed.

 PRINT, 'Changed: ', event.component
 PRINT, ' ', event.identifier, ': ', $
 WIDGET_INFO(event.id, COMPONENT = event.component, $
 PROPERTY_VALUE = event.identifier)

ENDIF ELSE BEGIN ; Selection changed.

 PRINT, 'Selected: ' + event.identifier

ENDELSE

END

PRO CleanupEvent, baseID

WIDGET_CONTROL, baseID, GET_UVALUE = objects

FOR i = 0, (N_ELEMENTS(objects) - 1) DO $
 OBJ_DESTROY, objects[i]

END

PRO ExMultiSheet_event, event

ps = WIDGET_INFO(event.id, $
 FIND_BY_UNAME = 'PropSheet')

geo_tlb = WIDGET_INFO(event.id, /GEOMETRY)

WIDGET_CONTROL, ps, $
Multiple Properties Example User Interface Programming

Chapter 6: Using Property Sheet Widgets 153
 SCR_XSIZE = geo_tlb.xsize - (2*geo_tlb.xpad), $
 SCR_YSIZE = geo_tlb.ysize - (2*geo_tlb.ypad)

END

PRO ExMultiSheet

tlb = WIDGET_BASE(/COLUMN, /TLB_SIZE_EVENTS, $
 KILL_NOTIFY = 'CleanupEvent')

; Create some columns.

oComp1 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s1, 3)*256, $
 TEXT_COLOR = RANDOMU(s7, 3)*256)
oComp2 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s2, 3)*256, $
 TEXT_COLOR = RANDOMU(s8, 3)*256)
oComp3 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s3, 3)*256, $
 TEXT_COLOR = RANDOMU(s9, 3)*256)
oComp4 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s4, 3)*256, $
 TEXT_COLOR = RANDOMU(s10, 3)*256)
oComp5 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s5, 3)*256, $
 TEXT_COLOR = RANDOMU(s11, 3)*256)
oComp6 = OBJ_NEW('IDLitVisAxis', $
 COLOR = RANDOMU(s6, 3)*256, $
 TEXT_COLOR = RANDOMU(s12, 3)*256)

oComps = [oComp1, oComp2, oComp3, $
 oComp4, oComp5, oComp6]

WIDGET_CONTROL, tlb, SET_UVALUE = oComps

; Hide some properties.

oComp2->SetPropertyAttribute, 'color', /HIDE
oComp2->SetPropertyAttribute, 'ticklen', /HIDE
oComp5->SetPropertyAttribute, 'ticklen', /HIDE

; Create the property sheet.
prop = WIDGET_PROPERTYSHEET(tlb, $
 UNAME = 'PropSheet', $
 VALUE = oComps, $
 FONT = 'Courier New*16', $
 XSIZE = 100, YSIZE = 24, $
 /FRAME, EVENT_PRO = 'PropertyEvent')
User Interface Programming Multiple Properties Example

154 Chapter 6: Using Property Sheet Widgets
; Activate the widgets.

WIDGET_CONTROL, tlb, /REALIZE

XMANAGER, 'ExMultiSheet', tlb, /NO_BLOCK

END

Save the program as ExMultiSheet.pro, then compile and run it. A property sheet
displaying the properties of six axes is displayed:

The gray boxes indicate properties that have been hidden. To remove the gray boxes,
comment out the code after the following comment:

; Hide some properties.

The text is displayed at 16 points in the Courier New font. To view the property sheet
with the text displayed in the default size and font, comment out the following
segment of the property sheet creation code:

FONT = "Courier New*16", $

To see the text displayed in a font and size of your choosing, edit the same segment to
include a different font name and size.

Figure 6-4: Multi-Sheet Example
Multiple Properties Example User Interface Programming

Chapter 7

Using Table Widgets
The following topics are covered in this chapter:
About Table Widgets 156
Default Table Size 157
Selection Modes . 158
Data Types . 160
Data Retrieval . 161

Edit Mode . 164
Cell Attributes . 165
Example: Single Data Type Data 172
Example: Structure Data 176
User Interface Programming 155

156 Chapter 7: Using Table Widgets
About Table Widgets

Table widgets display two-dimensional data and allow in-place data editing.

See “WIDGET_TABLE” (IDL Reference Guide) for a complete description of the
function used to create table widgets.

This section discusses the following topics:

• “Default Table Size” on page 157

• “Selection Modes” on page 158

• “Data Types” on page 160

• “Data Retrieval” on page 161

• “Edit Mode” on page 164

• “Cell Attributes” on page 165

• “Example: Single Data Type Data” on page 172

• “Example: Structure Data” on page 176
About Table Widgets User Interface Programming

Chapter 7: Using Table Widgets 157
Default Table Size

Table widgets are sized according to the value of the following pairs of keywords to
WIDGET_TABLE, in order of precedence: SCR_XSIZE/SCR_YSIZE,
XSIZE/YSIZE, X_SCROLL_SIZE/Y_SCROLL_SIZE, and VALUE. If either
dimension remains unspecified by one of the above keywords, the default value of six
(columns or rows) is used when the table is created. If the width or height specified is
less than the size of the table, scroll bars are added automatically.

Note
The default row height and column width vary with different user interface toolkits.
User Interface Programming Default Table Size

158 Chapter 7: Using Table Widgets
Selection Modes

Groups of table cells can be selected either manually (using the mouse or keyboard)
or programmatically. The table widget supports two selection modes — standard and
disjoint. Both modes can be used either by an interactive table user or by the IDL
programmer. See “Data Retrieval” on page 161 for information on retrieving data
from various types of selections.

Standard Selection Mode

In standard selection mode, exactly one rectangular area (of a single cell or multiple
cells) can be selected at a given time.

Interactive Selection

Interactive users select cells by clicking the left mouse button on a cell, holding the
mouse button down, and dragging the mouse until the desired cells are selected.
Selections can be extended by holding down the SHIFT key and selecting additional
cells.

Programmatic Selection

Programmers select cells by specifying a four-element array, of the form
[left, top, right, bottom], as the value of the SET_TABLE_SELECT keyword to
WIDGET_CONTROL.

Disjoint Selection Mode

In disjoint selection mode, multiple rectangular areas can be selected at once. In order
to place a table in disjoint selection mode, the programmer must either specify the
DISJOINT_SELECTION keyword to WIDGET_TABLE when creating the table, or
set the TABLE_DISJOINT_SELECTION keyword to WIDGET_CONTROL after
the table has been created.

Interactive Selection

Interactive users select multiple disjoint cell regions by:

1. Creating an initial selection as described above.

2. Holding down the CONTROL key and selecting an unselected cell by clicking
and holding down the left mouse button.
Selection Modes User Interface Programming

Chapter 7: Using Table Widgets 159
3. Releasing the CONTROL key (while continuing to hold the mouse button down)
and dragging the mouse until the next desired region is selected.

4. Repeating as necessary.

Selections can be extended by holding down the SHIFT key and selecting additional
cells.

Programmatic Selection

Programmers create select multiple disjoint cell regions by providing a 2 x n element
array of column/row pairs specifying the cells to act upon as the value of the
SET_TABLE_SELECT keyword to WIDGET_CONTROL.
User Interface Programming Selection Modes

160 Chapter 7: Using Table Widgets
Data Types

Table data can be of any IDL data type or types.

Single Data Type

If all of the table data is of the same data type, the table value is specified as a two-
dimensional array.

Values returned by the GET_VALUE keyword to WIDGET_CONTROL are either a
two-dimensional array (for full tables or selections when the table is in standard
selection mode) or a one-dimensional array (for tables in disjoint selection mode).
(See “Data Retrieval” on page 161 for details.)

Multiple Data Types

If the table contains data of several data types, the table value is specified as a vector
of structures. All of the structures must be of the same type, and must contain one
field for each row (if the COLUMN_MAJOR keyword to WIDGET_TABLE is set)
or column (if the ROW_MAJOR keyword to WIDGET_TABLE is set; this is the
default) in the table.

Values returned by the GET_VALUE keyword to WIDGET_CONTROL are either a
vector of structures (for full tables or selections when the table is in standard selection
mode) or a single structure with one field per cell (for selections when the table is in
disjoint selection mode). (See “Data Retrieval” on page 161 for details.)
Data Types User Interface Programming

Chapter 7: Using Table Widgets 161
Data Retrieval

To retrieve data from a table widget, use the GET_VALUE keyword to
WIDGET_CONTROL. You can retrieve the entire contents of the table or the
contents of either a standard or disjoint selection. The format of the variable returned
by the GET_VALUE keyword depends on the type of data displayed in the table (see
“Data Types” on page 160) and the type of selection (see “Selection Modes” on
page 158).

Entire Table

To retrieve data from the entire table, use the following command:

WIDGET_CONTROL, table, GET_VALUE=table_value

where table is the widget ID of the table widget. The table_value variable will
contain either:

• an array with the same dimensions as the table, with one element per table cell,
if the table contains data of a single data type, or

• a vector of structures, with one structure per table row or column, if the table
contains structure data.

Standard Selection

To retrieve data for a group of selected cells, use the following command:

WIDGET_CONTROL, table, GET_VALUE=selection_value /USE_TABLE_SELECT

where table is the widget ID of the table widget. In standard selection mode, the
selection_value variable will contain either:

• an array with the same dimensions as the selection, with one element per
selected cell, if the table contains data of a single data type, or

• a vector of structures, with one structure per selected row or column, if the
table contains structure data.

Note
You can also set the USE_TABLE_SELECT keyword equal to a four-element array
of the form [left, top, right, bottom] containing the zero-based indices of the
columns and rows that should be selected.
User Interface Programming Data Retrieval

162 Chapter 7: Using Table Widgets
To retrieve the list of selected cells, use the following command:

selected_cells = WIDGET_INFO(table, /TABLE_SELECT)

where table is the widget ID of the table widget. The selected_cells variable will
contain a four-element array of the form [left, top, right, bottom] containing the
zero-based indices of the columns and rows that are selected.

Disjoint Selection

To retrieve data for a group of selected cells, use the following command:

WIDGET_CONTROL, table, GET_VALUE=selection_value,
/USE_TABLE_SELECT

where table is the widget ID of the table widget. In disjoint selection mode, the
selection_value variable will contain either:

• a one-dimensional array of values, with one element per selected cell, if the
table contains data of a single data type, or

• a structure, with one field per selected cell, if the table contains structure data.

Note
You can also set the USE_TABLE_SELECT keyword equal to a 2 x n element array
of column/row pairs specifying the cells that should be selected.

To retrieve the list of selected cells, use the following command:

selected_cells = WIDGET_INFO(table, /TABLE_SELECT)

where table is the widget ID of the table widget. The selected_cells variable will
contain 2 x n array of column/row pairs containing the zero-based indices of the
selected cells.

Converting Between Cell List Formats

With the addition of the ability to create disjoint table selections in IDL 5.6, the
format of the list of selected cells returned by WIDGET_INFO was altered to
accommodate non-rectangular regions when disjoint selections are enabled. To
preserve backwards-compatibility, the format of the list was not changed for tables
using standard selection mode, which guarantees a rectangular selection region.

If your application allows the table widget to switch between standard and disjoint
selection mode, or if you have selection-handling routines that can be used with
tables in either mode, you may want to modify the rectangular selection values
returned for standard selections to match the lists of cells returned for disjoint
Data Retrieval User Interface Programming

Chapter 7: Using Table Widgets 163
selections. The following is a template for such a utility function. It accepts a four-
element array of the form [left, top, right, bottom] containing the zero-based indices
of the columns and rows that are selected and converts it into a 2 x n array of
column/row pairs containing the zero-based indices the selected cells.

FUNCTION Make_Cell_List, Selection_Vector
num_cells = (Selection_Vector[2]-(Selection_Vector[0]-1)) * $

(Selection_Vector[3]-(Selection_Vector[1]-1))
return_arr = intarr(2,num_cells)
n=0
FOR i=Selection_Vector[1], Selection_Vector[3] DO BEGIN

FOR j=Selection_Vector[0], Selection_Vector[2] DO BEGIN
return_arr(n)=j
return_arr(n+1)=i
n=n+2

ENDFOR
ENDFOR
RETURN, return_arr

END

With this function compiled, you could retrieve the four-element selection array from
a standard selection and turn it into a 2 x n element array with the following
commands:

selected_cells = WIDGET_INFO(table, /TABLE_SELECT)
cell_list = Make_Cell_List(selected_cells)

where table is the widget ID of a table widget in standard selection mode.

To reform the array returned by

WIDGET_CONTROL, table, GET_VALUE=Selection_Value

for a standard selection into one-dimensional array like those returned for disjoint
selections, use the following command:

REFORM(Selection_Value, N_ELEMENTS(Selection_Value), 1)
User Interface Programming Data Retrieval

164 Chapter 7: Using Table Widgets
Edit Mode

Edit mode allows a user to select and change the contents of a table cell. There are
numerous ways to enter and exit Edit mode, including:

• Clicking on an unselected cell, then typing any character. This replaces the
existing text with the new character.

• Clicking on an unselected cell, then typing a carriage return. This selects the
contents of the cell and positions the cursor at the right. A second carriage
return exits edit mode, making no changes.

• Double-clicking on an unselected cell. This selects the contents of the cell and
positions the cursor at the right.

• Clicking on a selected cell. This selects the contents of the cell and positions
the cursor at the right.

• Double-clicking on a selected cell. This positions the cursor at the position
where the mouse pointer was clicked.
Edit Mode User Interface Programming

Chapter 7: Using Table Widgets 165
Cell Attributes

The table widget supports a variety of cell attributes that you can apply either to the
entire table or to a subset of its cells. You can set them at table creation with the
WIDGET_TABLE function and change them after creation with the
WIDGET_CONTROL procedure. You can also query for some of them with the
WIDGET_INFO function. The following table describes the table cell attributes.

The following table indicates whether you can use these attributes with the widget
creation (WIDGET_TABLE), modification (WIDGET_CONTROL), and querying
(WIDGET_INFO) routines.

Attribute Description

ALIGNMENT Horizontal alignment of text within a cell (left, middle,
right)

BACKGROUND_COLOR Color of the background of a cell

EDITABLE Indication of whether you can edit a cell

FONT Font to use when drawing a cell’s text

FOREGROUND_COLOR Color of the foreground of a cell

FORMAT Formatting string to use when drawing a cell’s value

Table 7-1: Table Cell Attributes

Attribute WIDGET_TABLE WIDGET_CONTROL WIDGET_INFO

ALIGNMENT Yes Yes No

BACKGROUND_COLOR Yes Yes Yes

EDITABLE Yes Yes Yes

FONT Yes Yes Yes

FOREGROUND_COLOR Yes Yes Yes

FORMAT Yes Yes No

Table 7-2: Use of Table Cell Attributes with Key Widget Routines
User Interface Programming Cell Attributes

166 Chapter 7: Using Table Widgets
There are a few issues surrounding table widget attributes that IDL programmers
should be aware of, especially on Motif (UNIX) platforms. While it is expected that
most users will not see any performance problems, you should consider the hardware
limitations of your users’ systems.

One issue is that the more cells a table has, the more sluggish the table can be. You
can mitigate this limitation by operating on as few cells as possible. For example, if
you know that all cells have the same background color, WIDGET_INFO need only
query for the background color of one cell.

Another issue involves color on Motif systems. Depending on the graphics system in
use, there might be only a small number of distinct colors available for the table.

Setting Cell Attributes at Table Creation

You can set table cell attributes when you create the widget. The value can be either a
scalar or an array of values. The application and default use of cell attributes depends
on which type you choose in specifying the value. (For descriptive purposes here,
consider a color value to be a scalar, although in reality it is a three-element vector of
bytes.) Here are the two scenarios:

• The value is specified as a scalar — applied to all cells. Additionally, it
becomes the table’s default value, used when new cells are created.

• The value is specified as an array — applied left to right, moving from the
top row to the bottom row. The input array’s dimensions need not match the
table’s dimensions. If the number of attribute value elements is insufficient for
the number of cells, the values are recycled to apply to the cells, starting with
the first value. If you supply more attribute values than there are cells, IDL
does not use the remainder.

The following example shows how you can initialize a table to have the vintage look
of alternating mint-green and white lines.

PRO minty_fresh

tlb = WIDGET_BASE()

rows = 5
cols = 5

; Create 2-D array of background colors (3-D, actually)
backgroundColors = MAKE_ARRAY(3, cols, 2, /BYTE)

backgroundColors[0,*,0] = 153 ; mint-green
backgroundColors[1,*,0] = 255
Cell Attributes User Interface Programming

Chapter 7: Using Table Widgets 167
backgroundColors[2,*,0] = 204

backgroundColors[*,*,1] = 255 ; white

; Create a table where every other line is mint-green
table = WIDGET_TABLE(tlb, $

BACKGROUND_COLOR = backgroundColors, $
VALUE = INDGEN(cols,rows))

; Realize the widgets
WIDGET_CONTROL, tlb, /REALIZE

END

Note that in the example, only enough colors for the first two rows are specified. The
table widget repeats the pattern for the remaining rows. Setting up a table with
alternating column colors is even easier. To do so, you can create a table widget with
the following line:

background_color = [[153,255,204], [255,255,255]]

If the example used this code, the table would have a checkerboard pattern because
there are an odd number of columns.

The various types of cell attributes will try to convert input to the proper data type.
The following table details the types and values that you should supply.

Attribute Preferred
Data Type Value or Value Range

ALIGNMENT BYTE 0, 1, or 2

BACKGROUND_COLOR BYTE RGB triplet whose elements are in the range of
[0,255]

EDITABLE BYTE 0 or non-zero

FONT STRING See “About Device Fonts” (Appendix H, IDL
Reference Guide)

FOREGROUND_COLOR BYTE RGB triplet whose elements are in the range of
[0,255]

FORMAT STRING See the FORMAT keyword of the PRINT
procedure

Table 7-3: Preferred Data Types and Values of Table Cell Attributes
User Interface Programming Cell Attributes

168 Chapter 7: Using Table Widgets
Users of table widgets should be aware of the following issues regarding cell
attributes:

• When a cell value is edited, the foreground and background colors revert to the
system defaults for edit cells. The font remains the same.

• At table creation, IDL automatically determines an optimal row height based
on the fonts specified. However, an explicitly specified row height takes
precedence. After creation, row heights do not automatically change when
fonts change.

• Row and column header cells have a limited set of attributes. Only foreground
color and font can be set. Header cells are indexed by using -1. For example,
the header for the third row is indexed by [-1,2], and the third column is
indexed by [2,-1]. Actions on cell [-1,-1] are ignored.

• On Windows, the number of distinct fonts is limited to 100. On UNIX systems,
the table widget limits the number of distinct fonts to 1000 (although the user’s
particular system might have limitations).

Changing Cell Attributes after Table Creation

After you create a table widget, you can change cell attributes with the
WIDGET_CONTROL procedure. There are two attribute-changing scenarios to
consider:

• Attributes are applied to a rectangular region of cells — occurs when all of
the table’s cells are operated on because the USE_TABLE_SELECT keyword
is not used, or occurs when that keyword is used and the table is in non-disjoint
selection mode.

Regardless, an attribute keyword’s value can be a scalar or an array and is
applied repeatedly to the targeted cells. If the array of values is exhausted, it is
recycled by wrapping back to the first value. Excess values are not used. The
values are applied to the cells row by row (i.e., each row is completed before
the next row begins). The ordering is left to right and top to bottom.

• Attributes are applied to a list of cells — occurs when
USE_TABLE_SELECT is used and the table is in disjoint selection mode. As
in the previous scenario, an attribute keyword’s value can be a scalar or an
array. In both cases, values are applied to cells by synchronously stepping
through the list of cells and values. If the number of values is insufficient, IDL
recycles them. IDL does not use excess values.

Note that when you specify scalar values, they do not replace the table’s defaults. You
can set a table cell attribute’s defaults with the WIDGET_TABLE function. These
Cell Attributes User Interface Programming

Chapter 7: Using Table Widgets 169
defaults come into play when you use the INSERT_ROWS and
INSERT_COLUMNS keywords for WIDGET_CONTROL. New cells will have the
defaults unless you also supply attribute keywords to override them.

If you change fonts, the table does not adjust row or column sizes to better fit the new
font. You can programmatically change cell sizes with the COLUMN_WIDTHS and
ROW_HEIGHTS keywords.

Note
The ROW_HEIGHTS keyword works on Windows with the limitation that all rows
receive the same height.

You can also change the column header’s height by specifying a value of -1 as the
index for a cell’s row. Unlike value cells, the column header can have a height that is
different from the value-cell heights. You can control the row header’s width by
specifying -1 as the index for a cell’s column.

The following example code demonstrates how you can modify a table’s cell
attributes. The example creates the table with all cells being editable, but changes that
value so a rectangular region of six cells becomes uneditable (and grayed out to
indicate that).

PRO alternate_editability

tlb = WIDGET_BASE()

; Create a table
table = WIDGET_TABLE(tlb, $

/EDITABLE, $; all cells are editable
VALUE = INDGEN(5,5))

; Change the widget
WIDGET_CONTROL, table, $

EDITABLE=0, $; not editable
BACKGROUND_COLOR=[223,223,223], $; gray them out
USE_TABLE_SELECT=[1,1,3,2] ; block of six cells

; Realize the widgets
WIDGET_CONTROL, tlb, /REALIZE

end

IDL repeatedly applies the editability value and background colors to all six target
cells. If the table were in disjoint selection mode, the USE_TABLE_SELECT line
would look like this:

USE_TABLE_SELECT=[[1,1], [2,1], [3,1], $
User Interface Programming Cell Attributes

170 Chapter 7: Using Table Widgets
[1,2], [2,2], [3,2]]

Finally, if you want to apply the change to the current selection,
/USE_TABLE_SELECT is sufficient.

Querying for Cell Attributes

You can retrieve certain table cell attribute values, thereby eliminating the need for
the IDL programmer to independently keep track of these values. The
WIDGET_INFO function can return information on the following cell attributes:

• BACKGROUND_COLOR

• EDITABLE

• FONT

• FOREGROUND_COLOR

The corresponding WIDGET_INFO keywords are preceded by “TABLE_” (e.g.,
TABLE_BACKGROUND_COLOR). You can query for only one attribute at a time.
However, you can use the USE_TABLE_SELECT keyword conjunction with these
attribute keywords to specify a set of cells to query. The following table shows how
the dimensions of the returned variable depend on the table’s selection mode and the
requested attribute.

Attribute Keyword

Table in Non-Disjoint
Selection Mode;
Selection Has M

Columns and N Rows

Table in Disjoint
Selection Mode; List
of Selected Cells Has

N Elements

TABLE_BACKGROUND_COLOR 3D array of bytes
(3 x M x N)

2D array of bytes (3 x N)

TABLE_EDITABLE 2D array of bytes (M x N) 1D array of bytes (N)

TABLE_FONT 2D array of strings
(M x N)

1D array of strings (N)

TABLE_FOREGROUND_COLOR 3D array of bytes
(3 x M x N)

2D array of bytes (3 x N)

Table 7-4: Dimensions of WIDGET_INFO’s Return Variable with Use of
USE_TABLE_SELECT and the Table Attribute Keywords
Cell Attributes User Interface Programming

Chapter 7: Using Table Widgets 171
There is also a special case. If all values in the returned variable would be identical,
USE_TABLE_SELECT returns a scalar (or a three-element array in the case of
colors). This conglomeration preserves backward compatibility if you have used
WIDGET_INFO to get a table’s editability. If cell editability is not uniform for the
queried cells, WIDGET_INFO returns an array, and conditionals using the returned
value could throw an error. Therefore, if you make use of individual cell editability,
you should check and test your code for these possible errors.

Similar to the way attribute values are applied to cells, WIDGET_INFO fills the
return variable in a row-by-row fashion or with a one-to-one correspondence if the
table is in disjoint selection mode.

Finally, for those cells that have not been explicitly assigned a value for the queried
attribute, WIDGET_INFO returns the default value. This value is the one specified by
WIDGET_TABLE or, failing that, the system default.

Adding and Deleting Cells

You can add and delete table cells through a variety of methods. One is to use the
WIDGET_CONTROL procedure’s row and column insertion and deletion keywords.
Another is to change the table’s XSIZE or YSIZE attributes. You can also make the
change by setting the table’s value. Regardless of the method, cell attributes shift
appropriately with the change. Explicitly set row and column labels also shift, as do
current column widths and row heights.

For example, suppose you insert a row above the current third row of an existing table
by using the following statement:

WIDGET_CONTROL, myTable, $
INSERT_ROWS = 1, $
USE_TABLE_SELECT = [0,2,0,2]

After IDL executes this statement, the attributes of the first two rows are unchanged,
and all of the other pre-existing rows have their attributes shifted down with them.
Cells in the new row receive the table’s default cell attributes.
User Interface Programming Cell Attributes

172 Chapter 7: Using Table Widgets
Example: Single Data Type Data

The following procedures build a simple application that allows the user to select data
from a table, plotting the data in a draw window and optionally displaying the data
values in a text widget. The user can switch the table between standard and disjoint
selection modes.

Example Code
This example is included in the file table_widget_example1.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering table_widget_example1 at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
table_widget_example1.pro. See “Running the Example Code” on page 15 if
IDL does not run the program as expected.

; Event-handler routine
PRO table_widget_example1_event, ev

; Retrieve the anonymous structure contained in the user value of
; the top-level base widget.
WIDGET_CONTROL, ev.top, GET_UVALUE=stash

; Retrieve the table's selection mode and selection.
disjoint = WIDGET_INFO(stash.table, /TABLE_DISJOINT_SELECTION)
selection = WIDGET_INFO(stash.table, /TABLE_SELECT)

; Check to see whether a selection exists, setting the
; variable 'hasSelection' accordingly.
IF (selection[0] ne -1) THEN hasSelection = 1 $

ELSE hasSelection = 0

; If there is a selection, get the value.
IF (hasSelection) THEN WIDGET_CONTROL, stash.table, $

GET_VALUE=value, /USE_TABLE_SELECT

; The following sections define the application's reactions to
; various types of events.

; If the event came from the table, plot the selected data.
IF ((ev.ID eq stash.table) AND hasSelection) THEN BEGIN

WSET, stash.draw
PLOT, value

ENDIF

; If the event came from the 'Show Selected Data' button, display
; the data in the text widget.
Example: Single Data Type Data User Interface Programming

Chapter 7: Using Table Widgets 173
IF ((ev.ID eq stash.b_value) AND hasSelection) THEN BEGIN
IF (disjoint eq 0) THEN BEGIN

WIDGET_CONTROL, stash.text, SET_VALUE=STRING(value, /PRINT)
ENDIF ELSE BEGIN

WIDGET_CONTROL, stash.text, SET_VALUE=STRING(value)
ENDELSE

ENDIF

; If the event came from the 'Show Selected Cells' button,
; display the selection information in the text widget. Use
; different displays for standard and disjoint selections.
IF ((ev.ID eq stash.b_select) AND hasSelection) THEN BEGIN

IF (disjoint eq 0) THEN BEGIN
; Create a string array containing the column and row
; values of the selected rectangle.
list0 = 'Standard Selection'
list1 = 'Left: ' + STRING(selection[0])
list2 = 'Top: ' + STRING(selection[1])
list3 = 'Right: ' + STRING(selection[2])
list4 = 'Bottom: ' + STRING(selection[3])
list = [list0, list1, list2, list3, list4]

ENDIF ELSE BEGIN
; Create a string array containing the column and row
; information for the selected cells.
n = N_ELEMENTS(selection)
list = STRARR(n/2+1)
list[0] = 'Disjoint Selection'
FOR j=0,n-1,2 DO BEGIN
list[j/2+1] = 'Column: ' + STRING(selection[j]) + $

', Row: ' + STRING(selection[j+1])
ENDFOR

ENDELSE
WIDGET_CONTROL, stash.text, SET_VALUE=list

ENDIF

; If the event came from the 'Change Selection Mode' button,
; change the table selection mode and the title of the button.
IF (ev.ID eq stash.b_change) THEN BEGIN

IF (disjoint eq 0) THEN BEGIN
WIDGET_CONTROL, stash.table, TABLE_DISJOINT_SELECTION=1
WIDGET_CONTROL, stash.b_change, $
SET_VALUE='Change to Standard Selection Mode'

ENDIF ELSE BEGIN
WIDGET_CONTROL, stash.table, TABLE_DISJOINT_SELECTION=0
WIDGET_CONTROL, stash.b_change, $
SET_VALUE='Change to Disjoint Selection Mode'

ENDELSE
ENDIF
User Interface Programming Example: Single Data Type Data

174 Chapter 7: Using Table Widgets
; If the event came from the 'Quit' button, close the
; application.
IF (ev.ID eq stash.b_quit) THEN WIDGET_CONTROL, ev.TOP, /DESTROY

END

; Widget creation routine.
PRO table_widget_example1

; Create data to be displayed in the table.
data = DIST(7)

; Create initial text to be displayed in the text widget.
help = ['Select data from the table below using the mouse.']

; Create the widget hierarchy.
base = WIDGET_BASE(/COLUMN)
subbase1 = WIDGET_BASE(base, /ROW)
draw = WIDGET_DRAW(subbase1, XSIZE=250, YSIZE=250)
subbase2 = WIDGET_BASE(subbase1, /COLUMN)
text = WIDGET_text(subbase2, XS=50, YS=8, VALUE=help, /SCROLL)
b_value = WIDGET_BUTTON(subbase2, VALUE='Show Selected Data')
b_select = WIDGET_BUTTON(subbase2, VALUE='Show Selected Cells')
b_change = WIDGET_BUTTON(subbase2, $

VALUE='Change to Disjoint Selection Mode')
b_quit = WIDGET_BUTTON(subbase2, VALUE='Quit')
table = WIDGET_TABLE(base, VALUE=data, /ALL_EVENTS)

; Realize the widgets.
WIDGET_CONTROL, base, /REALIZE

; Get the widget ID of the draw widget.
WIDGET_CONTROL, draw, GET_VALUE=drawID

; Create an anonymous structure to hold widget IDs. This
; structure becomes the user value of the top-level base
; widget.
stash = {draw:drawID, table:table, text:text, b_value:b_value, $

b_select:b_select, b_change:b_change, b_quit:b_quit}

; Set the user value of the top-level base and call XMANAGER
; to manage everything.
WIDGET_CONTROL, base, SET_UVALUE=stash
XMANAGER, 'table_widget_example1', base

END

The following things about this example are worth noting:
Example: Single Data Type Data User Interface Programming

Chapter 7: Using Table Widgets 175
• It is important to check whether a selection exists before using
WIDGET_CONTROL to retrieve the selection.

• Data from disjoint selections is handled differently than data from standard
selections.

• For a relatively simple application, passing a group of widget IDs via the top-
level base widget’s user value allows the use of a single event routine rather
than separate event routines for each widget.
User Interface Programming Example: Single Data Type Data

176 Chapter 7: Using Table Widgets
Example: Structure Data

The following procedures build a simple application that displays the same structure
data in two table widgets; one in row-major format and one in column-major format.

Example Code
This example is included in the file table_widget_example2.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering table_widget_example2 at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
table_widget_example2.pro. See “Running the Example Code” on page 15 if
IDL does not run the program as expected.

; Event-handler routine for 'Quit' button
PRO table_widget_example2_quit_event, ev

WIDGET_CONTROL, ev.TOP, /DESTROY
END

; Widget creation routine.
PRO table_widget_example2

; Create some structure data.
d0={planet:'Mercury', orbit:0.387, radius:2439, moons:0}
d1={planet:'Venus', orbit:0.723, radius:6052, moons:0}
d2={planet:'Earth', orbit:1.0, radius:6378, moons:1}
d3={planet:'Mars', orbit:1.524, radius:3397, moons:2}

; Combine structure data into a vector of structures.
data = [d0, d1, d2, d3]

; Create labels for the rows or columns of the table.
labels = ['Planet', 'Orbit Radius (AU)', 'Radius (km)', 'Moons']

; To make sure the table looks nice on all platforms,
; set all column widths to the width of the longest string
; that can be a header.
max_strlen = strlen('Orbit Radius (AU)')
maxwidth = max_strlen * !d.x_ch_size + 6 ; ... + 6 for padding

; Create base widget, two tables (column- and row-major,
; respectively), and 'Quit' button.
base = WIDGET_BASE(/COLUMN)
table1 = WIDGET_TABLE(base, VALUE=data, /COLUMN_MAJOR, $

ROW_LABELS=labels, COLUMN_LABELS='', $
COLUMN_WIDTHS=maxwidth, /RESIZEABLE_COLUMNS)

table2 = WIDGET_TABLE(base, VALUE=data, /ROW_MAJOR, $
Example: Structure Data User Interface Programming

Chapter 7: Using Table Widgets 177
ROW_LABELS='', COLUMN_LABELS=labels, /RESIZEABLE_COLUMNS)
b_quit = WIDGET_BUTTON(base, VALUE='Quit', $

EVENT_PRO='table_widget_example2_quit_event')

; Realize the widgets.
WIDGET_CONTROL, base, /REALIZE

; Retrieve the widths of the columns of the first table.
; Note that we must realize the widgets before retrieving
; this value.
col_widths = WIDGET_INFO(table1, /COLUMN_WIDTHS)

; We need the following trick to get the first column (which is
; a header column in our first table) to reset to the width of
; our data columns. The initial call to keyword COLUMN_WIDTHS
; above only set the data column widths.
WIDGET_CONTROL, table1, COLUMN_WIDTHS=col_widths[0], $

USE_TABLE_SELECT=[-1,-1,3,3]
; This call gives table 2 the same cell dimensions as table 1
WIDGET_CONTROL, table2, COLUMN_WIDTHS=col_widths[0], $

USE_TABLE_SELECT=[-1,-1,3,3]

; Call XMANAGER to manage the widgets.
XMANAGER, 'table_widget_example2', base

END

The following things about this example are worth noting:

• By default, column and row titles will contain the index of the column or row.
To remove either column or row titles entirely, set the value of the
COLUMN_LABELS or ROW_LABELS keyword to an empty string ('').

• Setting the width of the row-title column of the row-major table requires us to
select column -1 using the USE_TABLE_SELECT keyword.
User Interface Programming Example: Structure Data

178 Chapter 7: Using Table Widgets
Example: Structure Data User Interface Programming

Chapter 8

Using Tab Widgets
The following topics are covered in this chapter:
About Tab Widgets 180
Example: A Simple Tab Widget 181

Tab Sizing and Multiline Behavior 182
Example: Retrieving Values 184
User Interface Programming 179

180 Chapter 8: Using Tab Widgets
About Tab Widgets

Tab widgets create a “tabbed” interface that allows the user to select one of a list of
rectangular display areas to be displayed in a single space (the tab set). The displayed
interface elements are contained in base widgets — that is, selecting a tab displays
the contents of a specified base widget within the tabbed interface. See
“WIDGET_TAB” (IDL Reference Guide) for a complete description of the function
used to create tab widgets.

Figure 8-1: A tab widget displaying a tab set with three tabs.
About Tab Widgets User Interface Programming

Chapter 8: Using Tab Widgets 181
Example: A Simple Tab Widget

The following procedures build a simple tabbed interface with three tabs containing a
variety of other widgets.

Example Code
This example is included in the file tab_widget_example1.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering table_widget_example1 at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
table_widget_example1.pro. See “Running the Example Code” on page 15 if
IDL does not run the program as expected.

Calling tab_widget_example1 with the LOCATION keyword set to an integer
value between 0 and 4 displays the same interface with the tabs placed on different
sides.

As with many of the examples in this chapter, this one is designed to merely exhibit
the features of the tab widget. Most of the useful things you might do with a tab
widget take place in the event handling routines for the individual widgets displayed
on each tab; see “Example: Retrieving Values” on page 184 for a more complicated
example that stores the values of the individual widgets for later use.
User Interface Programming Example: A Simple Tab Widget

182 Chapter 8: Using Tab Widgets
Tab Sizing and Multiline Behavior

The size of the rectangular area of the tab display (where individual widgets are
placed) is determined by the size of the largest base widget included in the tab set.
The size of the “tab” itself (the curved area that sticks out from the rectangular base
and contains the tab’s title) is determined by a number of factors, including the size of
other tabs, the presence of the LOCATION and MULTILINE keywords, and the
platform on which the widget application is running.

IDL attempts to create a tab that is large enough to contain the tab’s title (which is set
via the TITLE keyword to WIDGET_BASE for the base widget that has the tab
widget as its parent). This, coupled with the fact that the value of the MULTILINE
keyword has different meanings on different platforms (see “WIDGET_TAB” (IDL
Reference Guide) for details), leads to the following behaviors:

Windows Behavior

Tabs are created to show the entire text of the TITLE keyword to WIDGET_BASE.

If LOCATION = 0 or 1

Setting the LOCATION keyword to WIDGET_TAB equal to zero places the tabs on
the top of the tab set; setting LOCATION to one places the tabs on the bottom of the
tab set. In either case, if the MULTILINE keyword is set equal to zero, and the width
of the tabs exceeds the width of the largest child base widget, the tabs are shown with
scroll buttons. This allows the user to scroll through the tabs while the base widget
stays immobile.

If the MULTILINE keyword is set to a positive value, the tabs will be placed in as
many rows as are necessary in order to display the entire text of each tab (limited by
the width of the largest base, see note below).

If LOCATION = 2 or 3

Setting the LOCATION keyword to WIDGET_TAB equal to two places the tabs on
the left edge of the tab set; setting LOCATION equal to three places the tabs on the
right edge of the tab set. In either case, a multiline display is always used if the width
of the tabs exceeds the height of the largest child base widget, even if the
MULTILINE keyword is set equal to zero. Tabs are placed in as many rows as are
necessary in order to display the entire text of each tab (limited by the height of the
largest base, see note below).
Tab Sizing and Multiline Behavior User Interface Programming

Chapter 8: Using Tab Widgets 183
Note
The width or height of the tab widget is based on the width or height of the largest
base widget that is a child of the tab widget. If the width of the text of one tab
exceeds the width or height of the tab widget, the text will be truncated even if the
MULTILINE keyword is set.

Motif Behavior

Motif platforms interpret the value of the MULTILINE keyword to be the maximum
number of tabs to display per row. If the keyword is not specified or is explicitly set
equal to zero, all tabs are placed on the same row. Tabs are created to show the entire
text of the TITLE keyword to WIDGET_BASE. The text of the tabs is not truncated
in order to make the tabs fit the space available, unless the text of a single tab exceeds
the width or height of the largest base widget that is a child of the tab widget. This
means that if the MULTILINE keyword is set to any value other than one, some tabs
may not be displayed.

Tips for Tab Layout

There is no good way to determine in advance the best setting for the MULTILINE
keyword to ensure an appropriate tab display. In most cases, however, the following
suggestions should enable you to create a tab display that is useful on both Windows
and UNIX platforms.

• Keep tab titles short. If you need a long description of the contents of a tab, use
a label widget in the tab’s base widget rather than creating a long title.

• Set the MULTILINE keyword equal to a value greater than one. This allows
you to tune the appearance of your tab set to the Motif platform without
changing the appearance under Windows, since any value greater than zero
will result in a multiline tab display under Windows.

• If practical, place the tabs along the longest dimension of the tab widget, as
determined by the size of the largest base widget.
User Interface Programming Tab Sizing and Multiline Behavior

184 Chapter 8: Using Tab Widgets
Example: Retrieving Values

The following example builds on “Example: A Simple Tab Widget” on page 181 by
adding the following features:

• “Next” and “Previous” buttons that switch the tab display to the next (or
previous) tab in the tab set.

• A mechanism for saving the values of the widgets in the tab interface.
Implementing such a mechanism allows the user to view and change all of the
settings accessible via the tab widget before committing any of them.

• A mechanism for canceling — exiting from the tabbed interface without
committing any changes made via the tab interface.

Example Code
This example is included in the file tab_widget_example2.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering table_widget_example2 at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
table_widget_example2.pro. See “Running the Example Code” on page 15 if
IDL does not run the program as expected.

The following things about this example are worth noting:

• The retStruct structure is an example of the kind of information you might
pass out of a tab widget, back to a larger widget application. Using an
approach like the one here allows the user to set a group of values before
sending any of them to the larger application. This may be more efficient than
updating the larger application “on the fly” as the user makes changes to the
widgets in the tab interface.

• Similarly, if the user’s changes are not sent to the larger application until he or
she clicks the “Done” button, it is important to provide a way for the user to
cancel the operation entirely, without sending any changes.

• In most cases, when we refer to a field in a structure, we refer to it by its name.
The event function TWE2_saveValue refers to the fields of the retStruct
structure by their indices instead. We do this because while it is not possible to
pass the field name in a variable, it is possible to pass the integer index value.
Passing the index value of the appropriate field in the retStruct structure as
the user value of the widget whose value is being saved allows us to write a
single TWE2_saveValue function, rather than one function for each field in
the retStruct structure.
Example: Retrieving Values User Interface Programming

Chapter 8: Using Tab Widgets 185
• The “Next” and “Previous” buttons in this example imply that there is an order
to the actions performed using the tab set. While there is no order in this
example, it is easy to imagine a situation in which values from one tab would
influence actions taken on another. You could even require that some action be
taken on a given tab before a later tab could be displayed.
User Interface Programming Example: Retrieving Values

186 Chapter 8: Using Tab Widgets
Example: Retrieving Values User Interface Programming

Chapter 9

Using Tree Widgets
The following topics are covered in this chapter:
About Tree Widgets 188
Types of Tree Widgets 189
Example: A Simple Tree 190
Setting the Tree Selection State 191
Making a Tree Entry Visible 192

Replacing the Default Bitmaps 193
Dragging and Dropping Tree Nodes 195
Tree Widget Drag and Drop Examples . . 207
Positioning Tree Nodes 209
User Interface Programming 187

188 Chapter 9: Using Tree Widgets
About Tree Widgets

Tree widgets display information in a hierarchical structure or tree. Branches and
sub-branches of the tree can be expanded and collapsed (either programmatically or
by the user) to display or hide the information they contain. See “WIDGET_TREE”
(IDL Reference Guide) for a complete description of the function used to create tree
widgets.

This section discusses the following topics:

• “Types of Tree Widgets” on page 189

• “Example: A Simple Tree” on page 190

• “Setting the Tree Selection State” on page 191

• “Making a Tree Entry Visible” on page 192

• “Replacing the Default Bitmaps” on page 193

• “Dragging and Dropping Tree Nodes” on page 195

• “Positioning Tree Nodes” on page 209

Figure 9-1: A tree widget.
About Tree Widgets User Interface Programming

Chapter 9: Using Tree Widgets 189
Types of Tree Widgets

Tree widgets behave slightly differently depending on whether their parent widget is
a base widget or another tree widget:

• If the tree widget’s Parent is a base widget, the tree widget becomes the root of
a new tree widget hierarchy. The tree widget itself is not displayed, but it
becomes the parent widget for other tree widgets that are displayed. This type
of tree widget is referred to as a root node. Note that a tree widget that is a root
node cannot be the parent widget for any widget except another tree widget.

• If the tree widget’s Parent is an existing tree widget, the new tree widget
becomes a branch node or leaf node in the existing tree widget. In this case:

• If the FOLDER keyword to WIDGET_TREE is present, the node becomes
a branch node. Tree widgets that are branch nodes can become the parent
widget of other tree widgets (but not of any other type of widget).

• If the FOLDER keyword to WIDGET_TREE is not present, the node
becomes a leaf node. Leaf nodes cannot serve as the parent widget for any
other widget.
User Interface Programming Types of Tree Widgets

190 Chapter 9: Using Tree Widgets
Example: A Simple Tree

The following example builds a simple tree widget (shown in Figure 9-1). Double-
clicking on the leaf nodes toggles the value of the displayed text between the values
“On” and “Off.”

Example Code
This example is included in the file tree_widget_example.pro in the
examples/doc/widgets subdirectory of the IDL distribution. Run this example
procedure by entering tree_widget_example at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
tree_widget_example.pro. See “Running the Example Code” on page 15 if
IDL does not run the program as expected.

As with many of the examples in this chapter, this one is designed to merely exhibit
the features of the tree widget. Most of the useful things you might do with a tree
widget take place in the event handling routines for the leaf nodes; whereas in this
example clicking on a leaf simply changes the displayed text value, in a real
application more complicated things might take place. Alternately, you might use a
tree widget for display purposes only, in which case user interaction would be limited
to expanding and collapsing the branches.
Example: A Simple Tree User Interface Programming

Chapter 9: Using Tree Widgets 191
Setting the Tree Selection State

You can programmatically select or deselect nodes in a tree widget hierarchy using
the SET_TREE_SELECT keyword to WIDGET_CONTROL. Selecting a node or
nodes visually highlights the node on the tree display. In the above example, placing
the following command just above the call to XMANAGER:

WIDGET_CONTROL, wtLeaf11, /SET_TREE_SELECT

would cause the first leaf node to be highlighted when the widget tree was first
displayed.
User Interface Programming Setting the Tree Selection State

192 Chapter 9: Using Tree Widgets
Making a Tree Entry Visible

If your tree is large or has many branches, you may need to explicitly bring a given
node to the user’s attention. You can do this using the SET_TREE_VISIBLE
keyword to WIDGET_CONTROL:

WIDGET_CONTROL, wTreeNode, /SET_TREE_VISIBLE

were wTreeNode is any node attached to a tree widget — that is, any tree widget that
has another tree widget as its parent widget. Setting this keyword has two possible
effects:

1. If the specified node is inside a collapsed folder, the folder and all folders
above it are expanded to reveal the node.

2. If the specified node is in a portion of the tree that is not currently visible
because the tree has scrolled within the parent base widget, the tree view
scrolls so that the selected node is at the top of the base widget.

Use of this keyword does not affect the tree widget selection state.
Making a Tree Entry Visible User Interface Programming

Chapter 9: Using Tree Widgets 193
Replacing the Default Bitmaps

By default, tree widgets use bitmap images of a folder and a single piece of paper as
the icons representing branch and leaf nodes in a tree widget hierarchy. You can
modify the look of the tree widget by supplying your own bitmap for a given node.
Set the BITMAP keyword to WIDGET_TREE equal to a 16 x 16 x 3 array that
contains a 24-bit color image.

For example, suppose you have a 16 x 16 pixel TrueColor icon stored in a TIFF file.
The following commands make the image the icon used for the root node of a tree
widget hierarchy:

myIcon = READ_TIFF('/path_to/myicon.tif', INTERLEAVE=2)
wtRoot = WIDGET_TREE(wTree, /FOLDER, BITMAP=myIcon)

Note the use of the INTERLEAVE keyword to ensure that the resulting image array
has dimensions 16 x 16 x 3. Depending on your image file format, you may need to
modify the image array in other ways.

Using Images from the IDL Distribution

The /resources/bitmaps subdirectory of the IDL distribution contains a selection
of 16-color (4-bit), 16 x 16 pixel icon images. To use these images as bitmaps in a
tree widget, you must convert them to 16 x 16 x 3 (24-bit color) arrays.

The following code snippet loads the camera icon stored in
IDLDIR/resources/bitmaps/camera.bmp into a 16 x 16 x 3 array:

; Create a 24-bit image array.
imageRGB = BYTARR(16,16,3,/NOZERO)
; Read in the bitmap.
file=FILEPATH('camera.bmp', SUBDIR=['resource', 'bitmaps'])
image8 = READ_BMP(file, Red, Green, Blue)
; Pass the image through the color table
imageRGB[0,0,0] = Red[image8]
imageRGB[0,0,1] = Green[image8]
imageRGB[0,0,2] = Blue[image8]

To use the camera icon in a tree widget, you would specify the imageRGB variable as
the value of the BITMAP keyword to WIDGET_TREE.
User Interface Programming Replacing the Default Bitmaps

194 Chapter 9: Using Tree Widgets
Adding Transparency to Icons

User supplied bitmaps can have transparent pixels, just as the default icons do. This
ensures that the icon’s background matches the background of your tree widget,
which you can customize. It also enables one bitmap to suffice for all platforms,
which often have different default tree widget background colors.

The MASK family of keywords is used to affect tree widget bitmaps. When a tree
widget is created with a bitmap or given a new bitmap, the MASK keyword serves to
set the masked sub-property of the bitmap. Those pixels in the bitmap that have the
same color as the lower left pixel are made to be transparent. Internally, a mask is
built and then used to draw only those non-transparent pixels.

The following code creates a tree widget node with an unmasked bitmap and then
changes it to a different, masked bitmap.

node = WIDGET_TREE(parentNode, BITMAP = icon1)
WIDGET_CONTROL(node, SET_TREE_BITMAP = icon2, /SET_MASK)

Note
The MASK keyword of WIDGET_CONTROL has no effect when not used with
SET_TREE_BITMAP. The MASK keyword to WIDGET_INFO can be used to
determine if a tree’s bitmap is masked. For more information see
WIDGET_CONTROL and WIDGET_INFO in the IDL Reference Guide.
Replacing the Default Bitmaps User Interface Programming

Chapter 9: Using Tree Widgets 195
Dragging and Dropping Tree Nodes

In IDL versions 6.3 and later, you can create applications that allow users to drag tree
nodes within a single tree widget, between tree widgets, or from a tree widget to a
draw widget. Depending on the circumstances, the dragged tree node is either copied
to the new location (leaving the source node intact) or moved to the new location
(removing the source node). IDL provides a variety of controls that allow you to
define the exact behavior of the application when a user drags and drops tree nodes.

This section discusses the following topics:

• “The Drag and Drop User Interface” on page 196

• “Implementing Drag and Drop Functionality” on page 198

• “Tree Widget Drag and Drop Examples” on page 207
User Interface Programming Dragging and Dropping Tree Nodes

196 Chapter 9: Using Tree Widgets
The Drag and Drop User Interface

To the user of an IDL program that supports drag and drop functionality, the activity
of dragging and dropping conforms to platform guidelines. The user selects one or
more nodes using the left mouse button and drags them while holding the mouse
button down. When dragging a node, the cursor indicates where the drop is allowed
(above, on, below) or not allowed. Optionally, the cursor can include a + symbol to
indicate the different between copy and move operations.

Note
On Windows platforms, the cursor shows an opaque copy of the node under the
mouse pointer, but does not show all selected nodes, even though they are selected
and are dragged. On UNIX platforms, a cursor reflecting the active drag is all that is
shown.

In addition to the default platform-specific drag and drop behavior, IDL tree widgets
implement the following:

• If the tree widget includes a vertical scroll bar, dragging nodes into the region
at the top or bottom of the widget will automatically scroll to bring new nodes
into view.

• If the user has dragged one or more nodes to a new location, but presses the
Escape key before releasing the mouse button, the drag operation is cancelled.

As the user drags the selected nodes, the drag and drop cursor changes to indicate
whether a drop is allowed at the current position. The drag and drop cursor is
displayed differently on different platforms:

Node
Placement Windows UNIX

Above Horizontal line above target
node

Arrow bent and pointed up

On Target node highlighted Straight arrow

Below Horizontal line below target
node

Arrow bent and pointed down

Not Allowed Circle with slash through Circle with slash through

Table 9-1: Platform-Specific Appearance of the Drag and Drop Cursor
The Drag and Drop User Interface User Interface Programming

Chapter 9: Using Tree Widgets 197
Figure 9-2 shows the appearance of the drag and drop cursor when inserting a node
(here named Leopard) after a node named Jaguar, but within the node category
Spotted.

Note
The IDL application ultimately controls which nodes to copy or move, where they
are placed, and the destination tree’s final state. For example, IDL may override the
restoration of a previous selection and instead select newly copied nodes.

Figure 9-2: Inserting a Node After Another Node
in Windows (left) and Unix (right)
User Interface Programming The Drag and Drop User Interface

198 Chapter 9: Using Tree Widgets
Implementing Drag and Drop Functionality

Drag and drop functionality is not enabled by default. When creating an IDL
application that incorporates a tree widget, you can enable drag and drop behavior to
copy, move, or otherwise rearrange tree widget nodes. This section discusses the
steps necessary to implement drag and drop functionality in your application.

Implementing drag and drop functionality in your tree widget application entails
three steps:

1. Making Nodes Draggable. You must explicitly specify that a node or group of
nodes can be dragged.

2. Responding to Drag Notifications (Callbacks). When the user drags a node,
IDL generates a notification, which is passed to a callback function. You can
use the default callback function for simple situations, or create your own
callback function to handle special or complex situations. Drag notifications
allow you to control if and where drops are allowed.

3. Responding to Drop Events. When the user releases the mouse button to drop
the selected nodes, IDL generates a drop event. You can use the information
contained in the drop event structure to copy, move, or otherwise modify the
tree widget.

Drag and Drop Properties are Inheritable

Drag and drop-related properties of a tree widget node (the values of the
DRAG_NOTIFY, DRAGGABLE, and DROP_EVENTS keywords) are inheritable.
This means that unless the value of one of these keywords is set specifically for a
given tree node, that node will inherit the value of its parent. This means that if you
set these values on the root node of a tree, but not on any child node, all nodes will
have the values specified for the root node.

Inheritance is dynamic. This means that if the value of one of the inherited properties
changes after the tree widget has been created (via a change of parent, due to a drag
and drop operation, or via a call to WIDGET_CONTROL), the values for all of the
inheriting nodes will change as well. One advantage of this type of inheritance is that
nodes don’t keep track of their own property settings as they are copied and moved.
This allows you to create, for example, a folder that allows items to be dropped in, but
not dragged out, simply by setting properties on the folder.

The drag and drop-related properties can all be queried using the WIDGET_INFO
function.
Implementing Drag and Drop Functionality User Interface Programming

Chapter 9: Using Tree Widgets 199
Making Nodes Draggable

The value of the DRAGGABLE property of a tree widget node (as set via the
DRAGGABLE keyword to WIDGET_TREE or the SET_DRAGGABLE keyword to
WIDGET_CONTROL) determines whether or not it can be used to initiate drag and
drop operations.

Note
The value of a tree node’s draggability is independent of its dropability. Making a
node draggable does make it droppable, but it is possible to have no allowable place
to drop it. See “Responding to Drag Notifications (Callbacks)” on page 199 for
information on allowing users to drop nodes.

If a tree widget allows multiple selection (if the MULTIPLE keyword was set on the
root node of the tree), it is possible that a user could select a mixture of draggable and
non-draggable nodes. If the user attempts to drag this mixed selection by moving a
draggable node, your IDL application will have to determine whether to allow a drop.
You have several possible options to respond to this situation:

• Prevent the problem — Prevent the user from creating a mixed selection by
responding to selection events and then programmatically altering the selection
to make it legal.

• Deny all drops — Use a drag notification callback to inspect the selection (the
dragged items) and reject all drops if any of the selected items are non-
draggable.

• Allow the drag but only drop a subset of the nodes — Create a routine that
checks (and possibly modifies) the list of selected nodes before calling the
WIDGET_TREE_MOVE routine. Alternately, create your own copy/move
routine.

Responding to Drag Notifications (Callbacks)

When the user drags a group of selected nodes over another node, IDL automatically
calls the routine defined as the drag notification callback for the node over which the
selection is dragged. The purpose of the drag notification callback is to provide the
widget system with information about where dragged nodes can be dropped, allowing
it to change the cursor display to indicate to the user whether nodes can be dropped at
the current position. You, as an IDL application programmer can choose to specify
your own version of the callback function to override the default behavior. Drag
notification callbacks are specified via the DRAG_NOTIFY keyword to
WIDGET_TREE, or the SET_DRAG_NOTIFY keyword to WIDGET_CONTROL.
User Interface Programming Implementing Drag and Drop Functionality

200 Chapter 9: Using Tree Widgets
Drag notifications are also generated when the state of a drag modifier key changes
(either up or down). If you override the default drag notification callback, you can use
this information to update the drag cursor with a plus symbol (+).

You can specify a unique drag notification callback function for each node. If you
choose not to specify a callback for a particular node, it will inherit the callback
defined for its parent node. If no callback is defined for any of a particular node’s
ancestors, the default callback will be used.

Drag Notification Callback Return Values

The drag notification callback function returns an integer value calculated by ORing
the following values together:

For example, if the drag notification callback returns 7, this means that dragged nodes
can be dropped above, onto, or below the currently selected node. If the callback
returns 10, the dragged nodes can be dropped onto (but not above or below) the
current node, and the plus-sign indicator is included in the cursor.

Value Meaning

0 User cannot drop

1 User can drop above

2 User can drop onto

4 User can drop below

8 Show the plus indicator

Table 9-2: Drag Notification Callback Return Values
Implementing Drag and Drop Functionality User Interface Programming

Chapter 9: Using Tree Widgets 201
The Default Drag Notification Callback

The default drag notification callback function is used if no function is specified for a
given node or any of its ancestors. The return values for the default callback depend
on the location of the node being targeted and (if it is a folder) whether it is expanded
or not:

The default callback also compares the dragged nodes with the destination. If the
destination matches or is a descendant of any of the dragged nodes then the default
callback returns 0. Finally, if the destination will not generate drop events
(DROP_EVENTS = 0) then the default callback will return 0.

Writing Custom Drag Notification Callbacks

The signature of a drag notification callback function is:

FUNCTION Callback_Function_Name, Destination, Source, $
Modifiers, Default

where:

• Callback_Function_Name is the name of the callback function

• Destination is the widget ID of the node over which the drag cursor is currently
positioned

• Source is the widget ID of the source tree, from which a list of widget IDs
representing the list of selected nodes can be retrieved using the
TREE_SELECT or TREE_DRAG_SELECT keywords to WIDGET_INFO.

• Modifiers is an integer value calculated by ORing the following values
together, depending on which modified keys are currently depressed:

Tree Widget
Node Type Expanded Return

Value Meaning

Root 2 Onto

Folder No 7 Above, Onto, Below

Yes 3 Above, Onto

Leaf 5 Above, Below

Table 9-3: Default Drag Notification Callback Return Values
User Interface Programming Implementing Drag and Drop Functionality

202 Chapter 9: Using Tree Widgets
• Default is the value that would be returned by the default drag notification
callback. If your criteria are similar to the default criteria for where nodes can
be dropped, using this value can greatly simplify your callback code.

The return value should indicate where a drop is allowed to take place relative to the
destination widget and whether the “+” symbol should appear with the drag cursor, as
described in Table 9-2.

When you write drag notify callbacks, remember that “above” one node may be
“below” another node. Also, the concepts of “above,” “on,” and “below” are relative
to the level of the destination node. For example, if a node is the final (bottom) node,
then its defined “below” is a different position than it would be for its parent. The
default callback takes these differences into account and does not allow you to drop
below an open folder, preventing confusion over whether the dropped nodes will got
into or below the folder.

When writing drag notification callbacks, keep the following in mind:

1. Drag callbacks should execute quickly. If a callback takes too long to drag,
events may be skipped. Remember that the drag callback is invoked after every
change in position of the cursor.

2. The source and destination trees should not be modified during the drag.
Callbacks should not select, unselect, create, move, or delete nodes of the
source or destination trees. Additionally, layout changes affecting the trees are
also strongly discouraged.

3. The drag callback should be tested thoroughly using a CATCH statement.
Although the widget system will do its best to recover from errors that occur in
a drag callback function, errors inside the callback function could lead to loss
of keyboard and mouse input.

Value Modifier Key

1 Shift

2 Control

4 Caps Lock

8 Alt

Table 9-4: Modifier keys
Implementing Drag and Drop Functionality User Interface Programming

Chapter 9: Using Tree Widgets 203
Note
In Windows recovery an error in the callback function is simple: click away
from IDL and then back on IDL. Recovery on UNIX systems may require
that the IDL session be killed from another terminal session.

The following code shows a callback function that intentionally generates an
error, along with a CATCH statement that can be used to prevent the error from
freezing IDL:

FUNCTION bad_callback, dest, source, modifiers, default

; The following CATCH statement protects against UI freezes.
CATCH, Error_status
IF Error_status NE 0 THEN BEGIN

CATCH, /CANCEL
PRINT, 'Error index: ', Error_status
PRINT, 'Error message: ', !ERROR_STATE.MSG
RETURN, 0

ENDIF

; The undefined variable caused an IDL interpreter error.
IF (undefined EQ 0) THEN RETURN, 7 $

ELSE RETURN, 0

END

In this example, an error occurs because the variable undefined is undefined. The
catch block handles this error and prevents loss of keyboard and mouse control.

You can also test your callback functions by explicitly calling them before the widget
system does. This would test the callbacks from a safe state where the implications of
errors are minor.

“Tree Widget Drag and Drop Examples” on page 207 shows several uses of the
default and custom callbacks. All of these examples have reliable static callbacks,
allowing for safe removal of CATCH statements.

Responding to Drop Events

When the user releases the mouse button over a valid drop target, a WIDGET_DROP
event is generated. Your application’s event handler should recognize this drop event
and perform some action. In most cases, the event handler will call code to move or
copy the selected nodes (see the WIDGET_TREE_MOVE routine for a ready-made
move/copy routine), but you can execute any action you wish when the drop event is
generated.
User Interface Programming Implementing Drag and Drop Functionality

204 Chapter 9: Using Tree Widgets
The drop event’s information is contained in a WIDGET_DROP structure. (See Drop
Events in the reference section for WIDGET_TREE for a full definition of the
WIDGET_DROP structure.) The important components of the structure when
responding to drop events are:

• ID — The widget ID of the destination node. You can use the INDEX keyword
to WIDGET_INFO along with this widget ID to determine the index of the
destination node within the tree widget.

• DRAG_ID — The widget ID of the source tree widget. The selected nodes of
this tree are the nodes that are being dragged. You can use the
TREE_DRAG_SELECT and TREE_SELECT keywords to WIDGET_INFO
along with this widget ID to retrieve the list of selected nodes or
TREE_DRAG_SELECT.

• POSITION — The drop position (above, on, or below) relative to the drop
target (returned in the ID field). Use this value, along with index of the
destination node, to determine the index of the location where the dropped
nodes should be inserted.

• MODIFIERS — An integer representing the state of the modifier keys,
calculated by ORing together the values shown in Table 9-4. On some
platforms it is common for the Ctrl key to be used as the copy key, with simple
move operations being performed when Ctrl is not pressed.

Issues Related to Dropping Nodes

IDL’s drag and drop functionality is quite general, because applications can have
diverse requirements. Trees might allow only a single node to be selected, or may
allow multiple selection. The application might use the Ctrl key to distinguish
between copy and move operations. Other drag and drop issues that need to be solved
by your specific application include:

• Copying nodes that are not marked as DRAGGABLE — IDL’s widget
system does not mandate what can or will be copied. The DRAGGABLE
keyword controls only the initiation of dragging. Applications can choose not
to copy any node that is not DRAGGABLE.

• Dragging a node to one of its descendants — The default drag notification
callback invalidates all drops that occur on a drag source or any of the drag
source’s descendants. If you write your own drag notification callback, be sure
to reject drops onto a source node (or any of its descendents) to avoid infinite
recursion.

• Copying unselected children of selected parents — This is shown in the
following figure.
Implementing Drag and Drop Functionality User Interface Programming

Chapter 9: Using Tree Widgets 205
If treeNode12 is dragged and dropped, should treeNode121 also be copied, if
we know that treeNode122 has been specifically selected and treeNode121
has not? One solution to this could be an individual copy of only the selected
nodes. Another solution could be to attempt to preserve the hierarchy. Also, an
application could choose to use the drag callback to reject the selection as
unsuitable for dropping anywhere. The examples used here assume that a
folder is dragged and dropped because all descendents are wished to be copied
along with that folder, regardless of the selection state.

The following code illustrates one way to handle drop events:

PRO handle_drop_event, event

; figure out the new node's parent and the index
;
; The key to this is to know whether or not the drop took
; place directly on a folder. If it was then the new node
; will be created within the folder as the last child.
; Otherwise the new node will be created as a sibling of
; the drop target and the index must be computed based on
; the index of the destination widget and the position
; information (below or above/on).

IF ((event.position EQ 2 && $
WIDGET_INFO(event.id, /TREE_FOLDER))) THEN BEGIN

wParent = event.id
index = -1

ENDIF ELSE BEGIN

wParent = WIDGET_INFO(event.id, /PARENT)

Figure 9-3: Copying Unselected Children of Selected Parents
User Interface Programming Implementing Drag and Drop Functionality

206 Chapter 9: Using Tree Widgets
index = WIDGET_INFO(event.id, /TREE_INDEX)
IF (event.position EQ 4) THEN index++

ENDELSE

; move the dragged node (single selection tree)

wDraggedNode = WIDGET_INFO(event.drag_id, /TREE_SELECT)

WIDGET_TREE_MOVE, wDraggedNode, wParent, INDEX = index

END

This code does the following things:

• Determines the parent and insertion position (index) for the new node —
Drops can be above, on, or below, and the destination node can be a folder or a
leaf. This example determines where to place the new node. Dropping onto a
folder is the simplest option, but other situations require a knowledge of where
the destination sits relative to its siblings. The INDEX group of tree widget
keywords allows us to query and set the position of tree widget nodes. For
more information on these keywords, see “WIDGET_TREE” (IDL Reference
Guide).

• Moves the selected node to the new position — First, we determine the
widget ID of the dragged node, then use the WIDGET_TREE_MOVE
procedure to move it to the new location.

The above example works well for single selection trees that use the default drag
notification callback. Situations involving multiple selection should use the
TREE_DRAG_SELECT keyword to WIDGET_INFO rather than TREE_SELECT.

A more complete version of the previous example and more complex examples
involving multiple selection and custom callbacks can be found in the next section.
Implementing Drag and Drop Functionality User Interface Programming

Chapter 9: Using Tree Widgets 207
Tree Widget Drag and Drop Examples

Tree widget drag and drop scenarios can range from relatively straight forward to
quite complex. The degree of complexity usually increases with the inclusion of
multiple selection and custom drag callbacks. Two example applications are included
in the IDL distribution, illustrating simple and relatively complex drag and drop
applications.

Simple Drag and Drop Example

The IDL distribution contains an example that creates a single selection tree that
allows you to rearrange the folder and leaf nodes. The example demonstrates how to:

• Enable dragging and drop events

• Handle drop events

• Move a node in response to a drop event
Including:

• Determining the insertion parent

• Determining the insertion index

Example Code
The simple drag and drop example is included in the file
drag_and_drop_simple.pro in the examples/doc/widgets subdirectory
of the IDL distribution. Run this example procedure by entering
drag_and_drop_simple at the IDL command prompt or view the file in an IDL
Editor window by entering .EDIT drag_and_drop_simple.pro.

Complex Drag and Drop Example

The IDL distribution contains an example that creates three multiple selection trees
and demonstrates how to:

• Handle multiple selection drags

• Create custom drag notification callbacks

• Implement control-key copying (versus simple moving)

• Implement “trigger-loaded” folders

• Enable dragging

• Enable drop events
User Interface Programming Tree Widget Drag and Drop Examples

208 Chapter 9: Using Tree Widgets
• Copy one or more nodes in response to a drop event
Including:

• Determining the insertion parent.

• Determining the insertion index

This example also demonstrates many of the tree widget manipulation capabilities,
such as those involving node indexes and masked bitmaps,

Example Code
The complex drag and drop example is included in the file
drag_and_drop_complex.pro in the examples/doc/widgets subdirectory
of the IDL distribution. Run this example procedure by entering
drag_and_drop_complex at the IDL command prompt or view the file in an IDL
Editor window by entering .EDIT drag_and_drop_complex.pro.
Tree Widget Drag and Drop Examples User Interface Programming

Chapter 9: Using Tree Widgets 209
Positioning Tree Nodes

The position of tree widget nodes within a tree can be controlled in several ways.
When a tree node is created without the TOP or INDEX keywords, the default
behavior is to position the new node last among its siblings. If the TOP keyword is
specified, the new node is created as the first child. If the INDEX keyword is
specified, the new node is created at the position specified.

Existing tree widget nodes can be repositioned using the SET_TREE_INDEX
keyword to WIDGET_CONTROL. Use this keyword for reordering nodes within a
an existing tree.

Note
The root node cannot be reordered relative to its siblings.

When positioning tree nodes using the INDEX or SET_TREE_INDEX keywords, the
value is the desired zero-based index of the node. Values that are less than zero, or
greater than or equal to the number of children will position the node as the last child.

You can use the TREE_INDEX keyword to WIDGET_INFO to discover the current
position of a node. To get the node to a particular position, there are two additional
useful keywords to WIDGET_INFO: the N_CHILDREN and ALL_CHILDREN
keywords return the number and identifiers of a parent’s children. For example, a tree
widget can be “walked” as follows:

children=WIDGET_INFO(node, /ALL_CHILDREN)
FOR i=0, WIDGET_INFO(node, /N_CHILDREN) - 1 DO BEGIN
; do something important here with children[i]
ENDFOR
User Interface Programming Positioning Tree Nodes

210 Chapter 9: Using Tree Widgets
Positioning Tree Nodes User Interface Programming

Index

A
accelerators

Alt key on Mac, 93
assigning, 92
ignoring, 97

application state
preserving, 42
widgets, 42

B
base widgets

bulletin board bases, 77
setting size/location, 77

bitmaps
transparent

button widgets, 103

blocking, widgets, 35
button widgets

about, 102
accelerators, 92
accelerators on Mac, 93
checkbox, 107
exclusive (radio), 107
labels, 103
nonexclusive (checkbox), 107
push button, 107
radio button, 107
tabbing, 85
toggle, 107
tooltips, 106

buttons
checkbox, 107
radio, 107
User Interface Programming 211

212
C
callback routines

widget, 38
callbacks

event processing, 38
changing

widget values, 27
checkbox widgets

See also button widgets
common blocks

widgets, 42
compound widgets

creating, 46
context_draw_example.pro, 75
context_list_example.pro, 75
context_menu_example.pro, 75
context_text_example.pro, 75
context_tlbase_example.pro, 75
context-sensitive menu

about, 69
controls see widgets
copyrights, 2
CW_DICE function, 49
cw_dice.pro, 49
CW_PDMENU function

creating menus, 67

D
debugging

widget applications, 53
destroying

widgets, 27
displaying

tree widget section, 192
widgets, 19

doc_widget1.pro, 21
doc_widget2.pro, 40
drag and drop

in tree widgets, 123, 195

drag notifications
responding to, 123, 199, 203

drag_and_drop_complex.pro, 208
drag_and_drop_draw.pro, 126
drag_and_drop_simple.pro, 207
draw widgets

button events, 121
context events, 119
direct graphics, 111
keyboard events, 121
motion events, 121
object graphics, 112
scrolling, 113
using, 110
wheel events, 121

draw_app_scroll.pro, 116
draw_widget_data.pro, 121
draw_widget_example.pro, 120
drop events

handling, 125, 203
droplist widgets

tabbing, 85

E
event driven programming, 15
event processing (widget applications), 34
event processing see widgets, event processing
events

interrupting the event loop, 56
See also widget events

examples
widgets

context_draw_example.pro, 75
context_list_example.pro, 75
context_menu_example.pro, 75
context_text_example.pro, 75
context_tlbase_example.pro, 75
cw_dice.pro, 49
doc_widget1.pro, 21
doc_widget2.pro, 40
Index User Interface Programming

213
drag_and_drop_complex.pro, 208
drag_and_drop_draw.pro, 126
drag_and_drop_simple.pro, 207
draw_app_scroll.pro, 116
draw_widget_data.pro, 121
draw_widget_example.pro, 120
tab_widget_example1.pro, 181
tab_widget_example2.pro, 184
table_widget_example1.pro, 172
table_widget_example2.pro, 176
tree_widget_example1.pro, 190
xdice.pro, 52

exclusive buttons see widgets, button
export restrictions, 2

G
geometry

widgets, 76

I
instantiating widgets, 19
interrupt

widget event loop, 56

K
keyboard

accelerators, 92
killing widgets, 27

L
legalities, 2
location

widgets, 77

M
Macintosh

configuring accelerators, 93
mapping

widgets, 27
menus

context-sensitive, 69
creating, 64
creating pulldown, 66

message URL javascript
doIDL(".edit context_menu_example.pro"),

75
doIDL(".edit cw_dice.pro"), 49, 50
doIDL(".edit drag_and_drop_complex.pro"),

208
doIDL(".edit drag_and_drop_draw.pro"),

126
doIDL(".edit drag_and_drop_simple.pro"),

207
doIDL(".edit draw_app_scroll.pro"), 116
doIDL(".edit draw_widget_data.pro"), 121
doIDL(".edit draw_widget_example.pro"),

120
doIDL(".edit table_widget_example1.pro"),

172, 181
doIDL(".edit table_widget_example2.pro"),

176, 184
doIDL(".edit tree_widget_example.pro"),

190
doIDL(".edit xdice.pro"), 52
doIDL("context_menu_example"), 75
doIDL("cw_dice"), 49, 50
doIDL("drag_and_drop_complex"), 208
doIDL("drag_and_drop_draw"), 126
doIDL("drag_and_drop_simple"), 207
doIDL("draw_app_scroll"), 116
doIDL("draw_widget_data"), 121
doIDL("draw_widget_example"), 120
doIDL("table_widget_example1"), 172, 181
doIDL("table_widget_example2"), 176, 184
doIDL("tree_widget_example"), 190
User Interface Programming Index

214
doIDL("xdice"), 52

N
nonexclusive buttons see widgets, buttons

P
parent widget

about, 19
pop-up menus see context-sensitive menus
properties

registering, 129
property sheet widgets

changing properties, 133
selecting properties, 130
sizing, 136
user-defined properties, 135
using, 128

R
radio buttons

See also button widgets, radio buttons
realizing widgets, 26
registering

properties, 129
retrieving

widget values, 27

S
screen size

finding, 80
selection

tree widgets, 191
selection modes (table widget), 158
sensitizing widgets

about controlling, 28

shortcut menus see context-sensitive menus
size

of widgets, 77
sizing

property sheets, 136

T
tab widgets

sizing, 182
using, 180

tab_widget_example1.pro, 181
tab_widget_example2.pro, 184
table widgets

default size, 157
edit mode, 164
retrieving data, 161
selection modes, 158
tabbing, 85
using, 156

table_widget_example1.pro, 172
table_widget_example2.pro, 176
tooltips, 106
trademarks, 2
transparent bitmaps

button widgets, 103
tree nodes

making draggable, 199
positioning, 209

tree widgets
drag and drop

about, 195
drag notifications, 199
drop events, 203
enabling, 198
interface, 196

examples
drag and drop, 207
simple, 190

positioning nodes, 209
replacing default bitmaps, 193
Index User Interface Programming

215
selection state, 191
tabbing, 86
types, 189
using, 188
visibility, 192

tree_widget_example1.pro, 190

U
user interface

application options, 8
user values (widgets), 33

W
widget

visibilitiy, 27
widget events

about, 34
widget values, 18
WIDGET_CONTROL procedure

in widget applications, 26
manage widget manipulation, 28

WIDGET_EVENT function
description, 29
when to use, 37

WIDGET_INFO function
in widget manipulation, 29

WIDGET_PROPERTYSHEET function
using, 128

widgets
about, 14
aligning, 77
application state, 42
applications

defined, 15
errors, 53
lifecycle, 23

changing values, 27
common blocks, 42

controlling visibility
overview, 27

creating, 19
destroying, 27
displaying

in applications, 19
draw

See draw widgets.
dynamic resizing, 77
event processing, 38

concepts, 34
context events, 60
identifying widget types, 57
interrupting event loop, 56
keyboard focus, 57
techniques, 56
timer events, 58
tracking events, 59

event structure, 31
events

callback routines, 38
structure of, 34

example code, 15
explicit size, 76
finding screen size, 80
geometry, 76
hierarchies, 26
hierarchies, multiple, 61
hourglass cursor, 28
IDs

concept, 18
instantiating, 19
interrupting the event loop, 56
killing, 27
location, 77
managing the state of applications, 42
manipulating, 26
mapping, 27
menus

context-sensitive, 69
creating, 64
User Interface Programming Index

216
pulldown, 66
natural size, 76
overview, 10, 14
parent, 19
portability, 83
positioning, 77
preventing layout flicker, 80
realizing

hierarchies, 26
restarting after an error, 53
retrieving values, 27
sensitivity, 28
sensitizing, 28
size

concepts, 76
defining, 77
dynamic resizing, 77
natural, 76

tabbing, 84
types, 16
user values, 33
values, 18
widget IDs

working with, 31
WIDGET_CONTROL procedure, 26
WIDGET_EVENT function

in widget manipulation, 29
when to use, 37

WIDGET_INFO function, 29
writing applications, 15
XMANAGER procedure

managing widget events, 29
using, 35

XREGISTERED function
checking widget registration, 30
using, 37

windows
finding screen size, 80

writing
a compound widget, 49

X
XBM_EDIT procedure

use of, 104
XDICE procedure, 51
xdice.pro, 52
XMANAGER procedure

managing widget events, 35
overview, 29
when to use XREGISTERED, 37

XREGISTERED function
using, 37
widget registration, 30
Index User Interface Programming

	Online Manuals
	IDL Documentation
	What's New in IDL 7.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Advanced Math and Stats
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	User Interface Programming
	Contents
	Overview of User Interface Options
	User Interface Options in IDL
	Creating an iTool Interface
	Creating a Widget Interface
	Creating a Custom iTool Interface

	Creating Widget Applications
	About Widgets
	About Widget Applications
	Types of Widgets
	Widget Programming Concepts
	Example: A Simple Widget Application
	Widget Application Lifecycle
	Manipulating Widgets
	Working With Widget IDs
	Widget User Values
	Widget Event Processing
	Example: Event Processing and User Values
	Managing Application State
	Creating a Compound Widget
	Example: Compound Widget
	Debugging Widget Applications

	Widget Application Techniques
	Working with Widget Events
	Using Multiple Widget Hierarchies
	Creating Menus
	Widget Sizing
	Tips on Creating Widget Applications
	Enhancing Widget Application Usability

	Using Widget Buttons
	About Button Widgets
	Bitmap Button Labels
	Tooltips
	Exclusive and Non-Exclusive Buttons

	Using Draw Widgets
	About Draw Widgets
	Using Direct Graphics in Draw Widgets
	Using Object Graphics in Draw Widgets
	Scrolling Draw Widgets
	Context Events in Draw Widgets
	Draw Widget Example
	Accessing Draw Widget Events
	Implementing Drag and Drop Functionality

	Using Property Sheet Widgets
	About Property Sheet Widgets
	Registering Properties
	Selecting Properties
	Changing Properties
	User-defined Properties
	Property Sheet Sizing
	Property Sheet Example
	Multiple Properties Example

	Using Table Widgets
	About Table Widgets
	Default Table Size
	Selection Modes
	Data Types
	Data Retrieval
	Edit Mode
	Cell Attributes
	Example: Single Data Type Data
	Example: Structure Data

	Using Tab Widgets
	About Tab Widgets
	Example: A Simple Tab Widget
	Tab Sizing and Multiline Behavior
	Example: Retrieving Values

	Using Tree Widgets
	About Tree Widgets
	Types of Tree Widgets
	Example: A Simple Tree
	Setting the Tree Selection State
	Making a Tree Entry Visible
	Replacing the Default Bitmaps
	Dragging and Dropping Tree Nodes
	The Drag and Drop User Interface
	Implementing Drag and Drop Functionality

	Tree Widget Drag and Drop Examples
	Positioning Tree Nodes

	Index

