ITool Programming

IDL Version 7.1

May 2009 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

0509IDL71ITD

Restricted Rights Notice

The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to
therestrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document
at any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

The software and associated documentation are subject to U.S. export controls including the United States Export Administration
Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These
laws include restrictions on destinations, end users, and end use.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of I TT Visual Information Solutions.

ESRI®, ArcGIS®, ArcView®, and Arcinfo® are registered trademarks of ESRI.

Portions of thiswork are Copyright © 2008 ESRI. All rights reserved.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
QUAC and FLAASH are licensed from Spectral Sciences, Inc. under U.S. Patent No. 6,909,815 and U.S. Patent No. 7,046,859 B2.
Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Chapter 1

OVverview Of ITOOIS ..ooooiii e 9
RTAY = = SN I I 0o 10
What is the iTools Component Framework?ccoceeveerieieeneesee e e s e esseeee e enes 11
ADOUL thiSIMBNUALocveeie et re e s re e e r e e ee e eeenes 12
ADOUL the i TOOIS COUE BASE ..o 13
Skills Required to Use the iTools Component Frameworkc.cccovvveevieeniinvceeneennens 15

Part I: Understanding the iTools Component Framework

Chapter 2

ITOOI System ArChiteCtUIevveieiiiiiiiee e 19
Overview of the iITool System ArChiteCIUrecvecveciere e 20
iTools Object MOdel DIagramcccccoeiieicieiiee e e e eseesee e seesee e sreesreesneesaeessessrenns 21
ITOOl ODJECE THENTITIENS ..vieeiecieecee e s e e e e e nreesreens 28
[elo] W@ o][= vl o [1= = o VSR 31

iTool Developer’s Guide 3

RegiStering COMPONENLScccviiieieieieeesie st seesteste e eaeseestesre s e etestesaesseeseesesneeseeneessensenns 38
ITOOl MESSAQING SYSLEM ...ttt cee sttt e st e s e e et e e st eesbe e sreente e reesreereesreenres 41
SYSLEM RESOUICESoeieiieiee ittt sttt sttt st sab e bt e e s be e sbee e see e st e e eabeesbeesneeas 44
Chapter 3

Data Management ... 51
Overview of iTool Data ManagemENtccceecieierireniee e e e e sree e sre e s e e e e e sre s 52
oo BT = 1Y =T o SRS 53
[l 0T I B = = R Y/ 0= P 54
e lo DT = N @ o= £ 56
Predefined iTOOl Dala ClaSSESceoreerieieiiese et eeeee sttt s e e ene e e e e 58
PAIAIMELEN'S ... r e b nr e r e nre s 61
(D= = B I/ 0 L= 1Y/ = (o 11 o S 63
Data Update MEChANISIMccuiiiiiicieese et ene e b e 65
Chapter 4

Property Management ... 67
About the PropertieS INTEIfACe ..o 68
Property Daa TYPES ...oieoveereriereeeeeriesieseesessesieseesessesessessesessessessessesessessessessessesessesseneens 71
REGISLENING PrOPEIMIESocviieeeiiie sttt sttt st st se et reeae e e re e 74
Property IAENTITIErSooiee et ene e nee e 77
Property AttHBULESc.oci e e e 78
[0] 1= YA AN 0 | =T = 4 o o S 81
Property Update MEChANISIMocuieieieiece ettt 84
Properties of the iTOOIS SYSLEMcoveeiiecee e e e 85

Part Il: Using the iTools Component Framework

Chapter 5

Creating an ITOO! ..o i 89
OVverview Of ITOOI CrEALIONccoieeeeiere e eeesee et e et teeeeneeseessesseeneesaeseeas 90
Creating aNEW ITOOI ClaSScocviieieiieii ettt s re e sresre s 91
Registering aNEW TOOI ClaSSccuiieeiiriiciie e ses e 101
Creating aniTool LaunCh ROULINEcocuvieeiir st sste e s e sre e s 103
EXample; SIMPIEITOONoceeiieieieee et re e nas 108

Contents iTool Developer’s Guide

Chapter 6

Creating a Visualizationccccoiiiiieeiiiiciceeeeecrss e e e ee e 113
Overview of iTOol VisualiZation TYPESccvevreeieeieeiiiitietieiee st sreesie e ste e ae e sresre e 114
Predefined iTool Visualization ClaSSEScccceieeirierereseeeeie e 115
Creating aNew VisualiZation TYPEccveceieiiiieieee st eee et sresre e 121
Registering aVisualiZation TYPEcooeieieeeere et e nee e e 136
Unregistering aVisualiZation TYPE ..uececceiiiiiiecese et 138
Example: Image-Contour ViSUaliZationcccceveevieeiiesieciieses e seeseeseeseesreesseennens 140
Chapter 7

Creating an OPEerationNeciiiiiieeeeeeeeeeeeeee e e e e e e e e e e eeeeeeeennenes 145
Overview of Creating an iTOOI OPErationccceveieiieeeieeseseseese e 146
Predefined iTOOl OPEIratioNSccocvieeiererireieese et e e e e enee e 148
Operations and the UNdo/RedO SYStEMccveveieiiesiese et 150
Creating aNew Data-Centric OPErationccceoeeereeeeeeseneseese e seeereeee e seeseeeneas 152
Creating aNew Generalized OPErationcccecvveieeseseseeiee s e e 165
OpEratioNS aNA IMIACTOSccveiiieieeiieieeseesee e e seeste e reestessteestesseessessessasesresssessseessessaes 181
Registering an OPErationc.cceveiuieieiesise s esee et eseesee e re e 182
Unregistering an OPErationcccccceeieeceeseiee e sieesieesseeseeseesressressseesseessessseeseesnsesnses 184
Example: Data Resample OPErationcccveieeveiieiesieeiese e seeseee s 186
Chapter 8

Creating a Manipulatorccoiiiieeee e e e e e e eeeeeeneees 193
Overview of iTOOI ManiPUIGLOLSccceeieiesieeeeieesie ettt e e re st sre e 194
The Manipulator Creation PrOCESSccooeieieieeieresieseeee e see e see e eeeeneeseeseesneenes 197
Predefined iTOOl ManiPUIGLOLScceceeiieiiiiieiiesese et 198
Manipulators and the UNdo/ReO SYSIEMcccoviiieieeiirinerereeeseseeee e 202
Using Manipulator Public INStance Datacccceveeevieeceeiese e 204
Creating aNew ManipUIBLOrcccviceieeiiesee e eese e see e e s seesraesnae e e sreesnes 206
Registering aManiPUIBEOLccevuiiuieieie et 223
Unregistering a ManipUlaorccveeieeieeiecsee e s see e sre e e re e sreereennens 225
Example: Color Table ManipUlatorccccviviieieie e 226
Chapter 9

Creating a File REAUEruuuuiiiiiiiii e 229
Overview of iTOOl File REAAENSc.ooeieeeese e 230
Predefined iTOOI FIIE REAHENScovveiiirerieeeree e 231

iTool Developer’s Guide Contents

Creating aNew FII@ REAAENccooeeeeece e 235
Registering aFil@ REAAESooee ittt 247
Unregistering aFile@ REAAESc.ocueeiee e 248
Example: TIFF FIl@ REAAENcooeeeeee et 250
Chapter 10

Creating @ File WIILEI ... e e e e 255
Overview Of iITOOI FIle WIIENScoiiieiereseee e 256
Predefined iTOOl FIlE WILEI'S ..ot 257
Creating aNEW FIEWHIILEN ..o 260
REQISENING @ FIE WIILEY ..ot 271
UNregistering @ File WIITEroov et 272
EXaMpPIE: TIFF FIIEWIILENoicee et see ettt r e st 274

Part Ill: Modifying the iTool User Interface

Chapter 11

iTool User Interface ArchiteCtureccceevvvvveiiiiiiiiiie e 281
Overview of iTool Interface ArChiteCIUIecccererireieeresese e 282
User INterface ODJECLSoceiiiicee e re e re s 284
Chapter 12

Using iTool User Interface Elementsooovvvviiiciiiiiiie e, 287
The iTools Feedback MeChaniSM ..o e 288
SEALUS IMIESSAOESveeevieeieieesieesee e st e stte e ste e ste e e rte e s e e sateeeseeanteeeseeanseeenneeensaeesreeenneeennes 289
L 0]1.01 0] £ T P RPRRRR 291
INFfOrMatioNal MESSAOEScccveevieeieeite et see s te e ree s ee e s e e s e e s ae e te e sre e sreenreesaeeeeesrennes 293
Chapter 13

Creating a User Interface ServiCeiiiiiiiiiiiiiiiiene e eeeeeeeeeeieeinens 295
Overview of theiTOOI Ul SEIVICEccociiiii et 296
Predefined iTOOI Ul SEIVICESccviiiriiieirieseneeeses et 297
Creating @aNEW Ul SENVICE ...ccviiee et es et te e sae s ste ettt re s saaesreesraesne e 299
REGISLENING UL SEIVICE ..ottt st ne e 304
Executing a UsSer INtErfate SENVICEcooiv ettt st 306
Example: Changing aProperty ValUEcccccvieeeeieiise e e 307

Contents iTool Developer’s Guide

Chapter 14

Creating a User Interface Panelcccccovviiiiiiciicii e, 313
Overview of the iITOOl Ul Panel ... 314
Creating aUl Panel INLEIfate ... ieeiie ettt 315
Creating Callback ROULINESccvieeieieii ettt 320
RegiStering @ Ul Pan€l ..ottt s ee st te s sre e e nne s 322
Example: A SImple Ul Pan@lccoovcieieiee ettt 324
Chapter 15

Creating a Custom iTool Widget Interfaceccccoeoviiiiiiiiiiinnneee. 333
About Custom iTool Widget INErfacescooeeoereieeeeee e 334
Overview of Creating an iTool INtErfaCeccveveeiiiicecces e 337
iTool Widget INterface CONCEPLSovvererreeeeeiere e eeeie et eee e nee e see e neenee e 340
Creating the INterface ROULINEccviiiieeicce et s 342
N0 o [T a0 01 = o L1 S 346
WX (o 1 gTo 1K= R 1o 0] o 7= | SRS 348
Adding an iTOOI WINAOWc.ceciiiiiiecin et e s ee et te e s re e sre s e e e nne e s resneenens 350
PN o g To = B (U = S 352
Adding aUser INterface Pan€lcocceoriii et 353
Handling CallDACKScc.ciiiuiiieieesi et st s ae e 354
Handling RESIZE EVENLSco ettt et st s e sre e s re e s e e te e sreereenens 356
Handling ShUutdOWN EVENLSccocveiiieceeeeese sttt st snenresne s 358
Creating aniTool Launch ROULINEcccciiiieiiericecsee et ee e s s 360
Example: aCustom iToOol INEEIFACEcccoevevieiiecece e 362
Appendix A

Controlling iTools from the IDL Command Linecceevvvvvveeinnnns 381
Overview of iTool Programmatic CONtrolcoevviviieieieesise e 382
Retrieving an iTool Object REFEIENCEcvcceeieeiecie e 383
Retrieving Component [AeNtifiersccoeviiiiiccece e 384
Retrieving Property INfOrmMationccoccoviiiiienene e 387
Changing Property ValUEScceviiiieeiese ettt sttt st sresre e 391
RUNNING OPEIALIONScccuviciieieiiieesiee et e see e teesteste e tesaeeseesressaeesreesreesaeessessresnsennsens 393
Selecting IteMS INthE ITOO!ccociiieee e s 395
Replacing Datain @n iTOO!coceieiiieiie e e et e e st sre e e e re s sreereennens 396

iTool Developer’s Guide Contents

Appendix B

iITool Compound WIdQEetSuuuiiiiiiiiieeieeeeeeeeeeettree s e e e e e eeeeaaeens 399
Overview of iTools CompouNd WIQELSccccvviiiieiriecece e 400
O T I I8 1Y =1\ 401
CW _ITPRANEL oottt bbb bbb sre e e nneeenees 406
CW _ITSTATUSBAR oottt ettt ettt e st e e nae e e nnae e sreeenneeennes 410
CW _ITTOOLBAR ettt sttt e sttt nbe s s b e sbe e e naeeenees 413
CW _ITWINDOW ..ttt e te e st e e te e s e e sate s et e st e e sae e teeenneeenaeesreeenneeennes 418
INAEX it 421

Contents iTool Developer’s Guide

Chapter 1
Overview of 1ITools

This chapter provides an overview of the IDL iTool Component Framework.

What areiTools? 10 AbouttheiToolsCodeBase............ 13
What is the iTools Component Framework? 11 Skills Required to Use the iTools Component
About thisManual 12 Framework ... 15

iTool Developer’s Guide 9

10 Chapter 1: Overview of iTools

What are iTools?

IDL Intelligent Tools, or iTools, are applications written in IDL to perform avariety
of data analysis and visualization tasks. i Tools share a common underlying
application framework, presenting a full-featured, customizable, application-like user
interface with menus, toolbars, and other graphical features. Several predefined
iTools are provided along with IDL; you can use these toolsto explore and visualize
your data without writing any new code yourself. For information on using the
standard i Tool s provided with DL, see the iTool User’s Guide.

But iTools are more than just a set of pre-written IDL programs. Behind the i Tool
system liesthe IDL Intelligent Tools Component Framework — a set of object class
files and associated utilities designed to allow you to easily extend the supplied
toolset or create entirely new tools of your own. This manual will help you
understand the iTools Component Framework so that you can customize existing
iTools or create entirely new ones.

What are iTools? iTool Developer’s Guide

Chapter 1: Overview of iTools 11

What is the iTools Component Framework?

The iTools component framework is a set of object class definitions written in the
IDL language. It is designed to facilitate the devel opment of sophisticated
visualization tools by providing a set of pre-built components that provide standard
features including:

e creation of visualization graphics

* mouse manipulations of visualization graphics

e annotations

* management of visualization and application properties
» undo/redo capabilities

e dataimport and export

e printing

» datafiltering and manipulation

» interface element event handling

In addition, the iTools component framework makesit easy to extend the system with
components of your own creation, allowing you to design a tool to manipulate and
display your datain any way you choose.

Advantages of Using the Framework

If you are accustomed to creating user interfaces for your IDL applicationsusing IDL
widgets, using the iTools component framework will shorten your development time
by providing much of the application interface via the standard component building
blocks. In many cases, you are freed entirely from the need to create your own
interface elements, handle widget events, and manage the display of data. Even when
your application calls for additional user interface elements, the framework
eliminates the need for you to manually create those elements that your application
has in common with the standard i Tool interface.

If you are accustomed to using IDL object graphicsin your applications, the iTools
component framework provides a streamlined way of working with the object
graphics hierarchy. Many tasks, such as management of object properties and

mani pul ation of the object model, are handled automatically.

iTool Developer’s Guide What is the iTools Component Framework?

12 Chapter 1: Overview of iTools

About this Manual

The iTool Developer’s Guide describes the IDL iTools component framework and
provides examples of its use. After reading this manual, you will understand how to
use the component framework to create your own intelligent tools.

This manual is divided into three parts:
Part I: Understanding the iTools Component Framework

This section describes the i Tools component framework in conceptual terms, and
outlines some of the processes you will use in creating new tools using the
framework. While an understanding of the topicsin this section may be beneficial as
you develop your own applications, a complete understanding of the way the
framework operatesis not required to begin building your own tools.

Part II: Using the iTools Component Framework

This section walks you through the process of creating anew iTool application, either
by extending an existing iTool or by building a new tool from scratch.

Part 1ll: Modifying the iTool User Interface

This section discusses the process of adding your own interface elements to an iTool
application.

What this Manual is Not

This manual is not an API reference for the iTools object classes. Reference
documentation for the iTool classes, methods, and propertiesislocated in the IDL
Reference Guide.

This manual is not a complete description of the object classes that congtitute the
iTools component framework. We describe the object classes you will use to create
new iTooals, but not necessarily the building blocks from which those classes are
constructed. If you desire a deeper understanding of how the component framework
functions than this manual provides, you can inspect the object class definition files,
which are provided in IDL .pro source code format inthe itools/framework
subdirectory of your IDL 1ib directory.

See “ Documented vs. Undocumented Classes’ on page 13 for acompl ete explanation
of our approach to documenting the iTool component framework.

About this Manual iTool Developer’s Guide

Chapter 1: Overview of iTools 13

About the iTools Code Base

TheiTools component framework iswritten ailmost entirely in the IDL language. The
IDL code that implements both the component framework and all of the standard
iTools included with IDL is available for you to inspect, copy, and learn from.

To inspect the iTools code, look inthe 1ib/itools subdirectory of your IDL
installation directory. TheiTools code base is organized as follows:

* Inthelib/itools directory you will find code that implements the iTool
launch routines. These routines can be called directly at the IDL command line
to launch a specific iTool.

* Inthelib/itools/framework directory you will find the core iTool object
class definitions and utility routines. The classes in this directory define how
the iTools operate; they are made available for your inspection, but they should
not be altered.

* Inthelib/itools/components directory you will find derived iTool object
classes. The classesin this directory implement the non-core features of the
iTool toolset as included with IDL. You are encouraged to use these classes to
implement your own i Tool functionality, either by subclassing from a derived
iTool object class or by modifying a copy of the class definition for a derived
class.

* Inthelib/itools/ui_widgets directory you will find the IDL code that
creates an iTool user interface using IDL widgets. You may find it useful to
inspect some of these routinesif you are creating a side panel or adialog used
to collect parameter settings for an operation. See Chapter 11, “iTool User
Interface Architecture” for additional information on creating additional user
interfaces for an iTool.

Documented vs. Undocumented Classes

If you inspect the 1ib/1itools directory and its subdirectories, you will notice that
there are many more classes included in the iTools component framework than are
documented in the IDL Reference Guide and in this manual. Our approach to
documenting the iTools code that isincluded with IDL isasfollows:

¢ Tool launch routines for iTools included in the IDL distribution are
documented in the IDL Reference Guide. Use of the launch routines for the
pre-built iTools is discussed in theiTool User’'s Guide.

iTool Developer’s Guide About the iTools Code Base

14 Chapter 1: Overview of iTools

e ThecoreiTool component framework classes used to build individua iTools,
visualization types, operations, etc. are formally documented in the IDL
Reference Guide and discussed in detail in this manual. If an object class,
method, or property is necessary for the construction of a new iTool or
component of an iTooal, it isformally documented in the IDL Reference Guide
or in this manual. CoreiTool framework classes are located in the
lib/itools/framework subdirectory of the IDL installation directory.

e Supporting iTool component framework classes — those used to implement
the documented component framework classes — are not formally
documented. As noted previously, the code for these classesis available for
inspection. Supporting iTool framework classes are located in the
lib/itools/framework subdirectory of the IDL installation directory.

e Derived iTool classes — those used to implement individual iTools and their
features— are not formally documented. These classes are derived from the
formally documented classes, and as such can be understood by referring to the
formal documentation. Derived iTool framework classes are located in the
1lib/itools/components subdirectory of the IDL installation directory.

e iTool user interface routines are not formally documented. These routines use
standard IDL widget programming techniques, and as such can be understood
by referring to the IDL widget documentation. User interface routines are
locatedinthe1ib/itools/ui_widgets subdirectory of the IDL installation
directory.

Warning on Using Undocumented Features

While you are encouraged to inspect the i Tools code, and to copy or subclass from
derived classes and user interface routines, be aware that classes and routines that are
not formally documented are not guaranteed to remain the same from one rel ease of
IDL to the next. Keep the following points in mind when implementing your own
iTools:

e ITT Visua Information Solutions will change undocumented supporting
classes as necessary to improve the iTools system.

e ITT Visua Information Solutions may also change undocumented derived
classesto fix problems or add functionality; in these cases, we will make every
effort to preserve backwards compatibility, but thisis not guaranteed.

If you create new iTool classes based only on the formally documented i Tool
interfaces, your tools should operate properly with future releases of IDL. If you base
your tools on undocumented derived classes, minor modifications may be necessary
to ensure future compatibility.

About the iTools Code Base iTool Developer’s Guide

Chapter 1: Overview of iTools 15

Skills Required to Use the iTools Component
Framework

The iTools component framework consists of a set of IDL object classes,
supplemented by utility routines. If you are already familiar with the concepts of
object-oriented programming, or have written programs that use IDL object graphics,
you will find the iTools framework easy to understand and use. The framework
approach means that most of the details of creating a full-featured and usable
application are already taken care of, leaving you free to concentrate on how best to
mani pul ate and visualize your data.

If you are familiar with procedural programming in IDL but new to object-oriented
programming, you will find developing i Toolsto be a gentle introduction to the topic.
TheiTools framework has been designed to allow IDL users with little or no
experience writing object-oriented programsto easily customize and extend the basic
iTool applications. While some familiarity with the concepts of object-oriented
programming is necessary to successfully develop iTools, you should be able to
create simple modifications of existing tools almost immediately, and more complex
customizations soon thereafter.

iTool Developer’s Guide Skills Required to Use the iTools Component Framework

16 Chapter 1: Overview of iTools

Skills Required to Use the iTools Component Framework iTool Developer’s Guide

Part I: Understanding
the iITools Component
Framework

Chapter 2

ITool System
Architecture

This chapter describes the iTool component framework architecture.

Overview of theiTool System Architecture 20 Registering Components 38
iTools Object Model Diagram 21 iTool Messaging System 41
iTool Object Identifiers 28 SystemResources.................... 44
iTool Object Hierarchy 31

iTool Developer’s Guide 19

20 Chapter 2: iTool System Architecture

Overview of the iTool System Architecture

TheiTool system architecture is designed to maintain a separation between the
functionality provided by an iTool and the graphical presentation layer that reveas
that functionality to an iTool user (theiTool user interface). Such a separation allows
for the creation of different user interfaces for the same underlying functionality;
whiletheinitial iTool user interface has been created using IDL widgets, it is easy to
imagine using other technologies to create an interface to the underlying iTool
functionality.

To support the goal of enabling different user interfaces for a given set of iTool
functionality, theiTool architecture includes the following features:

« AdesigninwhichasingleiTool object (based on the IDLitTool class) contains
al non-interactive tool functionality. Similarly, asingleiTool object (based on
the IDLitUI class) contains all user interface functionality. Thisdivisionis
clearly visiblein the “iTools Object Model Diagram” on page 21.

* Anobjectidentifier system that provides a platform-neutral way to identify
objects across process and machine boundaries. Additionally, the object
identifier system is designed to work with existing component technol ogies
such as COM and Java.

A minimal connection between the non-interactive tool functionality and the
presentation layer. The tool architecture provides asmall set of highly abstract
methods that the tool and presentation layer use to communicate with each
other. This minimal connection means that the presentation layer needs only a
single object reference to the iTool object itself.

* A messaging system that allows one component to observe another, receiving
notification messages when the observed component changes in some way.

This chapter describes some of the core ideas of the iTool system: component
inheritance, object identifiers, the iTool system object and the object hierarchy it
contains, the concept of registration, and how information is passed between i Tool
components.

Overview of the iTool System Architecture iTool Developer’s Guide

21

Chapter 2: iTool System Architecture

AyarelalH |apo\ 193lqoO s|ool! :T-g ainbi4

Jafeuepioendiueranal asEd|00 L3I0l uoneadoeleaial
1N3al JaugluoouoieEndiueial oaLmal Jojeindiveinadl cozm._m_u_u“_n_m___ A3ANI J3peaHInal
| | | |
lazialauleledindl _m:m_m/._oym_zu_cmEu_n_D__

[E—

daUlejuoDeIRdITdl map ATl UoleZensiAITal

A,w AV AV A,w AV t

s12al00 amdess

a5 puBILIODINal

Bl 18U YNl PUEWIWOIIA mopUBTa) B Elstel M iglal
v I il v
JauEogTIal Juauodwooual Jaaueledinal |BuiBessappnal

'sjuauodLLI0D asay] Jo spoyew pue saiedoid a|ge|eAe sy Buiprebal s|reep 10 apIng sousseey 1d|

31 99S 'sseo UaAlb e Jo S1091go 01 9|ge|ere seiedo.d pue spoyiawl 8yl Jo uoiedipul ¥dinb e apiaoid 01 pue
‘5100 181 JO 2IN10NJIS 8Y1 JO MSIARAO [ensIAe apinoid 01 papusiul i welBeip syl 'sjool ! | Jo Alljeuoiouny
aseq ay)1 aulpp eyl sasse|d 199go wsuoduwiod |00 18y] Buole asuelleyul smoys ainbiy Buimo|jo)ay L

weibelq [9poN 108[qO s|ool !

iTools Object Model Diagram

iTool Developer’'s Guide

22

Chapter 2: iTool System Architecture

Every iTool is constructed using the hierarchy of predefined and documented object
classes shown in the previous figure. Each of these predefined (as opposed to user-
defined) object classes are available to use or customize in your iTool application.
However, there is no need to create and instantiate the entire hierarchy when creating
acustom iTool object.

Launching an iTool application creates instances of objectsin theiTools class
hierarchy, aswell as others subclassed from the predefined classes. Developing an
application that subclasses from the IDLitTool Base class automatically includes the
functionality of parent object classes, such asIDLitTool, and IDLitIMessaging. This
will also include and register manipulator and operation objects that are common
among the predefined i Tools. Unwanted items can be unregistered. Other predefined
objects are instantiated as needed. For example, an iTool application may be started
without a data argument. Only when data isimported into the tool is a predefined or
custom IDLitVisualization object created to contain the data. For instance, an
IDLitVisPlot object isinstantiated when data is imported into the iPlot tool, which
may or may not be when the tool isinitiated.

Once the hierarchy of component objects have been instantiated, there is no need to
maintain along list of object references to access and manipulate individual objects.
Each component is assigned an identifier when it isinstantiated; an identifier isa
simple string that can be used to access an object (such as an IDLItVisPlot object) in
order to change properties, apply operations, or make other modifications. See “iTool
Object Identifiers’ on page 28 for details.

The following sections further describe the chain of inheritance followed by the
objects that make up a particular iTool. The classes listed below are subclassed from
the iTool object classes shown in the “iTools Object Model Diagram” on page 21.
With the exception of the atomic graphic objects (listed in “Atomic Graphic Objects”
on page 26), these subclasses are not documented and are subject to change. While
we encourage you to inspect these undocumented subclasses and use them as
examples when creating your own subclasses, we discourage you from subclassing
from them directly.

Note
ITT Visual Information Solutions may add, change, or remove undocumented
subclasses of the documented i Tools classes at any time. The following lists may
not exactly match the set of subclasses shipped with any particular version of IDL.

Except for the atomic graphic objects, all of the classes listed below are writtenin the
IDL language. Their definitions can befoundinthe 1ib/itools/components
subdirectory of your IDL installation. See “About the iTools Code Base” on page 13

iTools Object Model Diagram iTool Developer’s Guide

Chapter 2: iTool System Architecture

23

for additional information about i Tools code and the differences between documented

and undocumented classes.

IDLitVisualization Classes

The IDLitVisualization class provides methods for adding, deleting, and grouping
objects within avisualization. The following predefined classes contain graphic
objects and other visudizations. For example, the IDLitVisPlot isacontainer for plot,
symbol, and selection visual objectsaswell as other itemsthat as a group, provide the
complete visual representation of the plot data. See Chapter 6, “ Creating a

Visualization” for details.

» IDLitVisAxis
 IDLitVisColorbar
 IDLitVisContour
« |IDLitVisHistogram
« IDLitVisimage
 |DLitVisintVol
 IDLitVislsoSurface
* IDLitVisLegend

« IDLitVisLight

« IDLitVisLineProfile
 IDLitVisMapGrid
 IDLitVisPlot

IDLitTool Classes

IDLitVisPlotProfile
IDLitVisPlot3D
IDLitVisPolygon
IDLitVisPolyline
IDLitVisROI
IDLitVisShapePoint
IDLitVisShapePolygon
IDLitVisShapePolyline
IDLitVisSurface
IDLitVisText
IDLitVisVolume

The IDLitTool class provides the iTools system infrastructure used by every iTool.
All of the standard i Tools are based on a subclass of IDLitTool called IDLitToolbase.
The IDLitToolbase class provides all of the base functionality found in the standard
iTools including menu items, file readers and writers, operations, and manipulators.
See “ Subclassing from the IDLitToolbase Class” in Chapter 5 for more information

iTool Developer’s Guide

iTools Object Model Diagram

24

Chapter 2: iTool System Architecture

on included functionality. See the iTool User’s Guide for information on using
individual iTools.

 |IDLitToolContour (iContour tool) |IDLitToolSurface (iSurface tool)
 |IDLitToollmage (ilmage tool) * IDLitToolVolume (iVolume tool)
» IDLitToolMap (iMap tool) IDLitToolVector (iVector tool)

« IDLitToolPlot (iPlot tool)

IDLitData Classes

The IDLitDataclass stores core | DL data types, gets and sets data, and receives
updates regarding data changes. The predefined IDLitData classes listed in the
following table are designed to hold data which can then be displayed in aniTool. See
Chapter 3, “Data Management” for details.

 IDLitDatalDLArray2D * IDLitDatalDL Palette
* IDLitDatalDLArray3D * IDLitDatal DL PolyVertex
* IDLitDatal DL Image + IDLitDatal DLVector

IDLitDatal DL ImagePixels

IDLitReader Classes

The IDLitReader class contains predefined file readers that determine the type of data
being accessed, and create an IDLitData object to contain the data. See Chapter 9,
“Creating aFile Reader” for details on creating and using file readers.

* IDLitReadASCII * |DLitReadJPEG2000
* |IDLitReadBinary * IDLitReadPICT

* IDLitReadBMP * IDLitReadPNG

* |IDLitReadDICOM * |DLitReadShapefile
* |IDLitReadISV * |IDLitReadTIFF

* |IDLitReadJPEG * |IDLitReadWAV

iTools Object Model Diagram iTool Developer’s Guide

Chapter 2: iTool System Architecture 25

IDLitWriter Classes

The IDLitWriter class contains predefined file writers that export graphics or datato
afile of aspecified type. See Chapter 10, “Creating a File Writer” for details on
creating and using file writers.

* IDLitWriteASCII * |IDLitWriteJPEG
* |IDLitWriteBinary * |IDLitWriteJPEG2000
* IDLitWriteBMP » IDLitWritePICT
» IDLitWriteEMF * IDLitWritePNG
» IDLitWriteEPS » IDLitWriteTIFF

* |IDLitWritelSV

IDLitOperation Classes

The IDLitOperation class defines an action on data, or a changeto aniTool
visualization. Transaction recording provides undo/redo capabilities. See Chapter 7,
“Creating an Operation” for information on creating a new operation or using
predefined operations.

* IDLitOpBytscl » IDLitOpCurveFitting
 IDLitOpConvolution IDLitOpSmooth
Note

There are many additional operations (named with the prefix “idlitop”) in the
lib\itools\components subdirectory of your IDL installation.

IDLitManipulatorContainer Classes

The IDLitManipulatorContainer class provides a container for a group of

mani pul ators, among which an active manipulator may be set. The following

mani pul ator containers are predefined. The manipulators held within each predefined
container are described in “ Predefined iTool Manipulators’ on page 198.

e IDLitManipArrow IDLitManipRotate
 IDLitManipRange

iTool Developer’s Guide iTools Object Model Diagram

26

IDLitManipulator Classes

Chapter 2: iTool System Architecture

The IDLitManipulator class allows the user to select and interact with avisualization
through mouse movements and keyboard events. See Chapter 8, “ Creating a
Manipulator” for information on the following predefined manipulators and creating

anew

mani pulator.

IDLitAnnotateFreehand
IDLitAnnotateLine
IDLitAnnotateOval
IDLitAnnotatePolygon
IDLitAnnotateText
IDLitManipAnnotation
IDLitManipCropBox
IDLitManiplmagePlane
IDLitManipLine
IDLitManipROIFree
IDLitManipROIOval
IDLitManipROIPoly
IDLitMani pROIRect
IDLitManipRangeBox

Atomic Graphic Objects

IDLitManipRangePan
IDLitManipRangeZoom
IDLitManipRotate3D
IDLitManipRotateX
IDLitManipRotateY
IDLitManipRotateZ

IDLitManipScae

IDLitManipSelectBox
IDLitManipSurfContour
IDLitManipTrandate

IDLitManipView

IDLitManipViewPan
IDLitManipViewZoom

In addition to IDLgrModel and IDLgrWindow objects shown in the “iTools Object
Model Diagram” on page 21, the following IDL objects inherit from
IDLitComponent:

e IDLgrAXxis
 |IDLgrContour
* |DLgrimage
e IDLgrLight

iTools Object Model Diagram

IDLgrPolyline
IDLgrROI
IDLgrROIGroup
IDLgrSurface

iTool Developer’s Guide

Chapter 2: iTool System Architecture 27

e IDLgrPlot e IDLgrText
 IDLgrPolygon e IDLgrVolume

iTool Developer’s Guide iTools Object Model Diagram

28 Chapter 2: iTool System Architecture

ITool Object Identifiers

iTool object identifiers are smple strings that uniquely identify individual objects
within the hierarchy of iTool objectsin much the same way that a computer file
system identifies files within a hierarchy of files. The object hierarchy (and, by
extension, the object identifiers) also describe where information about objectsis
made visible in the iTool user interface; see “iTool Object Hierarchy” on page 31 for
additional discussion of the iTool hierarchy and theiTool system object.

Besides providing afamiliar, user-readable way to identify objectsin the iTool
system, object identifiers also alow i Tool developersto refer to an object without
having to maintain an actual object reference to that object. This ability to use a
lightweight string object to refer to a potentially “heavy” object in theiTool system
makes it possible to maintain a very loose coupling between the objects that
implement an iTool’s functionality and those that implement its user interface. This
alows for object access that can cross process and machine boundaries, paving the
way for the use of the iTool system in more distributed environments.

Note
Object identifiers are not to be confused with object descriptors. See “ Object
Descriptors’ on page 30 for details.

Object identifier strings are assigned when an object classisregistered with either an
individual iTool or with the iTool system object. See “ Registering Components’ on
page 38 for adiscussion of the registration process.

Fully-Qualified vs. Relative Identifiers

Identifiers can either be fully qualified, meaning that they depict the entire path from
the root iTool system object to the object being identified, or relative, meaning they
depict the path from the root of the current iTool. Fully qualified identifiers begin
withthe“/” character, and refer to objects that are accessibleto all iTool s that become
active during the lifetime of theiTool system object. Relative identifiers do not begin
with a“/” and refer to objects that are accessible only within a specified container
object.

For example, the identifier string
/DATA MANAGER/MY DATA

refersto an object named My DATA, located in the system-level DATA MANAGER
container. Because the identifier is fully qualified, themy DpaTa objectisvisibleto
any iTool that is active during the i Tool session.

iTool Object Identifiers iTool Developer’s Guide

Chapter 2: iTool System Architecture 29

Similarly, theidentifier string
OPERATIONS/FILTERS/MY FILTER

refersto an object named My FILTER, located in a sub-container of the iTool-level
OPERATIONS container named FILTERS. Because the identifier is relative, the
MY FILTER objectisvisibleonly tothe currentiTool.

Note
Object identifiers are stored as upper-case strings. Spaces are allowed.

Using Identifiers

Numerous methods defined by iTools object classes accept object identifiers as
arguments to uniquely identify an object instance. This frees you as a developer from
the need to obtain and keep track of an actual object reference for each object you
wish to refer to or modify.

For example, the DoSetProperty method of the IDLitTool object class allows you to
change the value of an object property by supplying the identifier for the object
whose property isto be changed, as well as the identifier for the property itself.
Similarly, the DoAction method of the IDLitTool class allows you to initiate an
operation simply by supplying itsidentifier.

Retrieving ldentifiers

At times, you may know the identifier of the object you wish to affect. Thisisthe
case when your own code registers an operation, for example; you must supply the
identifier when calling the IREGISTER routine or Register method. (See
“Registering Components’ on page 38 for additional details.)

Other times, you may not know theidentifier of the object you wish to affect. In these
cases, you have two options:

1. If your code has access to the actual object reference to the object whose
identifier you need, you can use the GetFullldentifier method of the
IDLitComponent object class. See “IDLitComponent::GetFullldentifier” (IDL
Reference Guide) for details.

2. If your code does not have access to an object reference, you can use the
Findldentifiers method of the IDLitTool object classto retrieve alist of
identifiers that match a specified pattern. See “IDLitTool::Findldentifiers’
(IDL Reference Guide) for details.

3. If your code does not have access to an object reference, you may be ableto
use the IGETID procedure. See “IGETID” (IDL Reference Guide) for details.

iTool Developer’s Guide iTool Object Identifiers

30 Chapter 2: iTool System Architecture

Proxy Identifiers

Because the location of an object in the iTool object hierarchy corresponds to the
place that object is made visible to iTool users, you may at timeswant an object to be
located in multiple placesin the iTool abject hierarchy. For example, the Undo
operation appears in two placesin the standard i Tool user interface: under the Edit
menu and on the toolbar. Rather than duplicating the Undo operation object in each of
those placesin the iTool object hierarchy, we can use a proxy mechanism to register
the same object instance with multiple object identifiers. In the case of the Undo
operation, the operation itself islocated in the EDIT subcontainer of theiTool's
OPERATIONS container, which implies that the operation appears under theiTool’s
Edit menu. A proxy (or aias) to this object is created in the EDIT subcontainer of the
iTool’s TOOLBAR container, which places the operation on the toolbar. Only one
instance of the Undo object is created, but its action can be invoked from both the
menu and the toolbar.

Proxy identifiers are assigned by the Register method for the object being proxied.
See “Registering Components’ on page 38 for additional details.

Object Descriptors

Object descriptors are iTool objects that contain enough information about a given
object class to create an object of that class when necessary. In many cases, object
descriptors, rather than instances of the objects they create, are stored in the i Tool
hierarchy; this approach allows object instances to be created only when needed.
Object descriptors also manage instances of objectsthat can be re-used by the system,
avoiding the need to create a new instance of an abject (such as an operation) each
timeit is used.

Casesin which aniTool developer will need to know about or use object descriptors
rather than object identifiers are very rare. We mention object descriptors here
because they are used extensively in the iTool object hierarchy to expose the
functionality of objects that are created as needed, rather than being created
automatically when the iTool is created.

iTool Object Identifiers iTool Developer’s Guide

Chapter 2: iTool System Architecture 31

ITool Object Hierarchy

TheiTool system isacollection of object classinstances organized in a hierarchy of
container abjects. The hierarchy serves both to organi ze the numerous object
instances and to display information about the objects in the iTool user interface. In
most cases, an object’s location in the iTool hierarchy controls where and how the
object ismade visible in the user interface.

For example, the Rotate operation object is stored in the ilmage i Tool’s object
hierarchy with the object identifier

OPERATIONS/OPERATIONS/ROTATE

From thisidentifier we can deduce two things:

1. The Rotate operation object is stored in the iTool’s object hierarchy in the
OPERATIONS container within the OPERATIONS container.

2. TheRotate operation will be displayed in theiTool’swidget interface under the
Operations menu.

iTool System Object

TheiTool system object contains and provides a single point of accessto all objects
managed by the iTool system. Only one instance of theiTool system object can exist
inagiven IDL session; it is created automatically when any iTool is created.

Note
Asan iTool developer, there is no need for you to create or otherwise interact with
the system object yourself. This discussion of the structure of the system object is
included solely to help you understand the organization of iTool objects.

TheiTool system object is a subclass of the IDLitContainer object, which provides
functionality to manage a hierarchy of container objects viatheir object identifiers.

iTool System-Level Hierarchy

Astheroot of theiTools environment, the iTool system object has the unique object
identifier of “/”. All fully qualified object identifiers begin with this reference to the

system abject, providing a global location on which to base alocation in theiTools
hierarchy.

The hierarchy contained by theiTool system object includes the following containers:

iTool Developer’s Guide iTool Object Hierarchy

32

Chapter 2: iTool System Architecture

ITOOLS

This container holds references to all active iTools.
/ICLIPBOARD

This container holds items that are on the local system clipboard.
/REGISTRY

This container holds object descriptors for the iTool object classes that are registered
with the system object. Individual iTools, Visualization types, and User Interface
types can all be registered with the system object; other iTool object types are
registered only with the individual iTool to which they belong. Objects that are
registered with the system object are available for usein the IDL MAIN execution
context — that is, these objects are available at the IDL command line.

/IREGISTRY/TOOLS

This container holds the abject descriptors for the individual iTools available in the
system. All iTools must be registered with the system object.

/IREGISTRY/VISUALIZATIONS

This container holds the object descriptors for the visualization types registered with
the system object. Visualization types that are registered with the system object are
availableto all iTools, and thus alow users to create visualizations via the
OVERPLOT keyword to an iTool launch routine even in cases where the appropriate
visualization type is not registered with the current iTool. Registered visualizations
types are displayed in alist in theiTool Insert Visualization dialog. See Chapter 6,
“Creating a Visualization” for more on visualization types.

/REGISTRY/WIDGET INTERFACE

This container holds alist of available user interface routines that are available to the
system. In the initial release of the iTool system, only one user interface exists. By
providing the capability to choose from alist of interfaces, however, different
interfaces can easily be “plugged in” to the iTool framework in the future.

/IDATA MANAGER

This container holds the data objects that have been imported into or created by the
iTool system. Since the data manager container is system-scoped, all datain the
system isavailableto al iTools.

iTool Object Hierarchy iTool Developer’s Guide

Chapter 2: iTool System Architecture 33

iTool Objects

Individual iTool tool objects contain all objects that are directly associated with a
particular instance of aparticular iTool. Any number of tool objects can exist; their
unique identifiers are found in the /TOOL S container of the iTools system object.

AsaniTool developer, you will use both the tool’s abject reference and its object
identifier inside your code.

If you are using command-line style procedures and functions to control an existing
iTool from non-iTools code, you can retrieve the tool object identifier and object
reference using the IGETCURRENT routine.

iTool-Level Hierarchy

Each individua iTool (held in the /TOOLS container of the system object) has a sub-
hierarchy of tool-level containers. For example, every iTool has a container named
OPERATIONS containing objects that affect data. An operation named MyOperation
registered for an iTool named MyTool has two possible object identifiers:

/TOOLS/MYTOOL/OPERATIONS/MYOPERATION
and
OPERATIONS/MYOPERATION
Thefirst identifier isfully quaified; the second is relative to the MyTool object.

The object identifier hierarchy of each individual iTool includes the following
containers:

FILE READERS

FILE WRITERS

MANTIPULATORS

OPERATIONS

TOOLBARS

WINDOW

WINDOW/VIEW

WINDOW/VIEW/VISUALIZATION LAYER
WINDOW/VIEW/VISUALIZATION LAYER/DATA SPACE
WINDOW/VIEW/VISUALIZATION LAYER/DATA SPACE/VISUALIZATION
WINDOW/VIEW/ANNOTATION LAYER
WINDOW/VIEW/ANNOTATION LAYER/ANNOTATION

FILE READERS

A file reader isan iTool component object that contains the information necessary to
open afile and read its data into the iTools data manager. The FILE READERS
container holds the object descriptors of file readers registered with the individual

iTool Developer’s Guide iTool Object Hierarchy

34

Chapter 2: iTool System Architecture

iTool. Default properties of file readers can be set interactively viathe System
Preferences dialog. See Chapter 9, “ Creating a File Reader” for more on file readers.

For example, the relative identifier for the ASCII file reader is:

FILE READERS/ASCII TEXT
FILE WRITERS

A file writer isan iTool component object that contains the information necessary to
create afile from data stored in the iTools data manager. The FILE WRITERS
container holds the object descriptors of file writers registered with the individual
iTool. Default properties of file writers can be set interactively viathe System
Preferences dialog. See Chapter 10, “ Creating a File Writer” for more on file writers.

For example, the relative identifier for the Windows Bitmap file writer is:

FILE WRITERS/WINDOWS BITMAP
MANIPULATORS

A manipulator isan iTool component object that performs some action on a
visualization selected in an iTool. The MANIPULATORS container holds the object
descriptors of manipulators registered with the individual iTool. See Chapter 8,
“Creating aManipulator” for more on manipulators.

For example, the relative identifier for the Rotate manipulator is:

MANIPULATORS/ROTATE
OPERATIONS

An operationisaset of IDL procedure, function, and method calls that acts on either
adataitem or on the iTool itself. The OPERATIONS container holds the object
descriptors of operations registered with the individual iTool. Registered operations
appear in the Operations menu of the iTool. See Chapter 7, “ Creating an Operation”
for more on operations.

The abject identifier hierarchy rooted at OPERATIONS is displayed in the iTools
Operations Browser in atree view. The hierarchy may contain multiple levels; the
levels are used to organize the individual operationsin the iTools Operations menu
and in the Operations Browser. For example, the relative identifier of the File Open
operationis:

OPERATIONS/FILE/OPEN

Note that operations that appear in the iTool Operations menu repeat the identifier
OPERATIONS. Thefirst instance specifies that the object is stored in the Operations

iTool Object Hierarchy iTool Developer’s Guide

Chapter 2: iTool System Architecture 35

container, the second specifies that it appears in the Operations menu. For example,
the relative identifier for the Statistics operation is:

OPERATIONS/OPERATIONS/STATISTICS

TOOLBAR

A toolbar isan iTool component abject that contains information about buttons that
should be displayed in theiTool’smain interface. The TOOLBAR container holds the
object descriptors of operations, manipulators, and annotations that are exposed via
the iTool’s toolbar. In most cases, these objects are proxies of objects held in other
containers. For example, the File Open operation is held by the FILE subcontainer of
the OPERATIONS container; it is also exposed (via aproxy) on the iTool toolbar as:

TOOLBAR/FILE/OPEN

WINDOW

A window is an iTool component that holds (indirectly) the actual graphics object
hierarchy displayed in theiTool window. It isarepresentation of an on-screen areaon
adisplay device that serves as a graphics destination. Each window contains one or
more views. The relative identifier of awindow is always:

WINDOW

The aobject hierarchy rooted at the WINDOW is displayed in the i Tools Visualization
Browser in atree view. The objectsin the hierarchy correspond to the levels shown in
the Visualization Browser view.

VIEW

A view isan iTool component that represents a rectangular area in which graphics
objects are drawn. Each view contains one or more visualization layers and one or
more annotation layers. For example the relative identifier of thefirst view in a
window container is:

WINDOW/VIEW_1
VISUALIZATION LAYER

A visualization layer is an iTool component that contains visualizations. Each
visualization layer contains zero or more data spaces. For example, the relative
identifier of the visualization layer in the first view in window container is:

WINDOW/VIEW_1/VISUALIZATION LAYER

DATA SPACE

A data spaceisan iTool component that manages the data range, transformation
matrix, and other data-centric properties of visualizationsin avisualization layer.

iTool Developer’s Guide iTool Object Hierarchy

36

Chapter 2: iTool System Architecture

Each data space contains one or more visualizations. For example, the relative
identifier of the second data space in the visualization layer in the first view in
window container is:

WINDOW/VIEW_1/VISUALIZATION LAYER/DATA SPACE_1

Note
Data space numbering is zero-based — that is, the first data space created is number
zero. The object identifier for the first data space, however, does not include the
number. Identifiers for additional data spaces do include the number.

A visualization isagroup of component objects that are displayed to theiTool user in
the main iTool window. Examples of visualizations are plots, surfaces, contours, etc.
For example, the relative identifier of thefirst plot visualization in the first data space
in the visualization layer in the first view in window container is:

WINDOW/VIEW_1/VISUALIZATION LAYER/DATA SPACE/PLOT

Note
Visualization numbering is zero-based — that is, the first visualization of a specific
type created within a data space is number zero. The object identifier for the first
visualization, however, does not include the number. Identifiers for additional
visualizations of the same type within the same data space do include the number.

Visualizations may be containers themselves, containing other visualizations. The
Axisvisualization is an example; it contains all of the individual axesinserted into a
given data space.

ANNOTATION LAYER

An annotation layer is an iTool component that contains annotations. Each
visualization layer contains zero or more annotations. For example, the relative
identifier of the annotation layer in the first view in window container is:

WINDOW/VIEW_1/ANNOTATION LAYER

An annotation is agraphical component that can be added to the main i Tool window
by the iTool user in an interactive operation. Examples of annotations are text, lines,
polygons, etc. For example, the relative identifier of the first text annotation in the
first annotation layer in the first view in window container is:

WINDOW/VIEW_1/ANNOTATION LAYER/TEXT
Note

Annotation numbering is zero-based — that is, the first annotation of a specific type
created within a data space is number zero. The object identifier for the first

iTool Object Hierarchy iTool Developer’s Guide

Chapter 2: iTool System Architecture 37

annotation, however, does not include the number. Identifiers for additional
annotations of the same type within the same data space do include the number.

iTool Developer’s Guide iTool Object Hierarchy

38 Chapter 2: iTool System Architecture

Registering Components

Registering an object class links the file containing the IDL code that defines the
object (aniTool, avisualization type, an operation, etc.) with the object identifier.
Objects can be registered either with the iTool system object (in which case their
identifiers are fully qualified) or with an individual iTool class (in which case their
identifiers are relative to the iTool or to a specific container within the tool).

When an object isregistered, it is not immediately instantiated. Instead, the
information required to create the object is saved in an object descriptor and placed in
the appropriate location in the iTool hierarchy. Later, when the functionality
contained in the object is needed, the object descriptor either instantiates the object or
provides areference to an existing instance of the object.

Registration Methods

Objects are registered using the IREGISTER procedure (to register the object with
theiTool system object) or by calling a Register method on an individual iTool
component object.

Registering Objects with the System Object

Individual iTool components can be registered with the iTool system object. Of these:

e individual iTools must be registered with the system object before they can be
created and displayed.

» visualization types, annotation types, and file readers and writers may be
registered with the system object, but can also be registered with an iTool.
Components that are registered with the system object will be available to all
iTools.

e user interface types must be registered with the system object; however,
creation of new user interfacesis arare and complex occurrence.

To register an object with theiTool system object, use the IREGISTER procedure.
See“IREGISTER” (IDL Reference Guide) for details and “ Registering a New Tool
Class’ on page 101 for an example using IREGISTER.

Registering Objects with an iTool

Visualization types, operations, manipulators, file readers, and file writers can be
registered with an individual iTool. Of these, all must be registered with an individual

Registering Components iTool Developer’s Guide

Chapter 2: iTool System Architecture 39

iTool except for visualization types, which may have been registered with the i Tool
system abject.

Note
Many operations, manipulators, file readers, and file writers are registered by the
IDLitToolbase class. If you create a new i Tool based on this class, these features
will be registered automatically. See “ Subclassing from the IDLitToolbase Class”
on page 91 for details.

Tip
If you want some, but not all, of the functionality exposed by the IDLitToolbase
class, you may find it useful to subclass from IDLitToolbase and unregister one or
more features. See the sections on unregistering items in the chapters devoted to
creating operations, manipulators, file readers, and file writers.

To register an object with an individual iTool, use one of the Register methods of the
IDLitTool class. Register methods exist for each type of object that can be registered
(IDLitTool::RegisterOperation for operations, for example). A call to aregistration
method |ooks something like this

self->RegisterObject, ObjectName, Object_Class_Name

where Object is one of the object types that can be registered (Visualization,
Operation, Manipulator, FileReader, or FileWriter), ObjectNameisthe string you will
use when referring to the object, and Object_Class Nameisastring that specifiesthe
name of the classfile that contains the object’s definition.

See the Register methods under “IDLitTool” (IDL Reference Guide) for additional
details, and “ Registering a Visualization Type” on page 136, “ Registering an
Operation” on page 182, “Registering a Manipulator” on page 223, “ Registering a
File Reader” on page 247, and “Registering a File Writer” on page 271 for examples.

Specifying Object Identifiers

You can use the IDENTIFIER keyword to any of the Register methods to specify an
object identifier for the registered object, and thus specify the object’s location in the
iTool object hierarchy and in the user interface. If you do not specify avalue for the
IDENTIFIER keyword, a suitable object identifier will be constructed based on the
type of object being registered and the specified ObjectName.

Proxy Registration

You can also register an object as a proxy (or alias) to another object that has already
been registered. Registering an object as a proxy places the proxy object in the iTool

iTool Developer’s Guide Registering Components

40 Chapter 2: iTool System Architecture

hierarchy in the specified place, but actually calls the original object when a user
requests the proxied object. To register a proxy object, specify an object identifier
string as the value of the PROXY keyword to the Register method. For example, the
following call to the RegisterOperation method places a proxy to the Undo object
stored in theiTool hierarchy under OPERATTONS /EDIT/UNDO in the hierarchy under

TOOLBAR/EDIT/UNDO.
self->RegisterOperation, 'Undo', PROXY = 'Operations/Edit/Undo', $
IDENTIFIER = 'Toolbar/Edit/Undo’

Registering Components iTool Developer’s Guide

Chapter 2: iTool System Architecture 41

ITool Messaging System

Notifications are messages sent from one iTool component to one or more observer
components. The iTool messaging system provides a unified way for components to
notify each other of important changes; it is quite general, and can be used to send
messages related to any type of change. Some examples:

* Visualizations send notifications when components of the visualization are
selected or unselected.

« Notifications are issued when the user changes the value of a property. All
visualizations or operations that depend on the value of that property are
automatically notified.

Note
Messaging functionality is provided mainly by the IDLitTool and IDLitUI objects,
using the interface defined by the IDLitIM essaging object.

In many cases, the iTool messaging system is transparent to you as an iTool
developer; you may never need to create code that uses the messaging system. The
main exception to this rule is the creation of user interface panels (discussed in
Chapter 14, “Creating a User Interface Panel™), but there may be other instancesin
which the notifications sent by theiTool framework itself do not meet your needs and
must be augmented by your own message generation and handling code.

Sending Notifications

To send a notification, an iTool component calls the IDLitIMessaging::DoOnNotify
method, providing the object identifier of the component that is sending the
notification, a string that uniquely identifies the message being sent, and any value
associated with the message. The method call looks like:

Obj->DoOnNotify, IdOriginator, IdMessage, Value

where Obj is the object calling the DoOnNotify method, IdOriginator istheiTool
component object identifier string of the component that changed, |dMessage is a
string that uniquely identifies the change, and Value is the value associated with
|dMessage.

The DoOnNotify method is available to most i Tool components, since all
components subclass from the IDLitIMessaging class either directly or indirectly.

See “IDLitIMessaging::DoOnNotify” (IDL Reference Guide) for details.

iTool Developer’s Guide iTool Messaging System

42 Chapter 2: iTool System Architecture

The IdOriginator argument is generally the object identifier of an iTool component
object, but it can be any string value.

Notification Messages

The value of the IdMessage argument to the DoOnNotify method is a string value that
must uniquely identify the message being sent. iTool components and callback
routines that process notification messages use the value of the IdMessage string to
determine what action to take when a message arrives from an observed component.

When you call the DoOnNotify method yoursdlf, use caution in choosing the value of
the IdMessage string. If the string you choose conflicts with a message being sent by
another iTool component, the message-handling routines may be activated at the
wrong time.

Standard iTool Messages

The following is alist of notification messages sent by components that are part of
the standard iTool distribution:

Message String Meaning
SELECTED The selection state of an item being watched has
UNSELECTED changed. Value contains the object identifier of the

component whose selection changed.

SELECTIONCHANGED | The selected item within the current iTool changed.
Value contains an empty string.

ADDITEMS A call to the Add, Move, or Remove method of an
MOVEITEMS I DLitContainer that supports thg IDLitl M_essagi ng

interface was made. Value contains the object
REMOVEITEMS identifier of the item that was added, moved, or
removed.

SETPROPERTY The value of a property has been changed on a
component. If asingle property was changed, Value
contains the identifier of the property that changed. If
multiple properties were changed, Value contains a
null string.

Table 2-1: Standard iTool Messages

iTool Messaging System iTool Developer’s Guide

Chapter 2: iTool System Architecture

43

Message String

Meaning

SENSITIVE The SENSITIVE property of a component has

UNSENSITIVE changed. Value contains an empty string.

VIEW_PAN The currently selected view has been panned. Valueis
atwo-element integer vector [x, y] specifying the
location of the lower left corner of the visible portion
of the view relative to the lower left corner of the
entire view.

VIEW_ZOOM The currently selected view has been zoomed. Valueis

a floating-point integer representing the new zoom
factor for the view.

Table 2-1: Standard iTool Messages (Continued)

Observers

To watch for notifications from an iTool component, an iTool component calls the
IDLitIMessaging::AddOnNotifyObserver method, providing the object identifier of
the component that is watching and the object identifier of the object being watched
as arguments. The method call looks like:

Obj->AddOnNotifyObserver, IdObserver, IdSubject

where Obj is the object calling the AddOnNotifyObserver method, 1dObserver isthe
iTool component object identifier string of the component that is watching for
notification messages, and IdSubject is a string value identifying the item that
IdObserver isinterested in. Thisis normally the object identifier of an iTool
component object, but it can be any string value.

Note

When writing a user interface panel, the IdObserver argument contains the object
identifier of a user interface adaptor created by a call to the RegisterWidget method
of the IDLitUI class. See “Creating a Ul Panel Interface” on page 315 for details.

iTool Developer’s Guide

iTool Messaging System

44 Chapter 2: iTool System Architecture

System Resources

This section contains information on resources used by the iTool system.
Icon Bitmaps

Some iTool components have associated icons. Icons for iTool components are
displayed in the tree view of a browser window.

Bitmaps used asiconsin the iTool system must be either . bmp or .png files. The
images contained in icon bitmap files can be either True Color (24-hit color) images
or paletted (8-bit color) images.

Note
There are different requirements for bitmap images that will be displayed on button
widgets. See “About Button Widgets’ (Chapter 4, User Interface Programming) for
detalls.

By default, bitmap files for icons used by theiTool system are stored in the bi tmaps
subdirectory of the resource subdirectory of the IDL distribution. If anicon’s
bitmap fileislocated in this directory, specify the base name of the file — without the
filename extension — as the value of the ICON property of the component. For
example, to use thefile arrow. bmp, located in the resource/bitmaps
subdirectory of the IDL distribution, specify the value of the ICON property as
follows:

ICON = 'arrow'

If you include the filename extension when setting the ICON property, the iTool
system assumes that the specified value is the full path to the bitmap file. For
example, to use thefilemy_icon.png, stored in the directory /home/mydir asan
icon, specify the value of the ICON property as follows:

ICON = '/home/mydir/my_ icon.png'

If you are distributing your iTool code to others, you may want to specify a path
relative to the location of your code for the icon bitmap files. To retrieve the path to
the file containing code for a given routine, you could use code similar to the
following:

; Use my own Icon bitmap

iconName = 'my_icon.png'

routineName = 'myVisualizationType_ define'
routineInfo = ROUTINE_INFO (routineName, /SOURCE)

path = FILE_DIRNAME (routineInfo.path, /MARK_DIRECTORY)

System Resources iTool Developer’s Guide

Chapter 2: iTool System Architecture 45

iconPath = path + iconName

This code uses the ROUTINE_INFO function to retrieve the path to the file specified
by the string rout ineName. It then extracts the directory that contains the file using
the FILE_DIRNAME function, and concatenates the directory name with the name of
the bitmap file contained in the string i conName.

Note
The routine specified by routineName must have been compiled for the
ROUTINE_INFO function to return the correct value.

Including this code in aroutine and setting the ICON property equal to the variable
iconPath provides a platform-independent method for locating bitmap filesin a
directory relative to the directory from which your iTool code was compiled.

If the value of the ICON property is not set and the i Tool system needsto display a
bitmap to represent a component, the file resource/bitmaps/new. bmp is used.

Help System

TheiTool system allows the user to select “Help on Selected Item” from the Help
menu (or, in the case of the Operations browser, from the context menu) to display
online help for the selected item.

Note
Help for iTool itemsis provided viaacall to the ONLINE_HELP procedure. It is
beyond the scope of this chapter to discuss the creation of help files suitable for
display by ONLINE_HELP; please see Chapter 22, “Providing Online Help For
Your Application” (Application Programming) for additional information.

Creating a Help Directory

Help content designed for use by the iTools help system should be located in a
separate directory that isincluded in IDL's help path (as defined by the 'HELP_PATH
system variable).

Information about the topic to be displayed by ONLINE_HELP is contained in an
XML format filewith aname of theform *help.xml. To createthe *help.xml file,
copy thefile <IDI_DIR>/help/template_help.xml into your help directory,
rename it to suit your application, and edit it as described in “ Format of Help Entries’
on page 46.

iTool Developer’s Guide System Resources

46

Chapter 2: iTool System Architecture

Note
You must also copy thefile <IDI._DIR>/help/itools.xsd into your help
directory.

See “Example: Help Topic for MyVisType' on page 48 for an example outlining the
process of creating a help topic for a user-created i Tool component.

Format of Help Entries

The format for ahelp entry inthe *help.xml fileis:

<Topic>
<Keyword>helpKeyword</Keyword>
<Link type="IDLHELP" book="adpFile">fileName</Link>
<Link type="MSHTMLHELP" book="chmFile">contextNumber</Link>
<Link type="PDF" book="pdfFile"></Link>
<Link type="HTML" book="htmlFile">htmlAnchor</Link>
<Link type="TEXT">path to_ textFile</Link>
</Topic>

Where;

The value of the <keyword> element isthe iTool object class name of the selected
object. There can be multiple <keyword> elementsfor agiven <Topic>, but they
must al precede any <Link> element. There must be at least one <Link> element
for agiven <Topic>.

Note
All strings are case sensitive. “Book” is not the same as “book”.

The type attribute of the <L.ink> element defines the type of help viewer to be
invoked. The alowed values for the type attribute are;

Link type Meaning
IDLHELP Use the default IDL online help viewer application.
MSHTMLHELP | Use the Microsoft Windows HTML Help viewer application.
PDF Use the system default PDF file viewer application.
HTML Use the system default web browser.
TEXT Usethe IDL XDISPLAY FILE procedure.

Table 2-2: Help Topic Link Types

System Resources iTool Developer’s Guide

Chapter 2: iTool System Architecture 47

The book attribute of the <L.ink> element defines the location of your iTool’s help
system. The type of file specified as the value for the book attribute depends on the
value of the type attribute:

Link type Value of book attribute

IDLHELP The book attribute should contain the name of your help
system’s . adp file.

MSHTMLHELP | The book attribute should contain the name of your help
system’s . chm file.

PDF The book attribute should contain the name of the PDF file to
be displayed.

HTML The book attribute should contain the name of an HTML file
to be displayed.

TEXT The book attribute can contain the full path to the text file to

be displayed. This value will be ignored, however, if the
<Link> element has avalue.

Table 2-3: Help Topic book Attribute Values

Note
You must either specify the full path to the file as the value of the book attribute, or
the file must be located in adirectory that isincluded in IDL's help path.

iTool Developer’s Guide System Resources

48 Chapter 2: iTool System Architecture

The value of the <Link> element specifies the specific content to be displayed from
the help system specified by the book attribute. The value depends on the value of the
type dtribute:;

Link type Value of the Link Element

IDLHELP The base name of an HTML file (do not include thefile
extension) to be displayed in the main window of the

IDL Assistant help viewer. The file must be located in the
same directory asthe help system’s . adp file. If novalueis
provided, IDL displays home page specified in the help
system'’s . adp file.

MSHTMLHELP | The context number. A context number is an integer used by
the Microsoft Windows HTMLHelp viewer to select atopic
from the help system’s . chm file. If no valueis provided, IDL
displays the help system’s home page.

PDF Ignored. IDL will dways display the first page of the file
specified by the book attribute.
HTML An HTML anchor tag within the specified HTML file. If no

valueis provided, IDL displays the top of the HTML page
specified by the book attribute.

TEXT The full path to the text file to be displayed. If the valueis
present, it takes precedence over the value of the book
attribute (if any).

Table 2-4: Help Topic Link Values

If morethan one <1.ink> element is present, IDL will first attempt to use the element
with the type attribute set to IDLHELP. If no <Link> element with the type
attribute set to IDLHELP is present, IDL will choose which to display based on the
platform; on Windows platforms, the <Link> element with the type attribute set to
MSHTMLHELP Will be used, on Unix platforms, the <Link> entity with the type
attribute set to pDF will be used. If the appropriate platform-specific <1.ink> isnot
present, thefirst <1.ink> entity of atypethat can be displayed on the current platform
will be used.

Example: Help Topic for MyVisType

Suppose you have created anew iTool visualization type named MyvisType and
registered it with the iTool, and you have created a single-topic HTML file named

System Resources iTool Developer’s Guide

Chapter 2: iTool System Architecture 49

MyVisType.html to describeit. In order to display your HTML file when the user
selects aMyVisType visualization and selects Help — Help on Selected Item, you
would do something like the following:

1

Install the MyvisType.html file somewhere. Instaling the file in the same
directory astheMyvisType_ define.pro and other associated iTool files
would be areasonable choice, and for the purposes of this example we assume
thisisthelocation of thefile. In addition, suppose that you create this directory
asmyvistype a the samelevel asthe itt directory that containsthe IDL
hierarchy.

Copy the<IDIL_DIR>/help/template_help.xml filetothe samedirectory
asthe MyVisType.html file and rename it. The exact name does not matter,
as long as the filename matches the pattern *help.xml. We'll assume thefile
is named MyVisType_help.xml.

Copy the <IDL_DIR>/help/itools.xsd fileto the same directory asthe
MyVisType.html file

Edit themyvisType_help.xm1 fileto contain topic information for your help
file. The <Topic> element would look like:

<Topic>

<Keyword>MyVisType</Keyword>

<Link type="HTML" book="MyVisType.html"></Link>
</Topic>

Ensure that the directory that includes the MyvisType filesisincluded in
IDL’s help path. (You may already be adding this directory to IDL’s search
path.) Since you have created your myvistype directory at the same level as
the itt directory, you could use IDL code that looks like this:

1d1dir=EXPAND_PATH('<IDL_DIR>")

myVisDir=idldir + PATH_SEP() + '..' + PATH_SEP() + '..' + §
PATH_SEP() + 'myvistype'
'HELP_PATH = !HELP_PATH + PATH_SEP(/SEARCH) + myVisDir

You might include this code block inthemyvistype__define.pro file to
ensure that the help path is set correctly when your visualization typeisin use.

With this preparation, a user who displayed a visualization of typeMyVvisType could
select the visualization and then select Help — Help on Selected Item to display
your MyVisType.html filein the default web browser.

Providing help content using the IDL Assistant help viewer, a PDF file, or any other
supported help content format would follow the same procedure, with adjustmentsfor
the help filetypein the MyvisType_help.xml file.

iTool Developer’s Guide System Resources

50 Chapter 2: iTool System Architecture

System Resources iTool Developer’s Guide

Chapter 3

Data Management

This chapter describes the iTool data management system.

Overview of iTool Data Management 52
iTool DataManager 53
iTool DataTypescovvvivnnnnn. 54
iTool DataObjects 56

iTool Developer’s Guide

Predefined iTool DataClasses 58
Parameters 61
DataTypeMatching 63
DataUpdate Mechanism 65

51

52 Chapter 3: Data Management

Overview of iTool Data Management

TheiTools system is designed to turn raw data— numbers stored in computer
memory — into visualizations that convey information to the viewer. Using data to
create avisual display requires some way to route each piece of datato the
appropriate part of the algorithm that displaysit. In the terminology used by theiTool
system, each data item must be associated with a parameter of a visualization.

The iTools system manages the relationship between data and the visualizations that
display data viatwo mechanisms: iTool data types and parameter data types. The
iTool datatypeisa property of an IDLitData object (or of an object that inherits from
the IDLitData object); it can be any valid scalar string. iTool data types are described
in detail in “iTool Data Types’ on page 54. Parameter data types are assigned when a
visualization object registers its parameters with the i Tool system; they also can be
any valid scalar string. Parameter data types are described in “Parameters’ on

page 61.

Note
iTool operations, which do not support the concept of parameters or parameter
names, determine whether they can act on a given data object solely on the basis of
the iTool data type.

TheiTool datatype and parameter data types are used to match up data objects with
visualizations that need data to display. See “Data Type Matching” on page 63 for a
description of how matches are made.

This chapter describes data-management tasks undertaken by the iTool developer.
Interactive users manipulate data using a graphical interface known astheiTool Data
Manager; this interface allows the user to select and import data items into the i Tool
system and to manually associate data items with parameters. See Chapter 2,
“Importing and Exporting Data” (iTool User’s Guide) for a complete description of
the Data Manager and its use.

Overview of iTool Data Management iTool Developer’s Guide

Chapter 3: Data Management 53

ITool Data Manager

Dataimported into the iTool system is stored in a separate data object hierarchy that
isavailable to al iTools. When adataitem is placed in the data manager hierarchy,
whether interactively by a user or automatically by some operation of an iTool, the
dataitem isimmediatdy visible to al iTools. The hierarchy of the data manager
reflects the hierarchy of the data containers (IDLitDataContainer and
IDLitParameterSet objects) it holds.

Unless you are creating new data items within an iTool operation, itisunlikely that
you will need to add data to (or remove data from) the data manager yourself.
Addition of dataitemsto the data manager is handled automaticaly if datais
imported viaany of the standard i Tool dataimport mechanisms (choosing Open from
the File menu, or clicking an Import button in the Data Manager user interface).

Adding Data to the Data Manager

To add an IDLitData, IDLitDataContainer, or | DLitParameterSet object to the data
manager, call the IDLitContainer::AddByldentifier method on your iTool object with
the identifier string ' /Data Manager' (notethat identifier strings can include
spaces, as between the words “Data” and “Manager”):

; Create an IDLitDataObject
oData = OBJ_NEW('IDLitData', myData, IDENTIFIER = 'Cool Data')

; Get a reference to the current iTool object.

(The GetTool method is inherited from the IDLitIMessaging
; class.)
oTool = self->GetTool ()

; Add the data object to the data manager
oTool->AddByIdentifier, '/Data Manager',6 oData

Thisresults in the oData data object being stored in the data manager with the
identifier ' /Data Manager/Cool Data'.

See “iTool Object Identifiers’” on page 28 for additional information on identifier
strings.

Removing Data from the Data Manager

To remove data from the data manager, call the IDLitContainer::RemoveByldentifier
method on your iTool object with the full identifier string used to add the data object:

oData = oTool->RemoveByIdentifier('/Data Manager/Cool Data')

iTool Developer’s Guide iTool Data Manager

54 Chapter 3: Data Management

iITool Data Types

Every iTool dataitem (IDLitData object or IDLitDataContainer object) has an
associated iTool data type. The iTool datatype of a dataitem is specified viathe
TY PE property of the data object, which can contain any scalar string.

Note
Do not confuse iTool data types with IDL’s inherent data types — integers and
floating-point integers of various sizes and precisions, strings, structures, pointers,
and object references. iTool data types are used only by the iTool system when
matching data objects with the parameters expected by a visualization or operation.
IDL datatypes describe how avalue or values are stored in computer memory. i Tool
data types need not correspond directly to an IDL datatype.

iTool datatyping alows the iTool system to match up data objects with visualization
parameters even if the data objects have not been explicitly associated with the
visualization parameters. Similarly, an iTool operation may apply only to specific
forms of data; theiTool datatyping mechanism allows an operation to “see” only data
of the appropriate type.

Composite Data Types

Because IDLitData objects can be collected in IDLitDataContainer objects (and, by
extension, I DLitParameterSet objects), it is possible that data objects with different
iTool datatypeswill be collected in asingle container. The iTool data typing system
allows these heterogeneous data sets to be named with unique iTool data types that
reflect the contents of the container. For example, you might define a data container
that contains IDLitData objects with the iTool data types of IDLVECTOR and
IDLARRAY 2D with your own iTool datatype, suchasMY_PLOT.

Data Types of iTool Components

Since the iTool datatype of a dataitem can be any scalar string value, it is up to the
iTool developer to ensure that a data object assigned a given iTool data type contains
the data expected by visualizations and operations that accept that type.

Visualizations or operations that accept an iTool datatype are written to act on data
items that have specific IDL datatypes (or collections of specific IDL datatypes, in
the case of compound data types). If the data object contains datain aformat not
expected by the visualization or operation, errors or unexpected behaviors may resullt.

iTool Data Types iTool Developer’s Guide

Chapter 3: Data Management

55

Table 3-1 liststhe iTool datatypes defined by the standard i Tools included with IDL.
You should avoid using these i Tool data type names when defining data objects that
do not match the contents listed here; if data objects with different contents are given
these iTool data type names, portions of the standard i Tool functionality may no

longer function correctly.

iTool Data Type

Contents

IDLARRAY 2D A two-dimensional array of any IDL datatype
IDLARRAY 3D A three-dimensional array of any IDL datatype
IDLCONNECTIVITY A vector containing connectivity list data
IDLIMAGE A composite data type that includes

IDLIMAGEPIXELS and IDLPALETTE data

IDLIMAGEPIXELS

One or more two-dimensiona image planes

IDLOPACITY_TABLE

A 256-element byte array

IDLPALETTE A 3 x 256-element byte array

IDLPOLYVERTEX A composite data type that contains a vector of
vertex data and avector of connectivity data

IDLVECTOR A vector of any IDL datatype

IDLVERTEX A vector containing vertex data

Table 3-1: iTool data types used by the standard iTools shipped with IDL.

In addition to avoiding use of the standard iTool data type names for new data types,
you should consider using unique naming schemes for iTool data types you create.
Choosing your own iTool data type naming scheme will help to avoid conflicts with
iTools built by others. Thisis especially important if you intend to share your iTool
code with other IDL users. Choosing aunique prefix or suffix for your iTool datatype
names should guard against most namespace collisions.

iTool Developer’s Guide

iTool Data Types

56

Chapter 3: Data Management

iITool Data Objects

Each item of dataused by aniTool must be encapsulated in an IDLitData object. Data
objects can be grouped into collections using the IDLitDataContainer class or its
subclass, |DLitParameterSet.

Data Objects

IDLitData objects can hold dataitems of any IDL datatype. The IDLitData class
providesiTool datatyping and data change natification functionality, and when
coupled with the IDLitDataContainer object forms the base element for the
construction of composite data types.

IDLitData objectsimplement the iTools notifier interface, which provides a
mechanism by which observers of a dataitem can be a erted when the state of the
information contained in the data object changes. See “ Data Update Mechanism” on
page 65 for details on the notification system.

Data objects are created using standard IDL object-creation syntax. For example, to
create a data object that contains a vector of data:

; Create a data vector containing 10 random values
myData = RANDOMU (seed, 10)

; Create a new data object from the vector.

oData = OBJ_NEW('IDLitDataIDLVector', myData)

The IDLitDatal DLVector classis a subclass of IDLitData designed to hold vector
data. See“IDLitData” (IDL Reference Guide) for a complete description of the data
object, its methods, and its properties.

Data Containers

IDLitDataContainer objects can hold any number of IDLitData or
IDLitDataContainer objects. This ability to organize datainto object hierarchies
alowsfor the creation of composite data types.

Data container objects are created using standard IDL object-creation syntax, and
individual data objects areincluded in the data container viaacall to the
IDLitContainer::Add method. For example, the following statements create a new
data container and add the data object created in the previous section:

; Create a data container

oDataContainer = OBJ_NEW('IDLitDataContainer')
; Add a data object.

oDataContainer->Add, oData

iTool Data Objects iTool Developer’s Guide

Chapter 3: Data Management 57

In this example we do not specify an iTool data type for the data container object

itself.

Tip
Often, you will organize data using a subclass of the IDLitDataContainer class: the
IDLitParameterSet.

See “IDLitDataContainer” (IDL Reference Guide) for a complete description of the
data container object, its methods, and its properties.

Parameter Sets

The IDLitParameterSet classis a specialized subclass of the IDLitDataContainer
class that provides the ability to associate parameters with the contained IDLitData
and IDLitDataContainer abjects. This association allows the iTool devel oper to
package a set of data parameters in a single container, which is then provided to the
iTools system for processing and display. See “IDLitParameterSet” (IDL Reference
Guide) for a complete description of the parameter set object, its methods, and its
properties.

Note
Do not confuse parameter sets, which are containers for data objects, with
parameters, which define how datais used by avisualization object. Parameters are
described in “Parameters’ on page 61.

Using a parameter set object is very similar to using a data container object. The
parameter set itself is created using standard IDL object-creation syntax. The
parameter set object allows for the association of a parameter with each added data
object. For example, the following statements create a new parameter set and add the
data object created in the previous section, assigning a parameter:

; Create a parameter set object

oParameterSet = OBJ_NEW ('IDLitParameterSet')

; Add a data object, assigning a parameter
oParameterSet->Add, oData, PARAMETER_NAME = 'Y data'

iTool Developer’s Guide iTool Data Objects

58 Chapter 3: Data Management

Predefined iTool Data Classes

TheiTool system distributed with IDL includes a number of predefined data classes.
The predefined classes are subclasses of the IDLitData class; each performs
initialization steps that are commonly used when creating data objects that contain
data of specific composite data types. Some of the predefined data classes create data
sub-containers to hold associated data objects, and some register properties
associated with the data.

Note
The predefined i Tool data subclasses are provided as a convenience. You can always
create a generic IDLitData object rather than using one of the predefined classes.

You can create objects of these data classes in the same way you create ageneric data
object: by calling the OBJ_NEW function and specifying the appropriate class name.
You can also create new specialized data classes based on one of the predefined
classes. Dataclasses arelocated inthe 1ib/1itools/components subdirectory of
the IDL directory.

IDLitDatalDLArray2D

Creates an IDLitData object of whose TY PE property isset to IDLARRAY 2D. Used
to store atwo-dimensional array of any IDL datatype.

Registered Properties
* None
Data Sub-containers

* None

IDLitDatalDLArray3D

Creates an IDLitData object of whose TY PE property isset to IDLARRAY 3D. Used
to store athree-dimensional array of any IDL datatype.

Registered Properties
* None
Data Sub-containers

* None

Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 59

IDLitDatalDLImage

Creates an IDLitData object of whose TY PE property is set to IDLIMAGE. Used to

store two-dimensional image data. |mages can be constructed from multiple image
planes.

Registered Properties
 INTERLEAVE
Data Sub-containers

e AnIDLitDatal DL Palette object named “Palette” that contains pal ette
information provided as an argument to the Init method.

« AnIDLitDatalDLImagePixels object named “Image Planes’ that contains the
image data provided as an argument to the Init method.

IDLitDatalDLImagePixels

Creates an IDLitData object of whose TY PE property is set to IDLIMAGEPIXELS.
Used to store the raw image data (pixels).

Registered Properties
e INTERLEAVE
Data Sub-containers

* None
IDLitDatalDLPalette

Creates an IDLitData object of whose TY PE property isset to IDLPALETTE. Used
to store palette data.

Registered Properties
e None
Data Sub-containers

* None
IDLitDatalDLPolyvertex

Creates an IDLitData object of whose TY PE property is set to IDLPOLY VERTEX.
Used to store vertex and connectivity lists suitable for use with the IDLgrPolygon and
IDLgrPolyline objects.

iTool Developer’s Guide Predefined iTool Data Classes

60 Chapter 3: Data Management

Registered Properties
* None
Data Sub-containers

« AnIDLitDataobject named “Vertices’ (IDLVERTEX) that contains the vertex
list.

« AnlIDLitData object named “ Connectivity” (IDLCONNECTIVITY) that
contains the connectivity list.

IDLitDatalDLVector

Creates an IDLitData object of whose TY PE property isset to IDLVECTOR. Used to
store aone-dimensional array of any IDL datatype.

Registered Properties
* None
Data Sub-containers

* None

Predefined iTool Data Classes iTool Developer’s Guide

Chapter 3: Data Management 61

Parameters

Parameters represent data items used in awell-defined way by an algorithm that is
computing aresult. In the scheme of theiTools, parameters are the raw material fed to
visualization objects — the IDL routines that create visual displays.

For example, a visualization object that creates a simple line plot might require two
parameters: vectors of dependent and independent data values. These two vectors
would be passed to the routines within the visualization object for processing, and the
result would be displayed in the iTool window.

When avisualization object is created, it registers one or more parameters with the
iTool system. Each parameter has a parameter name and can be of one or moreiTool
data types. Parameter names are used to route the individual dataitems to the correct
routines within the visualization object. See Chapter 6, “Creating a Visualization” for
more on creating visualization objects.

Note
Do not confuse parameters, which define how datais used by avisualization object,
with parameter sets, which are containers for data objects. Parameter sets are
described in “Parameter Sets’ on page 57.

Parameter Names

Each parameter registered by avisualization is given a parameter name. The
parameter name is a scalar string, and its scope is the visualization by which it is
registered. Different visualizations can register parameters that have different
properties using the same parameter name.

Parameter Data Types

Each parameter registered by avisualization is associated with one or moreiTool data
types by setting the TY PES property. The value of the TY PES property can be a
scalar string or astring array; asingle parameter can be associated with multiple data
types. See “iTool Data Types’ on page 54 for more on iTool datatypes.

Registering Parameters

Parameters are registered when avisualization is created; that is, in the Init method of
an iTool visualization class. To register a parameter, call the RegisterParameter

iTool Developer’s Guide Parameters

62

Parameters

Chapter 3: Data Management

method of the IDLitParameter class (of which iTool visualization classes are a
subclass):

self->RegisterParameter, ParmameterName, $
TYPES = ['DataTypel', ..., 'DataTypeN']
where ParameterName is a string that defines the name of the parameter and the
TYPESkeyword is set equal to astring or array of strings specifying theiTool system
datatypes the parameter can represent. (See “iTool Data Types’ on page 54 for
information on iTools data types.)

A typical parameter registration call looks like the following:
self->RegisterParameter, 'Y', /INPUT, TYPES='IDLVECTOR', /OPTARGET

Here, the string argument v is the name of the parameter being registered. The
INPUT keyword specifies that v is an input parameter (specified by the method's
caller), the TY PES keyword specifiesthat vy isavector, and the OPTARGET keyword
specifies that operations can be performed on the v vector.

Additional keywords can be set in the call to RegisterParameter. See the
documentation for “IDLitParameter::RegisterParameter” (IDL Reference Guide) for
additional details.

iTool Developer’s Guide

Chapter 3: Data Management 63

Data Type Matching

To understand how the iTool data type matching system works, consider the
following:

* When avisualization is created, it registers one or more parameters, assigning
aparameter name and one or more iTool data types to each.

* When adataobject isimported or created by an iTool, it is assigned one or
more iTool datatypes.

* When aparameter set object is created to contain data objects, each data object
can optionally be assigned one or more parameter names.

Now assumethat an i Tool user requeststhat a particular visualization be created from
aparticular collection of data objects, which are stored in a parameter set object. The
iTool system will do the following:

1. Retrieve the parameter name and iTool data types registered for the
visualization’s first parameter.

2. If the parameter set object contains a data object whose Parameter Name
matches the parameter name of the visualization's first registered parameter,
use that data object as the data for the visualization parameter.

3. If the parameter set object does not contain a data object with a matching
Parameter Name, check the parameter set for data objects for which the
Parameter Name property is not set. If there are no data objects without
Parameter Names, no data is associated with the visualization parameter.

4. Check theiTool datatypes of the data objects without Parameter Names. If a
data object whose iTool data type matches the list of registered data types for
the visualization parameter is found, use that data object as the data for the
visualization parameter. If no data objects match any datatypes, no datais
associated with the visualization parameter.

5. Repeat until all registered visualization parameters have been either populated
with data, skipped, or there are no more data objects to supply data.

Note
Parameter name matching is done in a case-insensitive fashion. If a parameter is
registered with the parameter name “MyParameter” and a data object has its
Parameter Name property set to “myParameter”, the two will match.

iTool Developer’s Guide Data Type Matching

64

Chapter 3: Data Management

The Figure 3-1 illustrates this process as a flow diagram.

Retrieve the parameter name
and list of data types from a
registered parameter.

L

Is there a
data object with

the same parameter
name?

Get next

parameter
Yes

l

Associate data object with
the parameter narne.

—"es

Are there

Are there
data objects with
no parameter
namey

Yes

Is there a data
ohject that matches the
parameter data
type?

mare parameters?

Mo

Create Visualization

Figure 3-1: Data type matching algorithm used by iTools.

Data Type Matching

iTool Developer’s Guide

Chapter 3: Data Management 65

Data Update Mechanism

When the data contained in a data item changes (usually as the result of the
application of adata-centric operation), all visualizations that depend on that data
item are automatically notified of the change via a call to the visualization object’s
OnDataChangeUpdate method. (See “ Creating an OnDataChangeUpdate M ethod”
on page 133 for details.)

The data update mechanism is automatic; if you have assigned i Tool data types (and,
optionally, parameter names) to your data objects, the data matching mechanisms of
the IDLitParameter interface will ensure that updates happen when necessary. Unless
you have modified core iTool functionality, you do no need to handle data change
updates yourself.

iTool Developer’s Guide Data Update Mechanism

66

Data Update Mechanism

Chapter 3: Data Management

iTool Developer’s Guide

Chapter 4

Property Management

This chapter describes the iTool property interface.

About the PropertiesInterface 68
Property DataTypes 71
Registering Properties 74
Property Identifiers 77

iTool Developer’s Guide

Property Attributes 78
Property Aggregation 81
Property Update Mechanism 84
Properties of theiTools System 85

67

68 Chapter 4: Property Management

About the Properties Interface

Object properties are used to store settings and values that relate to visualizations,
data, and other components of an iTool. The iTools system presents a graphical
property sheet interface to tool users; see “iTool Property Sheets” (Chapter 6, i Tool
User’s Guide) for a description of the property sheet interface. As atool developer,
you can manage individual property values, aswell as the property set that isvisible
to users of your application, programmatically.

Note
In most cases, you do not heed to manage updates to visualizations or data that
result from a user’s modifications to values in a property sheet. See “ Property
Update Mechanism” on page 84 for details.

What is a Property?

A property isavaluethat is associated with an object instance. Examples of property
values commonly associated with iTool objects are Boolean True/False flags, text
strings, color values stored as RGB triplets, and integer and floating point values. For
example, aplot visualization object might have a Color property that definesthe line
color as an RGB triplet, a Line thickness property that defines the thickness of the
line drawn as an integer valuein pixels, and a Name property that defines how the
plotisreferred to in iTool browser windows.

Properties vs. Preferences

In the case of abjects that have a visual representation (plots, annotations, surfaces,
axes, etc.), properties apply to a single instance of an object. When a new instance of
the same type of object is created, any property changes applied to thefirst object are
not applied to the second. For example, if you change the color of aplot line to red,
subsequent plot lines will still be created with the default line color.

In the case of non-visual objects (operations, file readers and writers, and

mani pul ators) only one instance of the object is created no matter how many times
the object is requested. As aresult, properties set on these objects will “stick” until
changed again. For example, if you change the value of the Width property of the
Smooth operation, the property will retain the value you set until you changeit again
or close that i Tool.

Finally, properties that apply to all iTools and which are preserved between i Tool
sessions are known as preferences. Preferences include default values for properties

About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management 69

of visual objects (default line style, colors, etc.), and default properties for file
readers, and file writers.

How are Properties Displayed?

Any iTool object can have properties. Properties are aways displayed viathe iTool
property sheet interface, which usesthe IDL WIDGET_PROPERTY SHEET function
to present property names and values in a columnar display. The way the property
sheet interface is displayed to iTool users depends on the type of object for which
properties are being displayed.

» For visualization objects (any graphical item that appearsin the iTool
window), the property sheet can be displayed by double-clicking on anitemin
the iTool window, by selecting Properties from the window context menu, or
by selecting Visualization Browser from the Window menu.

» For operations, the property sheet can be displayed by selecting Operations
Browser from the Oper ations menu.

» For system preferences, the property sheet can be displayed by selecting
Preferences from the File menu.

Setting and Retrieving Property Values

iTool property values are set and retrieved like all object property values, via
SetProperty and GetProperty methods. See “1DLitComponent:: SetProperty” and
“IDLitComponent::GetProperty” (IDL Reference Guide) for details, but remember
that your own object classes will be responsible for implementing these methods and
handling the actual property values. Seethe chaptersin “Using theiTools Component
Framework” for examples of GetProperty and SetProperty methods.

Property Data Types

While object properties can contain any value that can be stored in IDL, theiTool
property sheet interface (based on the WIDGET_PROPERTY SHEET routine) will
only display properties of nine predefined property data types. (See “ Property Data
Types’ on page 71 for descriptions of the predefined types.) In addition, the property
sheet interface allows devel opers to build and associate a separate widget-based user
interface that allows iTool users to specify data values of any IDL data type. User-
defined property values are discussed in “User Defined Property Types’ on page 73.

iTool Developer’s Guide About the Properties Interface

70 Chapter 4: Property Management

Property Registration

In order for an object property to be displayed by the graphical property sheet
interface, it must be registered with the iTool system. Properties are generally
registered when an object is created; see “ Registering Properties’ on page 74 for
additional details.

Property Identifiers

Properties are referenced within the iTool s system using property identifiers, which
are simple scalar strings defined when the property is registered. See “ Property
Identifiers’ on page 77 for details.

Property Attributes

In addition to the property value, properties have attributes that affect the way the
property is displayed in the property sheet user interface. See “ Property Attributes”
on page 78 for details.

Property Aggregation
Visualization objects can be built from any number of atomic IDL graphic objects
and iTool visualization objects. The property aggregation mechanism allows the

properties of all of the objectsin avisualization to be displayed in a single property
sheet. See “Property Aggregation” on page 81 for details.

About the Properties Interface iTool Developer’s Guide

Chapter 4: Property Management

71

Property Data Types

Registered properties must be of one of the data types listed in the following table.

Note

Properties of objectsthat are not registered (that is, properties that cannot appear in
aproperty sheet) can be of any IDL datatype.

Type
Code

Type

Description

0

USERDEF

User Defined properties can contain values of any IDL
type, but must also include a string val ue that will be
displayed in the property sheet. See the following
discussion for additional information.

BOOLEAN

Boolean properties contain either the integer O or the
integer 1.

INTEGER

Integer properties contain an integer value. If aproperty of
integer datatype hasa VALID_RANGE attribute that
includes an increment value, the property isdisplayed in a
property sheet using a dlider. If no increment valueis
supplied, the property sheet allows the user to edit values
manually.

FLOAT

Float properties contain a double-precision floating-point
value. If aproperty of float datatype has a

VALID_ RANGE attribute that includes an increment
value, the property is displayed in a property sheet using a
dider. If noincrement value is supplied, the property sheet
allows the user to edit values manually.

STRING

String properties contain a scalar string value

COLOR

Color properties contain an RGB color triplet

iTool Developer’s Guide

Table 4-1: iTools Property Data Types

Property Data Types

72 Chapter 4: Property Management
g)gz Type Description
6 LINESTYLE | Linestyle properties contain an integer value between 0
and 6, corresponding to the following IDL line styles:
* 0=Solid
* 1=Dotted
» 2=Dashed
e 3=Dash Dot
* 4 =Dash Dot Dot
* 5=Long Dashes
« 6=NoLine
See Appendix B, “Property Controls” (iTool User's
Guide) for avisua example of the available line styles.
7 SYMBOL Symbol properties contain an integer value between 0 and

8, corresponding to the following IDL symbol types:

0= No symboal

1=Plussign

2 = Asterisk

3 = Period (Dot)

4 = Diamond

5=Triangle

6 = Square

7=X

8 = “Greater-than” Arrow Head (>)
9 ="“Lessthan” Arrow Head (<)

See Appendix B, “Property Controls” (iTool User’s
Guide) for avisua example of the available symbols.

Property Data Types

Table 4-1: iTools Property Data Types (Continued)

iTool Developer’s Guide

Chapter 4: Property Management 73

Type L

Code Type Description

8 THICKNESS | Thickness properties contain an integer value between 1
and 10, corresponding to the thickness (in points) of the
line.

9 ENUMLIST | Enumerated List properties contain an array of string
values defined when the property is registered. The
GetProperty method returns the zero-based index of the
selected item.

Table 4-1: iTools Property Data Types (Continued)

User Defined Property Types

The User Defined property type lets you create a custom interface that allow users of
your iTool to select data of types other than the predefined iTool property types.
Creating a user defined property type entails the following:

* Creating an EditUserDefProperty method for the iTool component (usually a
visualization or operation) that uses the user defined property. See
“IDLitComponent::EditUserDefProperty” (IDL Reference Guide) for details.

e Creating user interface code to alow usersto select avalue. In theinitial
release of the iTool system, this means writing an IDL widget interface, but in
future releases other users interfaces may be available.

» Creating a user interface service to display the interface. See Chapter 13,
“Creating a User Interface Service” (iTool Developer’s Guide) for details.

iTool Developer’s Guide Property Data Types

74 Chapter 4: Property Management
Registering Properties

In order for a property associated with an iTool component to be included in the
property sheet for that component, the property must be registered with theiTool. The
property registration mechanism accomplishes several things:

* It alowsyou to expose as many or as few of the properties of an underlying
object as you choose.

« It allowsyou to add user-defined properties to existing objects, and expose
those new properties to users of your application.

Note
You can write code to access and change property values programmatically, even if
the property being changed is not registered.

Registering a Property

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self->RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]

where Propertyldentifier is a string that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE isa
property attribute. You can specify multiple property attributes in the call to
RegisterProperty; see “ Property Attributes’ on page 78 for details.

Note
The property identifier string must obey certain rules; see “Property Identifiers’ on
page 77 for details.

You can omit the TypeCode parameter and specify atype keyword; the following two
method calls are identical:

self->RegisterProperty, 'MYPROPERTY', 1

self->RegisterProperty, 'MYPROPERTY', /BOOLEAN

See “Property Data Types’ on page 71 for alist of property data types, their type
codes, and the associated keywords to the RegisterProperty method.

A typical property registration call looks like the following:

Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 75

self->RegisterProperty, 'FONT_STYLE', $
ENUMLIST = ['Normal', 'Bold'], $
NAME = 'Font style'

Here, the string argument FONT _STYLE is the property identifier of the property
being registered; this string must be the same as the name of the keyword used with
the GetProperty or SetProperty method when changing the value of the property.

The ENUMLIST keyword specifies that the property data type is an enumerated list
of strings containing two possible property values (' Normal', 'Bold'); thiswill
appear as a pulldown list of valuesin the property sheet. The NAME keyword
specifiesthe string that will be used asthe label for the property in the property sheet;
if NAME is omitted, the property identifier string will be used in the property sheet.

Note
Values set via keywords to the RegisterProperty method are known as property
attributes. Property attributes can be modified after registration using the
SetPropertyAttribute method, described in “Property Attributes’ on page 78.

Additional keywords can be set in the call to RegisterProperty. See the documentation
for “IDLitComponent::RegisterProperty” (IDL Reference Guide) for additional
details.

In addition to registering the property using RegisterProperty, you must make sure
that the GetProperty and SetProperty methods of your object handle the value of the
property being registered.

Pre-Registered Properties

Not all properties need to be explicitly registered in your iTool codein order to be
displayed in a property sheet. Most of the IDL graphics objects (IDLgrAxis,
IDLgrPiot, etc.) have aset of propertiesthat are automatically registered if you set the
REGISTER_PROPERTIES property of the object to 1 when it isinstantiated. Seethe
list of object properties contained in the documentation for the IDL graphics objects
in the IDL Reference Guide to determine which properties are registered when the
REGISTER_PROPERTIES property is set.

There may be times when you want some, but not al, of the registrable properties of
agraphics object to appear in the property sheet interface. You have two optionsin
this case:

1. Register the properties of the graphics object individually, with callsto the
RegisterProperty method.

iTool Developer’s Guide Registering Properties

76 Chapter 4: Property Management

2. Usethe REGISTER_PROPERTIES keyword when instantiating the graphics
object, then set the HIDE property attribute on the properties you want to
remove from the property sheet. See“ Property Attributes’ on page 78 for more

on this option.

Registering Properties iTool Developer’s Guide

Chapter 4: Property Management 77

Property ldentifiers

Property identifiers are scalar string values that identify a registered property. The
property identifier string must be accepted as a keyword by the GetProperty and
SetProperty methodsfor the object. Likeall IDL keywords, property identifier strings
must be valid IDL variable names, and cannot contain spaces or non-al phanumeric
characters other than“_",“ 1", and “s". See“IDL_VALIDNAME" (IDL Reference
Guide) for details on valid IDL variable names.

Note
You can specify the property identifier string using any case; IDL will match the
property identifier with the GetProperty or SetProperty keyword in a case-
insensitive manner. As a matter of style, using upper case letters when specifying
property identifiers hel ps someone reading your code visually match the property
identifier with the keyword values.

The property identifier is not displayed in the property sheet interface; the value of
the NAME property attribute is displayed instead. However, if you do not supply the
NAME attribute, the iTool system will assign it the same value as the property
identifier.

iTool Developer’s Guide Property Identifiers

78 Chapter 4: Property Management

Property Attributes

Property attributes are values associated with a property that affect the way the
property is displayed in the iTool property sheet interface. Attributes could be
considered properties-of-properties; as with actua properties, specia methods are
used to get and set attribute val ues.

Note
A property must be registered in order to set or retrieve attribute val ues.

Property attributes can be set in the call to the IDLitComponent::RegisterProperty
method; simply include the attribute name and its value as a keyword-value pair.

If aproperty has already been registered, you can change the registered attribute
values using the SetPropertyAttribute method of the IDLitComponent class:

self->SetPropertyAttribute, PropertyIdentifier, ATTRIBUTE = value

where Propertyldentifier isastring that uniquely identifies the property, ATTRIBUTE
is one of the property attributes described in “Available Property Attributes’ on

page 78, and value is the attribute value. See “Property Identifiers’ on page 77 for a
discussion of property identifier strings.

A typical property attribute modification call looks like the following:
self->SetPropertyAttribute, 'COLOR', NAME = 'Surface color'

Here, we change the Name attribute of the COLOR property; when this property is
displayed in a property sheet, the label will be surface color.

See “IDLitComponent:: SetPropertyAttribute” (IDL Reference Guide) for additional
details.

Available Property Attributes

Every registered iTool property has the following attributes. Property attributes can
be specified as keywords to the RegisterProperty method of the IDLitComponent
class. Attributes whose names are followed by the word “ Get” can be retrieved using
the GetPropertyAttribute method of the IDLitComponent class; attributes whose
names are followed by the word “ Set” can be set using the SetPropertyAttribute
method.

Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 79

DESCRIPTION (Get, Set)

A string value containing atext description of the property. This string isdisplayed in
the property sheet interface.

ENUMLIST (Get, Set)

An array of string values to be displayed in the property sheet interface as an
enumerated list. This property type allows the user to select a string value from a
dropdown list in the user interface, but returns the integer index of the selected item
as the value of the property. This attribute is only used by propertiesof TYPE=9
(enumerated list).

HIDE (Get, Set)

A Boolean flag that specifies whether the property should be displayed in the
property sheet interface.

NAME (Get, Set)

A string value that is displayed as the property name in the property sheet interface. If
the NAME attribute is not specified in the call to the RegisterProperty method, this
attribute will be set to the property identifier string.

PROPERTY_IDENTIFIER (Get)

A string value containing the property identifier. See “Property Identifiers’ on
page 77 for details.

SENSITIVE (Get, Set)

A Boolean flag that specifies whether the property should be editable by the user
when displayed in the property sheet interface. Properties with the SENSITIVE
attribute set to 0 are displayed, but are dimmed and are not editable.

TYPE (Get)

The property data type code for the property. See “Property Data Types’ on page 71
for details.

UNDEFINED (Get, Set)

A Boolean flag that indicates that the property should appear as ablank cell when
displayed in the property sheet interface. Thisisuseful in situations where properties

iTool Developer’s Guide Property Attributes

80 Chapter 4: Property Management

of multiple objects are displayed in the property sheet (either because multiple
objects are selected, or because the objects have been grouped).

Note
TheiTool developer isresponsible for setting this property attribute back to zero.
Usethe SET_DEFINED field of the WIDGET_PROPERTY SHEET event structure
to determine when to set the UNDEFINED attribute back to zero.

USERDEF (Get, Set)

A string that represents the value of a user-defined property. See “User Defined
Property Types’ on page 73 for details.

VALID_RANGE (Get, Set)

For integer or float types (TYPE = 2 or TYPE = 3), set this keyword to atwo- or
three-element vector specifying the [minimum, maximum] or [minimum, maximum,
increment] for valid values of the property.

What is displayed for the property sheet number cell depends upon the following:

« If thisattribute is not specified — the property sheet displays an editabl e text
field where masked editing is enforced, and the range is that of the data type.
The only accepted keystrokes are the ten digits, and the plus and minus signs.
If the float type is specified, the decimal, and “d” and “€” (scientific exponent
notation tokens) are also allowed.

« If arangeis specified without an increment — the property sheet displaysa
spinner control that allows the user to click, or click and hold the up or down
buttons to change the value. For an integer type, the increment isone. For a
float type, the increment equals approximately 1/100 of the range. For
example, arange of 100 resultsin anincrement of 1. A valueis snapped to the
nearest allowable value when a value outside the range, or not equal to an
incremental value, isentered. The editable text field (featuring masked editing)
also alows the user to enter a numerical value.

« If arange and increment are specified — the property sheet displays a dider
with amarker that can be repositioned to change the value. A value is snapped
to the nearest allowable value when a value outside the range, or not equal to
an incremental value, is entered. The increment value must be positive.
Specifying an increment of O (zero) is the same as specifying a range without
an increment. The editable text field (featuring masked editing) also allowsthe
user to enter anumerical value.

Property Attributes iTool Developer’s Guide

Chapter 4: Property Management 81
Property Aggregation

TheiTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet
automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

self->Aggregate, Object_Reference

where Object_Reference is areference to the object whose properties you want
aggregated into the visualization object. A typical property aggregation call lookslike
the following:

self._oSymbol = OBJ_NEW('IDLitSymbol', PARENT = self)
self->Aggregate, self._oSymbol

Here, thefirst line creates an IDLitSymbol object and storesit in the _osymbo1 field
of the visualization object’s class structure. The second line calls the Aggregate
method with the object reference to the IDLitSymbol object as the argument. After
the call to the Aggregate method, all registered properties of the IDLitSymbol object
will be exposed in the property sheet for the visualization itself.

Note
The IDLitVisualization::Add method includes an AGGREGATE keyword. This
keyword is simply a shorthand method of aggregating the properties of an object
during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

self->Add, Object_Reference, /AGGREGATE
is the same as the following two calls.

self->Add, Object_Reference
self->Aggregate, Object_Reference

Warning
Take care when naming properties of objects that will be aggregated into a custom
visualization. If the complete name of a property in one of the aggregated objects
matches the prefix of the name of a property in another of the aggregated objects,
IDL will display an “Ambiguous keyword abbreviation” error when the aggregate
object isinstantiated. To combine objects with ambiguous property names, you

iTool Developer’s Guide Property Aggregation

82 Chapter 4: Property Management

must manually register only the unambiguous property names with each object
before calling the Aggregate method or using the AGGREGATE keyword.

Working with Aggregated Properties

When the properties of multiple objects are aggregated in avisualization object, there
are two possible ways to display the combined property set: a union or an
intersection. The way aggregated properties are displayed by a given visualization
depends on the value of the visualization's PROPERTY _INTERSECTION property:
by default, this property isnot set (it contains avalue of 0), and the union of the
aggregated propertiesis displayed. If PROPERTY _INTERSECTION isset to 1 when
the visualization object is created, the intersection of the aggregated propertiesis
displayed. The following sections explain the behavior of the property sheet interface
in both situations.

Union

By default, a visualization object displays the union of the properties of any
aggregated objects. Properties are displayed in the property sheet interface asfollows:

« All of the unique properties of all of the aggregated objects are displayed.

e Only oneinstance of agiven property is displayed. This meansthat if multiple
objects have the same property, this property will be displayed only once, and
al objects will have the same property value.

e Thevisudization will appear in iTool browsers as a single object — the
aggregated objects will not be visible in the browser hierarchy.

Intersection

If the PROPERTY _INTERSECTION property is set when the visualization is
created, the visualization object displays the intersection of any aggregated objects.
Properties are displayed in the property sheet interface as follows:

* Only propertiesthat are common to all of the aggregated objects are displayed
as properties of the visualization object. Changing the value of a common
property in the visualization’s property sheet changes the value for all
aggregated objects.

e Thevisudization will appear iniTool browsers as a container object — the
aggregated objects will be visible beneath the visualization object in the
browser hierarchy (unless the property’s HIDE attribute is set, in which case

Property Aggregation iTool Developer’s Guide

Chapter 4: Property Management 83

the property will not be displayed). Selecting an individual aggregated object
in the browser hierarchy will display that object’s own properties.

« If thevalue of aproperty that iscommon to all of the aggregated objectsis
different for different objects, the value will show in the parent container’'s
property sheet as undefined.

iTool Developer’s Guide Property Aggregation

84 Chapter 4: Property Management

Property Update Mechanism

When a user changes the value of a property viathe property sheet interface, the
object that implements the property is automatically updated. If the object has a
visual representation, the display of the iTool window is also updated automatically.

The update mechanism is handled by the SetProperty method; as long as any
SetProperty methods you create call the SetProperty methods of their superclasses,
there is nothing more you need to do.

Property changes are automatically recorded by the iTool undo/redo system. You do
not need to supply any extra code to support undo/redo.

Property Update Mechanism iTool Developer’s Guide

Chapter 4: Property Management 85

Properties of the iTools System

iTools system preferences are default settings for the values of properties of file
readers, file writers, and the iTool system itself. System preferences are revealed to
the user viathe system preferences browser, which is displayed when a user selects
File —» Preferencesin aniTool.

iTool Developer’s Guide Properties of the iTools System

86

Properties of the iTools System

Chapter 4: Property Management

iTool Developer’s Guide

Part Il: Using the
ITools Component
Framework

Chapter 5
Creating an 1Tool

This chapter describes the process of creating an new iTool definition and command-line launch
routine.

Overview of iTool Creation 90 Creating aniTool Launch Routine 103
CreatingaNew iToolClass 91 Example SmpleiTool 108
RegisteringaNew Tool Class 101

iTool Developer’s Guide 89

90 Chapter 5: Creating an iTool

Overview of iTool Creation

Creating anew iTool using the iTools component framework is vastly simpler than
creating asimilar tool from scratch in IDL. The standard iTool user interface and
functionality can be included in any new iTool with afew simplelines of code. Using
the iTools framework leaves you free to concentrate on devel oping functionality
unique to your application.

That said, creating even the simplest iTool does require that you have a basic
familiarity with the concepts of object-oriented programming in general, and with the
process of creating object-oriented programsin IDL in particular. If you have written
even very simple abject-oriented applicationsin IDL, or in another language such as
Javaor C++, you probably already have the necessary skills. For background
information on writing object-oriented applicationsin IDL, see Chapter 13, “ Creating
Custom Objectsin IDL” (Object Programming).

The iTool Creation Process

To create anew iTool, you will do the following:

e Choose an iTool object class on which your new tool will be based. In almost
all cases, you will base new iTools either on the IDLitToolbase class or on an
iTool classthat isitself based on IDLitToolbase. The IDLitToolbase class
defines all of the standard iTool functionality exposed by the individual iTools
included with IDL.

» Define the visualization types, data operations, user interface tools
(manipulators), and data import/export features that will be availablein your
iTool. You can choose from a variety of predefined features included with the
iTool system asincluded with IDL, or you can create your own. The process of
defining the features available in your new iTool is discussed in “Creating a
New iTool Class’ on page 91.

* Register your new i Tool class with the system as described in “ Registering a
New Tool Class’ on page 101.

» Providean IDL procedure that creates an instance of your new iTool class, as
described in “Creating an iTool Launch Routing” on page 103.

This chapter describes the process of creating a new iTool from existing visualization
types, operations, manipulators, and file readers and writers. The chaptersthat follow
describe how to create your own visualization types, operations, manipulators, and
file readers and writersto be incorporated into new iTools.

Overview of iTool Creation iTool Developer’s Guide

Chapter 5: Creating an iTool 91

Creating a New iTool Class

AniTool object class definition file must contain, at the least, the class Init method
and the class structure definition routine. The Init method contains the statements that
register any operations, visualizations, manipulators, and file readers or writers
available in theiTool. The class structure definition routine defines an IDL structure
that will be used when creating new instances of the iTool object.

The process of creating an iTool definition is outlined in the following sections:
e “Creating the Class Structure Definition” on page 91
e “Creating an Init Method” on page 93

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
datatypes of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named objectClass__define (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ (Chapter 13, Object Programming).

Note
The class structure definition is generally the last routinein the . pro file that
defines an object class.

Subclassing from the IDLitToolbase Class

The IDLitToolbase class defines the base operations and user interface functionality
usediniToolscreated by ITT Visual Information Solutions. If your aimisto create an
iTool that has base functionality similar to that included in the standard i Tools, you
will want to subclass from the IDLitToolbase class, or from another tool that
subclasses from the IDLitTool base class.

The IDLitToolbase class registers alarge number of operations, manipulators, file
readers, and file writers. This base feature set may change from release to release;
inspect thefile idlittoolbase__define.prointhelib/itools subdirectory
of your IDL distribution for the exact set of featuresincluded in your distribution.

iTool Developer’s Guide Creating a New iTool Class

92 Chapter 5: Creating an iTool

Note
To create an iTool that does not include the standard i Tool functionality, subclass
from the IDLitTool class.

In general, the IDLitToolbase class registers the following types of features:

Standard menu items — Operations that appear in the File, Edit, Insert, Window,
and Help menus are defined in the IDLitToolbase class. If you are building a subclass
of the IDLitToolbase class, you have the option of adding items to or removing items
from these menus in your own class definition file.

Operations menu items — Standard data-centric operations provided as part of the
iTools distribution and which appear in all of the standard i Tools are placed on the
Operations menu by the IDLitToolbase class.

Context menu items — Standard operations such as Cut, Copy, Paste, Group,
Ungroup, etc. are included on the context menu by the IDLitToolbase class.

Toolbar items — Operations that enable standard File and Edit menu functionality
are placed on the toolbar by the IDLitToolbase class. In addition, standard

mani pul ators (zoom, arrow, and rotate), and annotations (text, line, rectangle, oval,
polygon, and freeform) are placed on the tool bar.

File readers — All file readersincluded in the iTools distribution are registered by
the IDLitToolbase class. File readers do not appear in theiTool interface, but are used
automatically when importing a datafile.

File writers — All filewritersincluded in the iTool s distribution are registered by the
IDLitToolbase class. File writers do not appear in the iTool interface, but are used
automatically when exporting datato afile.

Hiding Compilation Messages

When IDL compiles an object class, it prints a compilation message similar to the
following to the IDL Console:
% Compiled module: FIRSTEXAMPLETOOL__DEFINE.

To prevent the compilation message from appearing when the class is compiled, add
the following line to the class structure definition:

COMPILE_OPT hidden

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 93

Example Class Structure Definition

Thefollowing isavery simpleiTool class structure definition for an iTool named
FirstExampleTool. This procedure should be the last procedurein afile named
firstexampletool__define.pro.

PRO FirstExampleTool__Define
COMPILE_OPT hidden

struct = { FirstExampleTool, S
INHERITS IDLitToolbase S ; Provides iTool interface

}
END

Discussion

The purpose of the structure definition routine isto define a named IDL structure
with structure fields that will contain the iTool object instance data. The structure
name should be the same as the i Tool’s class name — in this case,
FirstExampleTool.

Likemany iTools, FirstExampleTool iscreated asasubclass of the IDLitToolbase
class. iTools that subclass from IDLitToolbase inherit all of the standard i Tool
functionality, as described in “ Subclassing from the IDLitToolbase Class’ on

page 91.

Note
This example isintended to demonstrate how simple it can be to create anew iTool
class definition. While the class definition for an iTool with significant extra
functionality will likely define additional structure fields, and may inherit from
other iTool classes, the basic principles are the same.

Creating an Init Method
TheiTool class Init method handles any initialization required by the iTool object,
and should do the following:

» define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

« call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

» register visualizations, operations, manipulators, and file readers/writers
available in the new iTool but not registered by any superclasses

iTool Developer’s Guide Creating a New iTool Class

94 Chapter 5: Creating an iTool

« perform other initialization steps as necessary

e returnthevaue 1if theinitialization steps are successful, or O otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies that
keywords not explicitly handled by your method will be passed through to other
routines called by your method via IDL’s keyword inheritance mechanism. The Init
method for atool generally looks something like this:

FUNCTION MyTool::Init, MYKEYWORD1 = mykeywordl, $
MYKEYWORD2 = mykeyword2, ..., _REF_EXTRA = _extra

where MyTool is the name of your tool class and the MYKEYWORD parameters are
keywords handled explicitly by your Init function.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.

Superclass Initialization

TheiTool class Init method should call the Init method of any required superclasses.
For example, if your i Tool isbased on an existing iTool, you would call that tool’s Init
method:

success = self->SomeToolClass::Init (_EXTRA = _extra)
where SomeToolClass is the class definition file for the iTool on which your new
iTool isbased. The variable success containsa 1 if the initialization was successful.

Note
Your iTool class may have multiple superclasses. In general, each superclass' Init
method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 95

(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self->SomeToolClass::Init(_EXTRA = _extra) EQ 0) THEN RETURN,
0

This conventionisused in al iTool classesincluded with IDL. W strongly suggest
that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of theiTool class can be set in the Init method by specifying the property
names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitTool class are available to any iTool class. See
“IDLitTool Properties’ (IDL Reference Guide).

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.

Standard Base Class

While you can create your new iTool from any existing iTool class, in many cases,
iTool classes you create will be subclassed directly from the base class

IDLitToolbase:
IF (self->IDLitToolbase::Init(_EXTRA = _extra) EQ 0) THEN $
RETURN, O

The IDLitToolbase class provides the base iTool functionality used in the tools
created by ITT Visua Information Solutions. See “ Subclassing from the
IDLitToolbase Class’ on page 91 for details.

Note
To create an iTool that does not include the standard i Tool functionality, subclass
from the IDLitTool class.

Return Value

If al of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other iTools that
subclass from your iTool class may check this return value, as your routine should
check the value returned by any superclass Init methods called.

iTool Developer’s Guide Creating a New iTool Class

96 Chapter 5: Creating an iTool

Registering Visualizations

Registering a visuaization type with an iTool class allows instances of the iTool to
create and display visualizations of that type. Any number of visualization types can
be registered for use by agiveniTool.

Note
You must register at least one visualization type with your iTool class. Unlike
operations, manipulators, and file readers and writers, no visualization types are
registered by the IDLitToolbase class.

Visualization types are registered by calling the IDLitTool::RegisterVisualization
method:

self->RegisterVisualization, Visualization_Type, $
VisType Class_Name

where Visualization_Type isthe string you will use when referring to the visualization
type, and VisType Class Nameisastring that specifies the name of the classfile that
contains the visualization type’s definition.

Note
Thefile visType_Class_Name__define.pro must exist somewherein IDL's
path for the visualization type to be successfully registered.

For example, the following method call registers a visualization type named myvis
for which the class definition is stored in thefile
myVisualization__ define.pro:

self->RegisterVisualization, 'myVis', 'myVisualization'

See “Registering a Visualization Type’ on page 136 for additional details. See
“Predefined iTool Visualization Classes’ on page 115 for alist of visualization types
included in the iTool system asinstalled with IDL.

Registering Operations

Registering an operation with an iTool class allows instances of theiTool to apply the
registered operation to data selected in the iTool. Any number of operations can be
registered with a given iTool.

Operations are registered by calling the IDLitTool::RegisterOperation method:

self->RegisterOperation, Operation_Type, OpType Class_Name, $
IDENTIFIER = identifier

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 97

where Operation_Type isthe string you will use when referring to the operation,
OpType_Class Nameis a string that specifies the name of the class file that contains
the operation’s definition, and identifier is a string containing the operation’s i Tool
identifier. (Theidentifier is used to specify where on the iTool’s menu bar the
operation will appear. See “iTool Object Identifiers’ on page 28 for a discussion of
iTool system identifiers.)

Note
Thefile opType Class_Name define.pro must exist somewherein|DL's
path for the visualization type to be successfully registered.

For example, the following method call registers an operation named myop for which
the class definitionis stored in the filemyOperation__define.pro, and placesthe
menu selection Change My Data intherilters folder of theiTool operations
menu.

self->RegisterVisualization, 'myOp', 'myOperation',6 $
IDENTIFIER = 'Operations/Filters/Change My Data'

See “Registering an Operation” on page 182 for additional details. See “ Predefined
iTool Operations’ on page 148 for alist of operationsincluded in theiTool system as
installed with IDL.

Registering Manipulators

Registering a manipulator with an iTool class alows instances of the iTool to enable
the registered manipulator for use in the iTool. Any number of manipulators can be
registered with a given iTool.

Manipulators are registered by calling the IDLitTool::RegisterManipulator method:

self -> RegisterManipulator, ManipulatorName, $
Manipulator_Class_Name, ICON = icon

where ManipulatorName is the string you will use when referring to the manipulator,
Manipulator_Class Name is a string that specifies the name of the classfile that
contains the manipulator’s definition, and icon is a string containing the name of a
bitmap file to be used in the toolbar button. (See “Icon Bitmaps® on page 44 for
details on where bitmap icon files are located.).

Note
Thefile Manipulator Class_Name__define.pro must exist somewherein
IDL’s path for the visualization type to be successfully registered.

iTool Developer’s Guide Creating a New iTool Class

98

Chapter 5: Creating an iTool

For example, the following method call registers a manipulator named myManip for
which the class definition is stored in the filemyManipulator define.pro, and
specifiesthefile arrow. bmp located in the bi tmaps subdirectory of the resource
subdirectory of the IDL distribution as the icon to use on the toolbar.

self -> RegisterManipulator, 'myManip', 'myManipulator',6 $
ICON = 'arrow'

See “Registering a Manipulator” on page 223 for additional details. See “ Predefined
iTool Manipulators’ on page 198 for alist of manipulatorsincluded in the i Tool
system asinstalled with IDL.

Registering File Readers and Writers

Registering afile reader or filewriter with aniTool class alows instances of the iTool
to read or write files of the type handled by the reader or writer. Any number of file
readers and writers can be registered with a given iTool.

File readers are registered by calling the IDLitTool::RegisterFileReader method:

self->RegisterFileReader, Reader_ Type, ReaderType_ Class_Name, $
ICON = icon

where Reader_Type is the string you will use when referring to the file reader,
Reader Type_Class Nameis astring that specifies the name of the classfile that
contains the file writer's definition, and icon is a string containing the name of a
bitmap file used to represent the file reader.

Similarly, file writers are registered by calling the IDLitTool::RegisterFileWriter
method:

self->RegisterFileWriter, Writer_ Type, WriterType Class_Name, $
ICON = icon

where Reader_Type is the string you will use when referring to the file reader,
Reader Type_Class Nameis astring that specifies the name of the classfile that
contains the file writer’s definition, and icon is a string containing the name of a
bitmap file used to represent the file writer. See“lcon Bitmaps’ on page 44 for details
on where bitmap icon files are located.

Note
The class definition files ReaderType Class_Name_ define.pro Of
WriterType Class_Name__ define.pro must exist somewherein IDL’s path
for the file reader or writer to be successfully registered.

For example, the following method call registers afile reader named myReader for
which the class definition is stored in the filemyFileReader define.pro, and

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 99

specifiesthefile reader . bmp located in the home /mydir directory astheicon to
use on the toolbar.
self->RegisterFileReader, 'myReader', 'myFileReader',6 $
ICON = '/home/mydir/reader.bmp'
See “Registering a File Reader” on page 247 for additional details. See “Predefined
iTool File Readers’ on page 231 for alist of file readersincluded in the iTool system
asinstalled with IDL.

Similarly, the following method call registers afile writer named mywriter for
which the class definition is stored in the filemyFilewriter_ define.pro, and
specifiesthefilewriter.bmp located in the home /mydir directory astheicon to
use on the toolbar.

self->RegisterFileReader, 'myWriter', 'myFileWriter',6 $

ICON = '/home/mydir/writer.bmp'

See “Registering a File Writer” on page 271 for additional details. See “ Predefined
iTool File Writers’” on page 257 for alist of file writersincluded in the iTool system
asinstalled with IDL.

Example Init Method

The following example code shows a very simple Init method for an iTool named
FirstExampleTool. Thisfunction should beincluded in afile named
FirstExampleTool__define.pro.

FUNCTION FirstExampleTool::Init, _REF_EXTRA = _extra

; Call the Init method of the super class.

IF (self->IDLitToolbase::Init (NAME='FirstExampleTool', $
DESCRIPTION = 'Example Tool Class', _EXTRA = _extra) EQ 0) THEN
RETURN, O

; Register a visualization

self->RegisterVisualization, 'Image', 'IDLitVisImage',6 $
ICON = 'image'

; Register an operation

self->RegisterOperation, 'Byte Scale', 'IDLitOpBytScl', $
IDENTIFIER = 'Operations/Byte Scale'

RETURN, 1

END

iTool Developer’s Guide Creating a New iTool Class

100

Chapter 5: Creating an iTool

Discussion

TheFirstExampleTool isbased onthe IDLitToolbase class (discussed in
“Subclassing from the IDLitToolbase Class’ on page 91). As aresult, all of the
standard iTool operations, manipulators, file readers and writers are already present.
TheFirstExampleTool Init method needsto do only three things:

1. Cadl the Init method of the superclass, IDLitToolbase, using the EXTRA
keyword inheritance mechanism to pass through any keywords provided when
the FirstExampleTool Init method is called.

2. Register avisualization type for the tool. We choose the standard image
visualization defined by the idlitvisimage_ define.pro classdefinition
file,

3. Register an operation. We choose an operation that implements the I DL
BYTSCL function, defined by the id1itopbytscl__define.pro class
definition file and place a menu item in the iTool Operations menu.

Note
This example isintended to demonstrate how simple it can be to create anew iTool
class definition. While the class definition for an iTool with significant extra
functionality will register more features, the processis the same.

Unregistering Components

In some cases, you may want to subclass from an iTool class that contains features
you do not want to include in your class. Rather than building a class that duplicates
most, but not all, of the functionality of the existing class, you can create a subclass
that explicitly unregisters the components that you don’t want included.

For each Register method of the IDLitTool classthere is a corresponding UnRegister
method. Call the UnRegister method with the Name you used when registering the
component. For example, if your superclass registers an operation with the identifier
'MultiplyBy100' andyou do not want this operation included in your class, you
would include the following method call in your iTool class Init method:

self->UnRegisterOperation, 'MultiplyByl1l00'

Creating a New iTool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 101

Registering a New Tool Class

Before an instance of a new iTool can be created, the tool’s class definition must be
registered with the iTool system. Registering an iTool class with the system links the
class definition file containing the actual IDL code that initializes an iTool object
with a simple string that names the iTool. Since you use the name string in code that
creates instances of individual tools, a change to the name of the class definition file
requires only a change to the code that registers the iTool class.

iTool classes are registered using the IREGISTER procedure. In most cases, the call
to the IREGISTER procedure will be included in an iTool’s launch routine, but the
call can take place in any code at any time. If multiple iTool launch routines create
instances of the same i Tool class, however, you may find it more convenient to
register the iTool in asingle routine, called only once. This removes the need to call
the registration routine in each launch routine individually.

Note
If only asmall number of routines will create instances of a given iTool, you may
find it more convenient to register the iTool class within the tool launch routine.

Using IREGISTER

Use the IREGISTER routine to register the class definition:
IREGISTER, 'Tool Name', 'Tool_Class_Name'

where Tool Name is a string you will use to create instances of the tool, and
Tool_Class Nameisastring that specifies the name of the classfile that contains the
tool’s definition.

Note
Thefile Tool_class_Name__define.pro must exist somewherein IDL's path
for the tool definition to be successfully registered.

If agiveniTool class has already been registered when the IREGISTER routineis
called, the class will not be registered a second time. The registration can be
performed at any timein an IDL session before you attempt to create an instance of
theiTool.

See“IREGISTER” (IDL Reference Guide) for details.

iTool Developer's Guide Registering a New Tool Class

102 Chapter 5: Creating an iTool

Example

Suppose you have an iTool class definition file named myTool___define.pro,
located in adirectory included in IDL's 'PATH system variable. Register this class
with the iTool system with the following command:

IREGISTER, 'My First Tool', 'myTool'

Tools defined by the myToo1 class definition file can now be created by the iTool
system by specifying the tool nameMy First Tool.lnmost cases, this command
would be included in the launch routine for the myToo1 iTool, but the call can be
placed in any code that is executed before the first instance of theiTool is created.

Registering a New Tool Class iTool Developer’s Guide

Chapter 5: Creating an iTool 103

Creating an iTool Launch Routine

AniTool launch routineisan IDL procedure that creates an instance of an iTool by
calling the IDLITSYS CREATETOOL function. The launch routine may do other
things as well, including creating data objects to passto the create function from
command-line arguments.

The process of creating an iTool launch routine is outlined in the following sections:
« “Specifying Command-Line Arguments and Keywords’ on page 103
e “Creating Data Objects’ on page 104
e “Handling Errors’ on page 105
e “Creating aniTool Instance’ on page 106

Specifying Command-Line Arguments and Keywords

If you want to be able to specify datato be loaded into your iTool when launching the
tool from the IDL command line, you must specify positional arguments or keywords
in the procedure definition. The procedure definition for an iTool launch routine may
look something like the following:

PRO myTool, Al, A2, MYKEYWORD = myKeys, IDENTIFIER = id, $
_EXTRA = _extra

Here, there are two positional parameters (or arguments) and three keyword
parameters are specified.

Arguments

Data arguments are specified in an iTool launch routine aswith any IDL procedure.
See “Parameters’ (Chapter 5, Application Programming) for details on arguments.

Keywords

Keyword arguments to an iTool launch routine are handled as with any IDL
procedure. See “ Parameters’ (Chapter 5, Application Programming) for details on
keyword arguments. In addition, you may want to include the following keyword
arguments in the definition of the launch routine:

The IDENTIFIER Keyword

The IDENTIFIER keyword is used to return theiTool system identifier string for the
newly created tool. You must set the variable specified by the IDENTIFIER keyword
equal to thereturn value of the IDLITSYS _CREATETOOL function. This allowsthe

iTool Developer's Guide Creating an iTool Launch Routine

104 Chapter 5: Creating an iTool

user to retrieve the newly-created i Tool’s identifier in an IDL variable by including
the IDENTIFIER keyword in the call to the launch routine. The iTool identifier can
then be used to specify theiTool as the target for another operation, such as
overplotting.

The _EXTRA Keyword

Optionally, you can use IDL’s keyword inheritance mechanism to pass keyword
parametersthat are not explicitly handled by your routine through to other routines.
See “Keyword Inheritance” (Chapter 5, Application Programming) for details on
IDL’s keyword inheritance mechanism.

Creating Data Objects

If your iTool launch routine allows usersto specify data arguments (as opposed to
keywords that are passed through to the iTool component objects), you must process
those arguments and create an I DLitParameterSet object to be passed to the
IDLITSYS CREATETOOL function. Parameter sets, data types, and general i Tool
system data handling concepts are discussed in detail in Chapter 3, “Data
Management”.

Parameter Sets

Datais passed to a newly-created i Tool instance by supplying an IDLitParameterSet
object asthe value of the INITIAL_DATA keyword to the

IDLITSYS CREATETOOL function. To create a parameter set object, use the
OBJ NEW function:

oParameterSet = OBJ_NEW('IDLitParameterSet', NAME = paramSetName)

where oParameter Set is a named variable that will hold the object reference to the
parameter set object and paramSetName is a string that will be used by theiTool user
interface to refer to the parameter set.

For example, if you are creating a data container to hold X and Y vectorsto be plotted
in two-dimensions, you might use the following code:

oPlotData = OBJ_NEW('IDLitParameterSet', NAME = 'Plot data')

See Chapter 3, “Data Management”, and “IDLitParameterSet” (IDL Reference
Guide) for details.

Data Iltems

The parameter set object holds objects of type IDLitData, or objects of types derived
from IDLitData, such as IDLitDatalmage or IDLitDataVector. These data objects, in

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 105

turn, hold the actual data used by theiTool. To create a data object, use the
OBJ NEW function:

oData = OBJ_NEW('IDLitData', vData, TYPE = dataType, $
NAME = dataName)

where oData is anamed variable that will hold the object reference to the data object,
vDataisan IDL variable containing the actual data, dataType is a string specifying
theiTool datatype of the data held by the object, and dataName is a string that will be
used by the iTool user interface to refer to the data object. See “iTool Data Types’ on
page 54 for additional information on iTool data types.

For example, if you are creating a data object to hold the Y vector of atwo-
dimensional plot, you might use the following code:

oPlotY = OBJ_NEW('IDLitData', yData, TYPE = 'IDLVECTOR', $
NAME = 'Y data')

Here, the data that make up the Y vector are contained in the variable ypata. After a
dataitem has been created, it must be added to the parameter set object. Continuing
our example, the following code adds the oPlotY data object to the oPlotData
parameter set object, assigning the parameter name 'y data':

oPlotData->Add, oPlotY, PARAMETER_NAME='Y data'

See Chapter 3, “Data Management”, and “IDLitData’ (IDL Reference Guide) for
details.

Example

For an example iTool launch routine that creates and populates a parameter set object,
see “Example; SimpleiTool” on page 108.

Handling Errors

The error-handling requirements of your iTool launch routine will depend largely on
the type of data processing you perform. In general, your goa should be to clean up
any objects or pointers your routine creates, display an error message to the user, and
return to the calling routine. It is beyond the scope of this chapter to discuss IDL’s
error handling mechanismsin detail; for more information see Chapter 8,
“Debugging and Error-Handling” (Application Programming).

iTool launch routines included in the IDL distribution handle errors by placing a
block of IDL code that looks like the following at the beginning of the routine:

ON_ERROR, 2
CATCH, iErr
IF (iErr NE 0) THEN BEGIN

iTool Developer's Guide Creating an iTool Launch Routine

106

Chapter 5: Creating an iTool

CATCH, /CANCEL
IF OBJ_VALID(oDataObject) THEN OBJ_DESTROY, oDataObject
MESSAGE, /REISSUE_LAST
RETURN
ENDIF

This block of error-handling code does the following:

1. Usesthe ON_ERROR procedureto instruct IDL to return to the caller of the
program that establishes an error condition.

2. Usesthe CATCH procedure to establish an error-handler for the iTool launch
routine, returning the error code in the variable iErr.

3. Ifthevalueof iErr isnot O (that is, if an error is detected), do the following:
e Usethe CATCH procedure again to cancel the error handler.

< Destroy any data objects created by the launch routine. In most cases,
destroying the data container object (represented here by oDataObject)
will be sufficient to destroy all objects added to the data container.

e Usethe MESSAGE routine to display the error message in the IDL output
log.
Once these tasks have been accomplished, use the RETURN procedure to

return to the routine that called the iTool launch routine, or to the IDL Main
level, if the launch routine was invoked at the IDL command prompt.

Depending on the complexity of your iTool launch routine, additional cleanup may be
required. For example, you may need to free IDL pointers created by the launch
routine. In many cases, however, error-handling code similar to that used in the
standard i Tool launch routines will be sufficiently robust.

Creating an iTool Instance

Create an instance of your iTool class by calling the IDLITSYS CREATETOOL
function:

id = IDLITSYS_CREATETOOL('Tool Name', NAME = 'Tool Label', $
VISUALIZATION_TYPE = 'VisType', $
INITIAL_DATA = 'oDataContainer', _EXTRA = _extra)

where Tool Name is the name of a previously-registered iTool class, Tool Label isa
text label that will be used in the iTool user interface to identify this instance of the
iTool, VisType isthe name of apreviously-registered i Tool visualization type (or array
of visualization types), and oDataContainer is an IDLitDataContainer object created
from the values specified as arguments or keywords.

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 5: Creating an iTool 107

We also use IDL's keyword inheritance mechanism (the _EXTRA keyword) to pass
any additional keyword parameters specified when the launch routine is called
through to the lower-level iTool routines.

See“IDLITSYS CREATETOOL” (IDL Reference Guide) for details.
iTool Class Registration

Before an instance of an iTool can be created, the iTool class must be registered with
theiTool system. AniTool class can be registered with the system within the launch
routine by calling the IREGISTER routine, but you may benefit from registering
iTool classes separately. See “Registering a New Tool Class’ on page 101 for details.

iTool Visualization Type Registration

Similarly, the visualization type or types specified by the VISUALIZATION_TYPE
keyword must have been registered with the system. In most cases, visualizations will
either be predefined iTool visualizations (see “Predefined iTool Visualization
Classes’ on page 115) or will beregistered in theiTool class’ Init method, as
described in “Creating a New i Tool Class’ on page 91. All iTools must have at least
one visualization type. Multiple visualization types are specified by supplying a
string array asthe value of the VISUALIZATION_TY PE property.

Note
Once avisualization type has been registered with the iTool system, it isavailableto
all iTools launched during an IDL session. This means that the list of visualization
types available to a given iTool can change if other iTools are launched.

iTool Developer's Guide Creating an iTool Launch Routine

108 Chapter 5: Creating an iTool

Example: Simple iTool

This example creates avery simple iTool named exampleltool that incorporates
standard functionality from the i Tools distribution, along with other example iTool
features created in other chapters of this manual.

Example Code
The class definition code for this exampleiTool isincluded in thefile
exampleltool__define.pro inthe examples/doc/itools subdirectory of
the IDL distribution. Run the example procedure by entering
exampletool__define at the IDL command prompt or view thefileinan IDL
Editor window by entering . EDIT exampletool__define.pro.

Class Definition File

The class definition for the exampleltool consists of an Init method and a class
structure definition routine. Aswith all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pro appended).

Class Definition

PRO exampleltool_ Define

struct = { exampleltool, S
INHERITS IDLitToolbase S ; Provides iTool interface
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name exampleltool, specifying that the structure inherits from the
IDLitToolbase class.

Init Method
FUNCTION exampleltool::Init, _REF_EXTRA = _extra
; Call our super class

IF (self->IDLitToolbase::Init (_EXTRA = _extra) EQ 0) THEN $
RETURN, 0

Example: Simple iTool iTool Developer’s Guide

javascript:doIDL("exampletool__define")
javascript:doIDL(".edit exampletool__define.pro")

Chapter 5: Creating an iTool 109

;*** Visualizations
; Here we register a custom visualization type described in
; the "Creating Visualizations" chapter of this manual.

self->RegisterVisualization, 'Image-Contour', $
'examplel_visImageContour', ICON = 'image',6 /DEFAULT

;*** Operations menu
; Here we register a custom operation described in the "Creating
; Operations" chapter of this manual.

self->RegisterOperation, 'Example Resample', $
'examplel_opResample', $
IDENTIFIER = 'Operations/Examples/Resample'

;*** File Readers
; Here we register a custom file reader described in the
"Creating File Readers" chapter of this manual.

self->RegisterFileReader, 'Example TIFF Reader', $
'examplel_readTIFF', ICON='demo', /DEFAULT

;*** File Writers

; Here we unregister one of the standard file writers used
; by the iTools, replacing it with a custom file writer

; described in the "Creating File Writers" chapter of this
; manual.

self->UnRegisterFileWriter, 'Tag Image File Format'

self->RegisterFileWriter, 'Example TIFF Writer',6 $
'examplel _writetiff', ICON='demo', /DEFAULT

RETURN, 1

END
Discussion

Thefirst itemin our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name exampleltool. Note the use of the
_REF_EXTRA keyword inheritance mechanism; this allows any keywords specified
in acall to the Init method to be passed through to routines that are called within the
Init method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitToolbase class; this provides us with al of the standard i Tool
functionality automatically. Any “extra’ keywords specified in the call to our Init

iTool Developer's Guide Example: Simple iTool

110 Chapter 5: Creating an iTool

method are passed to the IDLitToolbase::Init method via the keyword inheritance
mechanism.

Because our iTool class will inherit from the IDLitToolbase class, our tool will
automatically provide all of the standard features of the iTools. In addition, we
register the following custom items:

e A custom visualization type: Image-Contour. This visualization typeis
described in Chapter 6, “ Creating a Visualization”.

* A new operation; Example Resample. This operation is described in Chapter 7,
“Creating an Operation”.

e A new filereader: Example TIFF Reader. Thisfile reader is described in
Chapter 9, “Creating a File Reader”.

* We unregister the standard TIFF file writer, and register our a new filewriter:
Example TIFF Writer. Thisfile reader is described in Chapter 10, “Creating a
File Writer”.

Finally, we return the value 1 to indicate successful initialization.
Launch Routine

Our iTool launch routine also usesthe class name exampleltool. It acceptsasingle
data argument, which we assume will contain an image array.

Example Code
The code for this exampleiTool launch routine isincluded in the file
exampleltool.pro inthe examples/doc/itools subdirectory of the IDL
distribution. Run the example procedure by entering exampleltool at the IDL
command prompt or view the filein an IDL Editor window by entering .EDIT
exampleltool.pro.

The code is shown below:

PRO exampleltool, data, IDENTIFIER = identifier,
_EXTRA = _extra

IF (N_PARAMS() gt 0) THEN BEGIN
oParmSet = OBJ_NEW('IDLitParameterSet', $

NAME = 'example 1 parameters', $
ICON = 'image', $
DESCRIPTION = 'Example tool parameters')

IF (N_ELEMENTS (data) GT 0) THEN BEGIN

Example: Simple iTool iTool Developer’s Guide

javascript:doIDL("example1tool")
javascript:doIDL(".edit example1tool.pro")
javascript:doIDL(".edit example1tool.pro")

Chapter 5: Creating an iTool 111

oData = OBJ_NEW('IDLitDataIDLImagePixels')
result = oData->SetData (data, _EXTRA = _extra)
oParmSet->Add, oData, PARAMETER_NAME = 'ImagePixels'

; Create a default grayscale ramp.
ramp = BINDGEN (256)
oPalette = OBJ_NEW('IDLitDataIDLPalette', $

TRANSPOSE ([[ramp], [ramp], [rampll), $
NAME = 'Palette')
oParmSet->Add, oPalette, PARAMETER_NAME = 'PALETTE'
ENDIF
ENDIF
IREGISTER, 'Example 1 Tool', 'exampleltool'

identifier = IDLITSYS_CREATETOOL ('Example 1 Tool',S$

VISUALIZATION_TYPE = ['Image-Contour'], $
INITIAL_DATA = oParmSet, _EXTRA = _extra, $
TITLE = 'First Example iTool')

END
Launch Routine Discussion

Our iTool launch routine accepts a single data argument. We also specify that our
launch routine should accept the IDENTIFIER keyword; we will use the variable
specified asthe value of this keyword (if any) to return the iTool identifier of the new
iTool we create.

First, we check the number of non-keyword arguments that were supplied using the
N_PARAM S function. If an argument was supplied, we create an | DL itParameter Set
object to hold the data.

Next, we check to make sure the supplied data argument is not empty using the
N_ELEMENTS function. If the supplied argument contains data, we create an
IDLitDatal DL ImagePixels object to contain the image data and add the object to our
parameter set object, assigning the parameter name ' ImagePixels'.

Note
In the interest of brevity, we do very little data verification in this example. We
could, for example, verify that the data argument contains a two-dimensional array
of a specified type.

iTool Developer's Guide Example: Simple iTool

112 Chapter 5: Creating an iTool

We next create adefault grayscale ramp in an IDLitDatal DL Palette object, and assign
this the parameter name ' palette’.

We use the IREGISTER procedure to register our iTool class with the name
"Example 1 Tool".

Finally, wecall the IDLITSYS CREATETOOL function with the registered name of
our iTool class, specifying the visualization type as ' Image-Contour ', whichisthe
name of our custom visualization.

Example: Simple iTool iTool Developer’s Guide

Chapter 6
Creating a Visualization

This chapter describes the process of creating an iTool visualization type.

Overview of iTool Visuadization Types ... 114 Registering aVisuaization Type 136
Predefined iTool Visualization Classes ... 115 Unregistering a Visuaization Type 138
Creating aNew Visualization Type 121 Example: Image-Contour Visualization .. 140

iTool Developer’s Guide 113

114 Chapter 6: Creating a Visualization

Overview of iTool Visualization Types

A visualization type is an iTool component object class that contains core IDL
graphic objects (IDLgrPlot abjects, for example), other iTool visualization
components, or both. Visualization type components can also contain data. A number
of visualization types are predefined and included in the IDL iTools package. If none
of the predefined types suits your needs, you can create your own visualization type
by subclassing either from one of the predefined types or from the base
IDLitVisualization class on which all of the predefined types are based.

The Visualization Type Creation Process

To create anew iTool visualization type, you will do the following:

e ChooseaniTool visualization class on which your new visualization type will
be based. In amost all cases, you will base new visualization types either on
the IDLitVisualization class or on a visualization classthat isitself based on
IDLitVisualization. The IDLitVisualization class automatically handles
selection, selection visuals, data ranges, and notification of data changes.

» Define the data parameters necessary to create a visualization of the new type.
» Define the properties of the visualization, and set default property values.

» Override methods used to get or set properties, react to changesin the
underlying data, and clean up, as necessary.

This chapter describes the process of creating a new visualization type based on the
IDLitVisualization class.

Overview of iTool Visualization Types iTool Developer’s Guide

Chapter 6: Creating a Visualization 115

Predefined iTool Visualization Classes

TheiTool system distributed with IDL includes a number of predefined visualization
classes. The visualization type (the TY PE keyword value of the visualization with
which it isinitiaized) and the accepted data type(s) are shown for the predefined
visualization classes. You can include these visualization classes in an iTool directly
by registering the class with your iTool (as described in “Registering a Visualization
Type”’ on page 136). You can aso create anew visualization class based on one of the
predefined classes. Visualization classes are located in the
lib/itools/components subdirectory of the IDL directory.

IDLitVisAxis
Displays a single axis object.
Visualization type: IDLAXIS
Data Types Accepted

e None

IDLitVisColorbar
Displays a color bar.

Visualization type: IDLCOLORBAR
Data Types Accepted
* Palettedatar IDLPALETTE

IDLitVisContour
Displays a two-dimensional or three-dimensional contour plot.
Visualization type: IDLCONTOUR
Data Types Accepted

e Zdata IDLARRAY2D
e XandY data IDLVECTOR
IDLitVisHistogram

Displays a histogram plot of the input data.
Visualization type: IDLPLOT

iTool Developer's Guide Predefined iTool Visualization Classes

116 Chapter 6: Creating a Visualization

Data Types Accepted
e Histogram data: IDLVECTOR, IDLARRAY 2D, IDLARRAY 3D
IDLitVisimage
Displays an image.
Visualization type: IDLIMAGE
Data Types Accepted
e Imagedata: IDLIMAGE, IDLARRAY 2D
* Palettedatar IDLPALETTE, IDLARRAY 2D
IDLitVisImagePlane
Displays an image extracted from a plane passing through volumetric data
Visualization type: IDLIMAGE PLANE
Data Types Accepted
» Imagedata: IDLIMAGE, IDLARRAY 2D
e Pdettedata IDLPALETTE, IDLARRAY 2D
IDLitVisIntVol

Displays an interval volume.
Visualization type: IDLINTERNAL VOLUME
Data Types Accepted
* Volumedata: IDLARRAY 3D
* Palettedatar IDLPALETTE
* Volume dimensions, location, connectivity lists; IDLVECTOR

IDLitVislsosurface

Displays an isosurface created from existing volume data.
Visualization type: IDLISOSURFACE
Data Types Accepted

* Volumedata: IDLARRAY 3D

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 117

* Paettedata: IDLPALETTE

* Volume dimensions, location, connectivity lists: IDLVECTOR
IDLitVisLegend

Displays alegend that can contain multiple IDLitVisLegendContourltem,
IDLitVisLegendPlotltem, and IDLitVisL egendSurfacel tem objects.

Visualization type: IDLLEGEND
Data Types Accepted

e None
IDLitVisLegendltem
Displays an item contained within alegend.
Visualization type: IDLLEGENDITEM
Data Types Accepted

* None
IDLitVisLight

Places alight object in the iTool visualization window to illuminate surface and
volume objects.

Visualization type: IDLLIGHT
Data Types Accepted
e None
IDLitVisLineProfile
Displays aline profile visualization.
Visualization type: IDLLINEPROFILE
Data Types Accepted
e Linedata (2D or 3D): IDLARRAY 2D
IDLitVisMapGrid

Displays alongitudinal/latitudinal grid.
Visualization type: IDLMAPGRID

iTool Developer's Guide Predefined iTool Visualization Classes

118 Chapter 6: Creating a Visualization

Data Types Accepted

. None.
IDLitVisPlot

Displays a two-dimensional line plot.
Visualization type: IDLPLOT
Data Types Accepted
e XandY data IDLVECTOR
* Vertex data: IDLARRAY 2D
e XandY erordata IDLVECTOR, IDLARRAY 2D

IDLitVisPlotProfile
Displays a two-dimensional plot profile.
Visualization type: IDLPLOT PROFILE
Data Types Accepted
* Image data or line endpoints: IDLARRAY 2D

IDLitVisPlot3D

Displays a three-dimensional line plot.
Visualization type: IDLPLOT3D
Data Types Accepted
e X,Y,and Z data: IDLVECTOR
* Vertex data: IDLARRAY 2D
* X,Y,and Z error data: IDLVECTOR, IDLARRAY 2D

IDLitVisPolygon

Displays a polygon annotation.
Visualization type: IDLPOLY GON
Data Types Accepted
e Vertex data: IDLVERTEX, IDLCONNECTIVITY

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 119

IDLitVisPolyline
Displaysasingle polyline.
Visualization type: IDLPOLYLINE
Data Types Accepted
* Vertex data: IDLVERTEX, IDLCONNECTIVITY
IDLitVisRoi
Defines and displays a polygonal region of interest.
Visualization type: IDLROI
Data Types Accepted
* Vertex data: IDLARRAY 2D
IDLitVisShapePoint
Displays point vertices from a Shapefile.
Visualization type: IDLSHAPEPOINT
Data Types Accepted
e Vertex data: IDLVERTEX, IDLCONNECTIVITY, IDLSHAPEPOINT
IDLitVisShapePolygon
Displays polygon vertices from a Shapefile.
Visualization type: IDLSHAPEPOLY GON
Data Types Accepted
* Vertex data: IDLVERTEX, IDLCONNECTIVITY, IDLSHAPEPOLY GON
IDLitVisShapePolyline
Displays polyline vertices from a Shapefile.
Visualization type: IDLSHAPEPOLYLINE
Data Types Accepted
e Vertex data: IDLVERTEX, IDLCONNECTIVITY, IDLSHAPEPOLYLINE

iTool Developer's Guide Predefined iTool Visualization Classes

120 Chapter 6: Creating a Visualization

IDLitVisSurface

Displays a three-dimensional surface plot.
Visualization type: IDLSURFACE
Data Types Accepted
e Z (surface) data: IDLARRAY 2D
+ XandY data IDLVECTOR, IDLARRAY 2D
» Vertex color data: IDLVECTOR, IDLARRAY 2D
e Texture maps: IDLARRAY 3D, IDLARRAY 2D
e Paette colors: IDLARRAY 2D

IDLitVisText
Displays text string.
Visualization type: IDLTEXT
Data Types Accepted
* Location data: IDLVECTOR

IDLitVisVolume
Displays a three-dimensional volume rendering.
Visualization type: IDLVOLUME
Data Types Accepted
* Volumedata: IDLARRAY 3D
e Pdettedata: IDLPALETTE
+ Opacity table data: IDLOPACITY_TABLE

Predefined iTool Visualization Classes iTool Developer’s Guide

Chapter 6: Creating a Visualization 121

Creating a New Visualization Type

AniTool visualization class definition file must (at the least) provide methods to
initialize the visualization class, get and set property values, handle changes to the
underlying data, clean up when the visuaization is destroyed, and define the
visualization class structure. Complex visualization types will likely provide
additional methods.

The process of creating a visualization typeis outlined in the following sections:
e “Creating the Class Structure Definition” on page 121
e “Creating an Init Method” on page 123
e “Creating a Cleanup Method” on page 130
e “Creating a GetProperty Method” on page 131
e “Creating a SetProperty Method” on page 132
¢ “Creating an OnDataChangeUpdate Method” on page 133
e “Creating an OnDataDisconnect Method” on page 135

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
datatypes of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named objectClass__define (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ (Chapter 13, Object Programming).

Note
The class structure definition is generally the last routinein the . pro file that
defines an object class.

Subclassing from the IDLitVisualization Class

The IDLitVisualization class serves as a container for visualization objects displayed
inaniTool. The classincludes methods to handle changes to data and property values
automatically; in amost all cases, new visualization typeswill be subclassed from the

iTool Developer's Guide Creating a New Visualization Type

122 Chapter 6: Creating a Visualization

IDLitVisualization class. See “IDLitVisuadization” (IDL Reference Guide) for details
on the methods and properties available to classes that subclass from
IDLitVisualization.

Hiding Compilation Messages
When IDL compiles an object class, it prints a compilation message similar to the
following to the IDL Console;
% Compiled module: EXAMPLEVIS__DEFINE.

To prevent the compilation message from appearing when the class is compiled, add
the following line to the class structure definition:

COMPILE_OPT hidden
Example Class Structure Definition

The following is the class structure definition for the Examplevis visualization
class. This procedure should be the last procedure in a file named
examplevis_ define.pro.

PRO ExampleVis__ Define
COMPILE_OPT hidden

struct = { ExampleVis,
INHERITS IDLitVisualization,
_oPlot: OBJ_NEW(),
_oSymbol: OBJ_NEW(),
_exampleProperty:

}

vy r Uy Ur U

END
Discussion

The purpose of the structure definition routine isto define a named IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
ExampleVis.

Like many iTool visualizations, ExampleVis iscreated as a subclass of the
IDLitVisualization class. Visualization classes that subclass from the
IDLitVisudization class inherit all of the standard i Tool visualization features, as
described in “ Subclassing from the IDLitVisualization Class’ on page 121.

The ExampleVis visualization class instance data includes two graphics objects: an
IDLitVisPlot object, towhich areferenceisstored inthe _oplot classstructurefield,

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 123

and an IDLitSymbol object, to which areferenceis stored in the _osymbo1l class
structure field. Both graphics objects are defined in the class structure definitions as
object instances, denoted by the presence of the oBJ_NEwW () after the structure field
name. Finally, instance data for a string property named ExampleProperty iS
stored in the _exampleProperty class structure field.

Note
This exampleisintended to demonstrate how simpleit can be to create a new
visualization class definition. While the class definition for avisualization class
with significant extra functionality will likely define additional structure fields, and
may inherit from other iTool classes, the basic principles are the same.

Creating an Init Method
The visualization class Init method handles any initialization required by the
visualization object, and should do the following:

» define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

« call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

* register any data parameters used when creating visualizations of the new type

* register any properties of your visualization type, and set property attributes as
necessary

» create all the graphics objects needed by the visualization, and add them to the
visualization object

* define acustom selection visual, if desired
» perform other initialization steps as necessary

e returnthevaue 1if theinitialization steps are successful, or O otherwise

Note
While the Init method registers data parameters for avisualization, it does not
accept data parametersitself. Data parameters are set in the OnDataChangeUpdate
method.

iTool Developer's Guide Creating a New Visualization Type

124 Chapter 6: Creating a Visualization

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method vialDL's keyword inheritance mechanism. The
Init method for a visualization type generally looks something like this:

FUNCTION MyVisualization::Init, MYKEYWORDI1 = mykeywordl, $
MYKEYWORD2 = mykeyword2, ..., _REF_EXTRA = _extra

where MyVisualization is the name of your visualization class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.

Superclass Initialization

The visualization class Init method should call the Init method of any required
superclass. For example, if your visualization classis based on an existing
visualization, you would call that visualization's Init method:

success = self->SomeVisualizationClass::Init (_EXTRA = _extra)

where SomeVisualizationClass is the class definition file for the visualization on
which your new visualization is based. The variable success will contain a1 if the
initialization is successful.

Note
Your visualization class may have multiple superclasses. In general, each
superclass’ Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self->SomeVisualizationClass::Init (_EXTRA = _extra) EQ 0) THEN

$
RETURN, 0

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 125

This convention isused in al visualization classes included with IDL. We strongly
suggest that you include similar checksin your own class definition files.

Keywords to the Init Method

Properties of the visualization type class can be set in the Init method by specifying
the property names and values as DL keyword-value pairs. In addition to any
keywords implemented directly in the Init method of the superclass on which you
base your class, the properties of the IDLitVisualization class are available to any
visualization class. See “IDLitVisualization Properties’ (IDL Reference Guide).

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.

Standard Base Class

While you can create your new visudization class from any existing visualization
class, in many cases, visualization classes you create will be subclassed directly from
the base class IDLitVisualization:

IF (self->IDLitVisualization::Init(_EXTRA = _extra) EQ 0) $
THEN RETURN, O

The IDLitVisualization class provides the base iTool functionality used in the
visualization classes created by ITT Visua Information Solutions. See “ Subclassing
from the IDLitVisualization Class’ on page 121 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, the
method should indicate successful initialization by returning 1. Other visualization
classes that subclass from your visualization class may check this return value, as
your routine should check the value returned by any superclass Init methods called.

Registering Parameters

Visualization types must register each data parameter used to create the visualization.
Data parameters are described in detail in Chapter 3, “Data Management”.

Register a parameter by calling the RegisterParameter method of the IDLitParameter
class:

self->RegisterParameter, ParmameterName, $
TYPES = ['DataTypel', ..., 'DataTypeN']

iTool Developer's Guide Creating a New Visualization Type

126

Chapter 6: Creating a Visualization

where ParameterName is a string that defines the name of the parameter and the
TYPESkeyword is set equal to astring or array of strings specifying theiTool system
datatypes the parameter can represent. See “ Registering Parameters’ on page 61 for
additional details.

Registering Properties

Visualization types can register properties with the iTool. Registered properties show
up in the property sheet interface, and can be modified interactively by users. The
iTool property interface is described in detail in Chapter 4, “ Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self->RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]

where Propertyldentifier is a string that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 74 for details.

Property Aggregation

IDL objects can contain other objects; avisualization typeis, at one level, simply an
object container that holds the different graphics objects that make up a visualization.
TheiTools property aggregation mechanism allows the properties of several different
objects held by the same container object to be displayed in the same property sheet
automatically. Without property aggregation, you would have to manually register all
of the properties of the objects contained in your visualization type object.

Aggregate the properties of contained objects using the Aggregate method of the
IDLitVisualization class:

self->Aggregate, Object_Reference

where Object_Reference is areference to the object whose properties you want
aggregated into the visualization object. See “ Property Aggregation” on page 81 for
additional details.

Note
The IDLitVisualization::Add method includes an AGGREGATE keyword. This
keyword is simply a shorthand method of aggregating the properties of an object
during the call to the Add method, eliminating the need to call the Aggregate
method separately. The call

self->Add, Object_Reference, /AGGREGATE

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 127

is the same as the following two calls:

self->Add, Object_Reference
self->Aggregate, Object_Reference

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your
visualization class, you can change the registered attribute values using the
SetPropertyAttribute method of the IDLitComponent class:

self->SetPropertyAttribute, Identifier

where Identifier isthe name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 78 for additional details.

Adding Graphics Objects to the Visualization

AniTool visualization type must contain at least one IDLit* visualization object or
IDLgr* graphics object. To add a visualization or graphics object, you must first
create an instance of the object using the OBJ_NEW function, then add the object
instance to the visualization using the Add method of the IDLitVisualization class:

Graphics_Object = OBJ_NEW('IDLitVisObject')
self->Add, Graphics_Object

where IDLitVisObject is an actual IDL iTool visualization class, such as
IDLitVisPlot.

In practice, you should also consider the following when adding a visualization or
graphics object to avisualization type:

* Thevisuaization or graphics object reference should generally be placed in a
specific field of the visualization type's class structure. This allows you access
to the object when you have the reference to the visualization object itself.

e Inmost cases, you will want to include the REGISTER_PROPERTIES
keyword in the call to OBJ_NEW when creating a visualization or graphics
object instance. This keyword does the work of registering all registrable
properties of the object automatically, relieving you from the need to manually
register the properties you want to show up in the visualization's property
sheet.

iTool Developer's Guide Creating a New Visualization Type

128 Chapter 6: Creating a Visualization

* Including the PRIVATE keyword in the call to OBJ NEW indicates that the
visualization or graphics object should not appear in the iTools visualization
browser itself; users gain access to the object’s properties viathe visualization
to which the object is being added.

A typical addition of a graphics object to a visualization looks like this:

self._oPlot = OBJ_NEW('IDLitVisPlot', /REGISTER_PROPERTIES, $
/PRIVATE)
self->Add, self._oPlot, /AGGREGATE

Here, we create anew IDLitVisPlot object instance and place the object referencein
the _oPlot field of the visualization’s class structure. The REGISTER_PROPERTIES
keyword ensuresthat all of the registrable IDLitVisPlot properties are registered with
the visualization automatically. Next, we use the Add method to add the object
instance to our visualization; this inserts the object into the visualization’s graphics
hierarchy. Finally, we use the AGGREGATE keyword to include al of the
IDLitVisPlot object’s registered properties in the visualization's property sheet.

Passing Through Caller-Supplied Property Settings

If you haveincluded the _ REF EXTRA keyword in your function definition, you can
use IDL's keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. One of the thingsthis
allowsyou to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->MyVisualization: :SetProperty, _EXTRA = _extra
where My\Misualization is the name of your visualization class. Thisline hasthe effect
of passing any “extra’ keyword values to your visualization class' SetProperty
method, where the keyword can either be handled directly or passed through to the
SetProperty methods of the superclasses of your class. See “ Creating a SetProperty
Method” on page 132 for details.

Example Init Method

The following example code shows avery simple Init method for avisualization type
named Examplevis. Thisfunction would be included (along with the class structure
definition routine and any other methods defined by the class) in a file named
examplevis__define.pro.

FUNCTION ExampleVis::Init, _REF_EXTRA = _extra

; Initialize the superclass.

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 129

IF (self->IDLitVisualization::Init (/REGISTER_PROPERTIES, $
TYPE='ExampleVis', NAME='Example Visualization Type', $
ICON='plot', /PRIVATE, _EXTRA = _extra) NE 1) THEN $

RETURN, O

; Register a parameter
self->RegisterParameter, 'Y', DESCRIPTION='Y Plot Data', $
/INPUT, TYPES='IDLVECTOR', /OPTARGET

; Add a plotting symbol object and aggregate its properties
; into the visualization.

self._oSymbol = OBJ_NEW('IDLitSymbol', PARENT = self)
self->Aggregate, self._oSymbol

; Create an IDLitVisPlot object, setting its SYMBOL property to

; the symbol object we just created. Add the plot object to the

; visualization, and aggregate its properties.

self. oPlot = OBJ_NEW('IDLitVisPlot', /REGISTER_PROPERTIES, $
SYMBOL = self._oSymbol->GetSymbol())

self->Add, self._oPlot, /AGGREGATE

; Register an example property that holds a string value.
self->RegisterProperty, 'ExampleProperty', $
/STRING, DESCRIPTION='An example property', $
NAME="'Example Property', SENSITIVE = 1

Pass any extra keyword parameters through to the SetProperty

7

; method.
IF (N_ELEMENTS (_extra) GT 0) THEN $
self->ExampleVis: :SetProperty, _EXTRA = _extra

; Return success
RETURN, 1

END
Discussion

The Examplevis classisbased on the IDLitVisualization class (discussed in
“Subclassing from the IDLitVisualization Class’ on page 121). Asaresult, al of the
standard features of an iTool visualization class are already present. We don’t define
any keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword val ues through to methods called
within the Init method. The Examplevis Init method does the following things:

1. Cadlsthe Init method of the superclass, IDLitVisualization. We use the
REGISTER_PROPERTIES keyword to ensure that all registrable properties of
the superclass are exposed in the ExampleVis object’s property sheet. We also

iTool Developer's Guide Creating a New Visualization Type

130 Chapter 6: Creating a Visualization

set the visualization type to be an “ ExampleVis,” provide aName for the object
instance, and provide an icon. Finally, we use the EXTRA keyword
inheritance mechanism to pass through any keywords provided when the
ExampleVis Init method is called.

2. Registersan input parameter called Y that must be a vector. The OPTARGET
keyword specifiesthat the Y parameter can be the target for iTool operations.

3. Createsaplotting symbol created from the IDLitSymbol class and aggregate
its properties with the other ExampleVis properties.

4. Createsan IDLitGrP ot object that usesthe IDLitSymbol object for its plotting
symbols.

5. Registers an example property that holds a string value.
6. Passesany “extra’ keyword properties through to the SetProperty method.
7. Returnstheinteger 1, indicating successful initialization.

Creating a Cleanup Method
The visualization class Cleanup method handles any cleanup required by the

visualization object, and should do the following:

« destroy any objects created by the visualization that were not added to the
graphics hierarchy with acall to the Add method

e call the superclass' Cleanup method

Calling the superclass cleanup method will destroy any objects that were added to
the graphics hierarchy.

See “IDLitVisualization::Cleanup” (IDL Reference Guide) for additiona details.
Example Cleanup Method

The following example code shows avery simple Cleanup method for the
ExampleVis Visualization type:

PRO ExampleVis: :Cleanup

; Clean up the IDLitSymbol object we created.
OBJ_DESTROY, self._oSymbol

; Call superclass Cleanup method
self->IDLitVisualization: :Cleanup

END

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 131

Discussion

The Cleanup method first destroysthe IDLitSymbol object, which is not part of the
graphics hierarchy, then calls the superclass Cleanup method to destroy the objectsin
the graphics hierarchy.

Creating a GetProperty Method

The visualization class GetProperty method retrieves property values from the
visualization object instance or from instance data of other associated objects. The
method can retrieve the requested property value from the visualization object’s
instance data or by calling another class' GetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

See “IDLitVisualization::GetProperty” (IDL Reference Guide) for additional details.
Example GetProperty Method

The following example code shows avery simple GetProperty method for the
ExampleVis Visualization type:

PRO ExampleVis::GetProperty, $
EXAMPLEPROPERTY = exampleProperty, $
_REF_EXTRA = _extra

IF ARG_PRESENT (exampleProperty) THEN BEGIN
exampleProperty = self._exampleproperty
ENDIF

; get superclass properties
IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitVisualization: :GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance
mechanism allows propertiesto be retrieved from the ExampleVis class superclasses
without knowing the names of the properties.

iTool Developer's Guide Creating a New Visualization Type

132 Chapter 6: Creating a Visualization

Using the ARG_PRESENT function, the method checks for the presence of
keywords in the call to the GetProperty method. If a keyword is detected, it retrieves
the value of the associated property from the object’s instance data. In this example,
only one property (ExampleProperty) is specific to the Examplevis object.

Finally, the method calls the superclass GetProperty method, passing in al of the
keywords stored in the _extra structure.

Creating a SetProperty Method

The visualization class SetProperty method stores property valuesin the visualization
object’s instance data or in properties of associated objects. It sets the specified
property value either by storing the value directly in the visualization object’s
instance data or by calling another class' SetProperty method.

Note
Any property registered with a call to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the visualization class or one of its
superclasses.

See “IDLitVisualization::SetProperty” (IDL Reference Guide) for additional details.
Example SetProperty Method
The following example code shows a very simple SetProperty method for the

ExampleVis Visualization type:

PRO ExampleVis::SetProperty, $
EXAMPLEPROPERTY = exampleProperty, $
_REF_EXTRA = _extra

IF (N_ELEMENTS (exampleProperty) GT 0) THEN BEGIN
self._exampleProperty = exampleProperty
ENDIF

IF (N_ELEMENTS(_extra) GT 0) THEN $
self->IDLitVisualization: :SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. The keyword inheritance
mechanism allows properties to be set on the Examplevis class superclasses
without knowing the names of the properties.

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 133

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If avalueisdetected, we set the val ue of the associated property. In
this example, only one property (ExampleProperty) is specific to the Examplevis
object. We set the value of the ExampleProperty directly in the Examplevis object’'s
instance data.

Finally, we call the superclass’ SetProperty method, passing in all of the keywords
stored in the _extra structure.

Creating an OnDataChangeUpdate Method

The visualization class OnDataChangeUpdate method takes care of updating the
visualization when one or more of the data parameters used to create the visualization
change their values. The tasks this method must perform are dependent on the type of
visualization involved and the data parameter that changes. The general ideais that
when the value of adata object changes, the OnDataChangeUpdate method for each
visualization that uses that datais called. The OnDataChangeUpdate method then
uses the GetData method to retrieve the changed data from the IDLitData object,
inspects the data and manipulatesit as necessary, and uses the SetProperty method to
insert the new data values into the visualization object.

See “IDLitParameter::OnDataChangeUpdate” (IDL Reference Guide) and “Data
Update Mechanism” on page 65 for additional details.

Example OnDataChangeUpdate Method

The following example code shows avery simple OnDataChangeUpdate method for
the ExampleVvis visualization type:

PRO ExampleVis::OnDataChangeUpdate, oSubject, parmName
CASE STRUPCAGSE (parmName) OF

'<PARAMETER SET>': BEGIN

oParams = oSubject->Get (/ALL, COUNT = nParam, $
NAME = paramNames)

FOR i = 0, nParam-1 DO BEGIN
IF (paramNames[i] EQ '') THEN CONTINUE

oData = oSubject->GetByName (paramNames[i])
IF (OBJ_VALID(oData)) THEN $
self->OnDataChangeUpdate, oData, paramNames/[i]
ENDFOR
END
'Y': BEGIN
success = oSubject->GetData(data)
nData = N_ELEMENTS (data)

iTool Developer's Guide Creating a New Visualization Type

134 Chapter 6: Creating a Visualization

IF (nData GT 0) THEN BEGIN
; Set the min/max values.
minn = MIN(data, MAX = maxx)
self._oPlot->SetProperty, DATAY = TEMPORARY (data), $
MIN_VALUE = minn, MAX VALUE = maxx
ENDIF
END
ELSE: self->ErrorMessage, 'Unknown parameter'
ENDCASE

END
Discussion

The OnDataChangeU pdate method must accept two arguments: an object reference
to the data object whose data has changed (osubject in the previous example), and
a string containing the name of the parameter associated with the data object
(parmName in the example).

Note
Thestring <PARAMETER SET> isaspecial casevaluefor the second argument, used
to indicate that the object reference is not a single data object but a parameter set.
Calling OnDataChangeUpdate with a parameter set rather than a dataitem provides
asimple way to update a group of data values with a single statement; this can be
very useful when creating the visualization for the first time.

We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the special case where the parameter
has the value <PARAMETER SET> by looping through all of the parametersin the
parameter set object, calling the OnDataChangeU pdate method again on each
parameter.

Next, we handle the parameter (v) by calling the IDLitData:: GetData method on the
data object reference stored in the osubject argument. We usethe N_ELEMENTS
function to determine whether any data was returned. If data was returned, we
determine the minimum and maximum values. Finally, we use the SetProperty
method to insert the changed data (using the TEMPORARY function to avoid making
acopy of the data) into the DATAY property of the IDLitVisPlot object stored in the
visualization’s _oP1lot class structure field. Similarly, we insert the new minimum
and maximum values into the MIN_VALUE and MAX_VALUE properties of the
IDLitVisPlot object.

Creating a New Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 135

Creating an OnDataDisconnect Method

The visualization class OnDataDisconnect method is called automatically when a
datavalue has been disconnected from aparameter. A visualization class based on the
IDLitVisualization class must implement this method in order for changes or
additions to the data parameters to be updated automatically in the resulting
visualizations. The genera ideaisthat when adataitem is disassociated from a
visualization parameter, one or more properties of the visualization may need to be
reset to reasonable default values. For example, in the case of a plot visualization, if
the plotted data is disconnected, we want to reset the data ranges to their default
values and hide the plot visualization.

See “IDLitParameter::OnDataDisconnect” (IDL Reference Guide) for additional
details.

Example OnDataDisconnect Method
PRO ExampleVis::OnDataDisconnect, ParmName

CASE ParmName OF
'Y': BEGIN
self. _oPlot->SetProperty, DATAX = [0,1], DATAY = [0,1]
self._oPlot->SetProperty, /HIDE
END

ELSE:
ENDCASE

END
Discussion

The OnDataDisconnect method takes a single argument, which contains the upper-
case name of the parameter that was disconnected. In the case of our ExampleVis
visualization, we only need to handle the Y parameter. If the Y parameter is
disconnected, we set the data ranges of the plot object to their default values (the
range between 0 and 1), and hide the plot visualization using the HIDE property.

iTool Developer's Guide Creating a New Visualization Type

136 Chapter 6: Creating a Visualization

Registering a Visualization Type

Before avisualization of a given type can be created by an iTool, the visualization
type's class definition must be registered as being available to the i Tool. Registering a
visualization type with the iTool links the class definition file containing the actual
IDL code that defines the visualization type with a simple string that names the type.
Code that creates a visualization in an iTool uses the name string to specify which
type of visualization should be created. In addition, some operations and

mani pul ators will operate only on specific visualization types; these limits are also
specified using the name string.

Using IDLitTool::RegisterVisualization

In most cases, you will register a visualization type with the iTool in the iTool’s class
Init method. Registration ensures that the visualization type is available when the
iTool attempts to create a visualization. (See “ Creating a New i Tool Class’ on

page 91 for details on the iTool class Init method.)

To register avisualization, call the IDLitTool::RegisterVisualization method:

self->RegisterVisualization, Visualization_Type, $
VisType Class_Name

where Visualization_Type isthe string you will use when referring to the visualization
type, and VisType Class Nameisastring that specifies the name of the classfile that
contains the visualization type’s definition.

Note
Thefile visType Class Name_ _define.pro must exist somewherein IDL’s

path for the visualization type to be successfully registered.

See“IDLitTool::RegisterVisualization” (IDL Reference Guide) for details.
Specifying Useful Properties

You can set any property of the IDLitVisualization and IDLitComponent classes
when registering a visualization. The following properties may be of particular
interest:

ICON

A string value giving the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file to be used when displaying the object in a

Registering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 137
tree view. See “Icon Bitmaps’ on page 44 for details on where bitmap icon files are
located.

TYPE

A string or an array of strings indicating the types of data that can be displayed by the
visualization. iTools data types are described in Chapter 3, “ Data Management”. Set
this property to anull string (* ') to specify that all types of data can be displayed.

iTool Developer's Guide Registering a Visualization Type

138 Chapter 6: Creating a Visualization

Unregistering a Visualization Type

If you are creating anew iTool from an existing i Tool class, you may want to remove
avisualization type registered with the existing class from your new tool. This can be
useful if you have an iTool class that implementsall of the functionality you need, but
which registers a visualization type you don’t want included in your iTool. Rather
than recreating the iTool classto remove the visualization type, you could create your
new iTool classin such away that it inherits from the existing i Tool class, but
unregisters the unwanted visualization.

Unregister avisualization type by calling the IDLitTool::UnregisterVisualization
method in the Init method of your iTool class:

self->UnregisterVisualization, identifier
where identifier isthe string name used when registering the visualization.

For example, suppose you are creating a new iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitToolSurface class. If you wanted your
new tool to behave just like the iSurface tool, with the exception that it would not
handle 2D plot visualizations, you could include the following method call in your
iTool’s Init method:

self->UnregisterVisualization, 'Plot'
Finding the Identifier String

To find the string used as the identifier parameter to the UnregisterVisualization
method, you can inspect the classfile that registers the visualization (if the
visualization is registered by a user-created class), or use the Findl dentifiers method
of the IDLitTool object to generate alist of registered visualizations. (Standard i Tool
visualization types are pre-registered within the iTool framework.)

If the visualization is registered in a user-created class, you could inspect the class
definition file to find a call to the RegisterVisualization method, which looks
something like this:

self->RegisterVisualization, 'Plot', 'IDLitVisPlot', $
ICON = 'plot'

The first argument to the RegisterVisualization method (' p1ot ') isthe string name
of the visualization type.

Alternatively, to generate alist of relative identifiers for all visualizations registered
with the current tool, use the following statements:

void = IGETCURRENT (TOOL=0Tool)

Unregistering a Visualization Type iTool Developer’s Guide

Chapter 6: Creating a Visualization 139

vislist = oTool->FindIdentifiers('*/visualizations/*"')
FOR i1 = 0, N_ELEMENTS (vislist)-1 DO PRINT, $
STRMID(vislist[i], STRPOS(vislist[i], '/', /REVERSE_SEARCH)+1)

See“IDLitTool::Findldentifiers’ (IDL Reference Guide) for details.

iTool Developer's Guide Unregistering a Visualization Type

140 Chapter 6: Creating a Visualization

Example: Image-Contour Visualization

This example creates a visualization type named examplel_visImageContour
that displays an image and overlaysit with a contour based on the image data.

Example Code
The code for this example visualization type isincluded in the file
examplel_visimagecontour__ define.prointhe examples/doc/itools
subdirectory of the IDL distribution. Run the example procedure by entering
examplel_visimagecontour__define at the IDL command prompt or view
thefilein an IDL Editor window by entering . EDIT
examplel_visimagecontour__define.pro.

Class Definition File

The class definition for examplel_ visImageContour consists of an Init method,
an OnDataChangeUpdate method, and a class structure definition routine. Other
important methods — Cleanup, GetProperty, and SetProperty — are handled by the
superclass (IDLitVisualization).

Aswith al object class definition files, the class structure definition routine is the last
routine in the file, and the file is given the same name as the class definition routine
(with the suffix .pro appended).

Class Definition

PRO examplel_visImageContour_ _define

struct = { examplel_visImageContour, $
inherits IDLitVisualization, $
_oContour: OBJ_NEW(), $

_oImage: OBJ_NEW() $
}
END

Discussion

Our class definition routine creates an IDL structure variable with the name
examplel_visTImageContour, Specifying that the structure inherits from the
IDLitVisualization class. The structure has two instance data fields named
_oContour and _oImage, which will contain object referencesto the
IDLitVislmage and IDLitVisContour objects that make up the
examplel_vislmageContour visualization.

Example: Image-Contour Visualization iTool Developer’s Guide

javascript:doIDL("example1_visimagecontour__define")
javascript:doIDL(".edit example1_visimagecontour__define.pro")
javascript:doIDL(".edit example1_visimagecontour__define.pro")

Chapter 6: Creating a Visualization 141

Init Method
The Init method is called when the examplel _vislmageContour visuadization is
created.
FUNCTION examplel_visImageContour::Init, _REF_EXTRA = _extra

; Initialize the superclass

IF (~self->IDLitVisualization::Init($
NAME="'examplel_visImageContour', $
ICON = 'image', _EXTRA = _extra)) THEN RETURN, 0

; Register the parameters we are using for data
self->RegisterParameter, 'IMAGEPIXELS', $

DESCRIPTION = 'Image Data', /INPUT, $

TYPES = ['IDLIMAGEPIXELS', 'IDLARRAY2D'], /OPTARGET
self->RegisterParameter, 'PALETTE', $

DESCRIPTION = 'Palette', /INPUT, /OPTIONAL, $

TYPES = ['IDLPALETTE', 'IDLARRAY2D'], /OPTARGET

; Create objects and add to this Visualization
self._oImage = OBJ_NEW('IDLitVisImage', /PRIVATE)
self->Add, self._oImage, /AGGREGATE

self. oContour = OBJ_NEW('IDLitVisContour', /PRIVATE)
self->Add, self._oContour, /AGGREGATE

; Return success
RETURN, 1

END
Discussion

Thefirst itemin our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the classname examplel_visImageContour. Note
the use of the _REF_EXTRA keyword inheritance mechanism; this allows any
keywords specified in a call to the Init method to be passed through to routines that
are called within the Init method even if we do not know the names of those keywords
in advance.

First, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitVisuaization class; this provides us with all of the standard i Tool
visualization methods automatically. Any “extra’ keywords specified in the call to
our Init method are passed to the IDLitVisualization::Init method via the keyword
inheritance mechanism. If the call to the superclass Init method fails, we return
immediately with a value of 0.

iTool Developer's Guide Example: Image-Contour Visualization

142 Chapter 6: Creating a Visualization

We register two parameters used by our visuaization: IMAGEPIXELS and PALETTE.
Both parameters are input parameters (meaning they are used to create the
visualization), and both can be the target of an operation. The TMAGEPTXELS
parameter can contain data of two iTool datatypes: IDLIMAGEPIXELS Of
IDLARRAY2D. When data are assigned to the visualization’s parameter set, only data
that matches one of these two types can be assigned to the IMAGEPIXELS parameter.
Similarly, the PALETTE parameter can contain data of type IDLPALETTE Of
IDLARRAY2D.

Next, we create the two visualization components that make up the
examplel_vislmageContour visualization type: an IDLitVislmage object and an
IDLitVisContour object. Each object is created by a call to the OBJ NEW function;
the newly-created object reference is placed in afield of the
examplel_visimageContour object’s instance data structure. We set the PRIVATE
property to prevent the IDLitVisimage and IDLitVisContour objects from showing up
in the visualization browser as separate items. The new visualization objects are then
added to the examplel_visimageContour object using the Add method; the
AGGREGATE keyword specifies that the properties of each of the component
visualization objects will be displayed as properties of the
examplel_vislmageContour object itself.

Finally, we return 1, indicating a successful initialization.
OnDataChangeUpdate Method

The OnDataChangeU pdate method is called whenever the data associated with the
examplel_visimageContour visualization object changes. This may include the
initial creation of the visualization, if data parameters are specified in the call to the
iTool launch routine that creates the visualization.

PRO examplel_visImageContour::0nDataChangeUpdate, oSubject, $
parmName, _REF_EXTRA = _extra

; Branch based on the value of the parmName string.
CASE STRUPCASE (parmName) OF

; The method was called with a paramter set as the argument.
'<PARAMETER SET>': BEGIN
oParams = oSubject->Get (/ALL, COUNT = nParam, $
NAME = paramNames)
FOR 1 = 0, nParam-1 DO BEGIN
IF (paramNames[i] EQ '') THEN CONTINUE
oData = oSubject->GetByName (paramNames[i])
IF (OBJ_VALID(oData)) THEN $
self->OnDataChangeUpdate, oData, paramNames/[i]
ENDFOR

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 6: Creating a Visualization 143

END

; The method was called with an image array as the argument.
'IMAGEPIXELS': BEGIN
void = self._oImage->SetData(oSubject, $

PARAMETER_NAME = 'IMAGEPIXELS')
void = self._oContour->SetData (oSubject, $
PARAMETER_NAME = 'Z'")

; Make our contour appear at the top of the surface.
IF (oSubject->GetData (zdata)) THEN $

self._oContour->SetProperty, ZVALUE = MAX(zdata)
END

; The method was called with a palette as the argument.
'PALETTE' : BEGIN
void = self._oImage->SetData(oSubject, $

PARAMETER_NAME = 'PALETTE')

void = self._oContour->SetData (oSubject, $
PARAMETER_NAME = 'PALETTE')

END

ELSE: ; DO nothing

ENDCASE
END
Discussion

The OnDataChangeU pdate method accepts the two required arguments: an object
reference to the data object whose data has changed (osubject), and astring
containing the name of the parameter associated with the data object (parmName).

We use a CASE statement to determine which parameter has been modified, and
process the data as appropriate. We first handle the special case where the parameter
has the value <PARAMETER SET> by looping through all of the parametersin the
parameter set object, calling the OnDataChangeU pdate method again on each
parameter.

We handle the TMAGEPTXELS parameter by calling the IDLitParameter::SetData
method once on each of the two component visualizations, specifying that the input
data object osubject corresponds to the IMAGEPIXELS parameter of the
IDLitVislmage object, and to the z parameter of the IDLitVisContour object. We also
set the Z value of the IDLitVisContour object using the maximum data value of the
datacontained in osubject.

iTool Developer's Guide Example: Image-Contour Visualization

144 Chapter 6: Creating a Visualization

Finally, we handle the PALETTE parameter by calling the SetData method again, this
timeto set the PALETTE parameters of both the IDLitVisimage and IDLitVisContour
objects.

OnDataDisconnect Method

The OnDataDisconnect method is called automatically when a data value has been
disconnected from a parameter.

PRO examplel_visImageContour::0OnDataDisconnect, ParmName
CASE STRUPCAGSE (parmname) OF

'IMAGEPIXELS': BEGIN
self->SetProperty, DATA = 0
self._oImage->SetProperty, /HIDE
self._oContour->SetProperty, /HIDE

END

'PALETTE' : BEGIN
self._oImage->SetProperty, PALETTE = OBJ_NEW ()
self->SetPropertyAttribute, 'PALETTE', SENSITIVE = 0
END

ELSE: ; DO nothing
ENDCASE

END
Discussion

The OnDataDisconnect method takes a single argument, which contains the name of
the parameter that was disconnected. In the case of our

examplel visImageContour Visuaization, we handlethe IMAGEPIXELS and
PALETTE parameters. For the IMAGEPIXELS parameter, we set the DATA property
of the parameter to 0, and hide both the image and the contour visualizations. For the
PALETTE parameter, we set the PALETTE property of the image to anull object, and
desensitize the property in the property sheet display.

Example: Image-Contour Visualization iTool Developer’s Guide

Chapter 7

Creating an Operation

This chapter describes the process of creating an iTool operation.

Overview of Creating an iTool Operation
Predefined i Tool Operations
Operations and the Undo/Redo System . . .
Creating a New Data-Centric Operation . .
Creating aNew Generalized Operation . . .

iTool Developer’s Guide

. 146

148
150
152
165

Operationsand Macros. 181
Registering an Operation 182
Unregistering an Operation 184
Example: Data Resample Operation 186

145

146 Chapter 7: Creating an Operation

Overview of Creating an iTool Operation

An operation isan iTool component object class that can be used to modify selected
data, change the way avisualization is displayed in the iTool window, or otherwise
affect the state of the iTool. Some examples of iTool operations are:

e performing the IDL SMOOTH operation on selected data,
e rotating a selected visualization by a specified angle,
» displaying data statistics.

A number of standard operations are predefined and included in the IDL iTools
package; if none of the predefined operations suits your needs, you can create your
own operation by subclassing either from the base IDLitOperation class on which all
of the predefined operations are based, from the IDLitDataOperation class, or from
one of the predefined operations.

The Operation Creation Process

To create anew iTool operation, you will do the following:

* Choose aniTool operation class on which your new operation will be based. In
most cases, the operation will act on the data underlying a visualization; in
these cases, you will base your new operation on the IDLitDataOperation
class. If your operation will affect something other than data— the appearance
of visualizations in the i Tool window, or the value of some property — you
will base your new class on the IDLitOperation class. Both classes provide
support for the iTool undo/redo system, but operations that do not deal directly
with data require additional code to properly allow for undoing and redoing the
operations.

» Define the properties of the operation, and set default property values.

« If the new operation acts directly on data (that is, if it is based on the
IDLitDataOperation class), provide an Execute method that performs the
operation using the current property values. Similarly, if the new operationis
more general and is based on the IDLitOperation class, provide a DoAction
method.

e Optionally provide a DoExecuteUl method to display a user interface for
operations that act directly on data.

* For generalized operations, provide UndoOperation and RedoOperation
methods to undo and redo the operation. These methods may in turn require

Overview of Creating an iTool Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 147

that you provide methods to store values before and after the operation is
executed.

* Override methods used to get or set properties, react to changesin the
underlying data, and clean up, as necessary.

This chapter describes the process of creating new operations based on the
IDLitDataOperation and I DLitOperation classes.

iTool Developer's Guide Overview of Creating an iTool Operation

148 Chapter 7: Creating an Operation

Predefined iTool Operations

TheiTool system distributed with IDL includes a number of predefined operations.
You can include these operationsin an iTool directly by registering the class with
your iTool (as described in “Registering an Operation” on page 182). You can also
create a new operation class based on one of the predefined classes.

IDLitOpBytscl

Scales the values contained in atwo-dimensional array into the range of 0-255
Data Types Accepted
¢ IDLARRAY2D

IDLitOpConvolution

Displays a dialog that allows the user to choose convolution settings, then calls the
CONVOL function on the selected data using the specified parameters.

Data Types Accepted
* |IDLVECTOR, IDLARRAY 2D, IDLIMAGE

IDLitOpCurvefitting

Displaysadialog that allows the user to select a curve-fitting algorithm, then callsthe
appropriate IDL routine to perform the fit. The fitted curve is then created and
inserted into the visualization as anew plot line.

Data Types Accepted
e IDLVECTOR

IDLitOpSmooth

Calls the SMOOTH function on the selected data. The smoothing window parameter
can be set by the user via the property sheet interface of the Operations browser.

Data Types Accepted
* IDLVECTOR, IDLARRAY 2D

Predefined iTool Operations iTool Developer’s Guide

Chapter 7: Creating an Operation 149

Note
There are many additional operations (named with the prefix “idlitop”) in the
lib\itools\components subdirectory of your IDL installation.

iTool Developer's Guide Predefined iTool Operations

150

Chapter 7: Creating an Operation

Operations and the Undo/Redo System

The iTools system provides users with the ability to interactively undo and redo
actions performed on visualizations or dataitems. As an iTool developer, you will
need to provide some code to support the undo/redo feature; the amount of code
required depends largely on the type of operation your operation class performs. The
main dividing lineis between data-centric operations that act directly on the data that
underlies avisualization, and operationsthat act in a more generalized way, changing
some value that may not be directly related to adataitem. In most cases, operations
that act directly on data are based on the IDLitDataOperation class, whereas
operations that are more generalized are based on the IDLitOperation class.

Data-Centric Operations

Undo/redo functionality is handled automatically for data-centric operations based on
the IDLitDataOperation class. The following things happen when the user requests an
operation:

For each selected item, data that matches the type supported by the operationis
extracted and passed to the operation’s Execute method. The Execute method
modifies the datain place. When the data changes, all visualizations that
observe the dataitem are notified, and update accordingly.

If the user undoes the operation, the original data values are restored. By
default, the original values are cached before the Execute method is called, and
undoing the operation simply retrieves the data values from the cache. If the
REVERSIBLE_OPERATION property of the IDLitDataOperation object is
set, however, the original values are not cached, and the UndoExecute method
is called when the user undoes the operation. The UndoExecute method must
exist and must reverse the action performed by the Execute method, restoring
the dataitemsto their original values. Usingthe REVERSIBLE OPERATION
property allows you to avoid caching the data set (which may be large) when
the operation performed on the datais easily reversed by computation.

If the user redoes the operation, the data values computed by the Execute
method are restored. By default, the Execute method is simply called again. If
the EXPENSIVE_COMPUTATION property of the IDLitDataOperation
object is set, however, the computed values are cached after the Execute
method is called, and redoing the operation simply restores the cached data
values. Using the EXPENSIVE_COMPUTATION property alows you to
avoid having to recompute acomputationally-intensive operation each timethe
user undoes and then redoes the operation.

Operations and the Undo/Redo System iTool Developer’s Guide

Chapter 7: Creating an Operation 151

Generalized Operations

To provide undo/redo functionality, generalized operations (those based on the
IDLitOperation class) must provide methodsthat record theinitial and final values of
the item being modified, along with methods that use the recorded values to undo or
redo the operation. The following things happen when the user requests an operation:

e The DoAction method creates an IDLitCommandSet object to hold the initial
and final values.

e The RecordInitial Values method records the original values of the specified
target objects. Values are stored as dataitems in IDLitCommand objects,
which arein turn stored in the IDLitCommandSet object.

* The RecordFinalValues method retrieves the IDLitCommand objects created
by the RecordInitial Values method from the IDLitCommandSet object, and
records the new values of the target objects as additiona itemsin those
IDLitCommand objects.

« If the user undoes the operation, the UndoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the values.

« If the user redoes the operation, the RedoOperation method retrieves the
IDLitCommand objects from the IDLitCommandSet object, selects the
relevant data items from each, and restores the values.

iTool Developer's Guide Operations and the Undo/Redo System

152 Chapter 7: Creating an Operation

Creating a New Data-Centric Operation

iTool operationsthat act primarily on data are based on the IDLitDataOperation class.
The class definition file for an IDLitDataOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, and define the operation class structure. Complex operations will likely
provide additional methods.

How an IDLitDataOperation Works

When an IDLitDataOperation is requested by a user, the following things occur:

1. Aswith any operation, execution commences when the DoAction method is
called. When called, the IDLitDataOperation retrieves the currently-selected
items. If nothing is selected, the operation returns.

2. For each selected item, the data objects of the parameters registered as
“operation targets’ are retrieved.

3. Thedataobjectsare queried for i Tool datatypesthat match the types supported
by the IDLitDataOperation.

For each data object that includes data of an iTool data type supported by the
IDLitDataOperation, the following things occur:

1. Thedatafrom the data object is retrieved.

2. If the IDLitDataOperation does not have the REVERSIBLE_OPERATION
property set, a copy of the datais created and placed into the undo-redo
command set.

The Execute method is called, with the retrieved data as its argument.

If the Execute method succeeds and the IDLitDataOperation has the
EXPENSIVE_COMPUTATION property set, a copy of theresultsis placed
into the undo-redo command set.

5. Theresult of the IDLitDataOperation is placed in the data object. This action
will cause all visualization items that use the data object to update when the
operation is completed.

Once al selected data items have been processed, the undo-redo command set is
placed into the system undo-redo buffer for later use.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 153

Creating an IDLitDataOperation

The process of creating an IDLitDataOperation is outlined in the following sections:
e “Creating the Class Structure Definition” on page 153
e “Creating an Init Method” on page 154
e “Creating a Cleanup Method” on page 158
* “Creating an Execute Method” on page 159
e “Creating a DoExecuteUl Method” on page 160
e “Creating a GetProperty Method” on page 161
e “Creating a SetProperty Method” on page 162
e “Creating an UndoExecute Method” on page 164

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
datatypes of those fields. The abject class structure must be defined before any
objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named objectClass__define (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ (Chapter 13, Object Programming).

Note
The class structure definition is generally the last routinein the . pro file that
defines an object class.

Subclassing from the IDLitDataOperation Class

The IDLitDataOperation class simplifies the creation of operations that act only on
data (as opposed to acting on the visual representation of that data) by providing
methods that automate much of the process of execution and storing undo/redo data.
If your operation class modifies data, you will almost certainly subclass from
IDLitDataOperation, or from another operation that subclasses from
IDLitDataOperation. See“|DLitDataOperation” (IDL Reference Guide) for detailson

iTool Developer's Guide Creating a New Data-Centric Operation

154 Chapter 7: Creating an Operation

the methods and properties available to classes that subclass from
IDLitDataOperation.

Example Class Structure Definition

The following is the class structure definition for the Examp1ebataOp operation
class. This procedure should be the last procedure in afile named
exampledataop__define.pro.

PRO ExampleDataOp__ Define

struct = { ExampleDataOp, S
INHERITS IDLitDataOperation, $
_byteTop: 0B S
}
END
Discussion

The purpose of the structure definition routine isto define a named IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case,
ExampleDataOp.

Like many iTool operationsthat act on data, ExampleDataOp iscreated asasubclass
of the IDLitDataOperation class. Operation classes that subclass from
IDLitDataOperation classinherit methods and properties that make it easy to perform
operations that affect datain an iTool.

The ExampleDataOp Operation class instance data includes a single property; a byte
value that is stored in the _byteTop class structure field.

Note
This example isintended to demonstrate how simpleit can be to create a new
operation class definition. While the class definition for an operation class with
significant extra functionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same.

Creating an Init Method

The operation class Init method handles any initialization required by the operation
object, and should do the following:

» define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 155

« call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

* register any properties of the operation, and set property attributes as necessary
o perform other initialization steps as necessary

e returnthevaue 1if theinitialization steps are successful, or O otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool operations are invoked by the user’s interactive choice of an item
from amenu, they generally do not accept any keywords of their own.

The function signature of an Init method for an operation generally looks something
likethis:

FUNCTION MyOperation::Init, _REF_EXTRA = _extra

where MyOperation is the name of your operation class.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation classis based on an existing operation, you
would call that operation’s Init method:

success = self->SomeOperationClass::Init (_EXTRA = _extra)

where SomeOperationClassis the class definition file for the operation on which
your new operation is based. The variable success containsa 1 if the initialization
was successful.

iTool Developer's Guide Creating a New Data-Centric Operation

156

Chapter 7: Creating an Operation

Note
Your operation class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self->SomeOperationClass::Init (_EXTRA = _extra) EQ 0) THEN $
RETURN, O

This convention isused in all operation classes included with IDL. We strongly
suggest that you include similar checksin your own class definition files.

Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are
available to any operation class. See “IDLitOperation Properties’ and
“IDLitComponent Properties’ (IDL Reference Guide).

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, data-centric operation classes you create will be subclassed directly from
the base class IDLitDataOperation:

IF (self->IDLitDataOperation::Init(_EXTRA = _extra) EQ 0) $
THEN RETURN, O

The IDLitDataOperation class provides the base i Tool functionality used in the data-
centric operation classes created by ITT Visua Information Solutions. See
“Subclassing from the IDLitDataOperation Class’ on page 153 for details.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 157

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with the iTool. Registered properties show up in
the property sheet interface, and can be modified interactively by users. TheiTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:
self->RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]
where Propertyldentifier is a string that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 74 for details.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self->SetPropertyAttribute, Identifier

where Identifier isthe name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 78 for additional details.

Example Init Method

Thefollowing example code shows avery simple Init method for an operation named
ExampleDataOp. Thisfunction would be included (along with the class structure
definition routine and any other methods defined by the class) in afile named
exampledataop__ define.pro.

FUNCTION ExampleDataOp::Init, _REF_EXTRA = _extra

; Initialize the superclass.
IF (self->IDLitDataOperation: :Init (TYPES=['IDLIMAGE'], $

iTool Developer's Guide Creating a New Data-Centric Operation

158 Chapter 7: Creating an Operation

NAME="'Example Data Operation', ICON='sum',6 $
_EXTRA = _extra) NE 1) THEN $
RETURN, O

; Register a property that holds a byte value.

self->RegisterProperty, 'ByteTop', $
DESCRIPTION='An example property', $
NAME='Byte Threshold', SENSITIVE = 1

; Unhide the SHOW_EXECUTION_UI property.
self->SetPropertyAttribute, 'SHOW_EXECUTION_UI', HIDE=0

; Return success
RETURN, 1

END
Discussion

The ExampleDataOp classis based on the IDLitDataOperation class (discussed in
“Subclassing from the IDLitDataOperation Class’ on page 153). Asaresult, al of
the standard features of an iTool data operation are aready present. We don’t define
any keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword val ues through to methods called
within the Init method. The Examplebataop Init method does the following things:

1. Cadlsthe Init method of the superclass, IDLitDataOperation. We use the
TY PES keyword to specify that our operation works on data that has the i Tool
datatype ' IDLIMAGE', provide aname for the object instance, and provide an
icon. Finally, we use the _EXTRA keyword inheritance mechanism to pass
through any keywords provided when the Examp1eData0p Init method is
caled.

2. Registers a property that holds a byte value.
3. Returnstheinteger 1, indicating successful initialization.

Creating a Cleanup Method
The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:
» destroy any pointers or objects created by the operation

o call the superclass' Cleanup method

Calling the superclass cleanup method will destroy any objects created when the
superclass was initialized.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 159

Note
If your operation classis based on the IDLitDataOperation class, and does not
create any pointers or objects of its own, the Cleanup method is not strictly
required. It is always safest, however, to create a Cleanup method that calls the
superclass’ Cleanup method.

See “IDLitDataOperation::Cleanup” (IDL Reference Guide) for additional details.
Example Cleanup Method

The following example code shows avery simple Cleanup method for the
ExampleDataOp Operation:

PRO ExampleDataOp: :Cleanup

; Clean up superclass
self->IDLitDataOperation: :Cleanup

END
Discussion

Since our operation’sinstance data does not include any pointers or object references,
the Cleanup method simply calls the superclass Cleanup method.

Creating an Execute Method

The operation class Execute method does the computational work of a data-centric
operation; it is called automatically when the iTool user requests an operation based
on the IDLitDataOperation class. The Execute method must accept a single argument
that contains the raw data associated with an item selected by the user.

The fact that the raw datais passed to the execute method means that the Execute
method itself does not need to “unpack” a data object before performing the
operations, allowing rapid and simple operation execution. For example, if the
operation expects data of the iTools data type TDL.ARRAY2D, the iTool system will
include the selected two-dimensional array as the Data argument.

The actual processing performed by the Execute method depends entirely on the
operation.

Example Execute Method

The following example code shows a simple Execute method for the
ExampleDataOp operation, which will invert the values of the supplied data. Since

iTool Developer's Guide Creating a New Data-Centric Operation

160 Chapter 7: Creating an Operation

our ExampleDataOp operation works on image data, this means the operation hasthe
effect of producing the negative image.

FUNCTION ExampleDataOp::Execute, data

; If byte data then offsets are 0 and 255, otherwise
; use data minimum and maximum.

offsetMax = (SIZE(data, /TYPE) eq 1) ? 255b : MAX(data)
offsetMin = (SIZE(data, /TYPE) eg 1) ? Ob : MIN(data)
data = offsetMax - TEMPORARY (data) + offsetMin
RETURN, 1
END
Discussion

When our ExampleDataOp operation isinvoked by a user, the iTool system
automatically checksto see which items are selected in the visualization window. For
each selection, theiTool system extracts any data of type IDLIMAGE and passes that
datato the Execute method as an IDL array. Our Execute method then finds the
minimum and maximum values, and inverts the data val ues.

Creating a DoExecuteUl Method

Suppose we want to collect some information from the user before executing our
operation. If the operation class sets the SHOW_EXECUTION_UI property, the
iTool system will call the DoExecuteUl method before calling the Execute method.
The DoExecuteUl method is responsible for displaying a user interface that collects
the appropriate information and storing that information in properties of the operation
object.

Note
iTools provided with IDL that need to collect user input in this manner use the
Ul service mechanism, described in Chapter 11, “iTool User Interface
Architecture”. Whileit is possible for the DoExecuteUl method to perform all the
necessary functions directly, using a Ul serviceisthe preferred method.

Two predefined user interface services are provided for usein DoExecuteUl methods:

e The PropertySheet Ul service displays the operation’s property sheet before
execution.

» For operations that return a two-dimensional array, the Operation Preview Ul
service displays the operation’s property sheet and a small window that
previews the result of the operation.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 161

See “Predefined iTool Ul Services” on page 297 for additiona details.
Example DoExecuteUl Method

The following example code shows a simple DoExecuteUl method for the
ExampleDataOp operation. This method relies on a Ul service named
'ExampleDataOp' being registered with the current iTool.

FUNCTION ExampleDataOp: :DoExecuteUI

oTool = self->GetTool ()
IF (oTool EQ OBJ_NEW()) THEN RETURN, O

RETURN, oTool->DoUIService('ExampleDataOp', self)

END
Discussion

If the SHOW_EXECUTION_UI property is set on our ExampleDataOp operation
object, the DoExecuteUl method is called automatically when the user invokes the
operation. This method does the following:

1. Retrieve areferenceto the current iTool object using the GetTool method of
the IDLitIMessaging class. (IDLitIMessaging is a superclass of
IDLitOperation, and thus of IDLitDataOperation.)

2. If theretrieved iTool object referenceisanull object reference, no data about
the current tool is available, so we return immediately without calling the Ul
service.

3. Call the ExampleDataOp Ul service. Since our ExampleDataOp operation has
only one property of its own (ByteTop), the ExampleDataOp Ul presumably
allows the user to set this value. See Chapter 13, “Creating a User Interface
Service” for discussion of Ul services.

Creating a GetProperty Method
The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the

requested property value, either from the operation object’s instance data or by
calling another class GetProperty method.

iTool Developer's Guide Creating a New Data-Centric Operation

162 Chapter 7: Creating an Operation

Note
Any property registered with a call to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the operation class or one of its
superclasses.

See “IDLitDataOperation::GetProperty” (IDL Reference Guide) for additional
details.

Example GetProperty Method

The following example code shows a very simple GetProperty method for the
ExampleDataOp Operation:

PRO ExampleDataOp::GetProperty, $
BYTETOP = byteTop, _REF_EXTRA = _extra

IF ARG_PRESENT (byteTop) THEN BEGIN
byteTop = self._byteTop
ENDIF

; get superclass properties
IF (N_ELEMENTS(_extra) GT 0) THEN $
self->IDLitDataOperation: :GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywordsit will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows properties to be retrieved from the ExampleDataop class
superclasses without knowing the names of the properties.

Using the ARG_PRESENT function, we check for the presence of keywordsin the
call to the GetProperty method. If a keyword is detected, we retrieve the value of the
associated property. In this example, only one property (ByteTop) is specific to the
ExampleDataOp object. We retrieve the value of the ByteTop property directly from
the ExampleDataOp Object’s instance data.

Finally, we call the superclass’ GetProperty method, passing in all of the keywords
stored in the _extra structure.

Creating a SetProperty Method

The operation class SetProperty method stores property valuesin the operation
object’sinstance data or in properties of associated objects. It should set the specified

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 163

property value, either by storing the value directly in the operation object’s instance
dataor by calling another class’ SetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as

akeyword to the SetProperty method either of the operation class or one of its
superclasses.

See “|IDLitDataOperation::SetProperty” (IDL Reference Guide) for additional details.
Example SetProperty Method

The following example code shows avery simple SetProperty method for the
ExampleDataOp Operation:

PRO ExampleDataOp::SetProperty, BYTETOP = byteTop, $
_REF_EXTRA = _extra

If (N_ELEMENTS (byteTop) GT 0) THEN BEGIN
self._byteTop = byteTop
ENDIF

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitDataOperation: :SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism
alows properties to be set on the ExampleDataOp class superclasses without
knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether a value was specified
for each keyword. If avalueisdetected, we set the value of the associated property. In
this example, only one property (ByteTop) is specific to the ExampleDataop object.
We set the value of the ExampleProperty directly in the ExampleDataOp object’s
instance data.

Finally, we call the superclass’ SetProperty method, passing in all of the keywords
stored in the _extra structure.

iTool Developer's Guide Creating a New Data-Centric Operation

164 Chapter 7: Creating an Operation

Creating an UndoExecute Method

The operation class' UndoExecute method is called when the user undoes an
invocation of the operation and the REVERSIBLE_OPERATION property is set on
the operation object. (See “Operations and the Undo/Redo System” on page 150 for
details on how undo and redo are handled in different situations.) The UndoExecute
method must reverse the effect of the Execute method.

The actual processing performed by the UndoExecute method depends entirely on the
operation.

Example UndoExecute Method

The following example code shows a simple UndoExecute method for the
ExampleDataOp operation, which reverses the operation of the Execute method.

FUNCTION ExampleDataOp::UndoExecute, data

; If byte data then offsets are 0 and 255, otherwise
; use data minimum and maximum.

offsetMax = (SIZE(data, /TYPE) eqg 1) ? 255b : MAX(data)
offsetMin = (SIZE(data, /TYPE) eg 1) ? 0b : MIN(data)
data = offsetMax - TEMPORARY (data) + offsetMin
RETURN, 1
END
Discussion

When the user undoes an invocation of our ExampleDataOp operation, the iTool
system supplies the data that were computed by the Execute method when the
operation was invoked. Our UndoExecute method then reverses the original
operation.

Creating a New Data-Centric Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 165

Creating a New Generalized Operation

Generalized operations are iTool operationsthat are not limited to acting on data that
underlies a visualization. Generalized operations are based on the IDLitOperation
class. The class definition file for an IDLitOperation object must (at the least) provide
methods to initialize the operation class, get and set property values, execute the
operation, undo and redo the operation, and define the operation class structure.
Complex operations will likely provide additional methods.

How an IDLitOperation Works

When an IDLitOperation is requested by a user, the operation’s DoA ction method
(which must be provided by the operation class' developer) is called. The DoAction
method is responsible for doing the following:

1. Retrieving the currently selected items and determining which items the
operation should be applied to.

Creating an IDLitCommandSet object to contain undo/redo information.

3. Recording the initial values of the selected abjects in the IDLitCommandSet
object, if necessary.

4. Performing the actions associated with the operation.

Recording the final values of the selected objects in the IDLitCommandSet
object, if necessary.

6. Returning the IDLitCommandSet object.
Creating an IDLitOperation

The process of creating an IDLitDataOperation is outlined in the following sections:
e “Creating the Class Structure Definition” on page 166
e “Creating an Init Method” on page 167
e “Creating a Cleanup Method” on page 171
e “Creating aDoAction Method” on page 172
¢ “Creating aRecordinitial Values Method” on page 174
e “Creating a RecordFinal Values Method” on page 175
e “Creating a GetProperty Method” on page 176

iTool Developer's Guide Creating a New Generalized Operation

166 Chapter 7: Creating an Operation

e “Creating a SetProperty Method” on page 177
e “Creating an UndoOperation Method” on page 178
e “Creating a RedoOperation Method” on page 179

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the abject, along with the
datatypes of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named objectClass__define (where ObjectClassisthe name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle” (Chapter 13, Object Programming).

Note
The class structure definition is generally the last routinein the . pro file that
defines an object class.

Subclassing from the IDLitOperation Class

The IDLitOperation classisthe base classfor al iTool operations. In aimost all cases,
new operations will be subclassed either from the IDLitOperation class or from a
classthat is a subclass of IDLitOperation.

Note
If your operation acts directly on data, rather than affecting the visual appearance of
objectsin theiTool, you may be able to subclass from IDLitDataContainer. See
“Creating aNew Data-Centric Operation” on page 152 for details.

See “IDLitOperation” (IDL Reference Guide) for details on the methods and
properties available to classes that subclass from IDLitOperation.

Example Class Structure Definition

The following is the class structure definition for the Examp1eOp operation class.
This procedure should be the last procedure in afile named
exampleop__ define.pro.

PRO ExampleOp__ Define

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 167

struct = { ExampleOp, INHERITS IDLitOperation}

END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the operation object instance data. The structure
name should be the same as the operation’s class name — in this case, Examp1eOp.

Like many iTool operations that act on data, Examp1eOp is created as a subclass of
the IDLitOperation class. The ExampleOp Operation class does not include any
instance data of its own.

Note
This example isintended to demonstrate how simpleit can be to create a new
operation class definition. While the class definition for an operation class with
significant extra functionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same.

Creating an Init Method
The operation class Init method handles any initialization required by the operation
object, and should do the following:

» define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

« call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

* register any properties of the operation, and set property attributes as necessary
« perform other initialization steps as necessary

» returnthevaue 1if theinitialization steps are successful, or O otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL's keyword inheritance mechanism.

iTool Developer's Guide Creating a New Generalized Operation

168 Chapter 7: Creating an Operation

Note
Because iTool operations are invoked by the user’s interactive choice of an item
from amenu, they generally do not accept any keywords of their own.

The function signature of an Init method for an operation generally looks something
likethis:

FUNCTION MyOperation::Init, _REF_EXTRA = _extra

where MyOperation is the name of your operation class.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Superclass Initialization

The operation class Init method should call the Init method of any required
superclass. For example, if your operation classis based on an existing operation, you
would call that operation’s Init method:

success = self->SomeOperationClass::Init (_EXTRA = _extra)

where SomeOperationClassis the class definition file for the operation on which
your new operation is based. The variable success containsa 1 if the initialization
was successful.

Note
Your operation class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self->SomeOperationClass::Init (_EXTRA = _extra) EQ 0) THEN $
RETURN, O

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 169

This convention isused in all operation classesincluded with IDL. ITT Visual
Information Solutions strongly suggests that you include similar checksin your own
class definition files.

Keywords to the Init Method

Properties of the operation class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitOperation class and the IDLitComponent class are
available to any operation class. See “IDLitOperation Properties’” and
“IDLitComponent Properties’ (IDL Reference Guide).

Note
Always use keyword inheritance (the _EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Standard Base Class

While you can create your new operation class from any existing operation class, in
many cases, operations that do not act directly on the data that underlies a
visualization will be subclassed directly from the base class IDLitOperation:

IF (self->IDLitOperation::Init(_EXTRA = _extra) EQ 0) $
THEN RETURN, O

The IDLitOperation class provides the base i Tool functionality used in all operation
classes created by ITT Visual Information Solutions. See “ Subclassing from the
IDLitOperation Class’ on page 166 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other operation classes that
subclass from your operation class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

Operations can register properties with the iTool. Registered properties show up in
the property sheet interface, and can be modified interactively by users. The iTool
property interface is described in detail in Chapter 4, “Property Management”.

Register a property by calling the RegisterProperty method of the IDLitComponent
class:

iTool Developer's Guide Creating a New Generalized Operation

170 Chapter 7: Creating an Operation

self->RegisterProperty, PropertyIdentifier [, TypeCode] $
[, ATTRIBUTE = value]
where Propertyldentifier is a string that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 74 for details.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your operation
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self->SetPropertyAttribute, Identifier

where |dentifier isthe name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 78 for additional details.

Example Init Method

Thefollowing example code shows avery simple Init method for an operation named
ExampleOp. Thisfunction would be included (along with the class structure
definition routine and any other methods defined by the class) in a file named
exampleop__ define.pro.

FUNCTION ExampleOp::Init, _REF_EXTRA = _extra

; Initialize the superclass.

IF (self->IDLitOperation::Init (TYPES=['IDLARRAY2D'], $
NAME="'Example Operation', ICON='generic_op', $
_EXTRA = _extra) NE 1) THEN $

RETURN, O

; Unhide the SHOW_EXECUTION_UI property.
self->SetPropertyAttribute, 'SHOW_EXECUTION_UI', HIDE=0

; Return success
RETURN, 1

END
Discussion

The Examp1e0p classis based on the IDLitOperation class (discussed in
“Subclassing from the IDLitOperation Class’ on page 166). As aresult, all of the
standard features of an iTool operation are already present. We don’t define any

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 171

keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword val ues through to methods called
within the Init method. The Examp1e0p Init method does the following things:

1. Callsthe Init method of the superclass, IDLitOperation. We use the TY PES
keyword to specify that our operation works on data that has the iTool data
type ' IDLARRAY2D', provide a Name for the object instance, and provide an
icon. Finally, we usethe EXTRA keyword inheritance mechanism to pass
through any keywords provided when the Examp1eop Init method is called.

2. Returnstheinteger 1, indicating successful initialization.
Creating a Cleanup Method
The operation class Cleanup method handles any cleanup required by the operation
object, and should do the following:
» destroy any pointers or objects created by the operation

e call the superclass' Cleanup method

Calling the superclass cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your operation classis based on the IDLitOperation class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See “IDLitOperation::Cleanup” (IDL Reference Guide) for additional details.
Example Cleanup Method

The following example code shows avery simple Cleanup method for the
ExampleOp operation:

PRO ExampleOp: :Cleanup

; Clean up superclass
self->IDLitOperation: :Cleanup

END

iTool Developer's Guide Creating a New Generalized Operation

172 Chapter 7: Creating an Operation

Discussion

Since our operation does not have any instance data of its own, the Cleanup method
simply calls the superclass Cleanup method.

Creating a DoAction Method

The operation class DoAction method is called by theiTool system when an
operation is requested by the user. (Note that data-centric operations do not need to
implement the DoA ction method because it isimplemented by the
IDLitDataOperation classitself.) The DoAction method is responsible for the
following:

» determining which objects the operation should be applied to (generally, but
not always, the objects that are selected when the operation isinvoked)

e retrieving the data from the selected objects
e creating an IDLitCommandSet object that will contain undo/redo data

« saving the state of the selected objects before the actions associated with the
operation are performed in the command set object

« performing the requested actions on the selected objects

» saving the state of the selected objects after the actions associated with the
operation are performed in the command set object

e returning the command set object

Note
If your operation changes the values of its own registered properties (as the result of
user interaction with adialog or other interface e ement called by DoUl Service, for
example), be sure to call the Recordlnitial Values and RecordFinal Values methods.
This ensures that changes made through the dialog are placed in the undo-redo
transaction buffer.

Example DoAction Method

The following example code shows a simple DoAction method for the Exampleop
operation. This operation retrieves the STY LE property of any selected
IDLitVisSurface objects and incrementsits value by 1. Repeated invocations of this
operation would cause the selected surfaces to loop through the seven available
surface styles.

FUNCTION ExampleOp: :DoAction, oTool

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 173

; Make sure we have a valid iTool object.
IF ~ OBJ_VALID(oTool) THEN RETURN, OBJ_NEW ()

; Get the selected objects
oTargets = oTool->GetSelectedItems ()

; Select only IDLitVisSurface objects. If there are
; no surface objects selected, return a null object.
surfaces = OBJ_NEW()

FOR i1 = 0, N_ELEMENTS (oTargets)-1 DO BEGIN

IF (OBJ_ISA(oTargets[i], 'IDLitVisSurface')) THEN BEGIN
surfaces = OBJ_VALID(surfaces[0]) ? $
[surfaces, oTargets[i]] : oTargets[i]
ENDIF
ENDFOR
IF (~OBJ_VALID(surfaces[0])) THEN RETURN, OBJ_NEW /()

; Create a command set:
oCmdSet = self->IDLitOperation::DoAction(oTool)

; Record the initial wvalues

IF (~ self->RecordInitialValues (oCmdSet, surfaces, '')) THEN $
BEGIN
OBJ_DESTROY, oCmdSet
RETURN, OBJ_NEW /()

ENDIF

; Increment the style index for each surface.
FOR 1 = 0, N_ELEMENTS (surfaces)-1 DO BEGIN
; Retrieve the current surface style and increment it
surfaces[i]->GetProperty, STYLE = styleIndex
IF styleIndex eq 6 THEN BEGIN
styleIndex = 0
ENDIF ELSE BEGIN
styleIndex += 1
ENDELSE

; Set the new surface style
surfaces[i]->SetProperty, STYLE = stylelIndex
ENDFOR

oTool->RefreshCurrentWindow

; Record the final values
result = self->RecordFinalValues (oCmdSet, surfaces, '')

RETURN, oCmdSet

iTool Developer's Guide Creating a New Generalized Operation

174 Chapter 7: Creating an Operation

END
Discussion
The ExampleOp operation DoA ction method does the following things:
1. Checksthe validity of theiTool object passed to the DoAction method.
Retrieves the list of selected objects from the iTool object.
Filters out any selected objectsthat are not IDLitVisSurface objects.
Calls the superclass DoAction method to create an I DLitCommandSet object.

Calls the Recordlnitia Values method to record the relevant values in the
command set object before the operation is performed.

6. Loopsthrough thelist of IDLitVisSurface objects and increments the STYLE
property of each by 1.

o &~ D

7. Callsthe RecordFinalVValues method to record the relevant valuesin the
command set object after the operation has been performed.

8. Returns the command set object.
Creating a RecordInitialValues Method

The operation class Recordlnitial Values method is responsible for recording the
appropriate “before” values from the specified objects in the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordInitialValues Method

The following example code shows a simple Recordinitial Values method for the
ExampleOp operation. An IDLitCommand object is created for each of the target
objects, and the value of the STY LE property of each object isrecorded asan Itemin
the command object.

FUNCTION ExampleOp::RecordInitialValues, oCmdSet, oTargets, idProp

; Loop through the target objects and record the value of the
; STYLE property.
FOR i1 = 0, N_ELEMENTS (oTargets)-1 DO BEGIN
; Create a command object to store the values.
oCmd = OBJ_NEW('IDLitCommand', $
TARGET_IDENTIFIER = oTargets[i]->GetFullIdentifier())
; Get the value of the STYLE property

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 175

oTargets[i]->GetProperty, STYLE = styleIndex
; Add the value to the command object
void = oCmd->AddItem('OLD_STYLE', styleIndex)
; Add the command object to the command set
oCmdSet->Add, oCmd

ENDFOR

RETURN, 1

END
Discussion

The ExampleOp operation RecordInitial Values method simply loops through the
supplied list of target objects, creating a new IDLitCommand object for each. We set
the TARGET _IDENTIFIER property for each command object. Next, weretrieve the
value of the STY LE property for each target object and add it to the command object
as an Item. Finally, we add each command object to the supplied IDLitCommandSet
object.

Creating a RecordFinalValues Method

The operation class RecordFinal Values method is responsible for recording the
appropriate “after” values from the specified objects in the provided
IDLitCommandSet object. The values recorded depend entirely on the operation
being performed.

Example RecordFinalValues Method

The following example code shows a simple RecordFinal Values method for the
Examp1eOp operation. The new value of the STY LE property of each target object is
recorded in the appropriate IDLitCommand object retrieved from the command set.

FUNCTION ExampleOp::RecordFinalValues, oCmdSet, oTargets, idProp

; Loop through the target objects and record the value of the
; STYLE property.
FOR 1 = 0, N_ELEMENTS (oTargets)-1 DO BEGIN
; Retreive the appropriate command object from the
; command set.
oCmd = oCmdSet->Get (POSITION = i)
; Get the value of the STYLE property
oTargets[i]->GetProperty, STYLE = styleIndex
; Add the value to the command object
void = oCmd->AddItem('NEW_STYLE', styleIndex)
ENDFOR

iTool Developer's Guide Creating a New Generalized Operation

176

Chapter 7: Creating an Operation

RETURN, 1

END
Discussion

The ExampleOp operation RecordFinal Va ues method simply loops through the
supplied list of target objects, recording the new value for the STY LE property in the
IDLitCommand object associated with each target.

Creating a GetProperty Method

The operation class GetProperty method retrieves property values from the operation
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the operation object’s instance data or by
calling another class GetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the operation class or one of its
superclasses.

See “IDLitOperation::GetProperty” (IDL Reference Guide) for additional details.

Example GetProperty Method

The following example code shows avery simple GetProperty method for the
ExampleOp operation:

PRO ExampleOp: :GetProperty, _REF_EXTRA = _extra
; get superclass properties

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitOperation: :GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation type. The keyword inheritance
mechanism allows properties to be retrieved from the Example0p class superclasses
without knowing the names of the properties.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 177

In this example, there are no properties specific to the Exampleop object, so we
simply call the superclass' GetProperty method, passing in al of the keywords stored
inthe _extra structure.

Creating a SetProperty Method

The operation class SetProperty method stores property valuesin the operation
object’sinstance data or in properties of associated objects. It should set the specified
property value, either by storing the value directly in the operation object’s instance
dataor by calling another class’ SetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the operation class or one of its
superclasses.

See “IDLitOperation::SetProperty” (IDL Reference Guide) for additional details.
Example SetProperty Method

The following example code shows avery simple SetProperty method for the
ExampleOp operation:

PRO ExampleOp::SetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitOperation: :SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the operation. The keyword inheritance mechanism
allows properties to be set on the Exampleop class superclasses without knowing
the names of the properties.

In this example, there are no properties specific to the ExampleOp object, so we
simply use the N_ELEMENTS function to check whether the _extra structure
contains any elements. If it does, we call the superclass SetProperty method, passing
in all of the keywords stored in the _extra structure.

iTool Developer's Guide Creating a New Generalized Operation

178 Chapter 7: Creating an Operation

Creating an UndoOperation Method

The operation class UndoOperation method is called when the user undoes the
operation by selecting “Undo” from amenu or toolbar.

Example UndoOperation Method

The following example code shows a very simple UndoOperation method for the
ExampleOp operation:

FUNCTION ExampleOp::UndoOperation, oCommandSet

; Retrieve the IDLitCommand objects stored in the
; command set object.
oCmds = oCommandSet->Get (/ALL, COUNT = nObjs)

; Get a reference to the iTool object.
oTool = self->GetTool ()

; Loop through the IDLitCommand objects and restore the
; original values.
FOR 1 = 0, nObjs-1 DO BEGIN
oCmds [1]->GetProperty, TARGET_IDENTIFIER = idTarget
oTarget = oTool->GetByIdentifier (idTarget)
; Get the old wvalue
IF (oCmds[i]->GetItem('OLD_STYLE', styleIndex) EQ 1) THEN $
oTarget->SetProperty, STYLE = stylelIndex
ENDFOR

RETURN, 1
END

Discussion
The UndoOperation method does the following things:

1. Retrieves an array of IDLitCommand objects from the supplied
IDLitCommandSet object

Gets areference to theiTool object.

3. For each command object, retrieve the identifier string for the target object.
Usethe identifier string to retrieve areference to the target object itself.

4. Retrievethe OLD_STYLE item from the command object and useits value to
set the STY LE property on the target object.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 179

Note
The UndoOperation method could also have been implemented without the use of

the values stored in the command set object simply by decrementing the value of the
STYLE property for each target.

Creating a RedoOperation Method

The operation class RedoOperation method is called when the user redoes the
operation by selecting “Redo” from amenu or toolbar.

Example RedoOperation Method

The following example code shows a very simple RedoOperation method for the
ExampleOp operation:

FUNCTION ExampleOp: :RedoOperation, oCommandSet

; Retrieve the IDLitCommand objects stored in the
; command set object.
oCmds = oCommandSet->Get (/ALL, COUNT = nObjs)

; Get a reference to the iTool object.
oTool = self->GetTool ()

; Loop through the IDLitCommand objects and restore the
; new values.
FOR 1 = 0, nObjs-1 DO BEGIN
oCmds [1] ->GetProperty, TARGET IDENTIFIER = idTarget
oTarget = oTool->GetByIdentifier (idTarget)
; Get the new value
IF (oCmds[i]->GetItem('NEW_STYLE', styleIndex) EQ 1) THEN $
oTarget->SetProperty, STYLE = stylelIndex
ENDFOR

RETURN, 1
END

Discussion
The RedoOperation method does the following things:

1. Retrieves an array of IDLitCommand objects from the supplied
IDLitCommandSet object

2. Getsareferenceto theiTool object.

iTool Developer's Guide Creating a New Generalized Operation

180 Chapter 7: Creating an Operation

3. For each command object, retrieve the identifier string for the target object.
Usethe identifier string to retrieve areference to the target object itself.

4. Retrievethe NEW_STY LE Item from the command object and use its value to
set the STY LE property on the target object.

Note
The RedoOperation method could also have been implemented without the use of
the values stored in the command set object simply by incrementing the value of the
STYLE property for each target.

Creating a New Generalized Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 181

Operations and Macros

The concept of amacro wasintroduced to theiTool systemin IDL 6.1. Macros allow
iTool usersto record a series of actions for later playback. A related feature, the
history of aniToal, listsal actions performed in a given iTool, whether or not actions
are currently being recorded. For additional information on macros and history, see
Chapter 8, “Working with Macros” (iTool User’'s Guide).

In many cases, operations you create will automatically be placed in the history (and
be available for recording) when a user invokes them. Specifically, if you create an
operation with an Execute or DoA ction method that does not display a user interface,
you do not need to do anything special to ensure that your operation is recorded
properly.
If your operation displays a user interface, you must ensure that the
SHOW_EXECUTION_UI property of the operation is unhidden.
SHOW_EXECUTION_UI isaproperty of all operations, but it is hidden by default.
To unhide the property, insert the following line into the Init method of your
operation:

self->SetPropertyAttribute, 'SHOW_EXECUTION_UI', HIDE=0

The execution user interface must be unhidden to allow user control of thedialogina
macro item for the operation. The default value of the SHOW_EXECUTION_UI
property can be set to either O (False) or 1 (True); it isonly important that the
property isvisible. When an operation is added to a macro, the
SHOW_EXECUTION_UI property for that macro item will be set to 0 (False),
regardless of the current setting of the property for the operation itself.

The user interface for your operation should only modify properties of the operation
itself. Changes to properties other than those of the operation that are made by the
operation’s user interface will not be recorded.

iTool Developer's Guide Operations and Macros

182 Chapter 7: Creating an Operation

Registering an Operation

Before an operation can be performed by an iTool, the operation’s class definition
must be registered as being available to the iTool. Registering an operation with the
iTool links the class definition file that contains the actual IDL code that defines the
operation with asimple string that namesthe type. Code that performs an operationin
an iTool uses the name string to specify which operation should be performed.

Using IDLitTool::RegisterOperation

In most cases, you will register an operation with the iTool in the iTool’s class Init
method. Registration ensures that the operation is available to theiTool. (See
“Creating aNew iTool Class’ on page 91 for details on the iTool class Init method.)

To register an operation, call the IDLitTool::RegisterOperation method:
self->RegisterOperation, OperationName, Operation_Class_Name

where OperationName is the string you will use when referring to the operation, and
Operation_Class Nameis a string that specifies the name of the classfile that
contains the operation’s definition.

Note
Thefile operation Class_Name _define.pro must exist somewhereinIDL's
path for the visualization type to be successfully registered.

See “IDLitTool::RegisterOperation” (IDL Reference Guide) for details.
Specifying Useful Properties

You can set any property of the IDLitOperation and | DLitComponent classes when

registering an operation. The following properties may be of particular interest:

EXPENSIVE_COMPUTATION

A boolean value that indicates whether the operation is expensive. Expensive
operations are those that require significant memory or processing time to execute.
Individual operations should use the value of this property to determine whether the
results of the operation should be cached to avoid re-execution when undoing or
redoing.

Registering an Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 183

ICON

A string value giving the name of an icon to be associated with this abject. Typicaly,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “Icon Bitmaps’ on page 44 for details on where bitmap icon files are
located.

IDENTIFIER

A string that will be used as the identifier of the object. Identifier strings specify
where within an iTool’s object hierarchy an object is located; this, in turn, may affect
whether and where the object isrevealed in the iTool’s graphical user interface. For
example, to display a menu item for an operation named ' MyOperation' inthe
iTool Operations menu, you would specify the identifier string
'Operations/MyOperation'. See“iTool Object Identifiers’ (Chapter 2, iTool
Developer’s Guide) for details about how identifiers are named.

If this property is not specified, then the value of the OperationName argument is
used as the identifier.

REVERSIBLE_OPERATION

A boolean value that indicates whether the operation isreversible. When an operation
isreversible, it can be undone by applying an operation rather than restoring a stored
value. Rotation by a specified angle is an example of an operation that is reversible,
since applying ancther rotation by the same angle in the opposite direction returnsthe
visualization to its original state. Individual operations should use the value of this
property to determine how the operation should be undone.

SHOW_EXECUTION_UI

A boolean value that indicates whether the operation should display a user interface
element such as a dialog when the operation is executed.

TYPES

A string or an array of strings indicating the types of data to which the operation can
be applied. iTools data types are described in Chapter 3, “ Data Management”. Set this
property to anull string (' ') to specify that the operation can be applied to all types

of data.

iTool Developer's Guide Registering an Operation

184 Chapter 7: Creating an Operation

Unregistering an Operation

If you are creating anew iTool from an existing i Tool class, you may want to remove
an operation registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers an operation you don’t want included in your iTool. Rather than recreating
theiTool class to remove the operation, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted
operation.

Unregister an operation by calling the IDLitTool::UnregisterOperation method in the
Init method of your iTool class:

self->UnregisterOperation, identifier

where identifier isthe string value of the IDENTIFIER property specified when
registering the operation.

For example, suppose you are creating a new iTool that subclasses from the standard
iSurface tool, which is defined by the IDLitTool Surface class. If you wanted your
new tool to behave just like the iSurface tool, with the exception that it would not
handle the resample operation, you could include the following method call in your
iTool’s Init method:

self->UnregisterOperation, 'Operations/Transform/Resample’
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterOperation
method, you can inspect the class file that registers the operation (if the operation is
registered by auser-created class), or use the Findldentifiers method of the IDLitTool
object to generate alist of registered operations. (Standard iTool operations are pre-
registered within the iTool framework.)

If the operation is registered in a user-created class, you could inspect the class
definition file to find a call to the RegisterOperation method, which looks something

likethis:
self->RegisterOperation, 'Resample', 'idlitopresample', $
IDENTIFIER = 'Operations/Transform/Resample’

The value of the IDENTIFIER keyword to the RegisterOperation method
('operations/Transform/Resample') isthe string value of the operation’s
IDENTIFIER property.

Unregistering an Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 185

Alternatively, to generate a list of relativeidentifiersfor all operations registered with
the current tool, use the following statements:

void = IGETCURRENT (TOOL=0Tool)
opslist = oTool->FindIdentifiers (/OPERATIONS)
FOR i = 0, N_ELEMENTS (opslist)-1 DO PRINT, $
STRMID (opslist[i], STRPOS (opslist[i], '/OPERATIONS', $
/REVERSE_SEARCH) +1)

Note that the string in the call to STRPOS must be in upper case.
To refine the search so that only operationsin the “Transform” folder are found,
specify a search term as the argument to the Findldentifiers method:

void = IGETCURRENT (TOOL=0Too0l)
opslist = oTool->FindIdentifiers('*transform*', /OPERATIONS)
FOR i = 0, N_ELEMENTS (opslist)-1 DO PRINT, $
STRMID (opslist[i], STRPOS (opslist[i], '/OPERATIONS', $
/REVERSE_SEARCH) +1)

See “IDLitTool::Findldentifiers’ (IDL Reference Guide) for details.

iTool Developer's Guide Unregistering an Operation

186 Chapter 7: Creating an Operation

Example: Data Resample Operation

This example creates a data operation to resample data in a dataset using the IDL
CONGRID function.

Example Code
The code for this example operation isincluded in thefile
examplel_opresample_ define.prointheexamples/doc/itools
subdirectory of the IDL distribution. Run the example procedure by entering
examplel_opresample__define at the IDL command prompt or view thefile
inan IDL Editor window by entering . EDIT
examplel_ opresample_ define.pro.

Class Definition File

The class definition for examplel_ opresample consists of an Init method, an
Execute method, GetProperty and SetProperty methods, and a class structure
definition routine. As with all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pro appended).

Class Definition
PRO examplel_opresample_ define

struc = {examplel_opresample, $
inherits IDLitDataOperation, $
_x: 0d, s
_y: 0d, s
_z: 0d, s
_method: 0b $
}

END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name examplel_opresample, specifying that the structure inherits from the
IDLitDataOperation class. The structure has three instance data fields named _x, _v,
and _z, which contain double-precision floating point values, and a single instance
datafield named _method which contains a byte value.

Example: Data Resample Operation iTool Developer’s Guide

javascript:doIDL("example1_opresample__define")
javascript:doIDL(".edit example1_opresample__define.pro")
javascript:doIDL(".edit example1_opresample__define.pro")

Chapter 7: Creating an Operation 187

Init Method
FUNCTION examplel_opresample::Init, _REF_EXTRA = _extra
IF (~ self->IDLitDataOperation::Init (NAME='Resample', $
TYPES=['IDLVECTOR', 'IDLARRAY2D', 'IDLARRAY3D'], $
DESCRIPTION="Resampling", _EXTRA = _extra)) THEN $
RETURN, O

; Default values for resampling factors.

self. x = 2
self. yv = 2
self. z = 2

; Register properties
self->RegisterProperty, 'X', /FLOAT, $
DESCRIPTION='X resampling factor.'

self->RegisterProperty, 'Y', /FLOAT, $
DESCRIPTION='Y resampling factor.'

self->RegisterProperty, 'Z', /FLOAT, $
DESCRIPTION='Z resampling factor.'

self->RegisterProperty, 'METHOD', $
ENUMLIST=['Nearest neighbor', 'Linear',6 'Cubic'], $
NAME="'Interpolation method',6 $
DESCRIPTION="'Interpolation method.'

IF (N_ELEMENTS(_extra) GT 0) THEN $
self->examplel_opresample: :SetProperty, _EXTRA = _extra

; Unhide the SHOW_EXECUTION_UI property.
self->SetPropertyAttribute, 'SHOW_EXECUTION_UI', HIDE=0

RETURN, 1

END
Discussion

Thefirst itemin our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name examplel_opresample. The

_REF EXTRA keyword inheritance mechanism allows any keywords specified in a
call to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

iTool Developer's Guide Example: Data Resample Operation

188

Chapter 7: Creating an Operation

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitDataOperation class; this provides us with all of the standard iTool data
operation functionality automatically. We specify three iTool datatypes on which our
operation will work: “IDLVECTOR”, “IDLARRAY2D”, and “IDLARRAY 3D”". Any
“extra’ keywords specified in the call to our Init method are passed to the
IDLitDataOperation::Init method via the keyword inheritance mechanism. If the call
to the superclass Init method fails, we return immediately with avalue of 0.

Next we store the default values for the three resampling factors (one each for the X,
Y, and Z dimensions) in the object instance datafields _x, _v, and _z. We register
each of these values as a property of the operation. We also register the METHOD
property, assigning to it an enumerated list with three strings describing three
different interpolation methods (“Nearest Neighbor”, “Linear”, and “ Cubic”).

If any “extra’ keywords were specified in the call to our Init method, we pass them to
the SetProperty method our examplel_opresample object.

Finally, we return the value 1 to indicate successful initialization.

Execute Method

FUNCTION examplel_opresample: :Execute, data
dims = SIZE(data, /DIMENSIONS)

CASE N_ELEMENTS (dims) OF
1: newdims dims*ABS([self._x]) > [1]
2: newdims dims*ABS ([self._x, self._vy]) > [1, 1]
3: newdims dims*ABS([self._x, self._y, self._z]l) > [1, 1,

ELSE: RETURN, O
ENDCASE

; No change in size.
IF (ARRAY_EQUAL (newdims, dims)) THEN RETURN, 1

interp = 0 & cubic = 0
CASE (self._method) OF
0: ; do nothing

1: interp =1
2: cubic =1
ENDCASE

CASE N_ELEMENTS (dims) OF
1: data = CONGRID(data, newdims[0], $
INTERP = interp, CUBIC = cubic)
2: data = CONGRID(data, newdims[0], newdims[1l], $

Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 189

INTERP = interp, CUBIC = cubic)
; CONGRID always uses linear interp with 3D
3: data = CONGRID (data, newdims[0], newdims[l], newdims[2])
ENDCASE

RETURN, 1

END
Discussion

The Execute method does the work of our operation. Since examplel opresampleis
based on the IDLitDataOperation class, when the operation is requested by auser the
Execute method is automatically called with each of the currently selected data
objects as the data argument.

First, we use the SIZE function to determine the number of dimensions of the input
dataitem. We use a CASE statement to create a new array (newdims) that stores the
number of elements of each dimension multiplied by the scale factor for each
dimension. The number of elementsin each dimension cannot be less than one.

Next we use the ARRAY _EQUAL function to compare the number of elements of
each dimension of the input data with the number of elements of each dimension of
our newdims array. If these numbers are equal, no resampling will take place, so we
stop processing and return 1 for success.

If our newdims array contains a different number of elements than the original input
data, some resampling will take place. We check the value of the METHOD property
(stored in the instance data field _method) to determine what type of resampling we

should perform.

Finally, we call the CONGRID function with the appropriate arguments and
keywords, depending on the dimensionality of the input data and the resampling
method specified. We then return 1 for success.

GetProperty Method

PRO examplel_opresample: :GetProperty, $

X =x, S

Y=y, S

Z =2z, S

METHOD = method, $
_REF_EXTRA = _extra

; My properties.
IF ARG_PRESENT (x) THEN $
x = self._x

iTool Developer's Guide Example: Data Resample Operation

190 Chapter 7: Creating an Operation

IF ARG_PRESENT (y) THEN $
y = self._vy

IF ARG_PRESENT(z) THEN $
z = self. =z

IF ARG_PRESENT (method) THEN $
method = self._method

; Superclass properties.
IF (N_ELEMENTS (_extra) gt 0) THEN $
self->IDLitDataOperation: :GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these propertiesis specified in the call to the GetProperty
method, its value is retrieved from the appropriate instance data field. Any other
properties included in the method call are passed to the superclass’ GetProperty
method.

SetProperty Method

PRO examplel_opresample: :SetProperty, $

X =x, S

Y=y, $

Z =2z, S

METHOD = method, $
_REF_EXTRA = _extra

; My properties.
IF N_ELEMENTS (x) THEN $
IF (x NE 0) THEN self. x = x
IF N_ELEMENTS(y) THEN $
IF (y NE 0) THEN self._ vy

I
o

IF N_ELEMENTS(z) THEN $
IF (z NE 0) THEN self._z = z

IF N_ELEMENTS (method) THEN $
self. method = method

; Superclass properties.
IF (N_ELEMENTS (_extra) gt 0) THEN $

Example: Data Resample Operation iTool Developer’s Guide

Chapter 7: Creating an Operation 191

self->IDLitDataOperation: :SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method for our operation supports four properties named X, Y, Z,
and METHOD, stored in instance data fields of the same name (with an underscore
prepended). If any of these propertiesis specified in the call to the SetProperty
method, its valueis stored in the appropriate instance data field. Any other properties
included in the method call are passed to the superclass SetProperty method.

iTool Developer's Guide Example: Data Resample Operation

192 Chapter 7: Creating an Operation

Example: Data Resample Operation iTool Developer’s Guide

Chapter 8

Creating a Manipulator

This chapter describes creating a custom manipulator. See the following topics for details.

Overview of iTool Manipulators 194
The Manipulator Creation Process 197
Predefined iTool Manipulators 198

Manipulators and the Undo/Redo System . 202
Using Manipulator Public Instance Data . . 204

iTool Developer’s Guide

Creating aNew Manipulator 206
Registering aManipulator 223
Unregistering aManipulator 225
Example: Color Table Manipulator 226

193

194 Chapter 8: Creating a Manipulator

Overview of iTool Manipulators

A manipulator isan iTool component object class that defines away the user can
interact with visualizations in the iTool window using the mouse or keyboard. Some
examples of iTool manipulators are:

e Thetranslation/scaling manipulator, which allows the user to interactively
move visualizations around in an iTools window and change their size

e Therotation manipulator, which allows the user to change the orientation of
visualizationsin two or three dimensions

» Theannotation manipulators, which allow the user to insert text, line, polygon,
and other annotations

The majority of manipulators are associated with an operation that modifies the data
of the selected visualization in some manner. While a manipulator need not specify
an associated operation, thisis required to support undo/redo functionality as
described in “Manipulators and the Undo/Redo System” on page 202.

A number of standard manipulators and manipulator containers are predefined and
included in the IDL iTools package as described in “Predefined i Tool Manipulators’
on page 198. If none of the predefined manipulators suit your needs, you can create
your own manipulator by subclassing either from the base IDLitManipulator class, on
which all of the predefined manipulators are based, or from one of the predefined
mani pul ators.

Manipulators and Manipulator Containers

A manipulator is activated when the user clicks on the manipulator’s associated
toolbar icon. A manipulator typically modifies attributes of atarget object (e.g. scales
an image), or records a sequence of values (e.g. creates an annotation). For a given
iTool, there is aways a single active manipulator.

Manipulator containers (subclassed from IDLitManipul atorContainer) are used to
create hierarchies of manipulators, anong which the current or active manipulator
can be defined. The child manipulator (subclassed from IDLitManipulator) can be
automatically changed based on the selection and what portion of aselection visual is
hit during a mouse-down operation. Seethe AUTO_SWITCH property of
“IDLitManipulatorContainer” (IDL Reference Guide) for details. See the following
section for information on selection visuals.

Overview of iTool Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 195

Note
A manipulator need not always be interactively selected. The
IDLitTool::ActivateM anipulator method can be used to programmatically start a
manipulator. This can be especially useful when you need to reactivate atool’s
default manipulator because none of the conditions required by a custom
mani pul ator have been met.

An IDLitManipulatorManager object is a specialized manipulator container that acts
astheroot of amanipulator hierarchy. The manipulator manager is associated with an
IDLitWindow object viathe window’s SetM anipulatorM anager method. The

mani pul ator manager passes information about the manipulator to observers such as

toolbars or menu items. See “IDLitManipulatorManager” (IDL Reference Guide) for
details.

Manipulator Visuals

An IDLitManipulatorVisual object is also known as a selection visual. A selection
visual appears when a manipulator is activated. Advanced manipulators can be
configured to interact with a selection visual, defining how a user can modify a
visualization. For example, Figure 8-1 displays objects based upon an
IDLitManipVisRotate object:

e IDLitManipVisRotate2D (used when the target is 2-D)
« IDLitManipVisRotateAxis (onefor the x, y, and z axis, and used when the
target is 3-D)

The appearance of the selection visual depends upon whether the dataiis 2-D (left) or
3-D (right). In the case of 2-D data, the selection visual s indicate an area within the
visualization that will allow rotation when you left-click and drag the mouse cursor.
In the case of 3-D data, the selection visuals allow rotation around the x-, y-, or z-
axis, depending on which portion of the selection visua is selected.

iTool Developer's Guide Overview of iTool Manipulators

196 Chapter 8: Creating a Manipulator

Selection Visuals

Figure 8-1: Rotate Manipulator Selection Visuals

When you initialize a manipulator, you can define the type of selection visual that
appears by setting the VISUAL_TY PE keyword to the Init method. If you create a
custom IDLitManipulatorVisua object, then the VISUAL_TY PE property values of
the IDLitManipulator and IDLitManipulatorVisual objects are the same. Unless
otherwise specified, a custom manipulator will retain the selection visual of the last
active manipul ator.

Note
Creation of IDLitManipulatorVisua objects is beyond the scope of this chapter.
However, you may examine the IDLitManipvis* classesinthe
lib\itools\components subdirectory of the IDL installation directory as
guidesif you choose to create a selection visual.

Overview of iTool Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 197

The Manipulator Creation Process

To create anew iTool manipulator, you will do the following:

Choose an iTool manipulator class on which your new manipulator will be
based. In almost all cases, you will base your new manipulator on the
IDLitManipulator class, which provides methods for detecting selections made
by the user, mouse button-press events, mouse motion, and other low-level
mani pul ator functions.

Define the properties of the manipul ator.

If the manipulator isto support undo/redo functionality, it must have an
associated operation. You can create a custom operation, or if the manipulator
modifies a property of the target object, you can use the built-in
SET_PROPERTY operation.

Define methods that specify what should happen when the manipulator is
activated. Thisincludes implementing execution logic within methods that are
invoked in response to mouse and keyboard events.

Define what cursor appears when the manipulator is activated. You can use a
custom cursor or a pre-existing cursor.

Create an icon for the manipulator that will appear on the toolbar. The
mani pul ator will be activated when the user sel ects the toolbar item.

Override methods used to get or set properties, react to user interaction with
the visualization, and clean up, as necessary.

This chapter describes the process of creating a new manipulator based on the
IDLitManipulator class. If you have a number of manipulators that are designed to
work together, you will want to create a manipulator container based on the
IDLitManipul atorContainer class. M ore advanced manipulators can also be designed
to work in conjunction with a custom selection visual, based on the
IDLitManipulatorVisual class. See “Manipulator Visuals’ on page 195 for
introductory information regarding selection visuals.

iTool Developer's Guide The Manipulator Creation Process

198 Chapter 8: Creating a Manipulator

Predefined iTool Manipulators

TheiTool system distributed with IDL includes anumber of predefined manipulators.
You can include these manipulators in an i Tool directly by registering the class with

your iTool (as described in “Registering a Manipulator” on page 223). You can also

create a new manipulator class based on one of the predefined classes.

Predefined manipul ators include those which are containers (subclassing from
IDLitManipulatorContainer), and those which are visualization manipulators
(subclassing from IDLitManipulator). The manipulators themselves allow the user to
select and interact with the visualization through mouse movements and keyboard
events.

General Manipulators

The following manipulators are available to any tool that subclasses from
IDLitToolbase unless otherwise noted.

IDLitManipArrow

The arrow manipulator (IDLitManipArrow) is used to select a visualization object in
the iTool window. It is aso a container for the following manipulators:

e IDLitManipTranslate — repositions the visualization
e IDLitManipScae — resizes the visualization
« IDLitManipLine — moves the endpoint vertices of a selected line segment

* IDLitManipView — trandlates and scales views, enabling functionality based
on cursor position within the iTool window

e IDLitManiplmagePlane — moves an image plane in an iVolume tool window
or inawindow of atool that subclasses from IDLitTool Volume.

IDLitManipAnnotation

The annotation manipulator (IDLitManipAnnotation) is used to add text, lines, or
shapes to an iTool window. The following annotation manipulators subclass from
IDLitManipAnnotation:

* |DLitAnnotateText — adds text to the iTool window
¢ |DLitAnnotateLine — adds aline to the i Tool window

« |IDLitAnnotateRectangle — adds arectangle to the iTool window

Predefined iTool Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 199

» IDLitAnnotateOval — adds an oval to the iTool window

« IDLitAnnotatePolygon — adds a polygon to the iTool window

« IDLitAnnotateFreehand — adds a freehand shape to the iTool window
IDLitManipLineProfile

The profile line manipulator creates a profile plot for aline drawn on a surface or
image.

IDLitManipRotate

The rotation manipulator rotates a visualization in the iTool window. It is a container
for the following manipulators:

e |IDLitManipRotate3D — repositions a visualization in three dimensions when
the visuadlization is three-dimensional, or in two dimensions when the
visualization is two-dimensional

* |IDLitManipRotateX — rotates a visualization about the x-axis
* |IDLitManipRotateY — rotates a visualization about the y-axis
e |IDLitManipRotateZ — rotates a visualization about the z-axis

IDLitManipViewPan

The view pan manipulator, initiated by clicking on the hand tool, pans the view in the
iTool window. The hand tool is available only when the zoom level of the view is
greater than 100 percent or when the window has been resized and has scroll bars.

IDLitManipViewZoom

The view zoom manipulator changes the scaling of the view in the iTool window.
Thisis not to be confused with IDLitManipScale, which resizes the visualization.

Image Manipulators

The following manipulators are available in the ilmage i Tool and any tools that
subclass from IDLitToollmage.

IDLitManipCropBox

The crop box manipulator defines a crop region for an image.

iTool Developer's Guide Predefined iTool Manipulators

200 Chapter 8: Creating a Manipulator

IDLitManipROIFree

The freehand ROI manipulator draws a freehand ROI on the image.
IDLitManipROIOval

The oval ROI manipulator draws an oval ROI on the image.
IDLitManipROIPoly

The polygon ROI manipulator draws a polygonal ROI on the image.
IDLitManipROIRect

The rectangle ROI manipulator draws arectangular ROl on the image.

Plot and Contour Manipulators

The following manipulators are available in the iPlot and iContour iTools, and any
tools that subclass from IDLitToolPlot or IDLitTool Contour.

IDLitManipRange

The range manipulator is available with a plot or contour visualization. The
IDLitManipRange manipulator is a container for the following manipulators:

« IDLitManipRangeBox — changes the displayed range of the plot datato that
which exists in the range box

« IDLitManipRangePan — scrolls the displayed data range using arrows
displayed along the axes

e IDLitManipRangeZoom — zoomsin or out on the y-data range, x-data range,
or both x- and y-data ranges simultaneously through plus and minus symbols
positioned along the plot axes and at the origin

Surface Manipulators

The following manipulator is available in the iSurface iTool and any tools that
subclass from IDLitTool Surface.

IDLitManipSurfContour

The surface contour manipulator draws a contour line at the indicated elevation on a
surface.

Predefined iTool Manipulators iTool Developer’s Guide

Chapter 8: Creating a Manipulator 201

Note
This manipulator is not to be confused with the Operations — Contour selection,
which draws a specified number of contour levels, projected onto the XY plane at
Z=0.

Volume Manipulators

The following manipulator is available in the iVolume iTool and any tools that
subclass from IDLitTool Volume.

IDLitManiplmagePlane

When an image plane has been created using the Oper ations — Volume — Image
Plane selection, clicking on the arrow manipulator tool initiates the image plane
manipulator. This manipulator repositions the image plane.

iTool Developer's Guide Predefined iTool Manipulators

202 Chapter 8: Creating a Manipulator

Manipulators and the Undo/Redo System

A manipulator can be configured to support undo/redo functionality when it invokes
an associated operation that records the actions performed by the manipulator in the
undo/redo buffer. This operation can be a custom operation or an existing operation.
(See Chapter 7, “Creating an Operation” for details on operation creation.) In the
manipulator class Init method, specify a string value for the
OPERATION_IDENTIFIER keyword to indicate the name of the operation
associated with the manipul ator.

Note
If the manipulator modifies a property exposed on the target object, you can specify
the built-in SET_PROPERTY operation to manage undo-redo information. Set
OPERATION_IDENTIFIER='SET_PROPERTY' asshownin“Creatinga
Manipulator Init Method” on page 208. This built-in operation automates undo/redo
transactions.

When using the SET_PROPERTY operation, you must also set the
PARAMETER_IDENTIFIER keyword during initialization. Set this keyword to the
property identifier of the property being manipulated. To determine the identifiers of
avisualization's properties, you can retrieve the object’s identifier and retrieve the
names of al registered properties as described in “ Retrieving Property Information”
in Appendix A. The following example uses the itPropertyReport procedure to print
all theregistered property names and identifiers supported by the object to the Output
Log window. The following sample code shows how to retrieve the properties
associated with an image.

; Get the tool reference.
1dtool=IGETCURRENT (TOOL = oTool)

; Retrieve the parameter identifier for the the image.

; Print the identifier, name and type of each associated

; registered property using the ItPropertyReport procedure.
vIimage = oTool->FindIdentifiers('*image*', /VISUALIZATION)
itPropertyReport, otool, vImage

Note
See “Retrieving Property Information” in Appendix A for more information about
property identifiers and names.

Manipulators and the Undo/Redo System iTool Developer’s Guide

Chapter 8: Creating a Manipulator 203

Capturing Information for the Undo/Redo System

Theinitial and final values of the manipulated item must be recorded so that the
operation can be undone and redone. Two manipulator object methods allow you to
specify when values areinitially recorded and committed. The RecordUndoValues
and CommitUndoVal ues methods work in conjunction with the operation defined
during manipulator initialization by the OPERATION_IDENTIFIER keyword. The
RecordUndoValues and CommitUndoValues methods are inherited by classes that
subclass from IDLitManipulator.

The RecordUndoValues Method

The RecordUndoVa ues method records the initial values of the item being
manipulated. This method istypically called in the OnMouseDown or OnKeyboard
method of an interactive manipulator. When called, the manipulator retrieves the
associated operation and calls the operation’s Recordinitial Values method. See
“Creating a RecordInitial Values Method” on page 174 for more information on this
method.

If your manipulator uses the built-in SET_PROPERTY operation, the initial value of
the property specified in the PARAMETER_IDENTIFIER is recorded and
automatically transacted when you call the RecordUndoValues method. See
“Implementing an OnM ouseDown Method” on page 214 for a short example.

The CommitUndoValues Method

The CommitUndoValues method records final values resulting from the manipulator
action. When atransaction is completed, call the CommitUndoValues method to
placeinitial and final valuesinto the undo/redo buffer. This method istypically called
in the OnM ouseUp method or OnK eyboard method of an interactive manipulator.
When called, the manipulator retrieves the associated operation and calls the
operation’s RecordFinal Values method. See “ Creating a RecordFinal Values M ethod”
on page 175 for more information on this method.

If your manipulator uses the built-in SET_PROPERTY operation, the final value of
the property specified in the PARAMETER_IDENTIFIER is recorded and
automatically transacted when you call the CommitUndoValues method. See
“Implementing an OnMouseUp Method” on page 216 for a short example.

iTool Developer's Guide Manipulators and the Undo/Redo System

204 Chapter 8: Creating a Manipulator

Using Manipulator Public Instance Data

The IDLitManipulator class automatically manages selection state between mouse-
down and mouse-up interactions. Three public instance fields are exposed, providing
information about the mouse button state (But tonPress), the number of selected
items (nselectionList), and an array of the currently selected visualizations
(pSelectionList).

Note
These fields are set by the OnMouseDown method of IDLitManipulator, which
would be called by the OnM ouseDown method of the subclass. These fields are
therefore available after a mouse down event in the i Tool window.

Using the ButtonPress Field

The ButtonPress field holds the state of mouse buttons when a manipulator has
been activated. For example, suppose your manipulator requires the user to hold
down amouse button while moving the mouse cursor to affect some aspect of the
visualization. You could use a pointer, set in the mouse down event and not reset until
the mouse up event, to indicate the user is holding down the mouse button. However,
amore efficient way isto use the built-in But tonPress field to access the same
information. The ButtonPress field isabitmask with the following possible values:

e 0= Nomouse button is pressed

e 1= Theleft mouse button is pressed

e 2 =Themiddle mouse button is pressed
e 4 =Theright mouse button is pressed

To determineif the user is holding down a mouse button, query the ButtonPress
field in the OnM ouseM otion method. Prior to manipulating a visualization, a
statement such as the following would assure a mouse button was pressed:

; Activate i1f mouse button is held down.
IF self.ButtonPress NE 0 THEN BEGIN

You could modify this statement to determine which mouse button is pressed or
access the field in one of the other mouse transaction methods. See “ Creating Mouse
Event Methods” on page 213 for more information about the OnM ouseDown,
OnMouseMotion and OnMouseUp methods.

Using Manipulator Public Instance Data iTool Developer’s Guide

Chapter 8: Creating a Manipulator 205

Using the nSelectionList Field

ThenselectionList field contains the number of currently selected itemsin the
window associated with the current manipulator. This corresponds to the number of
visualizations contained within the pselectionlist pointer, described in the
following section. If no visualizations have been selected, thenselectionList
value equals 0 and the pselectionList will contain an undefined IDL variable.
ThenselectionList can be used to ensure the user has made a selection. For
example, in an OnM ouseDown method, you may use a statement similar to the
following to ensure a selection has been made:

; If nothing selected we are done.
IF (self.nSelectionList EQ 0) THEN $
RETURN

ThenselectionList field value can also be used to loop through the collection of
selected visualizations as shown in the following section.

Using the pSelectionList Pointer Field

ThepselectionList field isapointer to an array of visualizations currently
selected in the window. UsethenselectionList valueto cycle through this array.
If amanipulator only acts upon visualizations of acertain type you can verify thetype
of each selected item in pselectionList before attempting to modify the
visualization. ThenSelectionList and pSelectionList public instance data
fields are avail able from any manipulator object’s predefined or custom methods.

; Loop through all selected visualizations.
FOR 1=0, self.nSelectionList-1 DO BEGIN
oVis = (*self.pSelectionList) [1]

; Verify type of visualization or manipulate it.

7

ENDFOR

Note

ThepselectionList fieldisapointer. You must use IDL pointer syntax to access
itemsin thefield.

See “Example: Color Table Manipulator” on page 226 for a compl ete example that
uses these public instance datafields.

iTool Developer's Guide Using Manipulator Public Instance Data

206 Chapter 8: Creating a Manipulator

Creating a New Manipulator

The manipulator class definition file will have the following components:

e A Class Structure Definition — this creates an instance of the manipulator
class and instantiates required instance data. See “ Creating the Manipul ator
Class Structure Definition” on page 207.

¢ Anlnit method — this method initializes a manipulator object. See“ Creating a
Manipulator Init Method” on page 208.

* A Cleanup method — this method destroys pointers or objects created by the
mani pul ator. See “ Creating a Cleanup Method” on page 213.

¢ OnMouseDown, OnM ouseUp, OnM ouseM otion methods — these methods
perform actions when the user activates the manipulator and interacts with the
visualization using the mouse. See “ Creating M ouse Event Methods’ on
page 213.

e An OnWheel method — this method links events generated by the mouse's
scroll wheel to manipulator actions. See “Creating an OnWheel Method” on
page 217.

¢ An OnKeyboard method — this method links keyboard events to manipulator
actions. See “ Creating an OnKeyboard Method” on page 218.

* A DoRegisterCursor method — this method lets you create and register a
custom manipulator cursor that appears when the manipulator is activated. See
“Creating a RegisterCursor Method” on page 220.

* GetProperty or SetProperty methods — these methods let you retrieve or
configure properties of the manipulator or its superclasses. See “Creating
GetProperty or SetProperty Methods™ on page 222.

» Within appropriate components, invoke the manipulator’s RecordUndoValues
and CommitUndoVal ues methods — these methods call associated operation
methods to support undo/redo system transactions. See “Manipulators and the
Undo/Redo System” on page 202.

Note
Asthe RecordUndoValues and CommitUndoVal ues methods help automate
the transaction process, you would typically not need to override the default
superclass methods.

* Other methods specific to the manipulator.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 207

Creating the Manipulator Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
datatypes of those fields. The abject class structure must be defined before any
objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named objectClass__define (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ (Chapter 13, Object Programming).

Note
The class structure definition is generally the last routinein the . pro file that
defines an object class.

Subclassing From the IDLitManipulator Class

The IDLitManipulator classis the base classfor al iTool manipulators. In almost all
cases, new manipulators will be subclassed either from the IDLitManipulator class or
from a class that is a subclass of IDLitManipulator.

Note
If you are implementing a number of manipulators that provide similar
functionality, and you want the user to choose one out of the group of items, you
may want to create a manipulator container. See “Manipulators and M anipulator
Containers’ on page 194 for an introduction to these objects.

See “IDLitManipulator” (IDL Reference Guide) for details on the methods and
properties available to classes that subclass from IDLitManipulator.

Hiding Compilation Messages
When IDL compiles an object class, it prints a compilation message similar to the
following to the IDL Console:
% Compiled module: EXAMPLEMANIP__ DEFINE.

To prevent the compilation message from appearing when the class is compiled, add
the following line to the class structure definition:

COMPILE_OPT hidden

iTool Developer's Guide Creating a New Manipulator

208 Chapter 8: Creating a Manipulator

Example Class Structure Definition

Thefollowing isthe class structure definition for the Examp1eManip operation class.
This procedure should be the last procedure in afile named
examplemanip_ define.pro.

; Class Definition.
PRO ExampleManip_ define

COMPILE_OPT hidden

; Define the MyManipulator class structure, which inherits the
; IDLitManipulator class.

struct = { ExampleManip, $
INHERITS IDLitManipulator, $ Superclass
oImage: OBJ_NEW(), $ Target image
}
END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the manipulator object instance data. The
structure name should be the same as the manipulator’s class name — in this case,
ExampleManip.

Like many iTool manipulators, ExampleManip is created as a subclass of the
IDLitManipulator class. The ExampleManip manipulator classincludes one
instance data field that will contain a reference to the target image object being
mani pul ated.

Note
This example isintended to demonstrate how simpleit can be to create a new
manipul ator class definition. While the class definition for a manipul ator class with
significant extrafunctionality will likely define additional structure fields, and may
inherit from other iTool classes, the basic principles are the same. See “Example:
Color Table Manipulator” on page 226 for amore complex class structure
definition.

Creating a Manipulator Init Method

The manipulator class Init method handles any initialization required by the
manipul ator object, and should do the following:

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 209

» Define the Init function method

e Call the Init methods of any superclasses

* Register any manipulator properties and set property attributes as necessary
e Perform other initialization steps as necessary

e Returnavalueof 1if theinitialization steps are successful, or 0 otherwise
The Manipulator Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via IDL’s keyword inheritance mechanism.

Note
Because iTool manipulators are invoked by the user’s interactive choice of atoolbar
item, they generally do not accept any keywords of their own.

The function signature of an Init method for a manipulator generally looks something
likethis:

FUNCTION MyManipulator::Init, _REF_EXTRA = _extra

where MyManipulator is the name of your manipulator class.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL's keyword inheritance mechanism.

Superclass Initialization

The manipulator class Init method should call the Init method of any required
superclass. For example, if your manipulator class is based on an existing
mani pul ator, you would call that manipulator’s Init method:

success = self->SomeManipulatorClass::Init (_EXTRA = _extra)

where SomeManipulator Class isthe class definition file for the manipul ator on which
your new manipulator is based. The variable success containsal if the
initialization was successful.

iTool Developer's Guide Creating a New Manipulator

210

Chapter 8: Creating a Manipulator

Note
Your manipulator class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method. If the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value
of O

IF (self->SomeManipulatorClass::Init(_EXTRA = _extra) EQ 0) THEN

$
RETURN, 0

This convention isused in al manipulator classes included with IDL. We strongly
suggest that you include similar checksin your own class definition files.

Keywords to the Init Method

Properties of the manipulator class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitManipulator class, the IDLitIMessaging class, and
the IDLitComponent class are avail able to any manipulator class. See
“IDLitManipulator Properties’, “IDLitIMessaging Properties’, and
“IDLitComponent Properties’ (IDL Reference Guide).

Note
Always use keyword inheritance (the EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Standard Base Class

While you can create your new manipulator class from any existing manipulator
class, the manipulator classes you create will usually be subclassed directly from the
base class, IDLitManipulator:

IF (self->IDLitManipulator::Init(_EXTRA = _extra) EQ 0) $
THEN RETURN, O

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 211

The IDLitManipulator class provides the base i Tool functionality used in the
mani pul ator classes created by ITT Visual Information Solutions. See “ Subclassing
From the IDLitManipulator Class’ on page 207 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other manipulator classes that
subclass from your manipulator class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Example Init Method

The following example code shows avery simple Init method for a manipulator
named ExampleManip. Thisfunction would be included (along with the class

structure definition routine and any other methods defined by the class) in afile
named examplemanip__ define.pro

FUNCTION ExampleManip::Init, _REF_EXTRA = _extra

; Initialize the superclass.

IF (self->IDLitManipulator::Init (TYPES=['IDLIMAGE'], $
NAME="'Sample Manipulator', TRANSIENT_DEFAULT=1, $
OPERATION_IDENTIFIER='SET_PROPERTY', $
PARAMETER_IDENTIFIER='ALPHA_CHANNEL', $
_EXTRA = _extra) NE 1) THEN $

RETURN, O

; Call a custom method that registers a cursor for this
; manipulator.
self->DoRegisterCursor

; Indicate success.
RETURN, 1

END

Discussion

The ExampleManip classisbased on the IDLitManipulator class (discussed in
“Subclassing From the IDLitManipulator Class’ on page 207). Asaresult, al of the
standard features of an iTool manipulator are already present. We don’'t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword val ues through to methods called
within the Init method. The ExampleManip Init method does the following things:

iTool Developer's Guide Creating a New Manipulator

212

Chapter 8: Creating a Manipulator

1. Cadlsthe Init method of the superclass, IDLitManipulator. Init method
keywords are specified as follows:

Note
You can also examine the IDLitVis* classesin the
lib/itools/framework subdirectory of the IDL installation directory.
The TY PE defined during the IDLitVisualization initialization defines the
visualization type. See“ Predefined iTool Visualization Classes’ on page 115
for the visualization type of each visualization class.

The TY PES keyword indicates the manipulator works on data that has the
iTool datatype of T1DL.TMAGE. Allowable values for the TY PES keyword
are those types returned by the GetTypes method of IDLitVisuaization.
See “IDLitVisualization::GetTypes’ (IDL Reference Guide) for details.

The NAME keyword identifies the manipulator. If the IDENTIFIER
keyword is not set, the manipulator’s identifier is created from the name.

The TRANSIENT_DEFAULT keyword indicates that this manipulator is
transient, and that the default manipulator should be automatically started
when this manipulator finishes (on mouse up).

If the manipulator isto support undo/redo functionality, you must specify
an operation associated with the manipulator as the
OPERATION_IDENTIFIER keyword value. If the manipul ator modifiesa
property of an object, set the OPERATION_IDENTIFIER equal to

' SET_PROPERTY ', and the PROPERTY _IDENTIFIER keyword equal to
the parameter identifier of the property. This example manipulator changes
the opacity (ALPHA_CHANNEL) of an image. See “Manipulators and the
Undo/Redo System” on page 202 for more information.

The EXTRA keyword inheritance mechanism passes through any
keywords provided when the ExampleManip Init method is called.

2. Callsamethod, DoRegisterCursor, that creates a cursor for this manipulator
using the IDLitManipulator::RegisterCursor method. See “ Creating a
RegisterCursor Method” on page 220 for more information. If you prefer, you
can use one of the predefined cursorsinstead of a custom cursor by setting the
DEFAULT_CURSOR property. See the IDLitManipulator property
“DEFAULT_CURSOR” (IDL Reference Guide) for alist of predefined
cursors. When the mouse cursor is over avisualization of the appropriate type
(as defined by the TY PE property), the manipulator cursor is shown.

3. Returnstheinteger 1, indicating successful initialization.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 213

The properties that support mouse and keyboard interaction are enabled by default.
See “IDLitManipulator Properties’ (IDL Reference Guide) for details.

Creating a Cleanup Method

The manipulator class Cleanup method handles any cleanup required by the
mani pul ator object, and should do the following:

» Destroy any pointers or objects created by the manipul ator
e Call the superclass Cleanup method

Calling the superclass cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your manipulator class is based on the IDLitManipulator class, and does not
create any pointers or objects of its own, the Cleanup method is not strictly
required. It is always safest, however, to create a Cleanup method that calls the
superclass’ Cleanup method.

See “IDLitManipulator::Cleanup” (IDL Reference Guide) for additional details.
Example Cleanup Method

The following example code shows avery simple Cleanup method for the
ExampleManip manipulator:

PRO ExampleManip: :Cleanup

; Clean up superclass.
self->IDLitManipulator: :Cleanup

END
Discussion
Since our manipulator’sinstance data does not include any pointers or object
references, the Cleanup method simply calls the superclass Cleanup method.

Creating Mouse Event Methods

Manipulators based on the IDLitManipulator class have the ability to respond to
mouse events generated by the user. The OnMouseDown, OnM ouseM otion, and
OnMouseUp methods are invoked in response to mouse events in the i Tool window.
The functionality of an interactive manipulator can be divided among these events.

iTool Developer's Guide Creating a New Manipulator

214 Chapter 8: Creating a Manipulator

Implementing an OnMouseDown Method

The manipulator class OnMouseDown method is called when a mouse down event
occurs on the target window. Calling the superclass
IDLitManipulator::OnMouseDown method selects items at the mouse location and
fillsin the values of the ButtonPress, nSelectionList and pSelectionList
instance datafields. See “Using Manipulator Public Instance Data” on page 204 for
more information on these fields. The x, y window coordinates of the cursor, which
button is depressed when the mouse button is clicked, and related information are

a so provided through method parameters. Details on these method parameter values
are provided in “IDLitManipulator::OnMouseDown” (IDL Reference Guide).

The actual processing performed by the OnMouseDown method depends entirely on
the manipulator. If the manipulator action does not rely on mouse movements, the
majority of your processing may occur in the OnMouseDown method. Regardless,
you can use this method to determine if user selections meet requirements, or to set
up initial values required for manipulator actions. If your manipulator calls a custom
operation or the SET_PROPERTY operation, and you want to enable undo/redo
support, call the RecordUndoValues method in the OnMouseDown method to record
the initial values. See “Manipulators and the Undo/Redo System” on page 202 for
more information.

Example OnMouseDown Method

The following example code shows a simple OnM ouseDown method for the
ExampleManip manipulator. All this method does is set class structure fields.

PRO ExampleManip::OnMouseDown, oWin, x, y, iButton, $
KeyMods, nClicks

; Call our superclass.
self->IDLitManipulator: :0OnMouseDown, $
oWin, x, y, iButton, KeyMods, nClicks

; Return if no visualization was selected.
IF (self.nSelectionList EQ 0) THEN $
RETURN

; Access the first selected item and make sure it is an image.
oImage = (*self.pSelectionList) [0]
IF (OBJ_ISA(oImage, 'IDLitVisImage')) THEN BEGIN

; Set the oImage field of the class structure to be

; the retrieved IDLitVisImage object.

self.oImage = oImage

; Record the current values for the target objects.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 215

iStatus = self->RecordUndoValues ()
ENDIF
END

Discussion — When the ExampleManip manipulator is activated and the user clicks
in the iTool window, the OnMouseDown method calls the superclass (in order to
update the public instance fields) and makes sure a visualization was selected. If the
selected visualization is an image, store the image in the class structure field created
when the ExampleM anip class structure is defined. Call the RecordUndoValues
method to support undo/redo functionality.

Implementing an OnMouseMotion Method

The manipulator class OnMouseM otion method is called when a mouse motion event
occurs over the target window. This method provides access to the window object, the
x, y window coordinates of the cursor, and which maodifier key (if any) is depressed
during mouse motion. The But tonPress instance datafield can be used to
determine whether a button is pressed during mouse motion, or which button is
pressed if thislevel of granularity is needed. See “Using Manipulator Public Instance
Data’ on page 204 for details.

Example OnMouseMotion Method

The following example shows elements common in an interactive manipulator’s
OnMouseMotion method. For a complete working example, see “ Example: Color
Table Manipulator” on page 226.

; Configure mouse motion method.
pro ExampleManip::0OnMouseMotion, oWin, x, y, KeyMods

; If there is not a valid image, call superclass and return.
IF (~OBJ_VALID(self.oImage)) THEN BEGIN

; Call our superclass.
self->IDLitManipulator: :OnMouseMotion, oWin, x, y, KeyMods
RETURN

ENDIF

; Activate if mouse button is held down.
IF self.ButtonPress NE 0 THEN BEGIN

; Manipulate the visualization.

7

; Write manipulator information to the status bar
; using inherited IDLitIMessaging ProbeStatusMessage method.
self->ProbeStatusMessage, 'Show user manipulator status'

iTool Developer's Guide Creating a New Manipulator

216

Chapter 8: Creating a Manipulator

; Update the window to reflect the changes made.
oWin->Draw
ENDIF

; Call our superclass.
self->IDLitManipulator: :OnMouseMotion, oWin, x, y, KeyMods

END

Discussion — ThisOnMouseMotion method first verifiesthat thereisavalid image,
olmage, in the class structure field. If not, call the superclass and return. If the image
isvalid, make sure a mouse button is pressed during the mouse movement and
modify the image in some fashion. The IDLitIMessaging class (a superclass of
IDLitManipulator) provides access to theiTool status bar through the

ProbeStatusM essage method. Write a simple message, and update the window, which
can be accessed through the OnMouseMotion owin parameter. Other available
parameters include window coordinates of the cursor and modifier keys. See
“IDLitManipulator::OnMouseMotion” (IDL Reference Guide) for details. Before
exiting, call our superclass.

Implementing an OnMouseUp Method

The manipulator class OnMouseUp method is called when a mouse up event occurs
over the target window. The method typically includes acall to the
CommitUndoValues method to commit the user’s changes during the mouse
transaction. (Thisis only required to support undo/redo functionality. See
“Manipulators and the Undo/Redo System” on page 202 for details.)

Example OnMouseUp Method

This OnMouseUp method can be used to reset class structure fields and to close
transactions.

; Configure the mouse up method
PRO ExampleManip::OnMouseUp, oWin, X, y, iButton

IF (OBJ_VALID(self.oImage)) THEN BEGIN
; Commit this transaction.
iStatus = self->CommitUndoValues ()
ENDIF

; Reset the structure fields.
self.oImage = OBJ_NEW/()

; Call our superclass.
self->IDLitManipulator: :0OnMouseUp, oWin, x, y, iButton

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 217

END

Discussion — This example verifiesthat there is avalid image, olmage, in the class
structure field. If so, call the CommitUndoValues, which in turn calls the
RecordFinal Values method of the associated operation. Before exiting, call our
superclass. This must be done to update the public instance data fields. Other
available parameters include window coordinates of the cursor and mouse button
information. See “IDLitManipulator::OnMouseUp” (IDL Reference Guide) for
detalls.

Creating an OnWheel Method

Manipulators based on the IDLitManipulator class can respond to events generated
by the scroll wheel on the user’'s mouse. The OnWheel method isinvoked in response
to wheel eventsin theiTool window.

If the manipulator supports undo/redo functionality, call RecordUndoValues prior to
modifying the visualization in response to scroll wheel actions, and call
CommitUndoValues prior to exiting the method. See “Manipulators and the
Undo/Redo System” on page 202 for details.

The parameters of the OnWheel method return information about the location of the
mouse pointer when the scroll whed is scrolled (x and v), information about the
direction and distance the wheel is scrolled (De1ta), and information on any
modifier keys the user held down while scrolling (Modifiers). See
“IDLitManipulator::OnWheel” (IDL Reference Guide) for details.

Example OnWheel Method

The following example shows an OnWheel method that changes the zoom value of
the current window. (Note that this behavior isthe default when the Zoom
manipulator is selected.)

PRO ExampleManip::0nWheel, oWin, X, Y, Delta, Modifiers

; Get the object reference to the current iTool.
oTool = self->GetTool ()
IF (~OBJ_VALID(oTool)) THEN RETURN

; Get the object reference to the current view.

oWin = oTool->GetCurrentWindow ()

oScene = OBJ_VALID(oWin) ? oWin->GetScene() : OBJ_NEW()

oView = OBJ_VALID(oScene) ? oScene->GetCurrentView() : OBJ_NEW()
IF (~OBJ_VALID(oView)) THEN RETURN

iTool Developer's Guide Creating a New Manipulator

218

Chapter 8: Creating a Manipulator

; Retrieve previous zoom factor.
oView->GetProperty, CURRENT_ZOOM=zoom

; Increase or decrease the current zoom by a factor of

; 1.25, depending on which direction the scroll wheel was
; scrolled.

zoomFactor = (delta GT 0) ? 1.25d : 1/1.25d

zoom *= zoomFactor

; Perform the ViewZoom operation.

zoom STRTRIM (zoom*100, 2) + '$%'

void oTool->DoAction (' TOOLBAR/VIEW/VIEWZOOM', OPTION=zoom)
END
Discussion

This OnWheel method simply increases or decreasesthe View Zoom when the mouse
whed! is scrolled. The zoom is modified by the same factor (1.25) whenever a scroll
wheel event is processed — the magnitude of the Delta parameter (indicating how far
the wheel was scrolled) isignored.

Creating an OnKeyboard Method

Once a manipulator has been started, and a mouse event has been registered in the
iTool window, the OnKeyboard method can support additional user interaction
through keyboard actions. The OnKeyboard event often includes execution logic
from each of the mouse methods. For example, you will likely need to verify that a
visualization has been selected (using thenselectionList and pSelectionList
instance data fields). If the visualization is the correct type, and the manipulator
supports undo/redo functionality, call RecordUndoValues prior to modifying the
visualization in response to keyboard actions, and call CommitUndoValues prior to
exiting the method. See “Manipulators and the Undo/Redo System” on page 202 for
details.

The parameters of the OnKeyboard method return information about whether a key
has been pressed (Press). If an ASCII character was selected (IsAscIT), accessthe
ASCII value (Character). If the key was not ASCII, you can return which symbol
key was pressed (Keyvalue). The OnKeyboard method also provides access to the
window object (owin), and the window coordinates of the cursor (x, v). See
“IDLitManipulator::OnKeyboard” (IDL Reference Guide) for details.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 219

Example OnKeyboard Method

The following example shows elements common to an OnKeyboard method, but not
any specific manipulation of avisualization. See “ Example: Color Table
Manipulator” on page 226 for a complete example.

; Configure the OnKeyboard method.
pro ExampleManip::0OnKeyboard, oWin, $
ISASCII, Character, KeyValue, X, Y, Press, Release, KeyMods

; If current event is not a key press, then return.
IF (~Press) THEN S
RETURN

; Return if no visualization was selected.
IF (self.nSelectionList EQ 0) THEN $
RETURN

; Access the first selected item and make sure it is an image.
oImage = (*self.pSelectionList) [0]
IF (OBJ_ISA(oImage, 'IDLitVisImage')) THEN BEGIN
; Set the oImage field of the class structure to be
; the retrieved IDLitVisImage object.
self.oImage = (*self.pSelectionList) [0]
ENDIF ELSE BEGIN
RETURN
ENDELSE

; Record the current values for the selected images.
iStatus = self->RecordUndoValues ()

*** Tnteract with the visualization based upon key press.
; Commit this transaction.

iStatus = self->CommitUndoValues ()

; Write information to the status bar

; using inherited IDLitIMessaging ProbeStatusMessage method.

self->ProbeStatusMessage, 'Some manpulation information'

; Update the window to reflect the changes made.
oWin->Draw

END

iTool Developer's Guide Creating a New Manipulator

220

Chapter 8: Creating a Manipulator

Discussion

The OnKeyboard method will customarily contain portions of code from any
implemented mouse transaction methods. In this example, if a button press event
occurred, accessthe list of selected items and verify that the first item is an image. If
so, call IDLitManipulator::RecordUndoValues, as was previously shown in the
OnMouseDown method. Interact with the visualization as defined in an
OnMouseDown or OnM ouseM otion method. After making modifications, call
CommitUndoValues to commit the transaction to the undo/redo buffer, previously
shown in the OnM ouseUp method. Use the IDLitI M essaging::ProbeStatusM essage
method to write information to the status bar of the iTool and access the owin
parameter to update the window, as was previously shown in the OnMouseMotion
method.

Creating a RegisterCursor Method

It isauseful visual indication to the user that a manipulator has been activated if the
cursor changes. You can define a pre-existing cursor for a manipulator using the
DEFAULT_CURSOR property during initialization as described in “ Example Init
Method” on page 211 or using the SetProperty method. If none of the predefined
cursors suit your needs, you can create a custom cursor by calling amethod that
includes the IDLitManpulator::RegisterCursor method. Call this method to register a
custom cursor when the manipulator isinitiaized.

The RegisterCursor method accepts a 16-element string array of 16 characters each
that defines the body, mask area, and hot spot of the cursor. See
“IDLitManipulator::RegisterCursor” (IDL Reference Guide) for details. Thisletsyou
quickly configure a cursor without having to create and reference a separate bitmap
file. The manipulator cursor is active when it is over a supported visualization type.

Note
You must set the DEFAULT keyword for a custom manipulator cursor when you
use the RegisterCursor method to override the default system manipulator cursor.

Example DoRegisterCursor Method

The following example shows a custom cursor registration method,
DoRegisterCursor, which implements the IDLitManipulator class RegisterCursor
method to create a custom cursor. See “Example: Color Table Manipulator” on
page 226 for a complete example.

; Create and assign the default cursor for the manipulator.
PRO ExampleManip: :DoRegisterCursor

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 221

; Define the default cursor for this manipulator.

strArray = [$

' s
' s
' s
' s
' s
. He 0, S
T #. ', S
VoA, S
THEH. .. .S ... ###, S
CLohHHAR RS, S
T #. ', $
' # # ', 8
' L8
' L8
' .8
! "]

; Register the new cursor with the tool.
self->RegisterCursor, strArray, 'LUT', /DEFAULT

END
Discussion

This DoRegisterCursor method defines a 16-element string array of 16 characters
each that represents the cursor. The str Array contains the following elements:

« the“#" symbolstrandate into the black areas of the cursor body
» the“. symboalsindicate the white mask area

» the"“$” definesthe hot spot, relating to the mouse cursor position when the
manipulator is active

Pass the string array and cursor name (the Name argument value) to the
RegisterCursor method. Set the DEFAULT keyword to indicate thisis the default
cursor for this manipulator.

Note
The Name argument specified here is the same as that returned by the
GetCursorType method. See “IDLitManipulator::GetCursorType” (IDL Reference
Guide) for more information.

iTool Developer's Guide Creating a New Manipulator

222 Chapter 8: Creating a Manipulator

Creating GetProperty or SetProperty Methods

The manipulator class GetProperty method retrieves property values from the
mani pul ator object instance or from instance data of other associated objects. It
should retrieve the requested property value, either from the manipulator object’s
instance data or by calling another class' GetProperty method. See
“IDLitManipulator::GetProperty” (IDL Reference Guide) for additional details.

The manipulator class SetProperty method stores property valuesin the manipulator
object’sinstance data or in properties of associated objects. It should set the specified
property value, either by storing the value directly in the manipul ator object’s
instance data or by calling another class' SetProperty method. See
“IDLitManipulator::SetProperty” (IDL Reference Guide) for additional details.

Example GetProperty and SetProperty Methods

The following example code shows a very simple GetProperty method for the
ExampleManip operation:

PRO ExampleManip::GetProperty, _REF_EXTRA = _extra

; Get superclass properties.
IF (N_ELEMENTS(_extra) GT 0) THEN $
self->IDLitManipulator: :GetProperty, _EXTRA = _extra
END

PRO ExampleManip::SetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS(_extra) GT 0) THEN $
self->IDLitManipulator: :SetProperty, _EXTRA = _extra
END

Discussion

The GetProperty and SetProperty methods first define the keywords they will accept.
There must be a keyword for each property of the manipulator type. The keyword
inheritance mechanism allows properties to be retrieved from or set on the
ExampleManip class superclasses without knowing the names of the properties.

In this example, there are no properties specific to the ExampleManip object, so we
simply use the N_ELEMENTS function to check whether the _extra structure
contains any elements. If it does, we call the superclass GetProperty and SetProperty
methods, passing in al of the keywords stored in the _extra structure.

Creating a New Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 223

Registering a Manipulator

Before a manipulator can be activated by an iTool, the manipulator’s class definition
must be registered as being available to the iTool. Registering a manipulator with the
iTool links the class definition file that contains the actual IDL code that defines the
mani pul ator with a simple string that names the manipulator. Code that defines a
manipulator in an iTool uses the name string to specify which manipulation should be
performed.

Using IDLitTool::RegisterManipulator

In most cases, you will register a manipulator with the iTool in the iTool’s class Init
method. Registration ensures that the manipulator is available to the iTool. See
“Creating aNew iTool Class’ on page 91 for details on the iTool class Init method.

To register amanipulator, call the IDLitTool::RegisterManipulator method:
self->RegisterManipulator, ManipulatorName, Manipulator_Class_Name

where Manipulator Name is the string you will use when referring to the manipulator,
and Manipulator_Class Nameis a string that specifies the name of the class file that
contains the manipulator’s definition.

Note
Thefile Manipulator Class Name__define.pro must exist somewherein
IDL’s path for the manipul ator type to be successfully registered.

See“IDLitTool::RegisterManipulator” (IDL Reference Guide) for details.
Specifying Properties During Manipulator Registration

You can specify any property of the IDLitManipulator, IDLitIMessaging, and
IDLitComponent classes when registering a manipulator. The following properties
may be of particular interest:

DEFAULT

Set this manipulator as the default manipulator for the iTool. When set, the
mani pul ator is active when the tool is launched.

DESCRIPTION

A string value that briefly describes how to use the manipulator. Thisstring is
displayed in the left side of the status bar when the manipulator is activated. See
“Example: Color Table Manipulator” on page 226 for an example.

iTool Developer's Guide Registering a Manipulator

224 Chapter 8: Creating a Manipulator

ICON

A string value giving the name of an icon to be associated with this object. Typically,
this property is the name of a bitmap file that is used to represent the manipulator on
the toolbar. The location of the icon image file determines how it is specified. If it
existsin the resource/bitmaps subdirectory of the IDL installation, simply use
the name of the file minus the extension. For example, ' crop' references the Crop
tool’s associated icon, crop . bmp. If the icon imageisin the same directory as the
tool class definition file, specify the file name, 'crop . bmp'. See “lcon Bitmaps” on
page 44 for details on how to locate and reference bitmap icon files.

IDENTIFIER

A string that will be used as the identifier of the object. Identifier strings specify
where within an iTool’s object hierarchy an object is located; this, in turn, may affect
whether and where the object isrevealed in theiTool’s graphical user interface. See
“iTool Object Identifiers” (Chapter 2, iTool Developer’s Guide) for details about how
identifiers are named.

If this property is not specified, then the value of the ManipulatorName argument is
used as the identifier.

TYPES

A string or an array of strings indicating the types of data that the manipulator can
modify. i Tools data types are described in Chapter 3, “ Data Management”. Set this
property to anull string (' ') to specify that the manipulator can be applied to al
types of data.

Registering a Manipulator iTool Developer’s Guide

Chapter 8: Creating a Manipulator 225

Unregistering a Manipulator

If you are creating anew iTool from an existing iTool class, you may want to remove
amanipulator registered for the existing class from your new tool. This can be useful
if you have aniTool classthat implementsall of the functionality you need, but which
registers amanipulator you don’t want included in your i Tool. Rather than recreating
theiTool class without the manipulator, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted
mani pul ator.

Unregister amanipulator by calling the IDLitTool::UnregisterManipulator method in
the Init method of your iTool class:

self -> UnregisterManipulator, identifier
where identifier is the string name used when registering the manipulator.

For example, suppose you are creating a new i Tool that subclasses from a standard
iTool that isbased on the IDLitToolbase class. If you wanted your new tool to behave
just like the a standard tool, with the exception that it would not allow text
annotations, you could include the following method call in your iTool’s Init method:

self -> UnregisterManipulator, 'Text'
To remove all annotation manipulators, include the following:

self -> UnregisterManipulator, 'Annotation'

Finding the Identifier String

To find the string value used as the Identifier argument to the UnregisterManipul ator
method, you can use the IDLitTool::Findldentifiers method. This can be used to
return the identifier of each manipulator registered with an active tool when you
specify the MANPULATORS keyword as follows:

; Get the tool reference and all registered manipulator ids.
1dto0ol=IGETCURRENT (Tool = oTool)

vManip = oTool->FindIdentifiers (/MANIPULATORS)

PRINT, vManip

An array of valuesis printed to the Output Log window in the format of:
/TOOLS/ ToolName/MANIPULATORS/ManipulatorName

Specify the Manipulator Name as the argument to UnregisterManipulator method to
remove that manipulator from the tool.

iTool Developer's Guide Unregistering a Manipulator

226 Chapter 8: Creating a Manipulator

Example: Color Table Manipulator

The following example creates a custom manipulator that allows you to interactively
change the paette applied to a single-plane image. After activating the manipulator
by selecting the Color Table tool icon on the toolbar, position the cursor over the

image and with the mouse button held down, move the mouse to the right or left to
change the palette.

Example Code
The class definition code for this exampleiTool isincluded in thefile
example3tool__define.pro inthe examples/doc/itools subdirectory of
the IDL distribution. Run the example procedure by entering
example3tool _define at the DL command prompt or view thefilein an IDL
Editor window by entering . EDIT example3tool__define.pro.

A segment of thetool created in this example is shown in the following figure.

Custom Manipulator Icon

##l Example Color Table Tool [Untitled*]

File Edit Insert Operations Window Help

Dlc(@lg] of~| %= klolé"?lfﬁll_l R ooz AI\IDIOIGI@I

-
1| | »

|Elic:k over image & drag right or left to change color table

|EOI0r table nurmnber: 14

RegisterManipulator ProbeStatusMessage
DESCRIPTION Text Method Text

Figure 8-2: Custom iTool with Color Table Manipulator

Example: Color Table Manipulator iTool Developer’s Guide

javascript:doIDL("example3tool__define")
javascript:doIDL(".edit example3tool__define.pro")

Chapter 8: Creating a Manipulator 227

This example creates three files:

e Manipulator Class Definition (example3_manippalette_ define.pro)—
defines the characteristics and actions of the manipulator in response to mouse
and keyboard events. See “ Color Table Manipulator Class Definition” below.

e iTool Class Definition (example3tool__define.pro) —definesthistool’s
inheritance of the IDLitToollmage tool and registers the custom manipulator.
See " Custom Tool Class Definition for the Color Table Manipulator” on
page 227.

e iTool Launch Routine (example3tool .pro) —accepts and initializes any
image arguments by creating the necessary data and adding it to the tool’s
parameter set. The launch routine registers the tool using IREGISTER and
then creates an instance of thetool using IDLITSYS CREATETOOL
function. See “Tool Launch Routine for Custom Color Table Manipulator” on
page 228.

Once you have created and compiled the necessary files, see “Running the Color
Table Manipulator Example” on page 228 for instructions on how to recreate the
display shown in the previous figure.

Color Table Manipulator Class Definition

Define the color table manipulator (example3_manippalette_define.pro).
This class definition file initializes the manipulator, creates a cursor, and defines the
manipul ator actionsin response to mouse and keyboard events.

Example Code
The class definition code for this example manipulator isincluded in thefile
example3 _manippalette define.pro inthe examples/doc/itools
subdirectory of the IDL distribution. Run the example procedure by entering
example3_manippalette__define at the IDL command prompt or view the
filein an IDL Editor window by entering . EDIT
example3_manippalette_ define.pro.

Custom Tool Class Definition for the Color Table Manipulator

Create the class definition for the tool containing the custom manipul ator
(example3tool__define.pro). Thisexampleinheritsthe IDLitToollmage class
functionality. In the tool initialization, register the custom manipulator. The
DESCRIPTION string appears in the status area when the manipul ator is activated.

iTool Developer's Guide Example: Color Table Manipulator

javascript:doIDL("example3_manippalette__define")
javascript:doIDL(".edit example3_manippalette__define.pro")
javascript:doIDL(".edit example3_manippalette__define.pro")

228 Chapter 8: Creating a Manipulator

Example Code
The class definition code for this example tool isincluded in thefile
example3tool__define.pro inthe examples/doc/itools subdirectory of
the IDL distribution. Run the example procedure by entering
example3tool _define at the DL command prompt or view thefilein an IDL
Editor window by entering . EDIT example3tool__define.pro.

Tool Launch Routine for Custom Color Table Manipulator

Create alaunch routine (example3tool.pro) for thetool containing the custom
color table manipulator. Create an IDLImagePixelstype of IDLitData object if the
user initializes the tool with a data argument.

Example Code
The class definition code for this example manipulator isincluded in thefile
example3_manippalette_ define.pro inthe examples/doc/itools
subdirectory of the IDL distribution. Run the example procedure by entering
example3_manippalette__define at the IDL command prompt or view the
filein an IDL Editor window by entering . EDIT
example3_manippalette_ _define.pro.

Running the Color Table Manipulator Example

Save and compile all of the files. Enter the following at the command line to
reproduce the display shown in “Example: Color Table Manipulator” on page 226.

ctboneFile = FILEPATH('ctbonel57.jpg', $
SUBDIRECTORY = ['examples', 'data'l)
READ_JPEG, ctboneFile, ctbonelmg

; Launch the example tool with the input data.
example3tool, ctboneImg

Sdlect the Color Table tool on the toolbar and move the cursor over the image. Hold
down the left-mouse button and drag the cursor to the right and left to scroll through
the available color tables. You can aso use the right and left arrow keys to modify the
color table value.

Example: Color Table Manipulator iTool Developer’s Guide

javascript:doIDL("example3tool__define")
javascript:doIDL(".edit example3tool__define.pro")
javascript:doIDL("example3_manippalette__define")
javascript:doIDL(".edit example3_manippalette__define.pro")
javascript:doIDL(".edit example3_manippalette__define.pro")

Chapter 9
Creating a File Reader

This chapter describes the process of creating an iTool file reader.

Overview of iTool FileReaders 230 RegisteringaFileReader 247
Predefined iTool FileReaders 231 UnregisteringaFileReader 248
CreatingaNew FileReader 235 Example TIFFFileReader 250

iTool Developer’s Guide 229

230

Chapter 9: Creating a File Reader

Overview of iTool File Readers

A file reader isan iTool component object class that defines how data stored in afile
should be imported into the iTool environment. File readers have mechanisms for
determining the type of data stored in afile, which allows them to create IDLitData
objects from the stored data. Some file readers implement a graphical user interface
allowing the user to specify the format of data before importing into the iTool; others
read a well-defined file type and operate more or less automatically. Some examples
of iTool file readers are:

the ASCII file reader, which usesthe IDL ASCII_TEMPLATE and
READ_ASCII functions to allow the user to define the format of datain atext
file,

various image file readers, which allow the user to import data stored in JPEG,
BMP, PNG, and other well-defined image format files,

ageneric binary file reader, which allows the user to specify the format of files
containing binary data.

A number of standard file readers are predefined and included in the IDL iTools
package as described in “ Predefined iTool File Readers’ on page 231.

The File Reader Creation Process

To create anew iToal file reader, you will do the following:

Choose an iTool file reader class on which your new operation will be based.
In amost all cases, you will base your new operation on the IDLitReader class,
which handles registration of standard file properties and provides standard
messaging features.

Provide methods to check the type of data stored in the file and place the
retrieved data in a data object.

Set data object properties.

This chapter describes the process of creating a new file reader based on the
IDLitReader class.

Overview of iTool File Readers iTool Developer’s Guide

Chapter 9: Creating a File Reader 231

Predefined iTool File Readers

TheiTool system distributed with IDL includes a number of predefined file readers.
You can include these file readersin an iTool directly by registering the class with
your iTool (as described in “Registering a File Reader” on page 247). You can also
create anew file reader class based on one of the predefined classes.

IDLitRead ASCII

TheiTools ASCII file reader usesthe IDL READ_ASCII and ASCII_TEMPLATE
functions to read datafrom an ASCII file into an iTool data object. It presents a
wizard interface that allows the user to define the structure of the datain the ASCII
file and specify which data should be included.

Registered Properties

None
IDLitReadBinary

TheiTools Binary file reader usesthe IDL READ_BINARY and

BINARY _TEMPLATE functions to read data from a binary datafile into an i Tool
dataobject. It presents awizard interface that allows the user to define the structure of
the data in the binary file and specify which data should be included.

Registered Properties

TEMPLATE — A template structure (previously defined by the
BINARY _TEMPLATE function) describing the file to be read.

IDLitReadBMP

TheiTools BMP file reader usesthe IDL READ_BMP function to read a * . bmp file
and place the image data in an iTool image data object.

Registered Properties

None
IDLitReadCSV

TheiTools CSV filereader usesthe IDL READ_CSV functiontoread a * . csv
(comma separated val ues) file and place the datain an iTool image data object or IDL
variable or variables. The CSV file reader is designed to make it easy to import

iTool Developer's Guide Predefined iTool File Readers

232 Chapter 9: Creating a File Reader
simple tabular data; for filesthat contain complex spreadsheet-like formatting, the
ASCII file reader may be more suitable.
Registered Properties

NUM_RECORDS — Aninteger specifying the number of recordsto read. The default
is 0 (zero), specifying that all records should be read.

RECORD_START — An integer specifying the index of the first record to read. The
default isthefirst record of the file (record 0).

IDLitReadDICOM

TheiTools DICOM reader uses the IDL READ_DICOM function to read a * . dcm
and place the image data in an iTool image data object.

Registered Properties

None
IDLitReadISV

TheiTools Saved Variables file reader restores a saved iTool state (*. isv) file. All
data objectsin the file are placed into the current iTool data manager session, and all
visualization objects are restored and displayed.

Registered Properties

None
IDLitReadJPEG

TheiTools JPEG file reader usesthe IDL READ_JPEG proceduretoread a * . jpg or
* . jpeg file and place the image data in an iTool image data object.

Registered Properties
None
IDLitReadJPEG2000
TheiTools JPEG 2000 file reader usesthe IDL READ_JPEG2000 procedure to read

a*.jp2, *.jpx, or *. 32k file and place the image datain an iTool image data
object.

Predefined iTool File Readers iTool Developer’s Guide

Chapter 9: Creating a File Reader 233

Registered Properties

DISCARD_LEVELS — An integer specifying the number of highest resolution levels
which will not appear in the result. See the DISCARD_LEVELS keyword to the
IDLffJPEG2000::GetData method for additional details.

QUALITY_LAYERS — Aninteger specifying the maximum number of quality layers
which will be returned in the result. Each layer contains the information required to
represent the image at a higher quality, given the information from all the previous
layers. Seethe MAX_LAY ERS keyword to the I DLffJPEG2000::GetData method for
additional details.

IDLitReadPICT

TheiTools PICT filereader usesthe IDL READ_PICT proceduretoread a * .pct or
*.pict file and place the image datain an iTool image data object.

Registered Properties

None

IDLitReadPNG

TheiTools PNG file reader usesthe IDL READ_PNG function to read a * . png file
and place the image (and, optionally, palette) datain an i Tool image data object.

Registered Properties

None

IDLitReadShapefile

TheiTools Shapefile reader uses the I DL ff Shape object to read an ESRI shapefile and
place the polygons or polylinesin an iTool image data object.

Registered Properties

ATTRIBUTE_NAME — The name of an attribute of the shapefile that contains the
name of the individual item within the shapefile.

COMBINE_ALL — A boolean value specifying whether all shapes contained in the
shapefile should be combined into a single visualization in the iTool.

IDLitRead TIFF

TheiTools TIFF file reader usesthe IDL READ_TIFF functiontoread a . tif or
* . tiff fileand place theimage (and, optionally, palette) datain an iTool image data
object.

iTool Developer's Guide Predefined iTool File Readers

234 Chapter 9: Creating a File Reader

Registered Properties

IMAGE_INDEX — An integer specifying the index of the image within the TIFF file
that should be read into the image data object.

IMAGE_STACKING — An integer specifying the stacking order for reading muilti-
image TIFF filesinto volumes.

IDLitRead WAV

TheiTools WAV file reader usesthe IDL READ_WAV functionto read a * . wav file
and place the datain an iTool vector object.

Registered Properties

None

Predefined iTool File Readers iTool Developer’s Guide

Chapter 9: Creating a File Reader 235

Creating a New File Reader

AniTool file reader class definition file must (at the least) provide methodsto
initialize the file reader class, get and set property values, handle changes to the
underlying data, clean up when thefile reader is destroyed, and define the file reader
class structure. Complex file reader types will likely provide additional methods.

The process of creating an file reader is outlined in the following sections:
e “Creating the Class Structure Definition” on page 235
e “Creating an Init Method” on page 237
¢ “Creating a Cleanup Method” on page 241
* “Creating a GetProperty Method” on page 242
e “Creating a SetProperty Method” on page 243
e “Creating an ISA Method” on page 244
e “Creating a GetData Method” on page 245

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the object, along with the
datatypes of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named objectClass__define (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ (Chapter 13, Object Programming).

Note
The class structure definition is generally the last routinein the . pro file that
defines an object class.

Subclassing from the IDLitReader Class

The IDLitReader classisthe base class for all iTool file readers. In amost all cases,
new file readers will be subclassed either from the IDLitReader class or from aclass
that is a subclass of IDLitReader.

iTool Developer's Guide Creating a New File Reader

236 Chapter 9: Creating a File Reader

See “IDLitReader” (IDL Reference Guide) for details on the methods and properties
available to classes that subclass from IDLitReader.

Hiding Compilation Messages
When IDL compiles an object class, it prints a compilation message similar to the

following to the IDL Console:

% Compiled module: EXAMPLEREADER__DEFINE.

To prevent the compilation message from appearing when the class is compiled, add
the following line to the class structure definition:

COMPILE_OPT hidden
Example Class Structure Definition

The following is the class structure definition for the ExampleReader file reader
class. This procedure should be the last procedure in a file named
examplereader__define.pro.

PRO ExampleReader_ Define
COMPILE_OPT hidden

struct = { ExampleReader, S
INHERITS IDLitReader $
}

END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
ExampleReader.

Like many iTool file reader classes, ExampleReader is created as a subclass of the
IDLitReader class. Filereader classes that subclass from IDLitReader classinherit all
of the standard iTool file reader features, as described in “ Subclassing from the
IDLitReader Class’ on page 235.

The ExampleReader class has no instance data of its own. For a more complex
example, see “Example: TIFF File Reader” on page 250.

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 237

Creating an Init Method

Thefile reader class Init method handles any initialization required by the file reader
object, and should do the following:

» define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

« call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

» register any properties of your file reader, and set property attributes as
necessary

« perform other initialization steps as necessary

e returnthevaue 1if theinitialization steps are successful, or O otherwise
Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method via|DL's keyword inheritance mechanism. The
function signature for an Init method for afile reader generally looks something like
this:

FUNCTION MyReader::Init, MYKEYWORDI1 = mykeywordl, $

MYKEYWORDZ2 = mykeyword2, ..., _REF_EXTRA = _extra

where MyReader is the name of your file reader class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See “ Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Superclass Initialization

The file reader class Init method should call the Init method of any required
superclass. For example, if your file reader is based on an existing file reader class,
you would call that class' Init method:

success = self->SomeFileReaderClass::Init (_EXTRA = _extra)

iTool Developer's Guide Creating a New File Reader

238 Chapter 9: Creating a File Reader

where SomeFileReader Class is the class definition file for the file reader on which
your new file reader is based. The variable success will contain alif the
initialization was successful.

Note
Your file reader class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class’ Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good idea to check
whether the call to the superclass Init method succeeded. The following statement
checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self->SomeFileReaderClass::Init (_EXTRA = _extra) EQ 0) THEN $
RETURN, O

This conventionis used in all file reader classesincluded with IDL. We strongly
suggest that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the file reader class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitReader class and the IDLitComponent class are
available to any file reader class. See “IDLitReader Properties’ and
“IDLitComponent Properties’ (IDL Reference Guide).

Note
Always use keyword inheritance (the _EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Standard Base Class

While you can create your new file reader class from any existing file reader class, in
many cases, file reader classes you create will be subclassed directly from the base
class IDLitReader:

IF (self->IDLitReader::Init (Extensions, _EXTRA = _extra) EQ 0) $
THEN RETURN, O

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 239

where Extensionsis astring or array of strings specifying the filename extensions
readabl e by your file reader.

Note
The value of the Extensions argument is used only to display the proper filename
filter when an Open dialog is displayed — it is not a check for the proper filetype.
The IsA method must check the file to determine whether it is readable by your file
reader.

The IDLitReader class provides the base iTool file reader functionality used in the
tools created by ITT Visua Information Solutions. See “ Subclassing from the
IDLitReader Class’ on page 235 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other file reader classes that
subclass from your file reader class may check this return value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

File reader objects can register properties with the iTool. Registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “Properties of the iTools System” on page 85), and can be modified interactively
by users. The iTool property interface is described in detail in Chapter 4, “Property

Management”.
Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self->RegisterProperty, PropertyIdentifier [, TypeCode] S

[, ATTRIBUTE = value]

where Propertyldentifier is a string that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 74 for details.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

iTool Developer's Guide Creating a New File Reader

240 Chapter 9: Creating a File Reader

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your file reader
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self->SetPropertyAttribute, Identifier

where Identifier isthe name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword. See “Property Attributes’ on page 78 for additional details.

Passing Through Caller-Supplied Property Settings

If you haveincluded the REF EXTRA keyword in your function definition, you can
use IDL’s keyword inheritance mechanism to pass any “extra’ keyword values
included in the cal to the Init method through to other routines. This mechanism
allowsyou to specify property settings when the Init method is called; simply include
each property’s keyword/value pair when calling the Init method, and include the
following in the body of the Init method:

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->MyReader: : SetProperty, _EXTRA = _extra

where MyReader is the name of your file reader class. Thisline has the effect of
passing any “extra’ keyword valuesto your file reader class' SetProperty method,
where they can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “ Creating a SetProperty Method” on
page 243 for details.

Example Init Method
FUNCTION ExampleReader::Init, _REF_EXTRA = _extra
IF (self->IDLitReader::Init('ppm', $
DESCRIPTION="PPM File Reader", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, 0
RETURN, 1
END

Discussion

The ExampleReader classis based on the IDLitReader class (discussed in
“Subclassing from the IDLitReader Class’ on page 235). Asaresult, al of the

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 241

standard features of an iToal file reader class are already present. We don’t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword val ues through to methods called
within the Init method. The ExampleReader Init method does the following things:

1. CalstheInit method of the superclass, IDLitReader. We specify alist of
accepted filename extensions (only ppm, in this case) viathe Extensions
argument. We include a description of the reader viathe DESCRIPTION
keyword. Finally, we use the EXTRA keyword inheritance mechanism to
pass through any keywords provided when the Examp1eReader Init method is
called.

2. Returnstheinteger 1, indicating successful initialization.

Creating a Cleanup Method

The file reader class Cleanup method handles any cleanup required by the file reader
object, and should do the following:

» destroy any pointers or objects created by thefile reader
e call the superclass' Cleanup method

Calling the superclass’ cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file reader class is based on the IDLitReader class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
aways safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See“IDLitReader::Cleanup” (IDL Reference Guide) for additional details.
Example Cleanup Method
PRO ExampleReader: :Cleanup

; Clean up superclass
self->IDLitReader: :Cleanup

END

iTool Developer's Guide Creating a New File Reader

242 Chapter 9: Creating a File Reader

Discussion

Since our file reader object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

The file reader class GetProperty method retrieves property values from thefile
reader object instance or from instance data of other associated objects. It should
retrieve the requested property value, either from the file reader object’sinstance data
or by calling another class' GetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

See “IDLitReader::GetProperty” (IDL Reference Guide) for additional details.
Example GetProperty Method

PRO ExampleReader: :GetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitReader: :GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file reader. Since the file reader we are creating has
no properties of its own, there are no keywords explicitly defined. The keyword
inheritance mechanism allows properties to be retrieved from the ExampleReader
class superclasses without knowing the names of the properties.

Since our ExampleReader class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in all of the keywords stored inthe _extra
structure.

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 243

Creating a SetProperty Method

The file reader SetProperty method stores property values in the file reader object’s
instance data. It should set the specified property value, either by storing the value
directly in the visualization object’s instance data or by calling another class
SetProperty method.

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file reader need not register any properties at all, if the read operation is simple.
Many of the standard i Tool image file readers work without registering any
properties.

See “IDLitReader::SetProperty” (IDL Reference Guide) for additional details.
Example SetProperty Method

PRO ExampleReader: :SetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS(_extra) GT 0) THEN $
self->IDLitReader: :SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file reader we are
creating has no properties of its own, no keywords are explicitly defined. The
keyword inheritance mechanism allows properties to be set on the ExampleReader
class superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass' SetProperty method, passing in all of the keywords stored in
the _extra structure.

iTool Developer's Guide Creating a New File Reader

244 Chapter 9: Creating a File Reader

Creating an IsA Method

The file reader IsSA method must accept a string containing the name of thefile to be
read as its only parameter, and must determine whether thefileis of the proper typeto
be read by your file reader. If the file is of the correct type, the ISA method must
return 1; if thefileis not of the correct type, the ISA method should display an error
message and return 0.

See“IDLitReader::ISA” (IDL Reference Guide) for additional details.
Example IsA Method
FUNCTION ExampleReader::IsA, strFilename

iDot = STRPOS(strFilename, '.', /REVERSE_SEARCH)

IF (iDot GT 0) THEN BEGIN
fileSuffix = STRUPCASE (STRMID(strFilename, iDot + 1))
IF (STRUPCASE (fileSuffix) EQ 'PPM') THEN RETURN, 1

ENDIF

self->IDLitIMessaging: :ErrorMessage, $
["The specified file is not a PPM file."], S
SEVERITY = 0, TITLE="Wrong File Type"

RETURN, O

END

Discussion

Note
Our example IsA method will simply check the filename for the presence of the
proper filename extension. A more sophisticated |SA method would actually inspect
the contents of the specified file.

The IsA method accepts a string that contains a file name. Using the supplied file
name, we first search backwards from the end of the name until we locate a dot
character. If the filename contains a dot, we extract the string that follows the dot and
convert it to upper case. If the extracted string is ' pPM ', we return success, if the
extracted string isnot ' peM or if thereis no dot in the file name, we issue an error
using the IDLitlMessaging::ErrorM essage method and return failure.

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 245

Creating a GetData Method

Thefile reader GetData method does the work of the file reader, first creating an IDL
variable or variables to contain the data read from the file, then placing the data into
an iTool data object. If this processis successful, the GetData method must place the
created data object in the variable supplied as the method's only argument and return
1 for success. If the processis not successful, the GetData method must return O.

See“IDLitReader::GetData’ (IDL Reference Guide) for additional details.
Example GetData Method

FUNCTION ExampleReader: :GetData, oImageData

; Get the name of the file currently associated with the reader.
filename = self->GetFilename ()

; Read the file.
READ_PPM, filename, image

; Store image data in Image Data object.
oImageData = OBJ_NEW('IDLitDataIDLImage', $
NAME = FILE_BASENAME (fileName))

IF OBJ_VALID (oImageData) THEN BEGIN

RETURN, oImageData->SetData(image, 'ImagePixels', /NO_COPY)
ENDIF

RETURN, 0

END

Discussion

The GetData method accepts a single argument, which is a named variable that will
contain the data object. Our GetData method' s first step isto retrieve the file name of
the file on which the method is being called using the GetFilename method. Since our
examplefile reader reads data from PPM files, the file name isthen passed to the IDL
READ_PPM procedure. An IDLitDatal DL Image object that will hold theimage data
is created in the named variable specified by the argument to the GetData method
(olmageData, in this case); the NAME property set to the filename of the origina
datafile. We check to ensure that the ol mageData object was created successfully and
add the image data returned by the READ_PPM procedure using the

IDLitData:: SetData method. Note the use of the NO_COPY keyword to prevent
making copies of the image data array, which could be quite large. Finally, we return

iTool Developer's Guide Creating a New File Reader

246 Chapter 9: Creating a File Reader

the value returned by the SetData method (1 for success, O for failure), or we return 0
if olmageDatais not avalid object.

Note
Thetype of dataobject created (IDLitDatal DLImage, in this example) affects how a

particular tool will behave when reading thefile. If the data type of the object
returned by thefile reader matches one of the datatypes specified for a parameter of
the visualization being created, the data object is associated with that parameter. See
“Data Type Matching” on page 63 for additional information.

Creating a New File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 247

Registering a File Reader

Before afile reader can be used by aniTool to read in afile, the file reader’s class
definition must be registered as being available to the iTool. Registering afile reader
with the iTool links the class definition file that contains the actual IDL code that
definesthe file reader with a simple string that names the reader. Codethat calls afile
reader in an iTool uses the name string to specify which reader should be created.

Using IDLitTool::RegisterFileReader

In most cases, you will register afile reader with the iTool in the iTool’s class Init
method. Registration ensures that the file reader is available when the iTool attempts
touseit toread afile. (See“ Creating aNew iTool Class’ on page 91 for details on the
iTool class Init method.)

To register afile reader, call the IDLitTool::RegisterFileReader method:

self->RegisterFileReader, Reader_ Type, ReaderType_ Class_Name, $
ICON = icon

where Reader_Type is the string you will use when referring to the file reader,
ReaderType Class Nameis a string that specifies the name of the classfile that
contains the file reader’s definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
Thefile ReaderType Class_Name _define.pro must exist somewherein
IDL’s path for the file reader to be successfully registered.

See“IDLitTool::RegisterFileReader” (IDL Reference Guide) for details.
Specifying Useful Properties

You can set any property of the IDLitReader and IDLitComponent classes when
registering afile reader. The following properties may be of particular interest:

ICON

A string value giving the name of an icon to be associated with this abject. Typicaly,
this property is the name of a bitmap file to be used when displaying the object in a
tree view. See “Icon Bitmaps’ on page 44 for details on where bitmap icon files are
located.

iTool Developer's Guide Registering a File Reader

248 Chapter 9: Creating a File Reader

Unregistering a File Reader

If you are creating anew iTool from an existing i Tool class, you may want to remove
afile reader registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers afile reader you don’'t want included in your iTool. Rather than recreating
theiTool classto remove the file reader, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted file
reader.

Unregister afile reader by calling the IDLitTool::UnregisterFileReader method in the
Init method of your iTool class:

self->UnregisterFileReader, identifier
where identifier isthe string name used when registering the file reader.

For example, suppose you are creating a new i Tool that subclasses from a standard
iTool that isbased on the IDLitToolbase class. If you wanted your new tool to behave
just like the a standard tool, with the exception that it would not read PNG files, you
could include the following method call in your iTool’s Init method:

self->UnregisterFileReader, 'PNG File Reader'
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileReader
method, you can inspect the classfile that registers the file reader (if the file reader is
registered by auser-created class), or use the Findldentifiers method of the IDLitTool
object to generate alist of registered file readers. (Standard iTool file readers are pre-
registered within the iTool framework.)

If thefile reader isregistered in a user-created class, you could inspect the class
definition file to find a call to the RegisterFileReader method, which looks something
likethis:

self->RegisterFileReader, 'PNG File Reader', 'IDLitReadPNG'

The first argument to the RegisterFileReader method (' PNG File Reader')isthe
string name of the file reader.

Alternatively, to generate alist of relative identifiersfor al file readersregistered with
the current tool, use the following statements:

void = ITGETCURRENT (TOOL=0Tool)
frlist = oTool->FindIdentifiers (/FILE_READERS)
FOR 1 = 0, N_ELEMENTS(frlist)-1 DO PRINT, $

Unregistering a File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 249

STRMID(frlist[i], STRPOS(frlist([i], '/', /REVERSE_SEARCH)+1)

See “IDLitTool::Findldentifiers’ (IDL Reference Guide) for details.

iTool Developer's Guide Unregistering a File Reader

250 Chapter 9: Creating a File Reader

Example: TIFF File Reader

This example creates afile reader to read TIFF format files.

Example Code
The code for this examplefile reader isincluded in thefile
examplel_readtiff__ define.pro inthe examples/doc/itools
subdirectory of the IDL distribution. Run the example procedure by entering
examplel_readtiff__define at the IDL command prompt or view thefilein
an IDL Editor window by entering .EDIT examplel_readtiff__define.pro.

Note
The standard TIFF file reader included with the iTools contains additional features
not included in this example. In most cases, if afilereader isincluded in the
standard i Tool distribution, thereisno need to create your own reader for files of the
same type.

Class Definition File

The class definition for examplel_ readtiff consists of an Init method, an [SA
method, a GetData method, GetProperty and SetProperty methods, and a class
structure definition routine. Aswith all object class definition files, the class structure
definition routine is the last routine in the file, and the file is given the same name as
the class definition routine (with the suffix . pro appended).

Class Definition

PRO examplel_readtiff_ Define

struct = {examplel_readtiff, S
inherits IDLitReader, $
_index : O S
}
END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name examplel_readtiff, specifying that the structure inherits from the
IDLitReader class. The structure has a single instance data field named _index,
which we specify as an integer value.

Example: TIFF File Reader iTool Developer’s Guide

javascript:doIDL("example1_readtiff__define")
javascript:doIDL(".edit example1_readtiff__define.pro")

Chapter 9: Creating a File Reader 251

Init Method
FUNCTION examplel_readtiff::Init, _REF_EXTRA = _extra

; Call the superclass Init method

IF (self->IDLitReader::Init(["tiff", "tif"],$
NAME="Tiff Files", $
DESCRIPTION="TIFF File format", $
_EXTRA = _extra) NE 1) THEN ¢

RETURN, O

; Initialize the instance data field
self. index = 0

; Register the index property
self->RegisterProperty, 'IMAGE_INDEX', /INTEGER, $
Description='Index of the image to read from the TIFF file.'

RETURN, 1

END
Discussion

Thefirst itemin our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name examplel_readtiff. The
_REF_EXTRA keyword inheritance mechanism allows any keywords specified in a
call to the Init method to be passed through to routines that are called within the Init
method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating asubclass
of the IDLitReader class; this provides us with al of the standard iTool file reader
functionality automatically. Any “extra’ keywords specified in the call to our Init
method are passed to the IDLitReader::Init method via the keyword inheritance
mechanism.

We specify alist of accepted filename extensions (ciff and tif, inthiscase) viathe
Extensions argument. We specify avalue for the NAME property of the reader object
(thisis displayed in the system preferences dialog) and include a description of the
reader viathe DESCRIPTION keyword. Finally, we usethe EXTRA keyword
inheritance mechanism to pass through any keywords provided when the Init method
iscalled.

Our TIFF reader object has asingleinstance datafield: _index, which isused to store
the index number of theimage to read from amulti-image TIFF file. We initialize this
instance datafield to O, and register the IMAGE_INDEX property to provide access

to thisfield viathe property sheet interface.

iTool Developer's Guide Example: TIFF File Reader

252 Chapter 9: Creating a File Reader

Finally, we return the value 1 to indicate successful initialization.

IsA Method
FUNCTION examplel_readtiff::Isa, strFilename
RETURN, QUERY_TIFF (strFilename)

END
Discussion

The IsA method for our TIFF file reader issimple: we usethe IDL QUERY _TIFF
function to determine whether the specified fileisa TIFF file, returning the function’s
return value.

GetData Method
FUNCTION examplel_readtiff::GetData, oImageData
filename = self->GetFilename ()

IF (QUERY_TIFF(filename, fInfo, IMAGE_INDEX=self._index) EQ 0) $
THEN RETURN, O

IF (fInfo.has_palette) THEN BEGIN
image = READ_TIFF(filename, palRed, palGreen, palBlue, $
IMAGE_INDEX = self._ index)
ENDIF ELSE BEGIN
image = READ_TIFF (filename, IMAGE_INDEX = self._index)
ENDELSE

; Store image data in Image Data object.
oImageData = OBJ_NEW('IDLitDataIDLImage', $
NAME = FILE_BASENAME (fileName))

result = oImageData->SetData (image, 'ImagePixels', /NO_COPY)

IF (result EQ 0) THEN $
RETURN, O

; Store palette data in Image Data object.
IF (fInfo.has_palette) THEN $
result = oImageData->SetData(TRANSPOSE ([[palRed], $
[palGreen], [palBluel]), 'Palette')

IF fInfo.num_images GT 1 THEN $

self->IDLitIMessaging: :StatusMessage, $
'Read channel ' + strtrim(self._index,2)

Example: TIFF File Reader iTool Developer’s Guide

Chapter 9: Creating a File Reader 253

RETURN, result

END
Discussion

The GetDatamethod for our TIFF file reader begins by retrieving the name of thefile
associated with the reader object. We then use the IDL QUERY _TIFF function to
check whether the image specified by the value of the IMAGE_INDEX property
(stored in the _index instance data field) exists, returning O for failureif the
specified image does not exist.

QUERY _TIFF also returns a structure containing information about the image; we
use this structure to determine whether the image has a palette. We use the presence
of a palette to choose the correct call to the READ_TIFF function, which places the
image datain a set of local variables.

Next, we construct an IDLitDatal DL Image object to store the image data, using the
base name of the image file for the object’s NAME property. We use the SetData
method to place the image datainto the newly created image data object, specifying
the string ' Image ' asthe data object’sidentifier. A check of the return value from
the SetData method allows us to return O from our GetData method if we are unable
to store the image data in the image object for any reason.

If the image includes palette data, we store the array of red, green, and blue values
using the SetData method, specifying 'Palette' astheidentifier. The palette
variables returned by READ_TIFF represent image planes; since the IDLitVisimage
visualization type that we will use to display the image expects data interleaved by
pixel, we use the TRANSPOSE function to convert the palette data into the correct
format.

Finally, we use the StatusM essage method of the IDLitIMessaging class to report to
the user which image was retrieved from the TIFF file. The message isdisplayed in
the status area of the iTool window.

GetProperty Method

PRO examplel_readtiff::GetProperty, IMAGE_INDEX = image_index, $
_REF_EXTRA = _extra

IF (ARG_PRESENT (image_index)) THEN $
image_index = self._index

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitReader: :GetProperty, _EXTRA = _extra

iTool Developer's Guide Example: TIFF File Reader

254 Chapter 9: Creating a File Reader

END
Discussion

The GetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the GetProperty method,
itsvalueisretrieved from the _index instance datafield. Any other properties
included in the method call are passed to the superclass GetProperty method.

SetProperty Method

PRO examplel_readtiff::SetProperty, IMAGE_INDEX = image_index, $
_REF_EXTRA = _extra

IF (N_ELEMENTS (image_index) GT 0) THEN $
self._index = image_index

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitReader: :SetProperty, _EXTRA = _extra
END
Discussion

The SetProperty method for our TIFF file reader supports a single property named
IMAGE_INDEX. If this property is specified in the call to the SetProperty method,
itsvalueis placed in the _index instance datafield. Any other propertiesincluded in
the method call are passed to the superclass' SetProperty method.

Example: TIFF File Reader iTool Developer’s Guide

Chapter 10

Creating a File Writer

This chapter describes the process of creating an iTool file writer.

Overview of iTool FileWriters 256 RegisteringaFileWriter 271
Predefined iTool File Writers 257 UnregisteringaFileWriter 272
Creating aNew FileWriter 260 Example: TIFFFileWriter 274

iTool Developer’s Guide 255

256

Chapter 10: Creating a File Writer

Overview of iTool File Writers

A file writer isan iTool component object class that defines how data stored in the
iTool data manager can be exported to afile. File writers have mechanisms for
manipul ating data stored in iTool data objects into the proper format for a given file
type. Some examples of iTool file writers are:

the ASCII file writer, which usesthe IDL PRINTF procedure to write datato a
text file.

various image file writers, which allow the user to save datain JPEG, BMP,
PNG, and other well-defined image format files,

ageneric binary file writer, which uses the IDL WRITEU procedure to write
unformatted binary datato afile.

A number of standard file writers are predefined and included in the IDL iTools
package; if none of the predefined file writers suits your needs, you can create your
own file writer by subclassing either from the base IDLitWriter class on which all of
the predefined file writers are based, or from one of the predefined file writers.

The File Writer Creation Process

To create anew iToal file writer, you will do the following:

Choose aniTool filewriter class on which your new operation will be based. In
amost al cases, you will base your new operation on the IDLitWriter class,
which handles registration of standard file properties and provides standard
messaging features.

Provide methods that extract the image data from the data object and create a

fileusing IDL’s output routines (PRINT, WRITE, or one of the IDL WRITE_*
routines).

This chapter describes the process of creating a new file writer based on the
IDLitWriter class.

Overview of iTool File Writers iTool Developer’s Guide

Chapter 10: Creating a File Writer 257

Predefined iTool File Writers

TheiTool system distributed with IDL includes a number of predefined file writers.
You can include these file writersin an iTool directly by registering the class with
your iTool (as described in “Registering a File Writer” on page 271). You can also
create anew file writer class based on one of the predefined classes.

IDLitWriteASCII

TheiTools ASCII file writer usesthe IDL PRINTF procedure to print stringsto afile.
Registered Properties

STRING_SEPARATOR — A string that is used to separate the values stored in the
ASCII file.

USE_DEFAULT_FORMAT — A boolean value that specifieswhether adefault format
string should be used.

STRING_FORMAT — A string specifying the format string to be used when writing
the datato the ASCII file. See “Format Codes” in Chapter 18, “Files and

Input/Output” (Application Programming) for a discussion of format codes.

Note
The format code should not include parentheses.

IDLitWriteBinary

TheiTools Binary file writer uses the IDL WRITEU procedure to write unformatted
binary datato afile.

Registered Properties

None

IDLitWriteBMP

TheiTools BMP file writer usesthe IDL WRITE_BMP procedure to write an image
and its color table vectors to a Microsoft Windows Version 3 device independent
bitmap file (. bmp).

Registered Properties

BIT_DEPTH — Bit depth at which to write the image.

iTool Developer's Guide Predefined iTool File Writers

258 Chapter 10: Creating a File Writer

IDLitWriteEMF

TheiTools EMF file writer uses the iTools system clipboard to write an image and its
color table vectors to a Microsoft Windows Enhanced Metafile (. emf).

Registered Properties

GRAPHICS_FORMAT — A integer that specifies whether graphics should be
rendered using bitmap (0) or vector (1) output.

IDLitWriteEPS

The iTools EPS file writer uses the iTools system clipboard to write an image and its
color table vectors to a Encapsulated PostScript (.eps) file.

Registered Properties

COLOR_MODEL — An integer that specifies whether graphics should be rendered
using the RGB (0) or CMYK (1) PostScript Output Color Model.

GRAPHICS_FORMAT — An integer that specifies whether graphics should be
rendered using bitmap (0) or vector (1) output.

IDLitWritelSV

TheiTools ISV file writer saves the current iTool state, including datain the data
manager, visualizations, annotations, and operation property settingsto afilewith the
extension . isv. ISV files can be restored by launching an iTool and selecting thefile
using the File — Open menu item.

Registered Properties

None
IDLitWriteJPEG

The iTools JPEG file writer usesthe IDL WRITE_JPEG procedure to write
compressed imagesto files. JPEG (Joint Photographic Experts Group) is a
standardized compression method for full-color and gray-scale images.

Registered Properties

GRAYSCALE — A boolean value that specifies whether the image should be written
as TrueColor or Grayscale

QUALITY — An integer specifying the quality index, in the range of O (terrible) to
100 (excellent) for the JPEG file. The default valueis 75, which corresponds to very

Predefined iTool File Writers iTool Developer’s Guide

Chapter 10: Creating a File Writer 259

good quality. Lower values of QUALITY produce higher compression ratios and
smaller files.

IDLitWriteJPEG2000

TheiTools JPEG2000 file writer usesthe IDL WRITE_JPEG2000 procedure to write

compressed imagesto files. JPEG 2000 is a wavel et-based compression method for
full-color and gray-scale images.

Registered Properties
N_LAYERS — An integer specifying the number of quality layers to include.

N_LEVELS — Aninteger specifying the number of wavelet decomposition levels.

REVERSIBLE — A boolean value that specifies whether to use reversible (lossless)
compression.

IDLitWritePICT

TheiTools PICT file writer usesthe IDL WRITE_PICT procedure to write an image
and itscolor table vectorsto aPICT (version 2) format imagefile. The PICT format is
used by Apple Macintosh computers.

Registered Properties

None

IDLitWritePNG

TheiTools PNG file writer usesthe IDL WRITE_PNG procedure to write an image
to a Portable Network Graphics (PNG) file. The datain thefileis stored using

lossless compression with either 8 or 16 data bits per channel, based on the input IDL
variable type.

Registered Properties
BIT_DEPTH — Bit depth at which to write the image.
IDLitWriteTIFF

TheiTools TIFFfilewriter usesthe IDL WRITE_TIFF procedure to write TIFF files.
Registered Properties

BIT_DEPTH — Bit depth at which to write the image.

COMPRESSION — An integer specifying the type of compression to use.

iTool Developer's Guide Predefined iTool File Writers

260 Chapter 10: Creating a File Writer

Creating a New File Writer

The process of creating an visualization type is outlined in the following sections:
e “Creating the Class Structure Definition” on page 260
e “Creating an Init Method” on page 261
* “Creating a Cleanup Method” on page 266
e “Creating a GetProperty Method” on page 266
e “Creating a SetProperty Method” on page 267
e “Creating a SetData Method” on page 268

Creating the Class Structure Definition

When any IDL object is created, IDL looks for an IDL class structure definition that
specifies the instance data fields needed by an instance of the abject, along with the
datatypes of those fields. The object class structure must have been defined before
any objects of the type are created. In practice, when the IDL OBJ_NEW function
attempts to create an instance of a specified object class, it executes a procedure
named objectClass__define (where ObjectClassis the name of the object),
which is expected to define an IDL structure variable with the correct name and
structure fields. For additional information on how IDL creates object instances, see
“The Object Lifecycle’ (Chapter 13, Object Programming).

Note
The class structure definition is generally the last routinein the . pro file that
defines an object class.

Subclassing from the IDLitWriter Class

The IDLitWriter classisthe base class for all iTool file writers. In almost all cases,
new file writers will be subclassed either from the IDLitWriter class or from aclass
that is a subclass of IDLitWriter.

See “IDLitWriter” (IDL Reference Guide) for details on the methods properties
available to classes that subclass from IDLitWriter.

Hiding Compilation Messages

When IDL compiles an object class, it prints a compilation message similar to the
following to the IDL Console;

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 261

% Compiled module: EXAMPLEWRITER__DEFINE.

To prevent the compilation message from appearing when the class is compiled, add
the following line to the class structure definition:

COMPILE_OPT hidden
Example Class Structure Definition

The following is the class structure definition for the Examplewriter file writer
class. This procedure should be the last procedure in a file named
examplewriter__define.pro.

PRO ExampleWriter_ Define
COMPILE_OPT hidden

struct = { ExampleWriter, S
INHERITS IDLitWriter $
}

END
Discussion

The purpose of the structure definition routine isto define anamed IDL structure
with structure fields that will contain the visualization object instance data. The
structure name should be the same as the visualization’s class name — in this case,
ExampleWriter

Like many iTool file writer classes, Examplelriter is created as a subclass of the
IDLitWriter class. File writer classes that subclass from the IDLitWriter class inherit
al of the standard i Tool file writer features, as described in “ Subclassing from the
IDLitWriter Class’ on page 260.

The ExampleWriter class has no instance data of its own. For a more complex
example, see “Example: TIFF File Writer” on page 274.

Creating an Init Method
The filewriter class Init method handles any initialization required by the file writer

object, and should do the following:

e define the Init function method, using the keyword inheritance mechanism to
handle “extra’ keywords

« call the Init methods of any superclasses, using the keyword inheritance
mechanism to pass “extra’ keywords

iTool Developer's Guide Creating a New File Writer

262

Chapter 10: Creating a File Writer

e register any properties of your file writer, and set property attributes as
necessary

o perform other initialization steps as necessary
e returnthevaue 1if theinitialization steps are successful, or O otherwise

Definition of the Init Function

Begin by defining the argument and keyword list for your Init method. The argument
and keyword list defines positional parameters (arguments) accepted by your method,
defines any keywords that will be handled directly by your method, and specifies
whether keywords not explicitly handled by your method will be passed through to
other routines called by your method vialDL's keyword inheritance mechanism. The
Init method for afile writer generally looks something like this:

FUNCTION MyWriter::Init, MYKEYWORDI = mykeywordl, $
MYKEYWORD2 = mykeyword2, ..., _REF_EXTRA = _extra

where MyWriter isthe name of your file writer class and the MYKEYWORD
parameters are keywords handled explicitly by your Init function.

Note
Always use keyword inheritance (the _REF_EXTRA keyword) to pass keyword
parameters through to any called routines. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Superclass Initialization

The file writer class Init method should call the Init method of any required
superclass. For example, if your file writer is based on an existing file writer class,
you would call that class' Init method:

self->SomeFileWriterClass: :Init (_EXTRA = _extra)

where SomeFileWriter Class is the class definition file for the file writer on which
your new file writer is based.

Note
Your file writer class may have multiple superclasses. In general, each superclass
Init method should be invoked by your class' Init method.

Error Checking

Rather than simply calling the superclass Init method, it is a good ideato check
whether the call to the superclass Init method succeeded. The following statement

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 263

checks the value returned by the superclass Init method; if the returned valueis 0
(indicating failure), the current Init method also immediately returns with a value of
0:

IF (self->SomeFileWriterClass::Init (_EXTRA = _extra) EQ 0) THEN $
RETURN, O

This convention isused in al file writer classes included with IDL. We strongly
suggest that you include similar checks in your own class definition files.

Keywords to the Init Method

Properties of the file writer class can be set in the Init method by specifying the
property names and values as IDL keyword-value pairs. In addition to any keywords
implemented directly in the Init method of the superclass on which you base your
class, the properties of the IDLitWriter class, IDLitComponent class, and
IDLitIMessaging class are available to any file writer class. See “IDLitReader
Properties’, “I DLitComponent Properties’, and “IDLitIMessaging Properties” (IDL
Reference Guide).

Note
Always use keyword inheritance (the _EXTRA keyword) to pass keyword
parameters through to the superclass. (See “Keyword Inheritance” (Chapter 5,
Application Programming) for details on IDL’s keyword inheritance mechanism.)

Standard Base Class

While you can create your new file writer class from any existing file writer class, in
many cases, file writer classes you create will be subclassed directly from the base
class IDLitWriter:

IF (self->IDLitWriter::Init (Extensions, TYPES = types, $
_EXTRA = _extra) EQ 0) S
THEN RETURN, O

where Extensionsis astring or array of strings specifying the filename extensions
readabl e by your file writer and typesisastring or array of strings specifying the
iTool datatypes for which thiswriter is available. (See “iTool Data Types’ on
page 54 for details on iTool datatypes.)

Note
The value of the Extensions argument is used only to display the proper filename
filter when aFile Save dialog is displayed — it is not a check for the proper filetype.

iTool Developer's Guide Creating a New File Writer

264 Chapter 10: Creating a File Writer

The IDLitWriter class provides the base iTool file writer functionality used in the
tools created by ITT Visua Information Solutions. See “ Subclassing from the
IDLitWriter Class’ on page 260 for details.

Return Value

If al of the routines and methods used in the Init method execute successfully, it
should indicate successful initialization by returning 1. Other file writer classes that
subclass from your file writer class may check thisreturn value, as your routine
should check the value returned by any superclass Init methods called.

Registering Properties

File writer objects can register properties with the i Tool. Registered properties show
up in the property sheet interface shown in the system preferences browser (described
in “ Properties of theiTools System” on page 85), and can be modified interactively
by users. The iTool property interface is described in detail in Chapter 4, “ Property

Management”.
Register a property by calling the RegisterProperty method of the IDLitComponent
class:

self->RegisterProperty, PropertyIdentifier [, TypeCode] $

[, ATTRIBUTE = value]

where Propertyldentifier is a string that uniquely identifies the property, TypeCodeis
an integer between 0 and 9 specifying the property data type, and ATTRIBUTE isa
property attribute. See “ Registering Properties’ on page 74 for details.

Note
A file writer need not register any properties at al, if the write operation is simple.
Many of the standard i Tool image file writer work without registering any
properties.

Setting Property Attributes

If aproperty has already been registered, perhaps by a superclass of your file writer
class, you can change the registered attribute values using the SetPropertyAttribute
method of the IDLitComponent class:

self->SetPropertyAttribute, Identifier

where |dentifier isthe name of the keyword to the GetProperty and SetProperty
methods used to retrieve or change the value of this property. (The Identifier is
specified in the call to RegisterProperty either via the PropertyName argument or the
IDENTIFIER keyword.) See “Property Attributes’ on page 78 for additional details.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 265

Passing Through Caller-Supplied Property Settings

If you haveincluded the _ REF EXTRA keyword in your function definition, you can
use IDL's keyword inheritance mechanism to pass any “extra’ keyword values
included in the call to the Init method through to other routines. One of the things this
allowsyou to do is specify property settings when the Init method is called; simply
include each property’s keyword/value pair when calling the Init method, and include
the following in the body of the Init method:

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->MyWriter: :SetProperty, _EXTRA = _extra

where MyWriter isthe name of your file writer class. Thisline has the effect of
passing any “extra’ keyword valuesto your file writer class' SetProperty method,
where they can either be handled directly or passed through to the SetProperty
methods of the superclasses of your class. See “ Creating a SetProperty Method” on
page 267 for details.

Example Init Method
FUNCTION ExampleWriter::Init, _REF_EXTRA = _extra

IF (self->IDLitWriter::Init('ppm', TYPE='IDLIMAGE', $
NAME='Portable Pixmap (PPM) File',6 $
DESCRIPTION="PPM File Writer", $
_EXTRA = _extra) EQ 0) THEN ¢
RETURN, O

RETURN, 1

END
Discussion

The Examplewriter classisbased on the IDLitWriter class (discussed in
“Subclassing from the IDLitWriter Class’ on page 260). As aresult, al of the
standard features of an iTool file writer class are already present. We don’t define any
keyword values to be handled explicitly in the Init method, but we do use the
keyword inheritance mechanism to pass keyword val ues through to methods called
within the Init method. The Examplewriter Init method does the following things:

1. CalstheInit method of the superclass, IDLitWriter. We specify alist of
accepted filename extensions (only ppm, in this case) viathe Extensions
argument, and set the TY PES keyword. We include a description of the writer
viathe DESCRIPTION keyword. Finally, we usethe EXTRA keyword

iTool Developer's Guide Creating a New File Writer

266 Chapter 10: Creating a File Writer

inheritance mechanism to pass through any keywords provided when the
ExampleWriter Init method is called.

2. Returnstheinteger 1, indicating successful initialization.
Creating a Cleanup Method
The file writer class Cleanup method handles any cleanup required by the file writer
object, and should do the following:
« destroy any pointers or objects created by the file writer
e call the superclass' Cleanup method

Calling the superclass cleanup method will destroy any objects created when the
superclass was initialized.

Note
If your file writer classis based on the IDLitWriter class, and does not create any
pointers or objects of its own, the Cleanup method is not strictly required. It is
always safest, however, to create a Cleanup method that calls the superclass
Cleanup method.

See “IDLitWriter::Cleanup” (IDL Reference Guide) for additional details.
Example Cleanup Method
PRO ExampleWriter::Cleanup

; Clean up superclass
self->IDLitWriter: :Cleanup

END
Discussion

Since our file writer object does not have any instance data of its own, the Cleanup
method simply calls the superclass Cleanup method.

Creating a GetProperty Method

Thefile writer class GetProperty method retrieves property values from the file writer
object instance or from instance data of other associated objects. It should retrieve the
requested property value, either from the file writer object’s instance data or by
calling another class GetProperty method.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 267

Note
Any property registered with acall to the RegisterProperty method must be listed as
akeyword to the GetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at al, if the write operation is simple.
Many of the standard i Tool image file writers work without registering any
properties.

See “IDLitWriter::GetProperty” (IDL Reference Guide) for additional details.
Example GetProperty Method
PRO ExampleWriter::GetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitWriter: :GetProperty, _EXTRA = _extra

END
Discussion

The GetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the file writer. Since the file writer we are creating has
no properties of its own, there are no keywords explicitly defined. Note the use of the
keyword inheritance mechanism to allow usto get properties from the
ExampleWriter class superclasses without knowing the names of the properties.

Since our ExampleWriter class has no properties of its own, we simply call the
superclass’ GetProperty method, passing in all of the keywords stored inthe _extra
structure.

Creating a SetProperty Method
The file writer SetProperty method stores property valuesin the file writer object’s
instance data. It should set the specified property value, either by storing the value

directly in the visualization object’s instance data or by calling another class
SetProperty method.

iTool Developer's Guide Creating a New File Writer

268

Chapter 10: Creating a File Writer

Note
Any property registered with a call to the RegisterProperty method must be listed as
akeyword to the SetProperty method either of the visualization class or one of its
superclasses.

Note
A file writer need not register any properties at al, if the write operation is simple.
Many of the standard i Tool image file writer work without registering any
properties.

See “IDLitWriter::SetProperty” (IDL Reference Guide) for additional details.
Example SetProperty Method
PRO ExampleWriter::SetProperty, _REF_EXTRA = _extra

IF (N_ELEMENTS (_extra) GT 0) THEN $
self->IDLitWriter: :SetProperty, _EXTRA = _extra

END
Discussion

The SetProperty method first defines the keywords it will accept. There must be a
keyword for each property of the visualization type. Since the file writer we are
creating has no properties of its own, there are no keywords explicitly defined. Note
the use of the keyword inheritance mechanism to allow usto set properties from the
ExampleWriter class superclasses without knowing the names of the properties.

Using the N_ELEMENTS function, we check to see whether any properties were
specified via the keyword inheritance mechanism. If any keywords were specified,
we call the superclass SetProperty method, passing in all of the keywords stored in
the extra structure.

Creating a SetData Method

The file writer SetData method does the work of the file writer, extracting data from
the selected i Tool data object and writing the datato afile using some method. If the
processis successful, the SetData method must return 1 for success.

In our example, we write the selected data to a Portable Pixmap (PPM) file. Asa
result, we do some additional checking to ensure that the data that the user has
selected can be displayed as an image.

See “IDLitWriter::SetData” (IDL Reference Guide) for additional details.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 269

Example SetData Method
FUNCTION ExampleWriter::SetData, oImageData

; Prompt user for a file in which to save the data
strFilename = self->GetFilename ()
IF (strFilename EQ '') THEN $

RETURN, 0 ; failure

; Check validity of the input data object
IF (~ OBJ_VALID(oImageData)) THEN BEGIN

self->ErrorMessage, ['Invalid image data object']l, $
TITLE = 'Error', SEVERITY = 2
RETURN, 0 ; failure
ENDIF

; Check the iTool data type of the selected data object.
; If the data is not of a type that can be written to an
; image file, display an error message.
oData = oImageData->GetByType ("IDLIMAGE", COUNT = count)
IF (count EQ 0) THEN $; no image, image pixels?
oData = oImageData->GetByType ("IDLIMAGEPIXELS", $
COUNT = count)
IF (count EQ 0) THEN $; no image, array 2d?
oData = oImageData->GetByType ("IDLARRAY2D", COUNT = count)
IF (count EQ 0) THEN BEGIN
self->ErrorMessage, $
["Invalid data provided to file writer."], $
TITLE="Error", SEVERITY = 2
RETURN, 0 ; failure
END

; Turn a 1-D object array into a scalar object.
oData = oDatal[0]

; Determine whether the data is an image.
isImage = OBJ_ISA (oData, "IDLitDataIDLImage")

; If data is an image, get image pixels, otherwise
; turn data into an image.
IF (isImage NE 0) THEN BEGIN

result = oData->GetData(image, 'ImagePixels')
ENDIF ELSE BEGIN

result = oData->GetData (image)
ENDELSE

; Check the result of the GetData method.

IF (result EQ 0) THEN BEGIN
self->ErrorMessage, ['Error retrieving image data'], $

iTool Developer's Guide Creating a New File Writer

270 Chapter 10: Creating a File Writer

TITLE = 'Error', SEVERITY = 2
RETURN, 0 ; failure
ENDIF

; Get number of dimensions of image array.
ndim = SIZE(image, /N_DIMENSIONS)

; Write to a PPM file. Use REVERSE to make image appear
; with correct orientation.
WRITE_PPM, strFilename, REVERSE (image, ndim)

; Return 1 for success.
RETURN, 1

END
Discussion

The SetData method accepts an IDLitData object (olmageData) asits input
parameter. Before processing the input data, the method prompts the user for afilein
which to save the image, using the GetFilename method of the IDLitWriter object.

After securing afilename, the method proceedsto check the input data object. First it
checks to make sure that the input object isvalid. Then it attempts to retrieve data of
an appropriate iTool data type from the data object; in this example, the method tries
to extract an data of one of the following types using the GetByType method of the
IDLitData class:

 IDLIMAGE
 |IDLIMAGEPIXELS
« IDLARRAY2D

If no data of any of these typesis found, the method displays an error message and
exits.

Once the method has obtained an appropriate data object, it checks to determine
whether the data object isan IDLitDatal DL Image object; if so, it attemptsto retrieve
the image pixelsfrom the data object; otherwiseit simply retrievesthe dataarray. The
dataretrieved by the GetData method is stored in the variable image. The method
then checks the return value from the GetData method to determine whether the
returned value is valid.

Using the valid image data, the method determines the number of dimensions and
then uses the WRITE_PPM procedure to create an image file. The image data must
be processed by the REVERSE function in order to make it appear in the output file
with the correct orientation.

Creating a New File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 271

Registering a File Writer

Before afile writer can be used by an iTool to write afile, the file writer's class
definition must be registered as being available to the iTool. Registering afile writer
with the iTool links the class definition file that contains the actual IDL code that
defines the file writer with a simple string that names the writer. Code that calls afile
writer in an iTool uses the name string to specify which writer should be created.

Using IDLitTool::RegisterFileWriter

In most cases, you will register afile writer with the iTool in the iTool’s class I nit
method. Registration ensures that the file writer is available when the iTool attempts
to useit to write afile. (See “Creating a New iTool Class’ on page 91 for details on
the iTool class Init method.)

To register afile writer, call the IDLitTool::RegisterFileWriter method:

self->RegisterFileWriter, Writer Type, WriterType Class_Name, $
ICON = icon

where Writer_Type isthe string you will use when referring to the file writer,
WriterType_Class Name is a string that specifies the name of the class file that
contains the file writer's definition, and icon is a string containing the name of a
bitmap file to be used in the preferences browser.

Note
Thefile writerType Class_Name define.pro must exist somewherein
IDL’s path for the file writer to be successfully registered.

See“IDLitTool::RegisterFileWriter” (IDL Reference Guide) for details.
Specifying Useful Properties

You can set any property of the IDLitWriter and IDLitComponent classes when
registering afile writer. The following properties may be of particular interest:

ICON

Set this property to astring value giving the name of an icon to be associated with this
object. Typically, this property is the name of a bitmap file to be used when
displaying the object in atree view. See “Icon Bitmaps’ on page 44 for details on
where bitmap icon files are located.

iTool Developer's Guide Registering a File Writer

272 Chapter 10: Creating a File Writer

Unregistering a File Writer

If you are creating anew iTool from an existing i Tool class, you may want to remove
afile writer registered for the existing class from your new tool. This can be useful if
you have an iTool class that implements all of the functionality you need, but which
registers afile writer you don’t want included in your i Tool. Rather than recreating
theiTool classto remove thefile writer, you could create your new iTool classin such
away that it inherits from the existing iTool class, but unregisters the unwanted file
writer.

Unregister afile writer by calling the IDLitTool::UnregisterFileWriter method in the
Init method of your iTool class:

self->UnregisterFileWriter, identifier
where identifier isthe string name used when registering the file writer.

For example, suppose you are creating a new i Tool that subclasses from a standard
iTool that isbased on the IDLitToolbase class. If you wanted your new tool to behave
just like a standard tool, with the exception that it would not export PNG files, you
could include the following method call in your iTool’s Init method:

self->UnregisterFileWriter, 'PNG File Writer'
Finding the Identifier String

To find the string value used as the identifier parameter to the UnregisterFileWriter
method, you can inspect the classfile that registers the file writer (if the file writer is
registered by auser-created class), or use the Findldentifiers method of the IDLitTool
object to generate alist of registered file writers. (Standard i Tool file writers are pre-
registered within the iTool framework.)

If the file writer is registered in a user-created class, you could inspect the class
definition file to find a call to the RegisterFileWriter method, which looks something
likethis:

self->RegisterFileWriter, 'PNG File Writer', 'IDLitReadPNG'

The first argument to the RegisterFileWriter method (' PNG File Writer')isthe
string name of the file writer.

Alternatively, to generate alist of relative identifiersfor all file writers registered with
the current tool, use the following statements:

void = IGETCURRENT (TOOL=0Tool)
fwlist = oTool->FindIdentifiers(/FILE_WRITERS)
FOR 1 = 0, N_ELEMENTS (fwlist)-1 DO PRINT, $

Unregistering a File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 273

STRMID (fwlist[i], STRPOS(fwlist([i], '/', /REVERSE_SEARCH)+1)

See “IDLitTool::Findldentifiers’ (IDL Reference Guide) for details.

iTool Developer's Guide Unregistering a File Writer

274 Chapter 10: Creating a File Writer

Example: TIFF File Writer

This example creates afile writer to write TIFF format files.

Example Code
The code for this example file writer isincluded in the file
examplel_writetiff_ define.prointheexamples/doc/itools
subdirectory of the IDL distribution. Run the example procedure by entering
examplel_writetiff__define at the DL command prompt or view thefilein
an IDL Editor window by entering . EDIT
examplel _writetiff_ define.pro.

Note
The standard TIFF file writer included with the i Tool s contains additional features
not included in this example. In most cases, if afile writer isincluded in the
standard i Tool distribution, thereisno need to create your own writer for files of the
same type.

Class Definition File

The class definition for examplel writetiff consistsof an Init method, a SetData
method, and a class structure definition routine. As with all object class definition

files, the class structure definition routine is the last routine in the file, and thefileis
given the same name as the class definition routine (with the suffix .pro appended).

Class Definition Discussion
PRO examplel_writetiff_ Define

struct = {examplel_writetiff, S
inherits IDLitWriter $

END
Discussion

Our class definition routine is very simple. We create an IDL structure variable with
the name examplel_writetiff, specifying that the structure inherits from the
IDLitWriter class. The object has no instance data, and thus no instance data fields.

Init Method

FUNCTION examplel writetiff::Init, _REF_EXTRA = _extra

Example: TIFF File Writer iTool Developer’s Guide

javascript:doIDL("example1_writetiff__define")
javascript:doIDL(".edit example1_writetiff__define.pro")
javascript:doIDL(".edit example1_writetiff__define.pro")

Chapter 10: Creating a File Writer 275

IF (self->IDLitWriter::Init('tiff', $

TYPES=['IDLIMAGE', 'IDLIMAGEPIXELS', 'IDLARRAY2D'], $
NAME="Tag Image File Format", $
DESCRIPTION="Tag Image File Format (TIFF)", $
_EXTRA = _extra) EQ 0) THEN $
RETURN, O
RETURN, 1
END
Discussion

Thefirst itemin our class definition fileisthe Init method. The Init method’s function
signature is defined first, using the class name examplel_writetiff. Note the use of the
_REF_EXTRA keyword inheritance mechanism; this allows any keywords specified
inacall to the Init method to be passed through to routines that are called within the
Init method even if we do not know the names of those keywords in advance.

Next, we call the Init method of the superclass. In this case, we are creating a subclass
of the IDLitWriter class; this provides us with all of the standard iTool file writer
functionality automatically. Any “extra’ keywords specified in the call to our Init
method are passed to the IDLitWriter::Init method via the keyword inheritance
mechanism.

We specify alist of accepted filename extensions (tiff, in this case) viathe
Extensions argument, and set the TY PES keyword equal to theiTool data type of data
that can be written using this file writer. (TheiTool data types specified by the

TY PES keyword must match the iTool data type of the data selected in the iTool
Export Wizard in order for the file writer to be available for selection.)

We specify avalue for the NAME property of the writer object (thisisdisplayed in
the system preferences dialog) and include a description of the writer viathe
DESCRIPTION keyword. Finally, we use the EXTRA keyword inheritance
mechanism to pass through any keywords provided when the Init method is called.

Finally, we return the value 1 to indicate successful initialization.
SetData Method
FUNCTION examplel writetiff::SetData, oImageData
; We need a filename for the file we are about to write.
strFilename = self->GetFilename ()

IF (strFilename EQ '') THEN $
RETURN, 0 ; failure

iTool Developer's Guide Example: TIFF File Writer

276

Chapter 10: Creating a File Writer

; Make sure that the object passed to this method is valid.

IF (~ OBJ_VALID(oImageData)) THEN BEGIN
MESSAGE, 'Invalid image data object.', /CONTINUE
RETURN, 0 ; failure

ENDIF

; First, we look for some image data.
oData = (oImageData->GetByType ('IDLIMAGEPIXELS')) [0]

; If we did not get any image data, try retrieving a

; 2D array.

IF (~ OBJ_VALID(oData)) THEN BEGIN
oData = (oImageData->GetByType ('IDLARRAY2D')) [0]
IF (~ OBJ_VALID(oData)) THEN RETURN, O

ENDIF

; If we got neither image data nor a 2D array,
; exit with a failure code.

IF (~ oData->GetData (image)) THEN BEGIN
MESSAGE, 'Error retrieving image data.', /CONTINUE
RETURN, 0 ; failure

ENDIF

; Next, try to retrieve a palette object from the selected
; object.
oPalette = (oImageData->GetByType ('IDLPALETTE')) [0]

; If we got a palette object, retrive the palette data
; and store the information in the variables red, green,
; and blue.
IF (OBJ_VALID(oPalette)) THEN BEGIN
success = oPalette->GetData (palette)
IF (N_ELEMENTS (palette) GT 0) THEN BEGIN
red = REFORM (palette[0,*])
green = REFORM (palettell,*])
blue = REFORM (palette[2,*])
ENDIF
ENDIF

; Retrieve the number of dimensions in our image.
ndim = SIZE(image, /N_DIMENSIONS)

; Write the file. The REVERSE ensures that other

; applications will read the image in right side up.

WRITE_TIFF, strFilename, REVERSE (image, ndim), $
RED = red, GREEN = green, BLUE = blue

RETURN, 1 ; success

Example: TIFF File Writer iTool Developer’s Guide

Chapter 10: Creating a File Writer 277

END
Discussion

The SetData method accepts an IDLitData object (olmageData) asits input
parameter. Before processing the input data, the method prompts the user for afilein
which to save the image, using the GetFilename method of the IDLitWriter object.

After securing afilename, the method proceedsto check the input data object. First it
checks to make sure that the input object isvalid. Then it attempts to retrieve adata
object of theiTool datatype 1pLIMAGEPIXELS from the data object, using the
GetByType method. If thisfails, it attempts to retrieve a data object of the iTool data
type 1DLARRAY2D from the data object, again using the GetByType method. If this
second attempt fails, we exit, returning O.

Next, we use the GetData method to retrieve theimage data from the data object. The
method then checks the return value from the GetData method to determine whether
the returned valueis valid, and exits if it is not.

The method next attemptsto retrieve a object of the datatype IDLPALETTE from the
input object. If a palette isretrieved, the palette datais reformed to suit the needs of
the WRITE_TIFF procedure.

Finally, the method uses the WRITE_TIFF procedure to create an image file. The
image data must be processed by the REVERSE function in order to make it appear
in the output file with the correct orientation.

iTool Developer's Guide Example: TIFF File Writer

278 Chapter 10: Creating a File Writer

Example: TIFF File Writer iTool Developer’s Guide

Part lll: Modifying the
ITool User Interface

Chapter 11

ITool User Interface
Architecture

This chapter provides an overview of theiTool user interface architecture.

Overview of iTool Interface Architecture . 282 User Interface Objects 284

iTool Developer’s Guide 281

282 Chapter 11: iTool User Interface Architecture

Overview of iTool Interface Architecture

TheiTool user interface architecture is designed to preserve the separation between
the functionality provided by an iTool application and the manner in which that
functionality is presented to the user. While the process of creating a user interface
for theiTool application is complex, theideaissimple: theiTool can choose from any
number of user interface styles that present information to the user in unique ways,
depending on the operating environment.

Whiletheinitia release of the iTool component framework includes only one user
interface style, created from IDL's graphical widget interface toolkit, the iTool
framework design allows for the creation of additional user interface styles. Creating
new interface elements, or even an entirely new user interface, does not require
alterations to the underlying iTool implementation.

Note
In the first release of the IDL iTools system, the functionality necessary to create
entirely new user interface stylesis not fully defined. Future versions of the iTool
system will provide the capability to create additional user interface styles.

Working within an existing interface style, you can add several different types of user
interface elementsto your iToals. In rough order of increasing complexity of
implementation, i Tool user interface elementsinclude:

e Simple additional interface € ements such as custom messages that appear in
theiTool status area, informational dialogs, and simple yes-or-no type
interactive user dialogs. These items can be added to an iTool using built-in
methods of the IDLitIMessaging class. Built-in interface elements are
described in Chapter 12, “Using iTool User Interface Elements’.

* Modal dialogsthat allow the user to provide complex information before an
action is performed by the iTool. Dialog-based interface elements can be
simple, perhaps allowing the user to enter a single numerical value, or
complex, as shown by the iTool Curve Fitting operation’s parameter-
specification dialog. Dialog-based interfaces require the creation of a user
interface service, which can then call code that creates the appropriate dialog
interface for the platform and iTool interface style. User interface services are
described in Chapter 13, “ Creating a User Interface Service’.

e iTool panels, which are non-modal collections of interface e ements that are
attached to the iTool visualization window. Panels are useful when complex
controls must ways be visible alongside a visualization; the iVolume and

Overview of iTool Interface Architecture iTool Developer’s Guide

Chapter 11: iTool User Interface Architecture 283

ilmage tools provide examples of apanel interface. Panel interfaces are
described in Chapter 14, “Creating a User Interface Panel”.

iTool Developer's Guide Overview of iTool Interface Architecture

284 Chapter 11: iTool User Interface Architecture

User Interface Objects

TheiTool user interface object is an instance of the class IDLitUI. The Ul object
provides away for the iTool to communicate with interface elements created using
the IDL widget toolkit. Asthe center of communication between the user interface
and the underlying i Tool functionality, the Ul object provides the following
functionality:

e Accessto and communication with the underlying iTool object.

* Registration and management of dialogs and other sub-elements of the user
interface that are used by the iTool to perform specific tasks.

* Registration of user interface elementsthat are part of the iTool display itself.

One of the key features of theiTool user interfaceis the ability to adapt to the
contents of the tool, sensitizing and desensitizing menu items or displaying dialogs or
user interface panels as necessary. The IDLitUI object makes this adaptability
possible while maintaining the slender link between tool functionality and user
interface. The following features of the IDLitUI object make these features possible:

GetTool Method

The IDLItUI::GetTool method provides the means to retrieve an object reference to
the underlying i Tool object from user interface code. Theretrieved reference can then
be used to access data stored in iTool objects (property values, for example) and to
call other iTool object methods.

Ul Service Registration Methods

The IDLitUI::RegisterUl Service and IDLitUI::UnRegisterUl Service methods allow
user interface code to register (and unregister) user interface services as being
available for use by theiTool interface.

Note
User interface services are more normally registered by an iTool launch routine,
using the IREGISTER procedure.

User interface services are discussed in detail in Chapter 13, “Creating a User
Interface Service”.

User Interface Objects iTool Developer’s Guide

Chapter 11: iTool User Interface Architecture 285

Widget Registration Methods

The IDLitUI::RegisterWidget and IDLitUI::UnRegisterWidget methods allow user
interface code to register (and unregister) widget callback routines as the target of
OnNotify messages. Registration allows the user interface to receive messages
generated by iTool components and to react accordingly.

Widget registration is discussed in detail in Chapter 14, “Creating a User Interface
Panel”.

AddOnNotifyObserver Method

The IDLitUI::AddOnNotifyObserver method allows user interface code to register to
receive messages sent via calls to the OnNotify methods of i Tool components. This
mechanism allows the user interface to change in response to changesin the
underlying iTool.

Use of the iTool messaging system is discussed in detail in Chapter 14, “Creating a
User Interface Panel”.

DoAction Method

The IDLitUI::DoAction method makesit possible for a user interface element to
launch execution of an operation within the underlying iTool.

Use of the DoAction method to initiate execution of operationsisdiscussed in
Chapter 13, “Creating a User Interface Service”’.

iTool Developer's Guide User Interface Objects

286 Chapter 11: iTool User Interface Architecture

User Interface Objects iTool Developer’s Guide

Chapter 12

Using iITool User
Interface Elements

This chapter describes user interface elements that can be incorporated into an i Tool without the
need to write any user interface code.

TheiTools Feedback Mechanism 288 PromptsS............ciiiiiiii 291
StatusMessagesSo 289 Informational Messages 293

iTool Developer’s Guide 287

288 Chapter 12: Using iTool User Interface Elements

The iTools Feedback Mechanism

The IDLitIMessaging class provides methods that allow you to accept and return
feedback viathe iTool interface without writing any interface code yourself. For
many applications, adding the ability to provide status information, prompt the user
for simple input, and display appropriate error messages to the standard i Tool
interface is sufficient; in these cases, no additional code is needed to create and
display user interfaces.

Note
The simple dialogs presented by the IDLitIMessaging methods are similar to those
displayed by the IDL DIALOG_MESSAGE function. Since the initial iTools
release supports only one user interface style (built using the IDL widget interface
toolkit) it may be tempting to use DIALOG_MESSAGE rather than the methods
described in this chapter. AstheiTools framework matures, however, additional
user interface styles may be created either by ITT Visual Information Solutions or
by third-party developers. Using the built-in IDLitIMessaging methods will ensure
that your iTool applications continue to function properly when other interface
styles are available.

This chapter discusses the use of the basic user interface elements provided by the
IDLitIMessaging class. If your application requires a more complex interface, see
Chapter 13, “Creating a User Interface Service’ or Chapter 14, “ Creating a User
Interface Panel”.

The iTools Feedback Mechanism iTool Developer’s Guide

Chapter 12: Using iTool User Interface Elements 289

Status Messages

Satus messages are simple text messages displayed in away that does not impede the
user’'s operation of theiTool. In the standard iTool user interface created using the

IDL widget toolkit, status messages are text strings displayed at the bottom of the
iTool window.

00 \/V\/\/\/V\,

-02
-04
-0' 6 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 50 100 150
] I >l
|Elic:k and move to translate, <Shift> constraing, or use amow keys P(: 176 Y:| -0.03153
i
Status area Probe status area

Figure 12-1: The status areas of a standard iTool.

The IDLitIMessaging class provides two methods that display status messages. See
“IDLitIMessaging” (IDL Reference Guide) for details.

StatusMessage

The IDLitIMessaging:: StatusM essage method displays a string value. In the standard
iTool interface created using the IDL widget toolkit, status messages appear in the
status area at the bottom left corner of the iTool window, as shown in Figure 12-1.

In the standard set of iTools provided with IDL, the status areais used to display
status information for operations or informational messages pertaining to the
currently selected object or manipulator.

The following code places the text “My Status Message” in the status area:

self->StatusMessage, 'My Status Message'

ProbeStatusMessage
The IDLitlMessaging:: ProbeStatusM essage method displays a string value. In the

standard iTool interface created using the IDL widget toolkit, probe status messages
appear at the bottom right corner of the iTool window, as shown in Figure 12-1.

iTool Developer's Guide Status Messages

290

Chapter 12: Using iTool User Interface Elements

In the standard set of iTools provided with IDL, the probe status areais used to
display the position of the cursor within the iTool window.

The following code places the text “X: 300, Y:146” in the status area:
self->ProbeStatusMessage, 'X: 300, Y:146'

In most cases, the values displayed in the probe status area have some relationship to
the position of the cursor or to the action performed by the current manipulator.

Creating Additional Status Bar Segments

You can create additional named status bar segments using the RegisterStatusBar
method of the IDLitTool class. The text displayed in the newly created status bar
segment can then be modified using the IDLitlMessaging:: StatusM essage method
with the SEGMENT _IDENTIFIER keyword.

See IDLitIMessaging:: StatusM essage and “ | DLitTool ::Register StatusBar Segment”
(IDL Reference Guide) for details.

Status Messages iTool Developer’s Guide

Chapter 12: Using iTool User Interface Elements 291

Prompts

Prompts solicit information from the user. Prompts are generally presented as modal
dialogs, meaning that the user must respond to the prompt before operation of the
iTool can continue.

Overwrite Yariable? E &llName the Creat... [E3
3 : Enter a string walue
COwerwrite Variable: Plob_¥7 —
My object

oK | Eancell

Figure 12-2: Yes/No and Text Prompt dialogs.

The IDLitIMessaging class provides two methods that prompt for user input:
PromptUserYesNo and PromptUserText. See “IDLitIMessaging” (IDL Reference
Guide) for additional details on these methods.

PromptUserYesNo

The IDLitIMessaging::PromptUserYesNo method displays a prompt string along
with Yesand No buttons. In the standard i Tool interface created using the IDL widget
toolkit, Yes/No prompts appear as modal dialogs as shown in Figure 12-2.

Note
The PromptUserYesNo function returns 1 if the dialog executed properly. You must
check the value stored in the variable specified as the Answer argument to
determine which button the user pressed.

The following code asks the user a Yes or No question and performs some action if
the dialog returns properly and the value of the returned variable answer is equal to
1 (aswould be the case if the user clicked Yes):

status = self->PromptUserYesNo ('Overwrite Variable: Plot_Y?', $
answer, TITLE='Overwrite Variable?')

IF (status NE 0 && answer EQ 1) THEN BEGIN
; do something...
ENDIF

The value of the TITLE keyword is displayed in the title bar of the dialog box.

iTool Developer's Guide Prompts

292

Prompts

Chapter 12: Using iTool User Interface Elements

PromptUserText

The IDLitIMessaging::PromptUserText method displays a prompt string and a text-
entry field along with OK and Cancel buttons. In the standard i Tool interface created
using the IDL widget toolkit, text prompts appear as modal dialogs as shown in
Figure 12-2.

Note
The PromptUserText function returns 1 if the user clicks the OK button, or O if the
user clicks the Cancel button.

The following code asks the user to enter atext string, which will be stored in the
variable stringName:

status = self->PromptUsertext ('Enter a string value',K $
stringName, TITLE = 'Name the Created Object')

The value of the TITLE keyword is displayed in the title bar of the dialog box. The
variable status will contain al if the user clicks OK, or a0 if the user clicks
Cancel.

iTool Developer’s Guide

Chapter 12: Using iTool User Interface Elements 293

Informational Messages

Informational Messagesinform the user that some condition has occurred in the i Tool
application. The condition may be an error, but it can also be any other occurrence of
which the user should be informed. Informational messages are presented as modal
dialogs, generally with asingle OK button that dismisses the dialog.

Export Complete []

@ The following wariables were exported:

Plot_y

Figure 12-3: An informational message dialog.

The IDLitIMessaging class provides the ErrorM essage method to display
informational messages of all sorts.

ErrorMessage

The IDLitIMessaging::ErrorM essage method displays an informational text message
to the user. In the standard iTool interface created using the IDL widget toolkit,
informational messages appear as modal dialogs as shown in Figure 12-3.

Informational messages can use any of three severity codes, indicating to the user
whether the message is merely informational, is awarning, or reports a serious error.
While the severity setting does not alter the behavior of the dialog, which can only be
dismissed by the user, it can ater the appearance of the dialog. For example, the
dialog shown in Figure 12-3 has a severity setting of 0, or “Informational”.

The following code displays an informational message:

self->ErrorMessage, ['The following variables were exported:', $
'"Plot_Y'], SEVERITY = 0, TITLE = 'Export Complete'

The value of the TITLE keyword is displayed in the title bar of the dialog box.

In addition to the ErrorM essage method, the IDLitIMessaging class provides the
Signal Error method, which reports an error condition to the iTool system but which
does not display the message to the user. See “IDLitIMessaging” (IDL Reference
Guide) for details.

iTool Developer's Guide Informational Messages

294 Chapter 12: Using iTool User Interface Elements

Informational Messages iTool Developer’s Guide

Chapter 13

Creating a User
Interface Service

This chapter describes the process of creating a user interface service.

Overview of theiTool Ul Service 296 RegisteringaUl Service 304
Predefined iTool Ul Services........... 297 Executing aUser Interface Service 306
Creating aNew Ul Service 299 Example: Changing a Property Value ... 307

iTool Developer’s Guide 295

296 Chapter 13: Creating a User Interface Service

Overview of the iTool Ul Service

A Ul serviceisan iTool component object class that defines how and when a user
interface element is presented to an iTool user. Ul services provide away to separate
platform-independent i Tool functionality from platform-dependent user interface
code. When an iTool needs to display a graphical interface, it simply callsthe
appropriate Ul service to display the interface; the iTool itself does not need to know
anything at all about the platform on which it is running. Decisions about how to
display the desired interface are | eft to the Ul service, which can choose from any
number of options based on the platform and user interface stylein use.

Note
Intheinitial iToolsrelease, only one user interface styleis supplied: the IDL widget
interface toolkit. Asthe iTools framework continues to grow, additional user
interface styles may be created either by ITT Visua Information Solutions or by
third-party developers.

Creating and Using a Ul Service

To create and use anew iTool Ul service, you will do the following:

e Createan IDL function that displaysthe user interface elements. See“ Creating
aNew Ul Service” on page 299 for details.

* Register the new Ul service with theiTools system. See “Registering a Ul
Service” on page 304 for details.

» Execute the Ul service from iTool code. See “ Executing a User Interface
Service” on page 306 for details.

Overview of the iTool Ul Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 297

Predefined iTool Ul Services

TheiTool system distributed with IDL includes a number of predefined Ul services.
These Ul services are registered with the iTool system, which meansthat you can call
them from any operation, visualization, or other iTool component using the

DoUl Service method of the IDLitTool class.

The majority of the predefined Ul services provide interface elements that are
specific to the standard iTool implementation. In most cases, you do not need to call
these services directly; using the existing i Tool operation or visualization code that
callsthe Ul serviceis sufficient. If you are creating anew Ul service, you may want
to inspect the code for some of the standard Ul services — they are located in the
lib/itools/ui_widgets subdirectory of thelDL directory and havefile names of
theform idlitui*.pro.

Thefollowing Ul servicesare generally useful; you may wish to include callsto these
servicesin your own iTool operation or visualization code.

Hourglass Cursor Service

Displays the hourglass cursor. The hourglass cursor is displayed until processing
completes and anew IDL widget event is processed, at which time the previous
cursor isreinstated.

Registered Service Name
HourGlassCursor
Example

void = oTool->DoUIService('HourGlassCursor', self)

Operation Property Sheet Service

This service is designed to be called from within the DoExecuteUl method of an
iTool operation. It displays the property sheet for the operation, allowing the user to
set any operation properties before the operation is executed. The self argument isthe
IDLitOperation object. The return valueis 1 (one) if the specified properties were set
as requested, or 0 (zero) otherwise.

Registered Service Name

Property Sheet

iTool Developer's Guide Predefined iTool Ul Services

298 Chapter 13: Creating a User Interface Service

Example

RETURN, oTool->DoUIService('PropertySheet', self)

Operation Preview Service

Thisserviceis designed to be called from within the DoExecuteUl method of an
iTool operation that acts on atwo-dimensional array. It displaysthe property sheet for
the operation, allowing the user to set any operation properties before the operation is
executed, along with a preview window showing the result. The self argument is the
IDLitOperation object. The return valueis 1 (one) if the specified properties were set
as requested, or O (zero) otherwise.

Note
The preview window displays a subset (a 128 by 128 element array) of the data
being operated on. When the preview is displayed, the Execute method of your
operation is called with this subset only. If your operation requires padding around
the edges or has aminimum data array size, your operation’s GetProperty method
must implement aMINIMUM_DIMENSIONS property that specifies the smallest
amount of data that can be used by the operation.

See the unsharp masking operation in the standard i Tools distribution
(l ib/itools/components/idlitopunsharpmask__define. pro) for an
example.

Registered Service Name
OperationPreview

Example

RETURN, oTool->DoUIService('OperationPreview', self)

Predefined iTool Ul Services iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 299

Creating a New Ul Service

A user interface service is responsible for creating a user interface element that is
displayed when an i Tool user takes some action. A simple Ul service may do no more
than display the “hourglass’ cursor while an operation is being performed; more
complicated Ul services may be small applications unto themselves.

For simple operations the Ul service routine can contain everything necessary to
implement the Ul service. For more complex interfaces, however, it is often practical
to separate the actual user interface code (that is, the widget creation and event-
handling routines) from the logic of the Ul service itself. The latter isthe strategy
used by many of the Ul services included with the standard i Tools.

The process of creating a user interface serviceis outlined in the following sections:
e “Creating the Ul Service Routin€’ on page 299
e “Creating Supporting User Interface Elements’ on page 302

Creating the Ul Service Routine

The user interface service routine performs the following tasks:

* Manages changes to any properties of the object on which the user interface
element was invoked.

» Managesthe display of the user interface element.

To accomplish these things, the Ul service routine needs a reference to the iTool
component on which the service will act, and areference to the IDLitUI object
associated with the current iTool. Asaresult, the user interface service routine has the
following signature:

FUNCTION ServiceName, oUI, oRequester

where ServiceName is the name of the function, oUl is an object reference to the
IDLitUI object associated with the iTool, and oRequester is an object reference to the
iTool component specified in the call to the DoUl Service method.

Note
ServiceName is not necessarily the same as the registered name of the service used
in the call to the DoUI Service method. The registered name is defined by the call to
the IREGISTER procedure. See “Registering aUl Service” on page 304 for details.

iTool Developer's Guide Creating a New Ul Service

300 Chapter 13: Creating a User Interface Service

Return Value

The user interface service routine should return 1 if the action succeeds, or O
otherwise,

Retrieving Property Information

The oRequester argument to the user interface service function contains an object
reference to the iTool component on which the Ul service was invoked. Use this
reference to retrieve any properties of the object that are relevant to the operation
being performed by the user interface.

For example, the standard RotateByaAngle user interface service displays adialog
that letsthe user set the ANGLE property of an object. The service uses the following
statement to retrieve the current rotation angle from the selected object:

oRequester->GetProperty, ANGLE = angle
Retrieving Widget Information

The oUl argument to the user interface service function contains an object reference
tothe IDLitUI object associated with the current iTool. You can use this reference to
retrieve the IDL widget identifier of the widget that is the group leader of the iTool
user interface itself (theiTool window); the ID is stored in the GROUP_LEADER
property of the IDLitUl object. Having thiswidget ID alows you to retrieve screen
geometry information that allows you to cal culate the position at which your user
interface should be displayed.

For example, the RotateByaAngle user interface service uses the following code to
calculatethe X and Y offsets that will be used to position its own user interface over
the current iTool:

; Retrieve widget ID of top-level base.
oUI->GetProperty, GROUP_LEADER=groupLeader

IF (WIDGET_INFO (groupleader, /VALID)) THEN BEGIN
screensize = GET_SCREEN_SIZE (RESOLUTION=resolution)
geom = WIDGET_INFO (groupLeader, /GEOM)
xoffset=(geom.scr_xsize+geom.xoffset-80)<(screensize[0]-100)
yvoffset=geom.yoffset + (geom.ysize - 400)/2

ENDIF

The Ul service goes on to use the calculated xof fset and yoffset values when
positioning the IDL widgets that make up the interface displayed by the service.

Creating a New Ul Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 301

Displaying the User Interface

If the user interface being displayed by the Ul serviceissimple, it may be convenient
to include the code for creating it directly in the definition of the user interface
service itself. For example, the following is the complete definition of the
HourGlassCursor User interface service:

FUNCTION IDLitUIHourGlass, oUI, oRequester
WIDGET_CONTROL, /HOURGLASS
RETURN, 1

END

Asyou can see, no information about the IDLitUI object or the selected i Tool
component is used, and the displayed item itself isvery simple.

In most cases, the user interface service is significantly more complex. In these cases
it is often useful to separate the routine that creates the service's user interface from
the code that displaysit. For example, the user interface for the RotateByAngle
service is displayed by the following statement:

result = IDLitwdRotateByAngle (oUI, $
GROUP_LEADER=groupLeader, $
ANGLE=angle, $
CANCEL=cancel, $
XOFFSET=xoffset, $
YOFFSET=yoffset)

This statement calls another function — IDLitwdRotateByAngle — to actually
display the required user interface e ements, supplying the information retrieved by
other portions of the user interface service routine. The IDLitwdRotateByAngle
function returns the angle selected by the user. The process of creating user interface
elementsis discussed in greater detail in “Creating Supporting User Interface
Elements’ on page 302.

Setting Property Information

If the user has selected a new value for any of the object’s properties, that value must
be changed on the object by a call to the SetProperty method. In our example, if the
user sets anew angle, the following statement updates the property value, notifies the
selected object that the value has changed, and inserts the change into the undo-redo
transaction buffer:

oRequester->SetProperty, ANGLE = angle

Note that not every user interface will modify properties of the selected object.

iTool Developer's Guide Creating a New Ul Service

302 Chapter 13: Creating a User Interface Service

Example

The following example routine is the full definition of the RotateByangle user
interface service described in the previous sections. It is presented here again for
completeness, so you can see the entire function at once.

FUNCTION IDLituiRotateByAngle, oUI, oRequester

; Retrieve widget ID of top-level base.
oUI->GetProperty, GROUP_LEADER=groupLeader

IF (WIDGET_INFO (groupleader, /VALID)) THEN BEGIN
screensize = GET_SCREEN_SIZE (RESOLUTION=resolution)
geom = WIDGET_ INFO (groupLeader, /GEOM)
xoffset=(geom.scr_xsize+geom.xoffset-80)<(screensize[0]-100)
yoffset=geom.yoffset + (geom.ysize - 400)/2

ENDIF

; Retrieve initial angle setting.
OoRequester->GetProperty, ANGLE=angle, RELATIVE=relative

result = IDLitwdRotateByAngle (oUI, $
GROUP_LEADER=groupLeader, $
ANGLE=angle, $
CANCEL=cancel, $
XOFFSET=xoffset, $
YOFFSET=yoffset)

IF (cancel) THEN $
RETURN, O

; Convert from absolute to relative angle.
IF (KEYWORD_SET (relative)) THEN $

result -= angle

; Set desired angle setting.
oRequester->SetProperty, ANGLE=result

; Return success.
RETURN, 1

END
Creating Supporting User Interface Elements

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget

Creating a New Ul Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 303

toolkit, see the User Interface Programming manual. The following are some
suggestions for creating IDL widget interface code for iTool user interface services.

Place data collected by the user interface in the function’s return value

Create your user interface routine (the routine that creates the IDL widgets that make
up the user interface displayed by your Ul service) as afunction, returning the data
values collected by the interface in the function’s return value. If you are collecting
several values of different data types, return a structure variable containing the data.
The user interface and event-handling code should never change data or property
values within the iTool itself; al changes should be made via the SetProperty
mechanism.

Be sure to clean up heap variables when the user interface exits

If your user interface code creates pointer or object heap variables, be sure to destroy
them before the interface code exits. If extra“hanging” heap variables are left
undestroyed, IDL can potentially run out of resources if the interface is displayed
numerous times.

Use the GROUP_LEADER property if it is available

Pass the widget ID contained in the GROUP_L EADER property of the IDLitUI
object to your user interface code, and set the GROUP_LEADER keyword of the top-
level base widget to this value. Setting the widget group leader to the leader of the
iTool’s own widget hierarchy ensures that your user interface will be destroyed if the
iTool itself is destroyed.

iTool Developer's Guide Creating a New Ul Service

304 Chapter 13: Creating a User Interface Service

Registering a Ul Service

Before a user interface service can be called from an iTool, the routine that
implements the service must be registered with the iTool system. Registering a Ul
service with the system links the file containing the actual IDL code that creates the
user interface elements with a simple string that names the Ul service. Since you use
the name string in code that calls the service, the iTool itself does not need to know
anything about the display environment in which it is running.

User interface services are registered either using the IREGISTER procedure or viaa
call to the RegisterUl Service method of the IDLitUI abject. In most cases,
registration is accomplished viaa call to the IREGISTER procedurein aniTool’s
launch routine. A Ul service can be registered at any time. In practice, you will
probably find it convenient to register Ul services used by aniTool intheiTool launch
routine, unless you know the service has already been registered. For alist of Ul
services that are pre-registered by the standard i Tools, see “Predefined iTool Ul
Services’ on page 297.

Using IREGISTER

Use the IREGISTER routine to register a user interface service:
IREGISTER, 'UI Service Name', 'UI_Service_Routine', /UI_SERVICE

where Ul Service Nameis astring you will useto call the user interface service, and
Ul_Service Routineisastring that specifies the name of the file that contains the
code for the user interface service.

Note
Thefile uT_service_Routine.pro must exist somewherein IDL’s path for the
service definition to be successfully registered.

If agiven user interface service has already been registered when the IREGISTER
routineis called, the service will not be registered a second time. The registration can
be performed at any timein an IDL session before you attempt to call the user
interface service.

See “IREGISTER” (IDL Reference Guide) for details.

Registering a Ul Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 305

Example

Suppose you have a Ul service definition file named myUIservice.pro, located in
adirectory included in IDL's 'PATH system variable. Register this service with the
iTool system with the following command:

IREGISTER, 'My UI Service', 'myUIService', /UI_SERVICE
The user interface service can now be invoked via the DoUl Service method:
success = oTool->DoUIService('My UI Service', self)

where oToo1 isan object reference to the current i Tool object.

Using the RegisterUIService Method

User interface services can also be registered by acall to the RegisterUl Service
method of the IDLitUI object:

self->RegisterUIService, 'My UI Service', 'myUIService'

Note
In most cases, you do not have areference to the IDLitUI object available, so this

method is not generally useful. We mention it here because the user interface
services registered for use by the standard iTools are registered in this way, rather
than viathe IREGISTER procedure.

iTool Developer's Guide Registering a Ul Service

306 Chapter 13: Creating a User Interface Service

Executing a User Interface Service

Once you have defined and registered a user interface service and created any
supporting user interface code, you can call the service from any iTool operation
simply by calling the DoUI Service method of the IDLitTool class.

In most cases, the DoUl Service method is called from the DoExecuteUl or DoAction
method of an IDLitOperation or an IDLitDataOperation. For example, the following
lines call the RotateByAngle user interface service:

oTool = self->GetTool ()
IF (oTool EQ OBJ_NEW()) THEN RETURN, O

RETURN, oTool->DoUIService('RotateByAngle', self)

The GetTool method is part of the IDLitIMessaging class, which is a superclass of all
iTool operation classes; it returns an object reference to the current iTool. This
method callsthe RotateByangle user interface service with the operation itself as
the currently selected object, which allows the Ul service to modify the operation’s
properties. The second argument to the DoUI Service method is an object reference
that can be used by the service to modify the object’s properties.

Executing a User Interface Service iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 307

Example: Changing a Property Value

This example creates a user interface service named SrvExample, which displays a
dialog that alows the user to change the NAME property of the currently selected
iTool component. The SrvExample user interface serviceis launched by an
IDLitDataOperation named opName.

This exampleisintended as a demonstration of the techniques used to create a user
interface service. In practice, you do not have to create a user interface to change the
NAME property; it can be changed more easily by altering the valuein the
Visualization browser. It is conceivable, however, that you might want to provide an
interface that allows the user to change numerous properties simultaneously, with
some values being based on other user-supplied values. Similarly, you may wish to
display adialog that allows the user to set the properties of an operation every time
that operation is executed, without forcing the user to open the Operations browser.

Creating and using the SrvExample user interface service involves the following
steps:

e Creating the SrvExample Service

e Creating the SrvExample Interface

e Creating an Operation that Calls the Service

* Registering the SrvExample Service

¢ Registering the opName Operation

* Invoking the opName Operation
Creating the SrvExample Service

The SrvExample user interface service consists of a single function named
SrvExample, stored in afile named srvexample.pro that islocated in adirectory
that isincluded in the IDL 'PATH system variable.

FUNCTION SrvExample, oUI, oRequester

; Retrieve widget ID of top-level base.
oUI->GetProperty, GROUP_LEADER = groupLeader

; Retrieve the original value of the name property
; attribute from the selected item.

oRequester->GetProperty, NAME = origName

; Display the widget UI that allows the user to choose

iTool Developer's Guide Example: Changing a Property Value

308 Chapter 13: Creating a User Interface Service

; a new name.
newName = wdSrvExample (NAME = origName, $
GROUP_LEADER = groupLeader)

; Set the property value.
oRequester->SetProperty, NAME = newName

; Return success
RETURN, 1

END
Discussion

The function that implements this example service follows the pattern outlined in
“Creating the Ul Service Routing” on page 299. It uses the object reference to the
IDLitUI object to retrieve the widget ID of the top-level base of the iTool user
interface, and later uses the retrieved value to set the GROUP_LEADER keyword to
the user interface routine. It uses the object reference to the “requester” object (in this
case, theiTool component that is selected in the current iTool) to retrieve the NAME
property. It then calls aroutine (wdsrvExample) that displays a user interface
alowing the user to select a new value for the NAME property.

The string returned by the wdsrvExample routineis used to set the NAME property
of the selected iTool component, and the routine returns 1 for success.

Creating the SrvExample Interface

The interface presented by the SrvExample user interface service consists of a set of
routines that create an IDL widget interface. The creation routine and two simple
event-handling routines are stored in afile named wdsrvexample.pro thatis
located in adirectory that isincluded in the IDL 'PATH system variable.

Widget Creation Function

The following function creates the widget interface that is displayed when the
SrvExample user interface service is called. The widget creation routine should be
the last routine in the file.

FUNCTION wdSrvExample, NAME = origName, TITLE = dialogTitle, $
GROUP_LEADER = groupLeader

; Check to see if a title for the dialog was supplied.

; If not, set a default title.

IF (N_ELEMENTS (dialogTitle) EQ 0) THEN $
dialogTitle='Choose a Name'

Example: Changing a Property Value iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 309

; Create the dialog.

wBase = WIDGET_BASE(/COLUMN, TITLE = dialogTitle, $
GROUP_LEADER = groupLeader)

wText = WIDGET_ TEXT (wBase, YSIZE = 3, $
VALUE=['The original NAME is:', origName, $

'Enter a new name:'])

wEdit = WIDGET_TEXT (wBase, VALUE = origName, /EDITABLE)

wSubBase = WIDGET_BASE (wBASE, /ROW)

wOK = WIDGET_BUTTON (wSubBase, VALUE='OK', $
EVENT_PRO='wdSrvExample_ok')

wCancel = WIDGET_BUTTON (wSubBase, VALUE='Cancel', $
EVENT_PRO="'wdSrvExample_cancel')

; Create a state structure to hold important values.
state = { wOK:wOK, $

wCancel :wCancel, $

wEdit:wEdit, $

pName : PTR_NEW (/ALLOCATE) }

; Store the original property name attribute in the
; state structure.
*state.pName = origName

; Store the state structure in the user value of the
; top-level widget base.
WIDGET_CONTROL, wBase, SET_UVALUE = state

; Realize the widget hierarchy.
WIDGET_CONTROL, wBase, /REALIZE

; Call XMANAGER.
XMANAGER, 'wdSrvExample', wBase

; After XMANAGER exits, retrieve the value of the name
; property attribute from the state structure.

result = (N_ELEMENTS (*state.pName)) ? *state.pName : origName

; Free the pointer.
PTR_FREE, state.pName

; Return the new value of the name property attribute.
RETURN, result

END

iTool Developer's Guide Example: Changing a Property Value

310 Chapter 13: Creating a User Interface Service

Discussion

It is beyond the scope of this chapter to discuss the IDL widget programming
techniques used in this example. For more information on widget programming, see
the Building IDL Applications manual. Several points are worth noting, however.

« Thewidget ID of the top-level base retrieved in the SrvExample routineis
passed to thisroutine, and used as the val ue of the GROUP_L EADER keyword
to WIDGET_BASE. Thisensuresthat if theiTool itself is minimized or closed
while the example dialog is displayed, it will be handled properly.

e Theoriginal value of the NAME property is passed to thisroutine, and is
stored in an IDL pointer variable within the state structure that is associated
with the dialog. This alows the event routine that actually retrieves the value
entered by the user to communicate the new value back to the widget creation
routine, but it also means that the pointer must be freed before the routine exits.

Event-handling Routines

The following event-handling procedures handle widget events generated by the
widget interface that is displayed when the SrvExample user interface serviceis
caled.

PRO wdSrvExample_ok, event
; Get the stashed state structure from the user value
; of the top-level base widget.
WIDGET_CONTROL, event.top, GET_UVALUE = state

; Get the value from the editable text field.
WIDGET CONTROL, state.wEdit, GET _VALUE = value

; Store the text value in a pointer so we can access
; it from the main routine

*state.pName = value

; Destroy the dialog.
WIDGET_CONTROL, event.top, /DESTROY

END

PRO wdSrvExample_cancel, event

; Nothing to do, just destroy the dialog.
WIDGET_CONTROL, event.top, /DESTROY

END

Example: Changing a Property Value iTool Developer’s Guide

Chapter 13: Creating a User Interface Service 311

Discussion

When the user clicks the OK button, the current value of the editable text widget is
placed in the pointer stored in the state structure’'s pName field.

Creating an Operation that Calls the Service

In order to launch the SrvExampl e user interface service, the user must be able to
select an operation that calls the DoUI Service method. This example uses an
IDLitDataOperation named opName, which simply retrieves the list of currently
selected items and calls the SrvExample user interface service. The code for this
operation is stored in afile named opname___define.pro thatislocated in a
directory that isincluded in the IDL !PATH system variable.

FUNCTION opName: :Init, _REF_EXTRA = _extra

Initialize the operation, setting the "show UI" property.
; Note that this operation will operate on all iTool

; component types.

success = self->IDLitDataOperation::Init($

NAME="Rename Component", $

DESCRIPTION="Rename an iTool component", $
/SHOW_EXECUTION_UI, TYPES='',6 _EXTRA=_extra)

i

RETURN, success
END
FUNCTION opName: :DoExecuteUI

; Get a reference to the current iTool and
; make sure it is wvalid.
oTool = self->GetTool ()

IF (oTool eq OBJ_NEW()) THEN RETURN, O

; Get the list of selected items.
selItem = oTool->GetSelectedItems|()

; Call the UI service on the first item in the list
; of selected items.

RETURN, oTool->DoUIService('Example Service', sellItem[0])

END

iTool Developer's Guide Example: Changing a Property Value

312 Chapter 13: Creating a User Interface Service

PRO opName__define

struct = {opName, $
inherits IDLitDataOperation $

}

END
Discussion

Only two methods are required: Init and DoExecuteUl. Since this operation is based
on the IDLitDataOperation class, all interaction with the iTools undo/redo system is
automated.

Even though all of the items that are currently selected in theiTool are retrieved by
the GetSel ecteditems method, only the first item is passed to the SrvExample user
interface service for processing. Handling multiple selected itemswould require a
more complicated user interface.

The process of defining an IDLitDataOperation is discussed in detail in Chapter 7,
“Creating an Operation”.
Registering the SrvExample Service

In order for the SrvExample user interface service to be available, it must be
registered with the current iTool. The following line in the iTool’s launch routine
allows the service to be called with the name “ Example Service”:

IREGISTER, 'Example Service',6 'srvExample', /UI_SERVICE

Registering the opName Operation

To use the opName operation within an iTool, the operation must be registered in the
iTool’s definition. The following statement registers the operation with the name
“Property Name” and places it in the Operations menu of theiTool.

self->RegisterOperation, 'Property Name',6 'opName',6 $
IDENTIFIER = 'Operations/PropertyName'

Invoking the opName Operation
To usethe SrvExample service, the user would launch an iTool for which the opName

operation is registered, select an iTool component in the window, and select
Property Name from the Oper ations menu.

Example: Changing a Property Value iTool Developer’s Guide

Chapter 14

Creating a User
Interface Panel

This chapter describes the process of creating a user interface panel.

Overview of theiTool Ul Panel 314 RegisteringaUl Panel 322
Creating aUl Panel Interface 315 Example: A SimpleUl Panel 324
Creating Callback Routines 320

iTool Developer’s Guide 313

314 Chapter 14: Creating a User Interface Panel

Overview of the iTool Ul Panel

A Ul Panel isacallection of user interface elements displayed in one or more tabs
located on theright, left, or bottom edge of an iTool window. The Ul panel interface
makes it easy to attach a set of controls chosen by theiTool developer to the standard
iTool interface.

Note
Intheinitial iToolsrelease, only one user interface styleis supplied: the IDL widget
interface toolkit. As aresult, Ul panels consist of widgets from the IDL graphical
user interface toolkit, displayed in atab widget. Asthe iTools framework continues
to grow, additional user interface styles may be created either by ITT Visual
Information Solutions or by third-party developers.

Controls on a Ul panel exchange information with the iTool itself via one or more
callback routines. These routines allow the iTool to modify the controlsin the Ul
panel as the user selects different visualization components or otherwise changes the
contents of the visualization.

Creating and Using a Ul Panel

To add a Ul panel to the iTool interface, you will do the following:

e Create an IDL procedure that creates the user interface elements that comprise
the panel. See “Creating a Ul Panel Interface” on page 315 for details.

< Create one or more event-handling routines to handle events generated by the
user interface elements in the panel. See “ Creating a Ul Panel Interface” on
page 315 for details.

» Create one or more callback routines to control the display of the items on the
panel as the contents of the iTool window change. See “Creating Callback
Routines” on page 320 for details.

» Create aniTool with the TY PES property set to the appropriate i Tool type and
register the Ul panel with the iTool that will display it. See “Registering a Ul
Panel” on page 322 for details.

Overview of the iTool Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 315

Creating a Ul Panel Interface

It is beyond the scope of this manual to provide general information on the creation of
user interfaces. For information on creating a user interface using the IDL widget
toolkit, see* Creating Graphical User Interfacesin IDL” (Building IDL Applications).
Keep the following pointsin mind when creating IDL widget interface code for iTool
user interface panels.

Panel Creation Routines

A user interface panel creation routine is similar to the widget creation routine that
creates a standalone widget application, but with the following important differences:

Signature

The routine signature of a user interface panel looks like this:
PRO PanelName, wPanel, oUI

where PanelName is the name of the routine, wPanel is an input argument that
contains the widget ID of the panel widget associated with this panel, and oUl isan
input argument that contains an object referenceto the IDLitUI object associated with
the iTool that includes the user interface panel.

Event Loop and Widget Management

Standal one widget applications must arrange for the management of their widgets
and the creation of an event loop; these details are usually handled by the
XMANAGER or WIDGET_EVENT routines. A user interface panel does not need to
call XMANAGER or WIDGET_EVENT; widget management is handled by the main
iTool interface code. A user interface panel simply attachesitself to the bulk of the
iTool interface.

About the Panel Widget

In theinitial release of the iTools, user interface panels are contained in an IDL tab
widget displayed on the right side of the iTool window. We will refer to this tab
widget as the panel widget in this documentation, since all user interface elementsin
a Ul panel are contained in this widget.

The panel widget itself is created automatically when a user interface panel is
registered with an iTool, and its widget ID is passed to the panel creation routine
aong with areference to the iTool user interface object.

iTool Developer's Guide Creating a Ul Panel Interface

316

Chapter 14: Creating a User Interface Panel

Use the widget 1D of the panel widget to set the title of the tab that appears at the top
of the panel. For exampl e the following lines might occur at the beginning of a
routine that builds a user interface panel:

PRO ExamplePanel, wPanel, oUI

; Set the title used on the panel's tab.
WIDGET_CONTROL, wPanel, BASE_SET_ TITLE='Example Panel'

. more panel code.

ThewpPanel argument contains the widget ID of the panel widget, which was
assigned when the iTool interface was built. The ouT argument contains an object
reference to the IDLitUI object associated with the current iTool. The call to the
WIDGET_CONTROL procedure sets thetitle of the tab to be “Example Pandl

You may also find it useful to specify a single event-handling routine for all events
generated by the panel widget. You can specify the name of this routine with a
statement similar to the following:

WIDGET_CONTROL, wPanel, EVENT_ PRO = 'ExamplePanel_ event'

where ExamplePanel_event isreplaced by the name of the event-handling routine
you create for your panel. Of course, you can also specify event-handling routines for
specific widgets within the panel using the EVENT_PRO and EVENT_FUNC
keywords to the widget creation routines.

Registering the Panel with the User Interface Object

To ensure that notifications from the i Tool itself are passed to the user interface panel
as needed, the panel creation routine must register the panel widget with the iTool
user interface object. This registration step allows you to specify the name of the
callback routine that will be called when anatification is generated by the iTool itself.

To register a user interface panel, use the RegisterWidget method of the IDLitUI
object:

idObserver = oUI->RegisterWidget (wPanel, 'Panel', 'Ex_callback')

where oUT isan object reference to the IDLitUI object and wpane1 isthe widget ID
of the panel widget; both are passed in as argumentsto the panel creation routine. The
second argument to the RegisterWidget method (' Panel ', in thisexample) isthe
human-readabl e name of the Ul panel. Thethird argument (' Ex_callback', inthis
example) is the name of the panel’s callback routine. See*IDLitUI::RegisterWidget”
(IDL Reference Guide) for details. Callback routines are discussed in detail in
“Creating Callback Routines’ on page 320.

Creating a Ul Panel Interface iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 317

Adding Observers

For notification messages to be passed to the correct callback routine, an
OnNotifyObserver must be established by calling the AddOnNotifyObserver method
of the IDLitUI object. The AddOnNotifyObserver method takes as its arguments the
ID created by the call to the RegisterWidget method (as discussed in the previous
section) and the component object identifier of theiTool component to observe. Once
the observer is created, each time the specified iTool component generates a message
(that is, when the component itself calls the DoOnNotify method), the registered
widget callback routine is called with the message as one of its arguments. The call to
the AddOnNoatifyObserver method looks like:

oUI->AddOnNotifyObserver, idObserver, idSubject

where idObserver isan identifier created by acall to the RegisterWidget method, and
idSubject is usually the component object identifier of the iTool component being
observed. See “IDLitUl::AddOnNotifyObserver” (IDL Reference Guide) for
additional details.

The idSubject argument to the AddOnNotifyObserver method is normally the object
identifier of an iTool component object, but it can be any string value. For example,
any time the selection within an iTool window changes, the DoOnNotify method is
called with itsfirst parameter (idOriginator) set to the string value
'Visualization' rather than to the object identifier of acomponent. An observer
whose idSubject argument is set to the string ' visualization' will be notified
each time the selection changesin the iTool window. For example, the following
statement specifies that the panel widget (as registered viathe RegisterWidget
method) will receive notifications whenever avisualization changes in the iTool
window.

oUI->AddOnNotifyObserver, idObserver, 'Visualization'

Here, idobserver isthe identifier created in the previous section. The second
argument (' visualization') specifiesthat messageswill be generated whenever a
visualization is modified.

“Example: A Simple Ul Panel” on page 324 provides examples of observers of both
types. See “iTool Messaging System” on page 41 for background information on
observers and messages.

Create the Widget Hierarchy

The widget hierarchy of a user interface panel looks like the following:

Panel widget

iTool Developer's Guide Creating a Ul Panel Interface

318

Chapter 14: Creating a User Interface Panel

- Base widget

|
- other widgets
Since the widget ID of the panel widget is supplied as an argument to the panel
creation routine, all that isleft isto create a base widget with the panel widget asits
parent, and to populate the base widgets with other widgets as necessary.

Passing State Information

State information can be passed between widget creation routines and widget event
handling routinesin several different ways. The method used most often in iTool user
interface panelsisto create a state structure in the panel creation routine, store the
appropriate valuesin this structure, and assign the structure to the widget user value
of one of the widgets in the panel widget hierarchy. For amore detailed discussion of
this technique, see “Managing Application State” (Chapter 2, User Interface
Programming).

In addition to widget | Ds and other state information from your widget interface, you
may find it useful to store object references to the iTool object and to the IDLitUI
object associated with the iTool object in the state structure. Having these object
references available in your event handler and callback routines allows you to take
advantage of methods available in the iTool and user interface objects.

Create Event Handlers

Like other widget applications, iTool user interface panels use one or more event
handling routines to perform actions based on the user’s interaction with the widgets
in the interface. As with generalized widget applications, you can write event
handling routines for a user interface panel in numerous ways; see “Widget Event
Processing” (Chapter 2, User Interface Programming) for an in-depth discussion of
widget event handling.

Thefollowing suggestions apply specifically to event handlersfor iTool user interface
panels:

Use the GetSelectedltems Method

Often, you will want to apply an operation to one or more items in the iTool window
when the user selects an element on the user interface panel. Use the
GetSelectedltems method of the iTool object to retrieve references to the i Tool
component objects that are sel ected.

Creating a Ul Panel Interface iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 319

The following statement retrieves an array of object referencesto all of the currently
selected itemsin theiTool:

oTargets = state.oTool->GetSelectedItems (COUNT = nTarg)

Note
Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the state structure variable. The COUNT keyword to the
GetSel ectedltems method returns the number of items selected.

Use the DoAction Method

In many cases, the user’s interaction with the user interface panel will instruct the
iTool to apply an iTool operation to the selected item. Where possible, use the
DoAction method of the operation to perform thistask. Calling the DoA ction method
ensures that the changes caused by the operation are properly inserted into the iTool
undo/redo system.

For example, the following statement:

success = state.oUI->DoAction('Operations/Rotate/RotateLeft')

callsthe DoAction method on the IDLitUI object associated with the current i Tool,
invoking the operation registered with the system with the operation identifier
'Operations/Rotate/RotateLeft’

Redraw the iTool Window

Call the RefreshCurrentWindow method of the iTool object to force theiTool’s
window to update, displaying any changes that took place as the result of the
operations executed in your event handling routine:

state.oTool->RefreshCurrentWindow

Note
Note that this example assumes that a reference to the iTool object is stored in the
oTool field of the state structure variable.

iTool Developer's Guide Creating a Ul Panel Interface

320 Chapter 14: Creating a User Interface Panel

Creating Callback Routines

User interface panel callback routines are executed when an iTool component, for
which the panel has created an observer, generates a notification message. The
callback routine then uses the value of the notification message to determine what
action to take. Observers are created as described in “Adding Observers’ on

page 317.

Callback Routine Signature

A user interface panel widget callback routine has the following signature:
PRO PanelName_ callback, wPanel, IdOriginator, IdMessage, Value
where:
« PanelName_callback is the name of the callback routine,

* wPanel isthewidget ID of the panel widget (see “About the Panel Widget” on
page 315),

« |ldOriginator is a string identifying the source of the message (usually the
object identifier of aniTool component object, but it can be any string value),

* ldMessageisastring that uniquely identifies the message being sent, and
e \Valueisavaluethat is associated with the message being sent.

See “iTool Messaging System” on page 41 for more information on the IdMessage
and Value arguments.

Registration of Callback Routines

Callback routines are registered along with the user interface panel itself, in the call
to the RegisterWidget method of the IDLitUI object. See* Registering the Panel with
the User Interface Object” on page 316 for details.

Retrieving Widget State Information
The wPanel argument to the callback routine contains the widget ID of the panel

widget. Thiswidget ID provides away for the callback routine to retrieve state
information about the widgets that make up the panel.

Creating Callback Routines iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 321

For example, if you have saved a state structure containing widget information in the
user value of the first child widget of the panel widget, code similar to the following
would alow you to retrieve that state structure:

; Make sure we have a valid widget ID.
IF ~ WIDGET_INFO (wPanel, /VALID) THEN RETURN

; Retrieve the widget ID of the first child widget of
; the UI panel.
wChild = WIDGET_INFO (wPanel, /CHILD)

; Retrieve the state structure from the user value of
; the first child widget.
WIDGET_CONTROL, wChild, GET_UVALUE = state

Thistechniqueis used in the example user interface panel described in “Example: A
Simple Ul Panel” on page 324.

iTool Developer's Guide Creating Callback Routines

322 Chapter 14: Creating a User Interface Panel

Registering a Ul Panel

User interface panels are registered with the iTool system using the IREGISTER
procedure. Once a Ul panel has been registered, it will be displayed for any iTool
whose TY PE property matches the string specified viathe TY PES keyword when
registering the panel. Similarly, if aniTool displays avisuaization whose TY PE
property matches the string specified viathe TY PES keyword when registering the
panel, the panel will be displayed for that i Tool.

Registering the Panel in the iTool Launch Routine

In most cases, you will register your user interface panel in aniTool’s launch routine,
with a statement like:

IREGISTER, panelName, panelCode, TYPES = panelType, /UI_PANEL

where panelName is a string containing the human-readable name of your user
interface panel, panel Code is a string containing the name of the IDL procedure that
creates the user interface panel, and panel Type is a string that identifies the type of
iTool or visualization for which the panel should be displayed. The Ul_PANEL
keyword must be present in order to register a user interface panel using the
IREGISTER procedure.

See“IREGISTER” (IDL Reference Guide) for additional details.
About the TYPE property

To display a user interface panel for agiven iTool, you will not only need to register
the panel in that iTool’s launch routine, but also specify a matching type when
initializing the iTool itself. TheiTool system will display aregistered panel in an
iTool whose TY PE property contains a string that matches the string specified viathe
TY PES keyword when registering the panel.

To set the TY PE property of an iTool use a statement like thisin theiTool’s Init
method:

self->IDLitToolbase: :Init (_EXTRA = _extra, TYPE = panelType)

where panel Type is a string that matches the string used as the value of the TYPES
keyword to IREGISTER.

Similarly, theiTool system will display aregistered panel when an iTool displays a
visualization whose TY PE property contains a string that matches the string specified
viathe TY PES keyword when registering the panel.

Registering a Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 323

To set the TY PE property of avisuaization, use a statement like thisin the
visualization’s Init method:

self->IDLitVisualization::Init(_ EXTRA = _extra, TY PE = panel Type)

where panel Type is a string that matches the string used as the value of the TYPES
keyword to IREGISTER.

iTool Developer's Guide Registering a Ul Panel

324 Chapter 14: Creating a User Interface Panel

Example: A Simple Ul Panel

The following example creates a simple user interface panel consisting of two
buttons: Rotate and Hide/Show. The Rotate button rotates the selected i Tool
component 90 degrees, if possible. The Hide/Show button toggles the value of the
HIDE property of the selected object.

&1 IDL itTool [Untitled*] [_ (O] x|
File Edit Insert Operations Window Help

Dls|a|&| || s [mlef fo:=] [x o] AlNa|o|s]e]

Example Panel |

] Choose an Actior:

Fotate |tem |
Show/Hide [tem |

Figure 14-1: The example panel.

Note
This example isintended to demonstrate the concepts involved in creating a user
interface panel. For examples of more useful panels, see thefiles
idlitwdimgmenu.pro and idlitwdvolmenu.pro, which create the user
interface panelsfor the IMAGE and IVOLUME iTools, respectively. Both files are

located inthe 1ib/itools/ui_widgets subdirectory of the IDL installation
directory.

To display a user interface panel named Example4_panel, this example creates the
following items:;

e Panel Creation Routine

* Panel Event Handler Routine
» Panel Cdlback Routine

e Panel Type Specification

Example Code
The code for this example user interface panel isincluded in the file
example4_panel.pro inthe examples/doc/itools subdirectory of the IDL

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 325

distribution. Run the example procedure by entering example4_panel at the IDL
command prompt or view the filein an IDL Editor window by entering .EDIT

exampled_panel.pro.

Panel Creation Routine

The user interface panel creation routine (beginning with the line
PRO Example4_panel, wPanel, oUT) doesthework of displayingthe IDL
widgets that make up the Ul panel display.

PRO Exampled_panel, wPanel, oUI

; Set the title used on the panel's tab.
WIDGET_CONTROL, wPanel, BASE_SET_TITLE = 'Example Panel'

; Specify the event handler
WIDGET_CONTROL, wPanel, EVENT_ PRO = "Exampled_panel_event"

; Register the panel with the user interface object.

strObserverIdentifier = oUI->RegisterWidget (wPanel, "Panel", $
'Exampled_panel_callback')

; Register to receive selection events on visualizations.

oUI->AddOnNotifyObserver, strObserverIdentifier, $
'Visualization'

; Retrieve a reference to the current iTool.
oTool = oUI->GetTool()

; Create a base widget to hold the contents of the panel.
wBase = WIDGET_BASE (wPanel, /COLUMN, SPACE = 5, /ALIGN_LEFT)

; Create panel contents.
wLabel = WIDGET_LABEL (wBase, VALUE = "Choose an Action:", $
/ALIGN_LEFT)

; Get the Operation ID of the rotate operation. If the operation
; exists, create the "Rotate Item" button and monitor whether

; the operation is available for the selected item.

opID = 'Operations/Operations/Rotate/RotatelLeft’

oRotate = oTool->GetByIdentifier (opID)

IF (OBJ_VALID(oRotate)) THEN BEGIN

idRotate = oRotate->GetFullIdentifier ()

wRotate = WIDGET_BUTTON (wBase, VALUE = "Rotate Item", S
UVALUE="ROTATE")
Monitor for availablity of the Rotate operation.

7

iTool Developer's Guide Example: A Simple Ul Panel

javascript:doIDL("example4_panel")
javascript:doIDL(".edit example4_panel.pro")
javascript:doIDL(".edit example4_panel.pro")

326 Chapter 14: Creating a User Interface Panel

oUI->AddOnNotifyObserver, strObserverIdentifier, idRotate
ENDIF ELSE $
idRotate = 0

wHide = WIDGET_BUTTON (wBase, VALUE = "Show/Hide Item", $
UVALUE = "HIDE")

; Pack up the state structure and store in first child.
state = {oTool:o0Tool, $

oUI:oUI, $

idRotate : idRotate, $

wPanel :wPanel, $

wBase:wBase, $

wRotate:wRotate, $

wHide:wHide $

}

wChild = WIDGET_ INFO (wPanel, /CHILD)

IF wChild NE 0 THEN $
WIDGET_CONTROL, wChild, SET_UVALUE = state, /NO_COPY

END
Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the Exampled_panel example; the commentsin the code that creates the user
interface panel describe most of the features. The following points are worth noting,
however:

* The panel creation routine accepts two arguments: the widget 1D of the panel
widget (stored in the variable wpane1, in this example), and an object
reference to the IDLitUI object associated with theiTool (stored in the variable
oUT).

e Theexample usesthe EVENT_PRO keyword to the WIDGET_CONTROL
procedure to establish an event-handling routine, Example4_panel_event.
This event-handling routine is described in “Panel Event Handler Routine” on
page 327.

» Theexample registers a single callback routine,
Example4_panel_callback, using the RegisterWidget method of the
IDLitUI class. The callback routine is described in “Panel Callback Routing”
on page 329.

* The example adds an OnNotifyObserver for the visualization component
described in “Adding Observers’ on page 317.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 327

e The example uses the GetTool method of the IDLitUI object to retrieve an
object reference to the iTool with which the panel is associated. Thisreference
is later used to retrieve areference to the IDLitOperation object that performs
therRotate Left operation, placing it inthe variable orotate.

* Iftherotate Left operation isavailableto theiTool, the example placesthe
Rotate button on the user interface panel. It also establishes an observer to
watch for changesin the availability of the Rotate Left operation, which
will change based on the item selected. The callback routine uses the messages
received by this observer to sensitize and desensitize the Rotate button as
necessary.

* The example packages important information in a state structure, and assigns
this structure to the user value of thefirst child widget of the panel widget. The
event-handling and callback routines will retrieve this state structure and use
the information contained therein.

Panel Event Handler Routine

The event-handler routine (beginning with theline PRO Example4_panel_event,
event) receives widget events generated by the widgets that make up the user
interface panel, and acts accordingly.

PRO Exampled_panel_event, event

; Retrieve the widget ID of the first child widget of
; the UI panel.
wChild = WIDGET_ INFO (event.handler, /CHILD)

; Retrieve the state structure from the user value of
; the first child widget.
WIDGET CONTROL, wChild, GET_UVALUE = state

; Retrieve the user value of the widget that generated
; the event.
WIDGET_CONTROL, event.id, GET_UVALUE = uvalue

; Now do the work for each panel item.
SWITCH STRUPCASE (uvalue) OF
'ROTATE' : BEGIN
; Apply the Rotate Left operation to the selected item.
success = state.oUI->DoAction(state.idRotate)
RETURN
END
'HIDE': BEGIN
; Hide the selected item.

7

iTool Developer's Guide Example: A Simple Ul Panel

328 Chapter 14: Creating a User Interface Panel

oTargets = state.oTool->GetSelectedItems (count = nTarg)

IF nTarg GT 0 THEN BEGIN
; If there are selected items, use only the last item
; selected, which is stored in the first element of
; the returned array.
oTarget = oTargets[0]
; Get the iTool identifier of the selected item.
name = oTarget->GetFullIdentifier ()
; Retrieve the setting of the HIDE property.
oTarget->GetProperty, HIDE = hide
; Change the value of the HIDE property from 0 to 1
; or from 1 to 0. Use the DoSetProperty and
; CommitActions method to ensure that the change
; 1s entered into the undo/redo transaction buffer.
void = state.oTool->DoSetProperty (name, "HIDE", $

((hide+1) MOD 2))

state.oTool->CommitActions

ENDIF

BREAK

END
ELSE:
ENDSWITCH

; Refresh the iTool window.
state.oTool->RefreshCurrentWindow

END

Discussion

It is beyond the scope of this chapter to describe the IDL widget concepts employed
in the Example4_panel event handler; the comments in the code describe most of the
features. The following points are worth noting, however:

« If the event received by the event handler routine is generated by the Rotate
button, the example calls the DoAction method of the IDLitUI object, with the
identifier of theRotate Left operation asitsargument.

« If the event received by the event handler routine is generated by the
Hide/Show button, the example does the following:

« Usethereferenceto theiTool object stored in the state structure to retrieve
the list of selected items using the GetSel ectedltems method.

» Retrievethe object identifier of the last item selected. (Note that the last
item selected is stored in the first element of the returned array.)

» Retrievethe value of the HIDE property of the selected item.

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 329

e Usethe DoSetProperty method of the IDLitTool object to toggle the value
of the HIDE property for the selected item.

e Commit the property change in the undo/redo transaction buffer using the
CommitActions method of the IDLitTool object.

« After theiTool display has been changed, call the RefreshCurrentWindow
method of the IDLitTool object to redraw the iTool window.

Panel Callback Routine

The user interface panel callback routineis called whenever a component, for which
an OnNotifyObserver has been registered, generates amessage. It parses the message
received and takes action as necessary.

PRO Example4_panel_callback, wPanel, strID, messageln, component

; Make sure we have a valid widget ID.
IF ~ WIDGET_INFO (wPanel, /VALID) THEN RETURN

; Retrieve the widget ID of the first child widget of
; the UI panel.
wChild = WIDGET_ INFO (wPanel, /CHILD)

; Retrieve the state structure from the user value of
; the first child widget.
WIDGET CONTROL, wChild, GET_UVALUE = state

; Process as necessary, depending on the message received.
SWITCH STRUPCASE (messageIn) OF

; This section handles messages generated when the rotate
; operation becomes available or unavailable, and sensitizes
; or desensitizes the "Rotate" button accordingly.
'SENSITIVE' :
'UNSENSITIVE': BEGIN

WIDGET_CONTROL, state.wRotate, $

SENSITIVE = (messageIn EQ 'SENSITIVE')

BREAK

END

This section handles messages generated when the

; item selected in the iTool window changes and changes

; the sensitivity of the "Hide/Show" and "Rotate" buttons
; accordingly.

'SELECTIONCHANGED' : BEGIN

Retrieve the item that was selected last, which is
stored in the first element of the returned array.

7

7

7

iTool Developer's Guide Example: A Simple Ul Panel

330 Chapter 14: Creating a User Interface Panel

oSel = state.oTool->GetSelectedItems ()

oSel = 0Sel[0]

; If the last item selected is not a visualization,

; desensitize the "Hide/Show" and "Rotate" buttons.

IF (~OBJ_ISA(oSel, 'IDLITVISUALIZATION')) THEN BEGIN
WIDGET_CONTROL, state.wHide, SENSITIVE = 0
WIDGET_CONTROL, state.wRotate, SENSITIVE = 0

ENDIF ELSE BEGIN

; If the selected object is a visualization, sensitize

; the "Hide/Show" and "Rotate" buttons.
WIDGET_CONTROL, state.wHide, SENSITIVE = 1
WIDGET_CONTROL, state.wRotate, SENSITIVE =

ENDELSE

BREAK

END
ELSE:
ENDSWITCH

1

END
Discussion

The example panel’s callback routine performs the following tasks:

e Usesthewidget ID provided in the wpanel argument to retrieve the widget
state structure stored in the first child widget of the panel widget.

e If thevalue of themessageIn argument is either SENSITIVE oOr
UNSENSITIVE, change the sensitivity of the Rotate button (stored in the
wRotate field of the widget state structure) as necessary.

* If thevalue of themessageIn argument iS SELECTTONCHANGED, perform the
following tasks:

* Usethereferenceto theiTool object stored in the oToo1 field of the state
structure to retrieve areference to the last selected component. (Note that
the last object selected is stored in the first element of the returned array.)

« If the selected component is not a visualization, desensitize the
Hide/Show button.

» If the selected component is a visualization, sensitize the Hide /Show
button.

Panel Type Specification

In order to display the Example4_panel user interface panel along with aniTool, the
following two things must happen:

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 14: Creating a User Interface Panel 331

1. TheUl panel must be registered, using the IREGISTER procedure.
2. A tool with the appropriate TY PE must be created.

For the purposes of this example, we will create an iTool named exampledtool,
with alaunch routine named example4tool .pro, and aniTool object definition
routine named exampledtool_ define.pro.

Example Code
Both exampledtool .pro, and exampledtool _define.pro areincludedin
the examples/doc/itools subdirectory of the IDL distribution. Run these
example procedures by entering example4tool Of exampledtool__define &
the IDL command prompt or view the filesin an IDL Editor window by entering
.EDIT exampledtool.pro Or .EDIT exampledtool__define.pro

In the example4tool .pro file, weincluded the following statement:

IREGISTER, 'Example Panel',6 'Example4_panel', TYPE = 'EXAMPLE', $
/UI_PANEL

Setting the TY PE keyword equal to the string ExamMpLE specifies that the panel
should be displayed for al iTools of thistype.

Inthe example4tool__define.pro file, weinclude the string EXAMPLE in the
TY PE property specified in the Init method:

FUNCTION exampledtool::Init, _REF_EXTRA = _extra
IF (self->IDLitToolbase::Init(_EXTRA = _extra, $
TYPE = 'EXAMPLE') EQ 0) $

THEN RETURN, O

Since the TY PE specified for the user interface panel in the call to IREGISTER
matches the TY PE defined for our example iTool class, calling the launch routine
exampledtool at the IDL Command Line creates anew iTool and displays the
Exampled_panel panel on the right side of the iTool window.

iTool Developer's Guide Example: A Simple Ul Panel

javascript:doIDL("example4tool")
javascript:doIDL("example4tool__define")
javascript:doIDL(".edit example4tool.pro")
javascript:doIDL(".edit example4tool__define.pro")

332 Chapter 14: Creating a User Interface Panel

Example: A Simple Ul Panel iTool Developer’s Guide

Chapter 15

Creating a Custom
ITool Widget Interface

This chapter describes the process of creating an iTool user interface using IDL widgets.

About Custom iTool Widget Interfaces . .. 334
Overview of Creating an iTool Interface .. 337

iTool Widget Interface Concepts 340
Creating the Interface Routine 342
AddingMenus 346
AddingaToolbar 348

Adding an iTool Window

iTool Developer’s Guide

AddingaStatusBar 352
Adding aUser Interface Panel 353
Handling Callbacks 354
Handling ResizeEvents 356
Handling Shutdown Events 358
Creating aniTool Launch Routine 360
Example: aCustom iTool Interface 362

333

334 Chapter 15: Creating a Custom iTool Widget Interface

About Custom iTool Widget Interfaces

The standard interface to the iTools included with IDL is constructed from IDL
widgets, using a number of special compound widgets designed to work with the
iTool system. Other chaptersin this section of the iTool Devel oper’s Guide describe
how to use the user interface display mechanisms of the iTool system to add
functionality to your own iTools within the constraints of the standard i Tool interface.
This chapter describes how to create a hybrid i Tool interface using both i Tool
compound widgets and “traditional” IDL widgets.

Before beginning the process of creating a new DL widget-based user interface that
includes iTool components, you should take the following points into consideration:

e You can use acustom iTool user interface to mix iTool components with
traditional IDL widgets, but you will still be using the i Tool system. This means
that the custom interface you create is the interface to an iTool, not simply to a
collection of widgets. You may need to create an iTool class definition for your
tool, register iTool components, and handle user interface callbacks.

* The mechanisms available for interacting with iTool components such as the
iTool draw window from outside the iTools framework are more limited (and
in some cases more cumbersome) than those available if you write iTool
framework code.

* Whilethe standard interface to the iTools uses IDL widgets, the iTools
framework and the standard i Tools are designed in such away that a non-
widget iTool interface (e.g. a Java or web-based interface) could be created and
the standard i Tools would work seamlessly with the new interface. Custom
iTool interfaces that rely on traditional IDL widgets will only functionin
environments that support the display of IDL widgets.

Why Create a New Widget Interface?

In most cases, you will be able to extend the iTool system to include your own
functionality without modifying the standard i Tool user interface. You can create and
register new operations, for example, without writing any interface code at all. If your
application requires extrainterface elements not present in the standard interface, you
can include them in a user interface panel associated with your tool. So why create a
new interface using IDL widgets? The following are two possible reasons to create a
custom interface:

You are updating an existing application — You may have an existing widget
application that uses atraditional draw widget to display visualizations. Replacing

About Custom iTool Widget Interfaces iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 335

the traditional draw widget with an iTool draw widget will require substantial
revisions to your existing code, but making the revisions may be more efficient than
recreating your application using only the iTool framework.

Your application has a complex interface — Your application may require a more
complex user interface than is possible to implement using i Tool framework methods.

What About Using a Ul Panel?

Several of the standard iTools require tool-specific user interface elements. These
iTools (the IMAGE, IMAP, and IVOLUME tools) include a user interface panel that
contains additional interface elements required by the tool.

If your application requires asmall number of interface elements not available in the
standard interface, consider creating a user interface panel rather than an entire
custom user interface. Creating a user interface panel rather than a custom user
interface has the following advantages:

« Itiseaser, and requires lessinterface code. You do not need to write code to
handle widget resizing, for example.

* You can register your user interface panel with the iTool system, which allows
the panel to appear on any iTool of the type supported by the panel. You could,
for example, create a panel that would show up on the standard IIMAGE tool,
along with the existing panel.

User interface panels are discussed in detail in Chapter 14, “Creating a User Interface
Panel”.

Skills Required to Create an iTool User Interface
To create acustom iTool user interface, you will need to be familiar with the
following:

e Traditional IDL widget programming (see Chapter 2, “ Creating Widget
Applications” (User Interface Programming)).

e Creating an iTool (see Chapter 5, “ Creating an iTool”).

« Creating user interface callback routines (see Chapter 14, “ Creating a User
Interface Panel”).

* Routines and methods available for interacting with iTool components from
outside the iTool framework (see Appendix A, “Controlling iTools from the
IDL Command Lin€e").

iTool Developer's Guide About Custom iTool Widget Interfaces

336 Chapter 15: Creating a Custom iTool Widget Interface

e Useof theiTool compound widgets (see Appendix B, “iTool Compound
Widgets’).

What You Will Need to Create

To build acustom i Tool user interface, you will need to create a minimum of two new
.pro files:

» Thewidget interface definition. Thisfile creates the widget interface, defines
event handlers and callbacks, takes care of widget resizing and cleanup, and
registers the widgets with a user interface object.

e Alaunchroutine. Thisfile registers the custom interface with the iTools
system and launches the iTool with the specified interface.

You may create any number of other additional files, but in most cases you will also
create:

e AniTool class definition routine. Thisfile creates an instance of the iTool that
will use your custom interface. The iTool class definition may simply subclass
an existing iTool class, registering new items or unregistering some of the
standard items, or it may be an entirely new iTool of your creation.

Note
While you can create an i Tool interface that mimics an existing application’s
traditional widget interface, you cannot simply add iTool compound widgets to an
existing widget interface. The iTool compound widgets rely on theiTool system,
and will not function on their own.

About Custom iTool Widget Interfaces iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 337

Overview of Creating an iTool Interface

This section provides a brief outline of the steps necessary to create a custom i Tool
interface. Thetopicsintroduced here are discussed in greater detail in later sections of
this chapter.

To create a custom iTool interface, you will do the following:
1. Create or Choose aniTool

Create the Widget Interface

Create Event Handlers

Create Callback Routines

Create a Cleanup Routine

Create an iTool User Interface Object

N o o kM w D

Create an iTool Launch Routine
Create or Choose an iTool

The interface you will create is the interface to an iTool. While you may choose to
create a new interface to an existing iTool, it is more likely that you will be creating
an interface to a custom iTool that you have defined. Even if you simply want to
insert aniTool draw window into an existing widget interface, you will probably want
to specify which of the standard iTool operations, menu items, and toolbars are
included — this means creating and registering anew iTool definition routine. See
Chapter 5, “Creating an iTool” for a complete description of the process of creating
your own iTool.

Create the Widget Interface

You will use traditional IDL widget programming techniques to create the interface
used by your iTool. iTool components such as menus, toolbars, status bars, and i Tool
draw windows are encapsulated in a specia set of compound widgets that you can
add to your interface just like other widgets.

Note
iTool compound widgets are not exactly like other compound widgets. They do not
generate widget events, and you cannot get or set their values using the
WIDGET_CONTROL routine.

iTool Developer's Guide Overview of Creating an iTool Interface

338 Chapter 15: Creating a Custom iTool Widget Interface

Create Event Handlers

While you do not need to handle the widget events that are internal to theiTool
compound widgets, you will need to create event handlers for any other widgets you
include in your interface. You will also need to provide event-handling code for the
following:

* Resizing of theiTool compound widgets. Thisis generally accomplished by
calling the _RESIZE procedure associated with the compound widget.

» Dedtruction of theiTool. In order to properly shut down theiTool system when
your iTool exits, you must call the iTools shutdown service in addition to
freeing any pointers used by the widget interface.

e Focus changes. TheiTool system needs to know which iTool is currently
selected. When your user interface receives the keyboard focus, you must call
the iTools set-as-current-tool service to alert the system that the i Tool
associated with your interface has become the current tool.

Create Callback Routines

Callback routines handle messages delivered by the iTool messaging system to your
user interface. The number and type of callbacks your interface needs to handle will
depend on the features your user interface implements.

Create a Cleanup Routine

If your custom interface uses pointers or other variables that require explicit cleanup
when the application exits, you must provide a cleanup routine and specify it asthe
routine to be called when the widgets are destroyed.

Create an iTool User Interface Object
iTools communicate with their user interfaces via a user interface object. Your
interface definition routine will need to create an interface object, register the widgets

with the object, and add the widget interface as an observer of the user interface
object.

Create an iTool Launch Routine

After creating the user interface definition routine, you will need to create an iTool
launch routine that does the following (in addition to any other work):

Overview of Creating an iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 339

* Registersyour custom user interface with the iTool system, using the
IREGISTER procedure with the USER_INTERFACE keyword.

» CdlstheIDLITSYS CREATETOOL function with the USER_INTERFACE
keyword set equal to the name of your custom interface, as registered with the
iTool system.

iTool Developer's Guide Overview of Creating an iTool Interface

340 Chapter 15: Creating a Custom iTool Widget Interface

iITool Widget Interface Concepts

It is beyond the scope of this chapter to discuss the creation of IDL widget interfaces
in general; see Chapter 2, “Creating Widget Applications’ (User Interface
Programming) for acomplete discussion. This section describes some things you will
need to know about working with the iTool compound widgets that encapsulate the
iTool components you can insert into your custom interface.

What Are iTool Compound Widgets?

iTool compound widgets are designed to allow complex iTool components to be
included in an IDL widget interfacein away that isfamiliar to traditional IDL widget
programmers. The following iTool compound widgets are available:

CW_ITMENU — Encapsulates atop-level iTool menu. Top-level iTool menus are
defined by adding operations to the iTool hierarchy. See “iTool Object Hierarchy” on
page 31 for information on the organization of the iTool hierarchy.

CW_ITPANEL — Encapsulates an iTool user interface panel. User interface panels
alow you to easily add additional IDL widget interface elementsto aniTool. In some
cases, you may be able to accomplish what you need by adding a user interface panel
rather than creating an entire custom user interface. See Chapter 14, “ Creating a User
Interface Panel” for information on creating panels.

CW_ITTOOLBAR — Encapsulates the iTool toolbar. Toolbars provide access to
commonly used operations and manipulators viatoolbar buttons. Toolbars are
defined by adding operations to the iTool hierarchy. See “iTool Object Hierarchy” on
page 31 for information on the organization of the iTool hierarchy.

CW_ITSTATUSBAR — Encapsulates the iTool status bar. The status bar typically
provides user feedback for iTool components, but can be use to display any sort of
message. See “ Status M essages’ on page 289 for information on using the status bar.

CW_ITWINDOW — Encapsulates the iTool drawable area. All of the functionality of
the standard i Tool window — mouse interactions, display of properties of the
selected visualization, context menus — isincluded in the iTool drawable area

Special Notes on the iTool Compound Widgets

TheiTool compound widgets are designed to look and behave like traditional
compound widgets in most ways, but there are several things you should be aware of
when using them.

iTool compound widgets:

iTool Widget Interface Concepts iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 341

e require an object reference to an iTool user interface object on creation.
« do not generate widget events.
* do not have avalue that can be retrieved or set.

* areableto receive and respond to selected messages from the i Tool messaging
system.

In addition, the CW_ITPANEL, CW_ITSTATUSBAR, and CW_ITWINDOW
compound widgets must be resized using their associated _RESIZE procedures,
rather than by explicitly setting the XSIZE and Y SIZE keywords.

Example iTool Widget Interfaces

Two examples of functioning iTool widget interface code are included in the IDL
distribution:

Example Custom iTool Widget Interface — A functioning custom iTool widget
interface definition, an associated i Tool class definition, and an associated launch
routine are included in the examples/doc/itools subdirectory of the IDL
distribution. The example interface is described in detail in “ Example: a Custom
iTool Interface” on page 362.

Standard iTool Widget Interface — The widget interface code used as the standard
iTool interface isincluded inthe IDL distribution in thefile id1itwdtool.pro, in
thelib/itools/ui_widgets subdirectory. The standard interfaceisused by all of
the iToolsincluded with IDL. Inspecting this file will give you insightsinto how the
developers of the standard i Tools intended the iTool compound widgetsto be used, as
well as other details.

iTool Developer's Guide iTool Widget Interface Concepts

342 Chapter 15: Creating a Custom iTool Widget Interface

Creating the Interface Routine

The IDL procedure that creates your custom iTool widget interface will look much
like awidget creation routine from a traditional widget application. This section
points out some things you should be aware of .

Note
Code fragments used in this section, and those that follow, are taken from the
example custom interface developed in “ Example: a Custom iTool Interface” on
page 362.

Routine Signature

Your widget creation routine should be an IDL procedure with a signature that looks
something like:
PRO example2_wdtool, oTool, TITLE = titleIn, $
LOCATION = location, $
VIRTUAL_DIMENSIONS = virtualDimensions, $

USER_INTERFACE = oUI, $; output keyword
_REF_EXTRA = _extra

where:
* oTool isan object reference to the iTool that will use the interface.
e TITLEisanoptiona keyword that specifiesthetitle used for the iTool window.

e LOCATION isan optiona keyword that specifiesthe location [x, y] in pixelson
the screen where the upper left corner of the interface should be positioned on
creation.

* VIRTUAL_DIMENSIONS isan optional keyword that specifiesthe virtual size
of theiTool drawable area. Note that this size is not the same as theinitial
visible size.

e USER_INTERFACE isarequired output keyword that returns an object
reference to the iTool user interface object created by the interface routine.

e _REF_EXTRA isthe standard keyword inheritance mechanism that allows the
routine that calls your user interface routine to pass additional keyword values
to the interface routine as needed.

Your routine may handle other keyword values as well.

Creating the Interface Routine iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 343

Error Checking

Since the successful creation of an iTool interface relies on the presence of avalid
iTool object reference, it isa good ideato check the oTool argument before
proceeding. A statement like the following serves as a reasonabl e check:

IF (~OBJ_VALID(oTool)) THEN $
MESSAGE, 'Tool is not a valid object.'

Top Level Base

Thefirst widget you will need to create when building a custom iTool widget
interface is atop-level widget base to hold the interface. Your call to the
WIDGET_BA SE function should look something like:

wBase = WIDGET BASE (/COLUMN, MBAR = wMenubar, $
TITLE = title, $
/TLB_KILL_REQUEST_EVENTS, $
/TLB_SIZE_EVENTS, $
/KBRD_FOCUS_EVENTS, $
_EXTRA = _extra)

All of the keywords shown here are documented along with the WIDGET_BASE
function, but you should note the following things:

* Weusethe MBAR keyword to create amenubar base, which will hold both the
iTool menubars and any additional menus we choose to create. If your
interface will not have a menu bar, there is no need to specify the MBAR
keyword.

« Weexplicitly ask for TLB_KILL_REQUEST _EVENTS. Thisisimportant
because it allows usto specify aKILL_NOTIFY procedure that will be
executed when the widget interface is destroyed.

« Wesetthe TLB_SIZE_EVENTS keyword to let the user resize theiTool
interface as described in “Handling Resize Events’ on page 356.

* We use the keyword inheritance mechanism (the _EXTRA keyword) to pass
any additional keyword values through to the base widget.

User Interface Object

Your widget interface must be associated with an iTool user interface object. Since
we will need the object reference to the user interface object when creating the iTool

iTool Developer's Guide Creating the Interface Routine

344

Chapter 15: Creating a Custom iTool Widget Interface

compound widgets, we include the following statement after creating our top level
base widget:

oUI = OBJ_NEW('IDLitUI', oTool, GROUP_LEADER = wBase)
Note that we need the iTool object that was the argument to our interface creation
routine to create the user interface object. Note also that we specify our top level base

asthe GROUP_LEADER of theinterface object; thiswill ensure that any floating or
modal dialogs displayed by the interface appear in the correct place.

Widget Creation and Layout

Your custom i Tool interface can include both iTool compound widgets and traditional
IDL widgets. These are created in the same way asin atraditional widget application.
Thefiner points of creating iTool compound widgets are discussed in later sections of
this chapter.

User Interface Registration

Near the end of the widget creation routine, after the widget hierarchy has been
realized, we must register the top-level base with the user interface object:

myID = oUI->RegisterWidget (wBase, 'Example 2 Tool', $
'example2_wdtool_callback')

Here we specify the name of the callback routine that will handle messages from the
iTool components. The return value from the RegisterWidget method istheiTool full
identifier of the widget interface. We next use the identifier to specify that the
interface is an observer (that is, that it can receive messages generated by iTool
components) for the associated i Tool:

oUI->AddOnNotifyObserver, myID, oTool->GetFullIdentifier()

This ensures that messages generated by the iTool are handled by the specified
callback routine.

Handling Widget Destruction

Many complex interfaces rely on a state structure containing information about the
widgetsin theinterface. If you pass areference to this state structure between
routines in your user interface code using one or more pointers, free the pointers
when the widget interface is destroyed. In our exampleinterface, a pointer to the state
structure is stored in the user value of the first child widget of the top level base
widget. The following statement specifies aroutine to be called when the widgets are
destroyed:

Creating the Interface Routine iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 345

WIDGET_CONTROL, wChild, KILL_NOTIFY = "example2_ wdtool_cleanup"

| ssues related to the destruction of the interface are discussed in more detail in
“Handling Shutdown Events’ on page 358.

iTool Developer's Guide Creating the Interface Routine

346

Chapter 15: Creating a Custom iTool Widget Interface

Adding Menus

iTool menus are created using the CW_ITMENU compound widget. The signature of
the CW_ITMENU functioniis:

Result = CW_ITMENU(Parent, Ul, Target [, KEYWORDS])
where;

e Parent isthe widget ID of the base widget on which the menu will be
displayed.
» Ul isthe user interface object associated with the interface.

» TargetistheiTool identifier, relative to the iTool associated with Ul, of the
container whose operations should be included in the menu.

« KEYWORDSare keywords either handled explicitly by the widget, or passed
through to the widgets that make up the compound widget.

Standard Menus

Operations registered in the iTool containers that create the standard menus are
automatically sensitized and desensitized to reflect whether the individual operation
can be applied at the time the menu is displayed. Some items are sensitized when the
selected item is of the correct data or visualization type, others (such as undo and
Redo) are sensitized when some other criteria are met. Still others (such asthe open
operation on the Fi 1e menu) are always available.

The following statements create the menus used by the standard i Tools:

wFile = CW_ITMENU (wMenubar, oUI, 'Operations/File')

wEdit = CW_ITMENU (wMenubar, oUI, 'Operations/Edit')
wlnsert = CW_ITMENU (wMenubar, oUI, 'Operations/Insert')
wOperations = CW_ITMENU (wMenubar, oUI, 'Operations/Operations')
wiindow = CW_ITMENU (wMenubar, oUI, 'Operations/Window')
wHelp = CW_ITMENU (wMenubar, oUI, 'Operations/Help')

You can include any subset of these menus, or your own menus, in your interface.

Modifying Menu Contents

Each iTool menu contains an entry for each item that is registered in the container.
This has two ramifications:

Adding Menus iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 347

1. If you register anew operation in one of the standard menu containers, it will
appear on the menu for your iTool, and be sensitized and desensitized
according to the same rules as the other items.

2. If you unregister an operation from one of the standard menu containers, it will
be removed from the menu for your iTool.

Operations are generally registered and unregistered in the Init method of an iTool
creation routine. See Chapter 7, “Creating an Operation” for details. For an example
that shows how to unregister standard menu items, see “ Example: a Custom iTool
Interface” on page 362.

Resizing Menus
Because menubars are treated as part of the top level base widget, no special resizing
code isrequired to resize menus. If you are concerned that your menus always appear

inasingleline, you may want to consider setting a minimum width on your top level
base sufficient to ensure that the menus never wrap to a second line.

iTool Developer's Guide Adding Menus

348

Chapter 15: Creating a Custom iTool Widget Interface

Adding a Toolbar

iTool toolbars are created using the CW_ITTOOLBAR compound widget. The
signature of the CW_ITTOOLBAR functionis:

Result = CW_ITTOOLBAR(Parent, Ul, Target [, KEYWORDS))
where;

e Parentisthe widget ID of the base widget on which the toolbar will be
displayed.
» Ul isthe user interface object associated with the interface.

e TargetistheiTool identifier, relative to the iTool associated with Ul, of the
container whose operations or manipulators should be included in the toolbar.

« KEYWORDSare keywords either handled explicitly by the widget, or passed
through to the widgets that make up the compound widget.

Standard Toolbars

Operations registered in the iTool containers that create the standard toolbars are
automatically sensitized and desensitized to reflect whether the corresponding
operation or manipulator is currently available. Some items are sensitized when the
selected item is of the correct data or visualization type, others (such as undo and
Redo) are sensitized when some other criteria are met. Still others (such astherile
Open operation) are always avail able.

The following statements create the toolbars used by the standard iTools:

wToolbar = WIDGET_BASE (wBase, /ROW, XPAD=0, YPAD=0, SPACE=7)

wTooll = CW_ITTOOLBAR (wToolbar, oUI, 'Toolbar/File')

wTool2 = CW_ITTOOLBAR (wToolbar, oUI, 'Toolbar/Edit')

wTool3 = CW_ITTOOLBAR (wToolbar, oUI, 'Manipulators', /EXCLUSIVE)
= (

wToold = CW_ITTOOLBAR (wToolbar, oUI, 'Manipulators/View',$
/EXCLUSIVE)

wTool5 = CW_ITTOOLBAR (wToolbar, oUI, 'Toolbar/View')

wTool6 = CW_ITTOOLBAR (wToolbar, oUI, 'Manipulators/Annotation', $
/EXCLUSIVE)

There are a couple of pointsto note:

» Some of the standard operations displayed as toolbar buttons are proxies to
operations that are registered in other containers. For example, the
Toolbar/File container contains proxiesto four of the operations registered

Adding a Toolbar iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 349

inthe operations/File container: New, Open, Save, and Print. Proxies
are described in “Registering Components’ on page 38.

The EXCLUSIVE keyword is passed through the CW_ITTOOLBAR function
to the underlying widget base via the keyword inheritance mechanism. See the
description under WIDGET_BASE for details.

Modifying Toolbar Contents

Each iTool toolbar contains an entry for each item that is registered in the container.
This has two ramifications:

1. If youregister (or proxy) anew operation or manipulator in one of the standard
toolbar containers, it will appear on the toolbar for your iTool, and be
sensitized and desensitized according to the same rules as the other items.

2. If you unregister an operation or manipulator from one of the standard toolbar
containers, it will be removed from the toolbar for your i Tool.

Operations and manipulators are generally registered and unregistered in the Init
method of an iTool creation routine. See Chapter 7, “ Creating an Operation” or
Chapter 8, “ Creating a Manipulator” for details. For an example that shows how to
unregister standard toolbar items, see “Example: a Custom iTool Interface” on
page 362.

Resizing Toolbars

Toolbars consist of bitmap buttons that cannot be resized, so no specia resizing code
isrequired. If you are concerned that al of your toolbars appear even if the user
resizes the top level base widget to awidth too narrow to display them all, you can
either set a minimum width for the top level base or write resizing code that arranges
the toolbarsinto multiple rows if the top level base is not wide enough.

iTool Developer's Guide Adding a Toolbar

350 Chapter 15: Creating a Custom iTool Widget Interface

Adding an iTool Window

AniTool drawable area, or window, is created using the CW_ITWINDOW compound
widget. TheiTool window can display iTool visualizations and atomic IDL graphics
objects, provides a mechanism for the display of the iTools property sheet interface,
and makes it easy to perform tasksincluding translation, rotation, and scaling of
visualizations using standard i Tool manipulators. The signature of the
CW_ITWINDOW function is:

Result = CW_ITWINDOW(Parent, Ul [, KEYWORDS])
where:

e Parent isthe widget ID of the base widget on which the drawable areawill be
displayed.
« Ul isthe user interface object associated with the interface.

KEYWORDSare keywords either handled explicitly by the widget or passed
through to the widgets that make up the compound widget.

Window Sizing Keywords

Two properties of the iTool window are worth understanding. The DIMENSIONS
keyword specifies the visible area of the window in pixels as atwo-element array
[width, height]. The VIRTUAL_DIMENSIONS keyword specifies the total size of
the drawing areain pixels as atwo-element array [width, height]. These two
keywords replace the XSIZE/Y SIZE and SCR_XSIZE/SCR_Y SIZE keywords to the
standard IDL draw widget. The X_SCROLL_SIZE/Y_SCROLL_SIZE keywords are
likewise unnecessary and ignored; the iTool window automatically handles the
addition of scrollbars when necessary.

Modifying Window Contents
The contents of an iTool window can be modified interactively by the user in

NUMerous ways:

e using the mouse and one of the available manipulators (trand ate, rotate, scale,
etc.).

* by interactively selecting an available operation from an iTool menu or toolbar.

* by interactively changing a property value using the iTool property sheet.

Adding an iTool Window iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 351

» by interactively importing new data and creating new visualizations using the
iTool Data Import Wizard or Insert Visualization dialog.

These methods are standard to all i Tools, and are discussed in the iTool User’s Guide.
The contents of the iTool window can aso be manipulated programmatically from
“outside” theiTool framework in various ways:

* by applying an operation using the iTool object’s DoAction method.
» by changing a property value using the iTool object’s DoSetProperty method.

» by importing and visualizing new data, either by calling aniTool creation
routine with the VIEW_NUMBER keyword set to replace the existing

visualization, or by retrieving the iTool dataitem and using its SetData
method.

These programmatic methods for modifying the contents of an existing iTool are
discussed in Appendix A, “Controlling iTools from the IDL Command Line’.

Resizing iTool Windows

The CW_ITWINDOW compound widget defines a separate procedure,
CW_ITWINDOW_RESIZE, that accepts as arguments the new width and height of
the iTool window. This procedure handles all calculations necessary to properly
resize the window, taking into account the current zoom factors and the presence or
absence of scroll bars. See “CW_ITWINDOW?” on page 418 for compl ete details.

iTool Developer's Guide Adding an iTool Window

352 Chapter 15: Creating a Custom iTool Widget Interface

Adding a Status Bar

iTool status bars are created using the CW_ITSTATUSBAR compound widget.
Statusbars can be used to display any type of information, but are commonly used to
provide user feedback or information about the item underneath the mouse cursor.
See “ Status Messages’ on page 289 for additional information on status bars. The
signature of the CW_ITSTATUSBAR functionis:

Result = CW_ITSTATUSBAR(Parent, Ul [, KEYWORDS])
where:
» Parentisthewidget ID of the base widget on which the status bar will be
displayed.
e Ul isthe user interface object associated with the interface.

« KEYWORDSare keywords either handled explicitly by the widget or passed
through to the widgets that make up the compound widget.

Modifying Status Bar Contents

In many cases, the contents of the status bar are updated automatically based on the
position of the mouse pointer, selected manipulator, or other condition. You can
programmatically update the contents of a status bar using the StatusM essage and
ProbeStatusM essage methods of the IDLitIMessaging class as described in “ Status
Messages’ on page 289.

Resizing Status Bars

The CW_ITSTATUSBAR compound widget defines a separate procedure,
CW_ITSTATUSBAR_RESIZE, that accepts as an argument the new width of the
status bar. This procedure handles all calculations necessary to properly resize the
status bar, taking into account the number of status bar segments present and any
padding used. See “CW_ITSTATUSBAR" on page 410 for complete details.

Adding a Status Bar iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 353

Adding a User Interface Panel

iTool user interface panels are created using the CW_ITPANEL compound widget.
User interface panels can be used to display a selection of widgets in atab interface
on one side of theiToal interface.

Note
If you are creating a custom i Tool user interface that includes both regular IDL
widgets and iTool compound widgets in a standard base widget, it is unlikely that
you will also need to create a user interface panel. (If you want your interface to
display other panels that are registered with the iTool system, such as the image,
map, or volume panels, you must include a CW_ITPANEL widget.) Conversely,
you may be able to avoid creating an entire custom user interface if you can place
the extrawidget controls you need on a user interface panel, which requires
significantly less code. See Chapter 14, “Creating a User Interface Panel” for
information on creating a user interface panel that can be displayed with your iTool.

The signature of the CW_ITPANEL function is:

Result = CW_ITPANEL (Parent, Ul [, KEYWORDS))

where:
e Parentisthe ID of the base widget on which the panel will be displayed.
» Ul isthe user interface object associated with the interface.
« KEYWORDSare keywords either handled explicitly by the widget or passed

through to the widgets that make up the compound widget.
Modifying User Interface Panel Contents

The contents of a user interface panel can be modified based on the current state of
theiTool via one or more callback routines, as described in Chapter 14, “ Creating a
User Interface Pandl”.

Resizing User Interface Panels

The CW_ITPANEL compound widget defines a separate procedure,
CW_ITPANEL_RESIZE, that accepts as an argument the new height of the pane.
This procedure handles all calculations necessary to properly resize the panel, taking
into account the fact that panels can themselves include scrolling base widgets. See
“CW_ITPANEL" on page 406 for complete details.

iTool Developer's Guide Adding a User Interface Panel

354 Chapter 15: Creating a Custom iTool Widget Interface

Handling Callbacks

User interface callback routines are executed when an iTool component, for which
the user interface has created an observer, generates a notification message. The
callback routine then uses the value of the notification message to determine what
action to take. Observers are created as described in “User Interface Registration” on
page 344. The iTool messaging system itself is discussed in “iTool Messaging
System” on page 41.

Callback Routine Signature

A user interface widget callback routine has the following signature:
PRO WidgetName_callback, Widget, IdOriginator, IdMessage, Value
where:
* WdgetName_callback is the name of the callback routine.
* \Widget isthe widget ID of the widget registered as an observer.

« IldOriginator is a string identifying the source of the message (usually the
object identifier of aniTool component object, but it can be any string value).

* ldMessageisastring that uniquely identifies the message being sent.

* Valueisavaluethat is associated with the message being sent.
See “iTool Messaging System” on page 41 for more information on the IdMessage
and Value arguments.

Registration of Callback Routines

Callback routines are registered along with the user interface itself, in the call to the
RegisterWidget method of the IDLitUI object. See “User Interface Registration” on
page 344 for details.

Example Callback Routine

The following code segment illustrates a simple callback routine used in both the
idlitwdtool.pro interface and in the example custom interface developed later in
this chapter. This callback handles only one message, FILENAME, whichis
generated when the user saves the current iTool with a new file name. When the
callback is executed, thetitle bar of the iTool interface is updated to reflect the new
file name.

Handling Callbacks iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 355

PRO example2_wdtool_callback, wBase, strID, messageln, userdata

; Retrieve a pointer to the state structure.
wChild = WIDGET_INFO (wBase, /CHILD)
WIDGET_CONTROL, wChild, GET_UVALUE = pState

; Handle the message that was passed in.
CASE STRUPCASE (messagelIn) OF

'FILENAME': BEGIN
filename = FILE_BASENAME (userdata)

newTitle = (*pState).title + ' [' + filename + ']'
WIDGET_CONTROL, wBase, TLB_SET_TITLE = newTitle
END
ELSE: ; Do nothing
ENDCASE

Your callback routine may be more complex, handling any number of messages sent
to the user interface. In practice, the callback routine for auser interfaceis often quite
simple— the standard user interface used by theiToolsin IDL 6.2 handlesonly three

messages.
Note

Your callback routine is also free to quietly ignore any messages. For example, you
may choose to do nothing when the FILENAME message is received.

iTool Developer's Guide Handling Callbacks

356 Chapter 15: Creating a Custom iTool Widget Interface

Handling Resize Events

It is beyond the scope of this chapter to discuss resizing of widget interfacesin
general; see “Widget Sizing” (Chapter 3, User Interface Programming) for a
discussion of widget sizing issues. This section describes some things you will need
to know in order to make your custom i Tool widget interface resize properly.

Generating Resize Events

If you want users to be able to resize the custom iTool interface you are creating, you
must set the TLB_SIZE_EVENTS keyword when creating the top-level widget base
that holds your interface. With this keyword set, when the user resizes the top-level
base, aWIDGET_BASE event is generated, reporting the new width and height of
the base widget.

Handling the Resize Event

The technigue used by the standard i Tool widget interface to handle resize events for
the top-level base involves storing the current size of the base widget in the widget's
state structure. The state structure is available to widget event handling and callback
routines in the user value of the first child widget of the top-level base.

The following code, from the event handling routine in the example2_wdtool.pro
interface definition (developed in “ Example: aCustom iTool Interface” on page 362),
uses the value stored in the basesi ze field of the state structure, along with the new
size of the base widget, to calculate the change in the size of the base. The changesin
the size are then passed as arguments to the EXAMPLE2 WDTOOL_RESIZE
routine, which handles the actual resizing of the interface elements.

; The top-level base was resized

'WIDGET_BASE': BEGIN
; Compute the size change of the base relative to
; 1ts cached former size.

WIDGET_CONTROL, event.top, TLB_GET SIZE = newSize

deltaW = newSize[0] - (*pState).basesizel[0]

deltaH = newSize[l] - (*pState) .basesize[l]

example2_wdtool_resize, pState, deltaW, deltaH
END

Writing a Resize Routine

Writing aresizing routine for your custom iTool user interface may be the most
complicated part of the task. Each interface is different, and resize events must be

Handling Resize Events iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 357

handled based on the layout and desired behavior of the interface. Aside from the
techniques discussed in “Widget Sizing” (Chapter 3, User Interface Programming),
keep the following in mind when writing your resizing routine:

e Usethesupplied* RESIZE procedures defined by theiTool compound widget
routines to resize the compound widgets, when they are available. See the
reference pages for the CW_IT* widgets for details.

» Widget sizing is handled differently on Windows and UNIX platforms.
Specifically:

e On Windows platforms, turn off widget updating (viathe UPDATE
keyword to WIDGET_BASE) while widgets are resizing. This helps
prevent flashing.

e OnUNIX platforms, make sure updating is turned on while resizing, to
ensure proper resizing.

» If you are storing the size of your base widget in the interface’s state structure,
be sure to update the values in the state structure after the interface has been
resized.

iTool Developer's Guide Handling Resize Events

358 Chapter 15: Creating a Custom iTool Widget Interface

Handling Shutdown Events

Because your custom interface is associated with an iTool, destruction of theinterface
may entail shutting down and cleaning up the entire iTools system. This meansthat in
addition to normal cleanup of pointers and objects used by the interface, you will
need to instruct the iTools system to shut itself down when your interfaceis
destroyed.

Generating Shutdown Events

You must set the TLB_KILL_REQUEST_EVENTS keyword when creating the top-
level widget base that holds your interface. With this keyword set, when the user
destroys the top-level base, aWIDGET_KILL_REQUEST event is generated,
alowing you to perform the actions necessary to shut down the iTools system.

Handling the Shutdown Event

When the user destroys the top-level base of your custom interface, you may want to
prompt the user to save the current iTool state before shutting down. The standard
iTool interface uses an iTool system service named “ Shutdown” to both prompt the
user for confirmation that a shutdown is requested and offer to let the user save the
current state. The Shutdown service then handles other cleanup tasks before exiting
theiTool.

The following code, from the event handling routine in the example2_wdtool.pro
interface definition (developed in “ Example: aCustom i Tool Interface” on page 362),
callstheiTools Shutdown service.

; Destroy the widget.
'WIDGET_KILL_REQUEST': BEGIN
; Get the shutdown service and call DoAction.
; This code must be here, and not in the _cleanup routine,
; because the tool may not actually be killed. (For example
; the user may be asked if they want to save, and they may
; hit "Cancel" instead.)
IF OBJ_VALID((*pState) .oUI) THEN BEGIN
oTool = (*pState).oUI->GetTool ()
oShutdown = oTool->GetService ('SHUTDOWN')
void = (*pState).oUI->DoAction (oShutdown-
>getFullIdentifier())
ENDIF
END

Handling Shutdown Events iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 359

Your code should not assume that the top-level base widget will actually be
destroyed, because the user may decide to cancel the close operation. Since the
process of actually destroying the widget hierarchy is divorced from the generation of
the WIDGET_KILL_REQUEST event, you may also need to supply a cleanup
routine that is invoked only when the widget hierarchy is actually destroyed.

Writing a Cleanup Routine

A cleanup routine is necessary if your widget interface uses heap variables (pointers
or abjects) to store information about itself — the heap variables will need to be
cleaned up separately when theinterfaceitself is destroyed. Thefollowing code, from
the cleanup routine in the example2_wdtool . pro interface definition (developed
in “Example: a Custom iTool Interface” on page 362), frees the pointer used to store
the widget interface’s state structure.

PRO example2_wdtool_cleanup, wChild

; Make sure we have a valid widget ID.
IF (~WIDGET_INFO (wChild, /VALID)) THEN $
RETURN

; Retrieve the pointer to the state structure, and
; free it.
WIDGET CONTROL, wChild, GET_UVALUE = pState
IF (PTR_VALID(pState)) THEN $
PTR_FREE, pState

Calling the Cleanup Routine

Thefinal step isto specify when the cleanup routine should be called. Since the user
can cancel out of the shutdown operation, the cleanup routine should only be called
when the widget hierarchy is actually destroyed, not when the
WIDGET_KILL_REQUEST event is handled. We accomplish this by specifying the
cleanup routine as the value of the KILL_NOTIFY keyword to the WIDGET_BASE
function.

In the standard iTool widget interface and in our example code, we set the
KILL_NOTIFY keyword on the first child widget of the top-level base widget. The
following statement, near the end of the interface definition routine, specifies the
name of the cleanup routinein the example2_wdtool . pro interface definition
(developed in “Example: a Custom iTool Interface” on page 362):

WIDGET_CONTROL, wChild, KILL_NOTIFY = "example2_wdtool_cleanup"

iTool Developer's Guide Handling Shutdown Events

360 Chapter 15: Creating a Custom iTool Widget Interface

Creating an iTool Launch Routine

Once you have created your custom iTool widget interface, you must create away to
launch an iTool using the interface. To do this, you will most often create a custom
iTool launch routine.

iTool launch routines are discussed in detail in “Creating an iTool Launch Routine”
on page 103. This section describes changes you will need to make to an existing
launch routine to cause an iTool to use your custom widget interface.

Register Your User Interface

To register your new user interface, call the IREGISTER routine with the
USER_INTERFACE keyword. The following statement registers the example
interface developed in “Example: a Custom i Tool Interface” on page 362:

IREGISTER, 'Example2_ UI', 'example2_wdtool', /USER_INTERFACE

Here, the example interface is registered with the name “ Example2_UI”.
Use Your User Interface

The final step isto create an instance of an iTool using your interface. To do this,
specify the USER_INTERFACE keyword to the IDLITSYS CREATETOOL
function. The following statement creates an instance of an example tool using the
example interface:

identifier = IDLITSYS_CREATETOOL ('Example 2 Tool',$

VISUALIZATION_TYPE = ['Plot'], $
USER_INTERFACE='Example2_ UI', $
TITLE = 'Example iTool Interface', $
_EXTRA = _extra)

See the iTool launch routine developed in “Example: a Custom iTool Interface” on
page 362 for aworking example.

Using an Existing iTool Launch Routine

If you first register your iTool interface with theiTool system using the IREGISTER
procedure, you can specify that your interface be used by an existing iTool launch
routine that accepts the USER_INTERFACE keyword. This allows you to avoid the
need to create a custom launch routine if an existing routine will serve.

For example, if we wanted to use our custom interface with the IPLOT tool, we could
execute the following lines athe IDL command prompt:

Creating an iTool Launch Routine iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 361

IREGISTER, 'Example2_ UI', 'example2_wdtool',

/USER_INTERFACE
IPLOT, USER_INTERFACE='Example2_ UT'

These lines will create an iPlot tool using our custom user interface.

This approach may be worthwhile when an existing launch routine handles data
specified on the command line in away that suits your needs. For example, while our
example tool accepts no parameters at the IDL command prompt, specifying our
custom interface as the interface for the iPlot tool allows us to specify data:

IPLOT, EXP(INDGEN(10)), USER_INTERFACE='Example2_ UI'

iTool Developer's Guide Creating an iTool Launch Routine

362 Chapter 15: Creating a Custom iTool Widget Interface

Example: a Custom iTool Interface

This example creates a custom i Tool interface that incorporates several standard IDL
widgets to the left of the drawabl e area and displays a subset of the menus and
toolbars that appear in a standard iTool. A button widget inserts a plot line created
from random data, and several controls allow the user to change the number of points
used to create the ling, the line thickness, and the line color. Finally, a button launches

an iTool operation that affects the selected plot data. The finished interface looks like
this:

@l Example iTool Interface [Untitled*]

File Edit Insert Operations ‘Window
o|o| i [le] W] AlNa]o]ele

Inzert Mew Plat

20
o I 2 B
Mumber of points

Line Size: | 2 ™
Line Color: |Blue ¥ 0.8
Filter thiz Plot 06

04

02

Click on item to select, or click & drag selection box [173.309]

Figure 15-1: Example Custom iTool Interface

The exampleis purposefully simple. All of the actions accomplished by the custom
interface can be accomplished using the standard iTool interface. It does, however,
illustrate the concepts necessary to create a custom iTool interface.

This example consists of three files, described in the following sections:

» Widget Interface Creation Routine (Page 363)

iTool Class Definition Routine Discussion (Page 377)

iTool Launch Routine Discussion (Page 379)

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 363

Note
The code for this exampleis provided in the IDL distribution, in the
examples/doc/itools subdirectory of the main IDL directory. You can run the
example code directly by entering example2tool at the DL prompt.

Widget Interface Creation Routine

This section describes the widget interface creation routine for the example interface.

Example Code
The example consists of several routines and is quite long. As aresult, this
discussion dealswith individual chunks and may skip briefly over sectionsthat have
more to do with widget programming and are not explicitly related to the creation of
an iTool interface. To seethe routinein its entirety, inspect the file
example2_wdtool.pro inthe examples/doc/itools subdirectory of the IDL
distribution. Run the example procedure by entering example2_wdtool at the DL
command prompt or view the filein an IDL Editor window by entering .EDIT
example2_wdtool.pro.

Individual routines in the interface definition are discussed here in the order they
appear in the source file. The routines are:

* example2_wdtool_callback (page 364)
e example2 wdtool_resize (page 365)

» example2_wdtool_cleanup (page 367)
» example2_wdtool_event (page 367)

e draw_plot_event (page 369)

* linesize_event (page 370)

» color_event (page 371)

« filter_event (page 372)

e example2 wdtool (page 373)

In our interface definition, we store the state structure for the entire widget interface
in apointer (named pstate) that isitself stored in the user value of the first child
widget of the top-level base widget. Thisisastandard technique that allows usto pass
information about the interface between the interface routines. (Handling of widget
state information is discussed in detail in “Managing Application State” and
“Creating a Compound Widget” (Chapter 2, User Interface Programming).) If you

iTool Developer's Guide Example: a Custom iTool Interface

javascript:doIDL("example2_wdtool")
javascript:doIDL(".edit example2_wdtool.pro")
javascript:doIDL(".edit example2_wdtool.pro")

364 Chapter 15: Creating a Custom iTool Widget Interface

are not familiar with this concept, inspect the example2_wdtool routine before
reading the event handling and callback routines.

Note
We store our state variable in the user value of the first child widget, rather than the

user value of the top-level base, as a matter of programming style. You could aso
choose to store the variable in the user value of the top-level base.

example2_wdtool_callback

Our example interface handles only one message from the iTool system:
FILENAME. The complete code for the callback routine is shown below.

PRO example2_wdtool_callback, wBase, strID, messageln, userdata

; Make sure we have a valid widget.
IF (~WIDGET_INFO (wBase, /VALID)) THEN $
RETURN

; Retrieve a pointer to the state structure.
wChild = WIDGET_INFO (wBase, /CHILD)
WIDGET_CONTROL, wChild, GET_UVALUE = pState

; Handle the message that was passed in.
CASE STRUPCASE (messagelIn) OF

The FILENAME message is received if the user saves
the iTool with a new name. This callback sets the
; title of the iTool to match the name of the file.
'FILENAME': BEGIN

; Use the new filename to construct the title.

; Remove the path.

filename = FILE_BASENAME (userdata)

; Append the filename onto the base title.

newTitle = (*pState).title + ' [' + filename + ']'

WIDGET_CONTROL, wBase, TLB_SET_TITLE = newTitle
END

7

7

; Other messages would be handled here.
ELSE: ; Do nothing
ENDCASE

END

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 365

Discussion

The FILENAME message and the rest of the callback routine are discussed in
“Example Callback Routine” on page 354.

example2_wdtool _resize

Thewidget resizing routine for our example interface is shown below. It acceptsthree
arguments: a pointer to the widget interface state structure, an integer representing the
change in width (in pixels), and an integer representing the change in height (alsoin
pixels).

Note
Widget resizing code depends almost entirely on the structure and layout of the
widget interface you are creating. While this example may give you ideas about
how to resize your interface, you will need to change it — probably substantially —
to suit the needs of your interface.

PRO example2_wdtool_resize, pState, deltaW, deltaH

; Retrieve the original geometry (prior to the resize)

; of the iTool draw and toolbar widgets.

drawgeom = WIDGET_INFO((*pState) .wDraw, /GEOMETRY)
toolbarGeom = WIDGET_INFO((*pState) .wToolbar, /GEOMETRY)

; Compute the updated dimensions of the visible portion
; of the draw widget.

newVisW = (drawgeom.xsize + deltaW)

newVisH = (drawgeom.ysize + deltaH)

; Check whether UPDATE is turned on, and save the value.
isUpdate = WIDGET INFO((*pState) .wBase, /UPDATE)

; Under Unix, UPDATE must be turned on or windows will
; not resize properly. Turn UPDATE off under Windows
; to prevent window flashing.
IF (!VERSION.OS_FAMILY EQ 'Windows') THEN BEGIN
IF (isUpdate) THEN $
WIDGET_CONTROL, (*pState).wBase, UPDATE = 0
ENDIF ELSE BEGIN
; On Unix make sure update is on.
IF (~isUpdate) THEN $
WIDGET_CONTROL, (*pState) .wBase, /UPDATE
ENDELSE

; Update the draw widget dimensions.
IF (newVisW NE drawgeom.xsize || newVisH ne drawgeom.ysize) $

iTool Developer's Guide Example: a Custom iTool Interface

366

Chapter 15: Creating a Custom iTool Widget Interface

THEN BEGIN
CW_ITWINDOW_RESIZE, (*pState).wDraw, newVisW, newVisH
ENDIF

; Update the width of the toolbar base.
WIDGET CONTROL, (*pState).wToolbar, $
SCR_XSIZE = toolbarGeom.scr_xsize+deltaW

; Update the status bar to be the same width as the toolbar.
CW_ITSTATUSBAR_RESIZE, (*pState).wStatus, $
toolbarGeom.scr_xsize+deltaWw

; Turn UPDATE back on if we turned it off.
IF (isUpdate && ~WIDGET_INFO((*pState).wBase, /UPDATE)) THEN $
WIDGET_CONTROL, (*pState) .wBase, /UPDATE

; Retrieve and store the new top-level base size.

IF (WIDGET_INFO((*pState) .wBase, /REALIZED)) THEN BEGIN
WIDGET_CONTROL, (*pState).wBase, TLB_GET_SIZE = basesize
(*pState) .basesize = basesize

ENDIF

END
Discussion

Our code resizes only three widgets when the size of the top-level base changes: the
iTool window, the toolbar, and the status bar. The toolbar and status bar are resized to
fit the new width of the top-level base, and the iTool window is made larger or
smaller by the same amount as the top-level base. This preserves the overall
arrangement of the interface elements, and does not change the width of the left-hand
base, which holds the “ custom” interface e ements.

Note the handling of the UPDATE keyword. Thisis necessary because UNIX and
Microsoft Windows behave differently as the top-level base is being resized.

Note also that we use the CW_ITWINDOW_RESIZE and
CW_ITSTATUSBAR_RESIZE proceduresto resize the iTool window and status bar
widgets. These routines handle the details of internal resizing of the compound
widgets, and perform other necessary adjustments. The width of the toolbar isresized
in amore traditional way, by setting the SCR_XSIZE on the base widget that holds
the individual toolbars.

Finally, we store the new size of the top-level base in the basesize field of the widget
interface’s state structure. Storing this value in the state structure allows us to
calculate the change in size of the top-level base in when the WIDGET_BASE event
arrivesin our event-handler routine.

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 367

example2_wdtool_cleanup

The cleanup routine for our interface is simple; it frees the pointer used to hold the
widget interface’s state structure. The compl ete code for the cleanup routineis shown

below.
PRO example2_wdtool_cleanup, wChild
; Make sure we have a valid widget ID.

IF (~WIDGET_INFO (wChild, /VALID)) THEN $
RETURN

; Retrieve the pointer to the state structure, and

; free it.
WIDGET CONTROL, wChild, GET_UVALUE = pState

IF (PTR_VALID(pState)) THEN $
PTR_FREE, pState

END
Discussion

Note that thisroutineis only called when the widget interface is actually destroyed,
not when the WIDGET_KILL_REQUEST event is processed. See “Handling
Shutdown Events’ on page 358 for details.

example2_wdtool _event
The main event-handling routine for our widget interface handles three types of
events that might be generated by the top-level base widget:

« WIDGET_KILL_REQUEST (generated when the user requests that the
application be exited).

« WIDGET_KBRD_FOCUS (generated when the user selects the application).
* WIDGET_BASE (generated when the user resizes the top-level base widget.

A more complicated interface may handle additional events; the techniques used
would be similar to those illustrated here. The complete code for the main event-
handler routine is shown below.

PRO example2_wdtool_event, event
; Retrieve a pointer to the state structure.
wChild = WIDGET_ INFO (event.handler, /CHILD)
WIDGET_CONTROL, wChild, GET_UVALUE = pState

CASE TAG_NAMES (event, /STRUCTURE_NAME) OF

iTool Developer's Guide Example: a Custom iTool Interface

368 Chapter 15: Creating a Custom iTool Widget Interface

; Destroy the widget.
'WIDGET_KILL_REQUEST': BEGIN
Get the shutdown service and call DoAction.
This code must be here, and not in the _cleanup routine,
because the tool may not actually be killed. (For example
; the user may be asked if they want to save, and they may
; hit "Cancel" instead.)
IF OBJ_VALID((*pState) .oUI) THEN BEGIN
oTool = (*pState).oUI->GetTool ()
oShutdown = oTool->GetService('SHUTDOWN')
void= (*pState) .oUI->DoAction (oShutdown->getFullIdentifier())
ENDIF
END

7
i

7

; Focus change.
'WIDGET_KBRD_FOCUS': BEGIN
If the iTool is gaining the focus, Get the set current tool
; service and call DoAction.
IF (event.enter && OBJ_VALID((*pState) .oUI)) THEN BEGIN
oTool = (*pState).oUI->GetTool ()
oSetCurrent = oTool->GetService('SET_AS_CURRENT_TOOL')
void = oTool->DoAction(oSetCurrent->GetFullIdentifier())
ENDIF
END

7

; The top-level base was resized.

'WIDGET_BASE': BEGIN
Compute the size change of the base relative to

its cached former size.

i

7

WIDGET_CONTROL, event.top, TLB_GET SIZE = newSize
deltaW = newSize[0] - (*pState) .basesizel[0]
deltaH = newSize[l] - (*pState) .basesize[l]
example2_wdtool_resize, pState, deltaW, deltaH
END

ELSE: ; Do nothing

ENDCASE

END
Discussion

Two of the three events handled in this routine are discussed in earlier sections of this
chapter. See “Handling Resize Events’ on page 356 for details on the
WIDGET_BASE event and “Handling Shutdown Events’ on page 358 for details on
the WIDGET_KILL_REQUEST event.

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 369

The WIDGET_KBRD_FOCUS event arrives when the user clicks “into” or “out of”
the widget interface. We are concerned only with events generated when the user
selects the widget interface, because in this case we need to inform the iTool system
object that our iTool has become the “ current” tool. To do this, we check the value of
the enter field of the widget event structure; if it containsa 1 (one), we know that
the user has clicked “into” the interface.

Next, we check to make sure that the user interface object stored in the out field of
the widget interface state structure is still valid. If the object isvalid, we retrieve a
reference to the iTool object using the user interface object’s GetTool method. We use
theiTool object reference to retrieve an object reference to the

SET_AS CURRENT_TOOL service, and call the iTool object’s DoAction method
with the full identifier of the service.

draw_plot_event

Thedraw_plot_event routine is specified as the event handler for the “Insert New
Plot” button in the custom section of the interface. The routine checks the values of
the other widgets in the custom interface and uses the IPLOT routine to generate a
new plot line in our iTool window. The complete code for this event-handler routine
is shown below.

PRO draw_plot_event, event

; Retrieve a pointer to the state structure.
wChild = WIDGET_INFO (event.top, /CHILD)
WIDGET_CONTROL, wChild, GET_UVALUE = pState

; Get the iTool identifier and make sure our iTool
; 1s the current tool.

toolID = (*pState) .oTool->GetFullIdentifier ()
ISETCURRENT, toolID

; Define some line colors.
colors = [[0,0,0]1,[255,0,01, [0,255,0]1, [0,0,255]]

; Get the value of the line color droplist and use it

; to select the line color.

linecolor = WIDGET_INFO((*pState) .wLineColor, /DROPLIST_SELECT)
newcolor = colors[*,linecolor]

; Get the value of the "number of points" slider.
WIDGET CONTROL, (*pState).wSlider, GET_VALUE=points

; Get the value of the line size droplist.
linesize = WIDGET_INFO((*pState) .wLineSize, /DROPLIST_SELECT)+1

iTool Developer's Guide Example: a Custom iTool Interface

370 Chapter 15: Creating a Custom iTool Widget Interface

; Call IPLOT to create a plot of random values, replacing the

; data used in the iTool's window.

IPLOT, RANDOMU (seed, points), THICK=linesize, $
COLOR=newcolor, VIEW_NUMBER=1

END
Discussion

This routine uses mostly standard widget programming techniques. Two points are
worth noting, however:

1. Wemust be surethat our iTool is set as the current tool. To do this, we retrieve
our iTool'sidentifier using the object reference stored in the widget interface’s
state structure and the GetFulll dentifier method. Next, we use the
ISETCURRENT routine with the full identifier to make sure our tool is
current.

2. When we call the IPLOT routine to generate the new plot, we set the
VIEW_NUMBER keyword equal to 1 (one). Thisreplaces the datain the first
(and in our case, only) view in the tool with the data specified.

linesize event

Thelinesize_event routine is specified as the event handler for the Line Size droplist
in the custom section of the interface. The complete code for this event-handler
routine is shown below.

PRO linesize_event, event

; Retrieve a pointer to the state structure.
wChild = WIDGET_INFO (event.top, /CHILD)
WIDGET_CONTROL, wChild, GET_UVALUE = pState

; Get the iTool identifier and make sure our iTool
; 1s the current tool.

toolID = (*pState).oTool->GetFullIdentifier ()
ISETCURRENT, toolID

; Get the value of the line size droplist.
linesize = WIDGET_ INFO((*pState) .wLineSize, /DROPLIST_ SELECT)+1

; Select the first plot line visualization in the window.
; There should be only one line, but we select the first one
; just to be sure.

plotID = (*pState).oTool->FindIdentifiers('*plot*', $
/VISUALIZATIONS)
plotObj = (*pState) .oTool->GetByIdentifier (plotID[0])

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 371

plotObj->Select

; Set the THICK property on the plot line and commit the change.
void = (*pState) .oTool->DoSetProperty(plotID, 'THICK', $

linesize)
(*pState) .oTool->CommitActions

END
Discussion

This routine uses the same technique as the draw_plot_event routine to ensure that
our iTool isthe current tool. It then retrievesthe identifier of the plot line, ensures that
the line itself is selected, and sets the THICK property on the line. For additional
information on retrieving component identifiers and changing property values, see
Appendix A, “Controlling iTools from the IDL Command Line”.

color_event

The color_event routine is specified as the event handler for the Line Color droplistin
the custom section of the interface. The complete code for this event-handler routine

is shown below.

PRO color_event, event

; Retrieve a pointer to the state structure.
wChild = WIDGET_INFO (event.top, /CHILD)
WIDGET CONTROL, wChild, GET_UVALUE = pState

Get the iTool identifier and make sure our iTool
; 1s the current tool.

toolID = (*pState).oTool->GetFullIdentifier ()
ISETCURRENT, toolID

7

; Define some line colors.
colors = [[0,0,0],[255,0,0], [0,255,0], [0,0,255]]

Get the value of the line color droplist and use it

; to select the line color.
linecolor = WIDGET_ INFO((*pState) .wLineColor, /DROPLIST_SELECT)

newcolor = colors[*,linecolor]

7

Select the first plot line visualization in the window.
; There should be only one line, but we select the first one
; just to be sure.

7

plotID = (*pState) .oTool->FindIdentifiers('*plot*', $
/VISUALIZATIONS)
plotObj = (*pState) .oTool->GetByIdentifier (plotID[0])

iTool Developer's Guide Example: a Custom iTool Interface

372

Chapter 15: Creating a Custom iTool Widget Interface

plotObj->Select

; Set the COLOR property on the plot line and commit the change.

void = (*pState) .oTool->DoSetProperty(plotID, 'COLOR', $

END

newcolor)
(*pState) .oTool->CommitActions

Discussion

This routine uses the same technique as the draw_plot_event routine to ensure that
our iTool isthe current tool. It then retrievestheidentifier of the plot line, ensures that

theline

itself is selected, and sets the COLOR property on the line. For additional

information on retrieving component identifiers and changing property values, see
Appendix A, “Controlling iTools from the IDL Command Line”.

filter_event

The filter_event routine is specified as the event handler for the “Filter this Plot”

button i
handler

PRO

n the custom section of the interface. The complete code for this event-
routine is shown below.

filter_event, event

; Retrieve a pointer to the state structure.
wChild = WIDGET_INFO (event.top, /CHILD)
WIDGET CONTROL, wChild, GET_UVALUE = pState

; Get the iTool identifier and make sure our iTool
; 1s the current tool.

toolID = (*pState) .oTool->GetFullIdentifier ()
ISETCURRENT, toolID

; Select the first plot line visualization in the window.

; There should be only one line, but we select the first one

; just to be sure. Also retrieve the identifier for the Median
; filter operation.

plotID = (*pState).oTool->FindIdentifiers('*plot*', $
/VISUALIZATIONS)

medianID = (*pState).oTool ->FindIdentifiers('*median', $
/OPERATIONS)

plotObj = (*pState).oTool->GetByIdentifier (plotID[0])

plotObj->Select

; Apply the Median filter operation to the selected plot line
; and commit the change.
void = (*pState) .oTool->DoAction (medianID)

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 373

(*pState) .oTool->CommitActions

END
Discussion

This routine uses the same technique as the draw_plot_event routine to ensure that
our iTool isthe current tool. It then retrieves the identifier of the plot line and the
Median operation, selects the line, calls the DoAction method to apply the Median
filter to the selected plot line. For additional information on retrieving component
identifiers and executing operations, see Appendix A, “Controlling iTools from the
IDL Command Line".

example2_wdtool

The example2_wdtool routine builds the widget hierarchy for our custom iTool
interface and registers it with theiTool system. Much of this routine consists of
standard IDL widget programming, and many of the sections have been discussed in
“Creating the Interface Routing” on page 342. The complete code for the widget
creation routine is shown below.

PRO example2_wdtool, oTool, TITLE = titleIn, $
LOCATION = location, $
VIRTUAL_DIMENSIONS = virtualDimensions, $
USER_INTERFACE = oUI, $; output keyword
_REF_EXTRA = _extra

; Make sure the iTool object reference we've been passed
; 1s valid.
IF (~OBJ_VALID(oTool)) THEN $

MESSAGE, 'Tool is not a valid object.'

; Set the window title.
title = (N_ELEMENTS(titleIn) GT 0) ? titleIn[0] : 'IDL iTool'

; Display the hourglass cursor while the iTool is loading.
WIDGET_CONTROL, /HOURGLASS

; Create a base widget to hold everything.
wBase = WIDGET_ BASE(/COLUMN, MBAR = wMenubar, $
TITLE = title, $
/TLB_KILL_REQUEST_EVENTS, $
/TLB_SIZE_EVENTS, $
/KBRD_FOCUS_EVENTS, $
_EXTRA = _extra)

; Create a new user interface object, using our iTool.
oUI = OBJ_NEW('IDLitUI', oTool, GROUP_LEADER = wBase)

iTool Developer's Guide Example: a Custom iTool Interface

374

7

7

Chapter 15: Creating a Custom iTool Widget Interface

Menubars:

iTool menubars are created using the CW_ITMENU compound
widget. The following statements create the standard iTool
menus, pointing at the standard iTool operations containers.
Note that if the iTool to which this user interface is applied
has registered new operations in these containers, those
operations will show up automatically. Similarly, if the
iTool has unregistered any operations in these containers,
the operations will not appear. Our example tool unregisters
several of the standard iTool menu items -- see the
'example2tool__define.pro' file for examples. Note that we
don't want the standard Help menu in our example interface,
so we don't include it here.

wFile = CW_ITMENU (wMenubar, oUI, 'Operations/File')

wEdit = CW_ITMENU (wMenubar, oUI, 'Operations/Edit"')
wlnsert = CW_ITMENU (wMenubar, oUI, 'Operations/Insert')
wOperations = CW_ITMENU (wMenubar, oUI, 'Operations/Operations')
wiWindow = CW_ITMENU (wMenubar, oUI, 'Operations/Window')

7

7

You can create additional (non-iTool) menus in the
traditional way. The following lines would create an
additional menu with two menu items. Note that you
must explicitly handle events from non-iTool menus
in your event handler.

newMenu = WIDGET_BUTTON (wMenubar, VALUE='New Menu')
newMenul = WIDGET BUTTON (newMenu, VALUE='one')
newMenu2 = WIDGET BUTTON (newMenu, VALUE='two')

Toolbars:

iTool toolbars are created using the CW_ITTOOLBAR compound
widget. The following statements create the standard iTool
toolbars. Note that if the iTool to which this user interface
is applied has registered new operations or manipulators in
the referenced containers, those operations or manipulators
will show up automatically. Similarly, if the iTool has
unregistered any items in these containers, the items will
not appear. Our example tool uses the standard operations

and manipulators, but only displays three of the six standard
toolbars.

wToolbar = WIDGET_BASE (wBase, /ROW, XPAD = 0, YPAD = 0, $

SPACE 7)

wTool2 = CW_ITTOOLBAR (wToolbar, oUI, 'Toolbar/Edit')
wToo0l3 = CW_ITTOOLBAR (wToolbar, oUI, 'Manipulators',6 $

/EXCLUSIVE)

wT00l6=CW_ITTOOLBAR (wToolbar, oUI, 'Manipulators/Annotation', $

/EXCLUSIVE)

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 375

; Widget Layout

; This section lays out the main portion of the widget

; interface. We create the widget layout in the usual way,
; incorporating iTool compound widgets and "traditional"

; widgets in the desired locations.

; Create a base to hold the controls and iTool draw window.
wBaseUI = WIDGET_BASE (wBase, /ROW)

; Put controls in the left-hand base.
wBaseLeft = WIDGET_BASE (wBaseUI, /COLUMN)
wButtonl = WIDGET_BUTTON (wBaseLeft, $

VALUE='Insert New Plot', $

EVENT_PRO='draw_plot_event')
padBase = WIDGET_BASE (wBaseLeft, YSIZE=5)
wSlider = WIDGET_Slider (wBaseLeft, VALUE='10', S

TITLE='Number of points', MINIMUM=5, MAXIMUM=50)
padBase = WIDGET_BASE (wBaseLeft, YSIZE=5)
wLineSize = WIDGET_DROPLIST (wBaseLeft, $

VALUE=[" 1 ','" 2 ', 3 ', 4 '], §

TITLE='Line Size: ', EVENT PRO='linesize_event')
padBase = WIDGET_BASE (wBaseLeft, YSIZE=5)
wLineColor = WIDGET DROPLIST (wBaseLeft, $

VALUE=['Black', 'Red', 'Green',6 'Blue'l, $

TITLE='Line Color: ', EVENT_PRO='color_event')
padBase = WIDGET_BASE (wBaseLeft, YSIZE=5)
wButton2 = WIDGET_ BUTTON (wBaseLeft, $

VALUE='Filter this Plot', $

EVENT_ PRO='filter_ event')

; Put the iTool draw window on the right.
wBaseRight = WIDGET BASE (wBaseUI, /COLUMN, /BASE_ALIGN_RIGHT)

; Set the initial dimensions of the draw window, in pixels.
dimensions = [350, 350]

; Create the iTool drawable area.

wDraw = CW_ITWINDOW (wBaseRight, oUI, $
DIMENSIONS = dimensions, $
VIRTUAL_DIMENSIONS = virtualDimensions)

; Get the geometry of the top-level base widget.
baseGeom = WIDGET_INFO (wBase, /GEOMETRY)

; Create the status bar.
wStatus = CW_ITSTATUSBAR (wBase, oUI, S

XSIZE = baseGeom.xsize-baseGeom.xpad)

; If the user did not specify a location, position the

iTool Developer's Guide Example: a Custom iTool Interface

376

Chapter 15: Creating a Custom iTool Widget Interface

; 1Tool on the screen.
IF (N_ELEMENTS (location) EQ 0) THEN BEGIN
location = [(screen[0] - baseGeom.xsize)/2 - 10, $
((screen[l] - baseGeom.ysize)/2 - 100) > 10]
ENDIF

WIDGET_ _CONTROL, wBase, MAP = 0, $
TLB_SET_XOFFSET = location[0], $
TLB_SET YOFFSET = location[1]

; Get the widget ID of the first child widget of our

; base widget. We'll use the child widget's user value
; to store our widget state structure.

wChild = WIDGET_INFO (wBase, /CHILD)

; Create a state structure for the widget and stash

; a pointer to the structure in the user value of the
; first child widget.

state = { $

oTool : oTool, S
oUI : oUI, S
wBase : wBase, S
title : title, S
basesize : [0L, OL1, s
wToolbar : wToolbar, $
wDraw : wDraw, S
wStatus : wStatus, S
wSlider : wSlider, S
wLineSize : wLineSize, $

wLineColor : wLineColor }

pState = PTR_NEW(state, /NO_COPY)
WIDGET_CONTROL, wChild, SET_UVALUE = pState

; Realize our interface. Note that we have left the
; interface unmapped, to avoid flashing.
WIDGET_CONTROL, wBase, /REALIZE

; Retrieve the starting dimensions and store them.
; Used for window resizing in event processing.
WIDGET_CONTROL, wBase, TLB_GET_SIZE = basesize
(*pState) .basesize = basesize

; Register the top-level base widget with the UI object.

; Returns a string containing the identifier of the

; interface widget.

myID = oUI->RegisterWidget (wBase, 'Example 2 Tool', $
'example2_wdtool_callback')

Example: a Custom iTool Interface iTool Developer’s Guide

Chapter 15: Creating a Custom iTool Widget Interface 377

; Register to receive messages from the iTool components
; included in the interface.
oUI->AddOnNotifyObserver, myID, oTool->GetFullIdentifier ()

; Specify how to handle destruction of the widget interface.
WIDGET CONTROL, wChild, KILL_NOTIFY = "example2_wdtool_cleanup"

; Display the iTool widget interface.
WIDGET_CONTROL, wBase, /MAP

; Start event processing.
XMANAGER, 'example2_wdtool', wBase, /NO_BLOCK

END
Discussion

Most of the important sections of this routine have been discussed in previous
sections. There are, however, afew additional points worth noting:

* Weusetheuser value of thefirst child of the top-level base (wchi1d) to storea
pointer to the widget interface's state structure. Thisallows usto easily retrieve
the state structure in event-handler routines without the need to use the user
value of the top-level base.

» Thestate structure contains the widget | Ds of all of the widgets we need access
to in our event-handler routines, as well as object referencesto the iTool and
user interface object, the current dimensions of the base widget, and the title.
You may find it useful to cache other information in the state structure as well.

» Some actions, such asretrieving the actual size of the top-level base widget,
can only be performed after the widget hierarchy has been realized. To prevent
flashing after realization but before we are ready to begin event processing, we
set the MAP keyword equal to O (zero) before realizing the widgets and back to
1 (one) just before our call to XMANAGER begins processing events.

iITool Class Definition Routine Discussion

The class definition routine creates a new iTool class based on the IDLitToolbase
class. The Init method simply unregisters operations and manipulators we do not
want to appear in the menus and toolbars of our new interface.

Example Code
ThisiTool classisdefined in thefile example2tool_define.pro inthe
examples/doc/itools subdirectory of the IDL distribution. Run the example
procedure by entering example2tool__define at the IDL command prompt or

iTool Developer's Guide Example: a Custom iTool Interface

javascript:doIDL("example2__define")

378

Chapter 15: Creating a Custom iTool Widget Interface

view thefilein an IDL Editor window by entering . EDIT
example2tool__define.pro.

FUNCTION example2tool::Init, _REF_EXTRA = _extra

; Call our super class.
IF (self->IDLitToolbase::Init(_EXTRA = _extra) EQ 0) THEN $
RETURN, O

; This tool removes several of the standard iTool operations
; and manipulators.

;*** Insert menu

self->UnRegister, 'OPERATIONS/INSERT/VISUALIZATION'
self->UnRegister, 'OPERATIONS/INSERT/VIEW'
self->UnRegister, 'OPERATIONS/INSERT/DATA SPACE'
self->UnRegister, 'OPERATIONS/INSERT/COLORBAR'

; *** Window menu
self->Unregister, 'OPERATIONS/WINDOW/FITTOVIEW'
self->Unregister, 'OPERATIONS/WINDOW/DATA MANAGER'

;*** Operations menu
self->UnRegister, 'OPERATIONS/OPERATIONS/MAP PROJECTION'

;*** Toolbars
self->UnRegister, 'MANIPULATORS/ROTATE'

RETURN, 1
END
PRO example2tool_ Define
struct = { example2tool, S

INHERITS IDLitToolbase S ; Provides iTool interface

END

To find the identifiers of operations and manipulators you wish to unregister, create
an instance of the tool with the items still registered, and use the Findldentifiers
method of the IDLitTool classto retrieve the full identifiers of the itemsyou are
interested in. See “ Retrieving Component |dentifiers’ on page 384 for details.

Example: a Custom iTool Interface iTool Developer’s Guide

javascript:doIDL(".edit example2__define.pro")
javascript:doIDL(".edit example2__define.pro")

Chapter 15: Creating a Custom iTool Widget Interface 379

iTool Launch Routine Discussion

Our iTool launch routine simply registers the example2tool iTool class and the
example2_wdtool interface definition, then creates an instance of the
Example 2 Tool iTool using the Example2_UT interface.

Example Code
ThisiTool launch is defined in the file example2tool.pro inthe
examples/doc/itools subdirectory of the IDL distribution. Run the example
procedure by entering example2tool at the IDL command prompt or view thefile
in an IDL Editor window by entering . EDIT example2tool.pro.

PRO example2tool, IDENTIFIER = identifier, _EXTRA = _extra
IREGISTER, 'Example 2 Tool', 'example2tool'
IREGISTER, 'Example2_UI', 'example2_wdtool', /USER_INTERFACE

identifier = IDLITSYS_CREATETOOL ('Example 2 Tool',$S

VISUALIZATION_TYPE = ['Plot'], $
USER_INTERFACE='Example2 UI', ¢
TITLE = 'Example iTool Interface', $
_EXTRA = _extra)

END

Note that our launch routine does not alow the iTool to accept command-line
arguments. A more sophisticated iTool might allow the user to supply data at the
command line, as described in “ Creating an i Tool Launch Routine” on page 103.

iTool Developer's Guide Example: a Custom iTool Interface

javascript:doIDL("example2tool")
javascript:doIDL(".edit example2tool.pro")

380 Chapter 15: Creating a Custom iTool Widget Interface

Example: a Custom iTool Interface iTool Developer’s Guide

Appendix A

Controlling iTools from
the IDL Command Line

This appendix describes mechanisms that allow you to control an existing iTool from the IDL

command line.

Overview of iTool Programmatic Control . 382
Retrieving an iTool Object Reference 383
Retrieving Component Identifiers 384
Retrieving Property Information 387

iTool Developer’s Guide

Changing Property Values 391
Running Operations 393
Selecting ItemsintheiTool 395
Replacing DatainaniTool 396

381

382 Appendix A: Controlling iTools from the IDL Command Line

Overview of iTool Programmatic Control

TheiTool framework is designed to let you create tools that are used interactively, in
real time. Furthermore, one of the main goals of the iTools framework isto make it
easier to create a standard graphical user interface that allows end-usersto manipulate
tools using a mouse and keyboard.

Still, it may be useful and convenient at times to control iTools programmatically,
from the IDL command line or in more traditional routinesthat do not rely heavily on
framework programming. For example, you may want to write asimple IDL batch
file that creates a visualization, manipulates it in various ways, and exports an image
file containing the result.

While complete control over an existing iTool is difficult from “outside’ the tool
itself, this appendix describes techniques that allow you to control many features of a
tool using a small number of framework methods and procedural hel per routines.
Controlling an iTool using the techniques described here requires a basic familiarity
with iTool concepts including property management, operations, and iTool object
identifiers. It also departsfrom purely procedural techniquesin that it requiresthe use
of object method calls, albeit at avery basic level.

How to Control an iTool

To control an existing iTool from the IDL command line (and by extension, from
within non-iTool routinesinvoked at the IDL command line), you will do the
following things:

1. Usethe IGETCURRENT function to retrieve the object referenceto an
existing iTool.

2. Usethetool object’s Findldentifiers method to retrieve the iTool identifiers of
visualizations you wish to alter and operations you wish to execute.

3. Usethetool object’s DoSetProperty method to change properties of
visualizations or operations.

4. Usethevisualization object’s Select method to ensure that the proper items are
selected, if necessary.

5. Usethetool object’s DoAction method to execute operations.

6. Usethetool object’'s CommitActions method to commit the changes to the
tool’s undo/redo buffer, if necessary.

These steps are described in detail in the following sections.

Overview of iTool Programmatic Control iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 383

Retrieving an iTool Object Reference

In order to change an existing i Tool from the IDL command line (or from anon-iTool
routine), you must first retrieve an object reference to the iTool you wish to change.

Use the TOOL keyword to the IGETCURRENT function to retrieve the object
reference to the currently-active iTool:

idTool = IGETCURRENT (TOOL=0Too01l)

In thisexample, the variable 1dToo1 will contain theiTool’s object identifier, and the
variable oToo1 will contain the iTool’s object reference.

Note that the iTool for which you want to retrieve the object reference must be the
currently-active tool. You can ensure that an iTool is the currently-active tool in the
following ways:

« AniTool that has just been created is the currently-active tool.
e Select theiTool manually, using the mouse.

« Usethe IDENTIFIER keyword when creating the iTool to retrieve its object
identifier. Then use the ISETCURRENT procedure to make the iTool active.

IPLOT, data, IDENTIFIER=idTool
. other IDL commands ...
ISETCURRENT, idTool

iTool Developer's Guide Retrieving an iTool Object Reference

384 Appendix A: Controlling iTools from the IDL Command Line

Retrieving Component ldentifiers

In order to affect an item within an iTool — change a property of avisualization, for
example, or apply an operation — you must first retrieve the identifier for the item.
iTool identifiers are described in detail in “iTool Object Identifiers” on page 28.

In the case of operations, you may be able to construct the appropriate identifier
string based on visual inspection of the hierarchy shown in the Operations Browser
coupled with your knowledge of the iTools framework. Similarly, in the case of
visualizations, you may be able to construct the identifier string based on visual
inspection of the hierarchy shown in the Visualization Browser. However, the
Findldentifiers method of the IDLitTool class lets you programmatically (and
unambiguoudly) retrieve the identifier of any item in the current iTool’s component
object hierarchy.

Using the Findldentifiers Method

Use the Findldentifiers method to retrieve the full object identifier for an iTool
component object: avisualization, an operation, a view, awindow — any component
that existsin the current iTool’s component object hierarchy. Once you have the
identifier for acomponent object, you can use iTool framework methods to affect that
object as described in the later sections of this chapter.

The syntax for the Findldentifiers method is:
Result = Obj->IDLitTool::Findldentifiers([Pattern] [, Keywords])

where Obj isan IDLitTool object and Result isastring array containing thefull object
identifiers of iTool component objects that contain the string specified by Pattern.
(See“IDLitTool::Findldentifiers” (IDL Reference Guide) for complete information
on the keywords accepted.)

Note on Pattern Matching

The Findldentifiers method finds matches for Pattern in full object identifiers using
the same rules as the STRMATCH function, with the exception that searches are
case-insensitive. In almost all cases, you will want to use wildcard charactersto allow
asubstring of the full identifier to be matched. See the examples below for additional
information.

Findldentifier Examples

For these exampl es, suppose you have an iSurface tool created by the following
statement:

Retrieving Component Identifiers iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 385

ISURFACE, DIST(40)
The full object identifier for this surface visualization looks something like:

/TOOLS/SURFACE TOOL/WINDOW/VIEW_1/VISUALIZATION LAYER/DATA
SPACE/SURFACE

If you retrieve an object reference to our surface tool using the following statement:
void = IGETCURRENT (TOOL=surfaceTool)

you might suppose that the following statement would return the identifier string
shown above:

PRINT, surfaceTool->FindIdentifiers('surface"')

In fact, this statement returns no results, since thereis no object identifier in theiTool
hierarchy that consists solely of the string ' surface'.

You might next try the following statement:
PRINT, surfaceTool->FindIdentifiers('*surface*')

to match any object identifier that contains the string ' surface'. This statement
will produces many lines of output; in fact, it will list every component in the surface
tool’s object hierarchy, because each object identifier contains the string

' /TOOLS/SURFACE TOOL'.

You might next try the following statement:
PRINT, surfaceTool->FindIdentifiers('*surface’)

to match any object identifier that contains the string ' surface' at the end of the
identifier. This statement will produce output that |ooks something like this:

/TOOLS/SURFACE TOOL/OPERATIONS/FILE/NEW/SURFACE
/TOOLS/SURFACE TOOL/CURRENT STYLE/VISUALIZATIONS/SURFACE
/TOOLS/SURFACE TOOL/CURRENT STYLE/VISUALIZATIONS/ISOSURFACE
/TOOLS/SURFACE TOOL/WINDOW/VIEW_1/VISUALIZATION LAYER/DATA
SPACE/SURFACE

Here, a smaller number of identifiers match the pattern, but still more than you are
interested in.

Finally, you might try the following statement:
PRINT, surfaceTool->FindIdentifiers('*surface*', /VISUALIZATIONS)

This statement will match any object identifier in the visualization layer that contains
the string ' surface'. It will produce output that looks something like this:

/TOOLS/SURFACE TOOL/WINDOW/VIEW_1/VISUALIZATION LAYER/DATA
SPACE/SURFACE

iTool Developer's Guide Retrieving Component Identifiers

386

Appendix A: Controlling iTools from the IDL Command Line

which isthe identifier for the plot line just created. Note that if your iTool contained
more than one surface visualization, identifiers for each surface would be returned.

Similarly, suppose you wanted the object identifier for the New Surface operation.
Either of the following statements:

PRINT, surfaceTool->FindIdentifiers('*surface', /OPERATIONS)
PRINT, surfaceTool->FindIdentifiers('*/operations/*surface')

produce the following output:
/TOOLS/SURFACE TOOL/OPERATIONS/FILE/NEW/SURFACE

See“IDLitTool::Findldentifiers” (IDL Reference Guide) for complete information on
the keywords accepted by this method.

Warning
The Findldentifiers method recurses through the entire object hierarchy of the
specified object, which may be slow for large container hierarchies. If you find it
necessary to call Findldentifiers multiple times, it may be more efficient to use a
single call with one or more wildcards (“*”) to return all relevant identifiers, and
then perform the necessary searches using the returned list.

Retrieving Component Identifiers iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 387

Retrieving Property Information

Whileitis possible to execute aniTool operation with just the operation’s component
identifier (as described in “Running Operations’ on page 393), in many cases you
will want to modify the operation’s properties before execution. In other cases you
may not wish to execute an operation at all — you may only be interested in changing
the value of one or more properties of a given component object. Modifying the
properties of an iTool component (as described in “ Changing Property Values’ on
page 391) requires that you know the property identifier of the component object
property you wish to change.

Retrieving Property Identifiers

Once you have retrieved the component identifier string for an iTool component (as
described in “Retrieving Component Identifiers” on page 384), you can use the
component identifier to retrieve the property identifiers for properties of that
component. For example, the following statements create an iPlot tool containing
some random data, retrieve the component object identifier for the Smooth operation,
and print the property identifiers:

IPLOT, RANDOMU (seed, 15)

idTool = IGETCURRENT (TOOL=0Too0l)

idSmooth= oTool->FindIdentifiers('*smooth*', /OPERATIONS)

objSmooth = oTool->GetByIdentifier (idSmooth)

propsSmooth = objSmooth->QueryProperty ()
PRINT, propsSmooth

IDL prints:
NAME DESCRIPTION TYPES SHOW_EXECUTION_UI WIDTH
The strings displayed are the property identifiers for the Smooth operation.

Note that after we have retrieved the full identifier for the Smooth operation, we use
the identifier as the argument to the GetByldentifier method of the IDLitContainer
class. The GetByldentifier method returns the object reference to the Smooth
operation; we need the object reference in order to then call the QueryProperty
method, which returns a string array containing the property identifiers.

See“IDLitComponent::QueryProperty” and “ IDLitContainer::GetByldentifier” (IDL
Reference Guide) for additional details on these methods.

iTool Developer's Guide Retrieving Property Information

388 Appendix A: Controlling iTools from the IDL Command Line

Property Attribute Information

Knowing the property identifier for the property you wish to change is often enough,
if you are aready familiar with the property, its data type, and range of possible
values. For example, suppose you want to change the line thickness of aplot line. You
may already know that the value of the THICK property of aplot lineis afloating-
point integer, so you can confidently call the DoSetProperty method as described in
“Changing Property Values’ on page 391, specifying a floating-point number for the
new line thickness value.

But you may not always know the data type or range of allowed values for agiven
property. If you have the property identifier, you can get additional information on the
property using the GetPropertyAttribute method of the IDLitComponent class.

For example, suppose we want to set the value of the WIDTH property of the Smooth

operation. The following statements will retrieve the text description, the datatype,

and the range of allowed values for the WIDTH property:
objSmooth->GetPropertyAttribute, 'WIDTH', DESCRIPTION=desc, $

TYPE=type, VALID_ RANGE=range
PRINT, desc, type, range

IDL prints:
Smooth Filter Width. 2 0

The first attribute (DESCRIPTION) is the text description of the property. The
second attribute (TY PE) is the data type accepted by the property; the description of
the TY PE attribute reveals that the value 2 indicates that the property accepts an
integer value. The third attribute (VALID_RANGE) is the range of accepted values;
the scalar value 0 indicates that there are no restrictions on the range of integer values
allowed.

See " IDLitComponent::GetPropertyAttribute” (IDL Reference Guide) for additional
information on retrieving property attributes. “An Example Property Information
Retrieval Routing” on page 389 discusses an example utility (included in the IDL
distribution) that uses these techniques.

Property Value Information

To retrieve the current value of a property, you must use the property identifier and
the GetPropertyByldentifier method of the IDLitComponent class.

For example, the following statements will retrieve and print the current value of the
WIDTH property of the Smooth operation in the current iTool:

success = objSmooth->GetPropertyByIdentifier ('WIDTH', width_value)

Retrieving Property Information iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 389

IF success THEN PRINT, 'Width is: ', width_value ELSE $
PRINT, 'No value returned'
IDL prints:
width is: 3

The GetPropertyByldentifier function method returns avalue of 1 (one) if the
property value was retrieved successfully, or O (zero) otherwise. In the example, the
property value of 3 is successfully retrieved.

Note that you could also use the GetProperty method:

objSmooth->GetProperty, WIDTH=width_value
PRINT, 'Width is: ', width_value

While thisis dightly simpler, it makes the error handling slightly trickier, and forces
you to hard-code the name of the property whose value you are retrieving.

See “IDLitComponent::GetPropertyByldentifier” (IDL Reference Guide) for
additional information on retrieving property values.

An Example Property Information Retrieval Routine

An example utility routine named i tpropertyreport .pro usesthe methods
discussed in the previous sections to retrieve property information.

Example Code
Theroutine itpropertyreport.pro isincludedinthe
examples/doc/itools directory of the IDL distribution. Run the example
procedure by entering i tpropertyreport at the IDL command prompt or view
thefilein an IDL Editor window by entering . EDIT itpropertyreport.pro.

Call itpropertyreport.pro by specifying aniTool object reference and the full
object identifier (as returned by the Findl dentifiers method) of the component whose
properties you would like to inspect. For example, calling i tpropertyreport with
the iTool object reference and operation identifier used above:

itpropertyreport, oTool, idSmooth
produces the following output:

Properties of /TOOLS/PLOT TOOL/OPERATIONS/OPERATIONS/FILTER/SMOOTH

Identifier Name Type
NAME Name STRING
DESCRIPTION Description STRING
TYPES TYPES USERDEF

iTool Developer's Guide Retrieving Property Information

javascript:doIDL("itpropertyreport")
javascript:doIDL(".edit itpropertyreport.pro")

390 Appendix A: Controlling iTools from the IDL Command Line

SHOW_EXECUTION_UI Show dialog BOOLEAN
WIDTH width INTEGER
Note

The itpropertyreport utility produces formatted text output in the IDL output
log. This output will be correctly aligned only if the command log uses a fixed-
width font.

Additionally, you can set the VALUE keyword to i tpropertyreport to display a
column containing the current values of the properties listed; you can set the
DESCRIPTION keyword to display a column containing the text description of the

property. You may want to inspect the i tpropertyreport .pro file for additional
information and example code.

Retrieving Property Information iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 391

Changing Property Values

Given the object identifier for a property, there are two ways to change the property
value: using the DoSetProperty method of the IDLitTool class, and using the
SetProperty method of the IDLitComponent class. When changing the value of a
registered property, in most cases, it is better to use the DoSetProperty method.

Using the DoSetProperty Method

Use the DoSetProperty method of the IDLitTool class to change the value of a
property associated with an itemin theiTool hierarchy. Using the DoSetProperty
method has two advantages over using the SetProperty method:

1. DoSetProperty takes an object identifier as its argument; thereis no need to
retrieve the object reference to the property you wish to change.

2. The DoSetProperty method takes care of adding the property change to the
iTool’s undo-redo buffer.

Warning
To use the DoSetProperty method, the property whose value is being changed must
be aregistered property of the selected i Tool component object. If the property is
not registered, use the SetProperty method instead.

For example, suppose you have created an iPlot tool with the following command:
IPLOT, RANDOMU (seed, 15)
To change the color of the plot line, you could use the following statements:

idTool IGETCURRENT (TOOL=0Too01l)

idPlot oTool->FindIdentifiers('*plot', /VISUALIZATIONS)
success = oTool->DoSetProperty (idPlot, 'COLOR', [40,120,20071)
oTool->CommitActions

Warning
Make sure you understand what the Findldentifiers method will return for a given

search string and keyword; care is necessary to ensure that you retrieve the
identifier for the correct item. See “ Retrieving Component Identifiers’ on page 384
for details.

Note that the property identifier used as the second argument to the DoSetProperty
method is often, but not always, the same as the property name that isdisplayed in the

iTool Developer's Guide Changing Property Values

392

Appendix A: Controlling iTools from the IDL Command Line

Visualization Browser property sheet. Methods for finding property identifiers are
discussed in detail in “Retrieving Property Information” on page 387.

The third argument to the DoSetProperty method is the new value for the property.
Techniques for determining the data type and allowed values for a given property are
described in “Property Attribute Information” on page 388.

Finally, the CommitActions method of the IDLitTool class commits all pending
transactions to the undo-redo buffer and refreshes the current window. Note that the
property changes are not undoable until the changes have been committed with a call
to the CommitA ctions method.

Tip
You can do make several callsto the DoSetProperty method, followed by asingle
call to the CommitActions method. Thiswill bundle all of the SetProperty actions
into asingle item in the undo-redo buffer.

Using the SetProperty Method

Use the SetProperty method of the component object class to change the value of a
property associated with an item in theiTool hierarchy. Using the SetProperty method
requires that you retrieve an object reference to the object whose properties you are
setting.

Note
If the property whose value you want to change is not registered, you must use the
SetProperty method rather than the DoSetProperty method.

For example, suppose you have created an iPlot tool with the following command:
IPLOT, RANDOMU (seed, 15)
To change the color of the plot line, you could use the following statements:

idTool IGETCURRENT (TOOL=0Too01l)

idPlot oTool->FindIdentifiers('*plot', /VISUALIZATIONS)
oPlot = oTool->GetByIdentifier (idPlot)
oPlot->SetProperty, COLOR=[40,120,200]
oTool->RefreshCurrentWindow

Warning
Property changes made using the SetProperty method are not placed in the undo-
redo buffer.

Changing Property Values iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 393

Running Operations

Use the DoAction method of the IDLitTool classto execute an operation on the
currently selected item in the currently selected i Tool. For example, suppose you have
created an iPlot tool with the following command:

IPLOT, RANDOMU (seed, 15)
To call the Median operation on the plot line, you could use the following statements:

idTool = IGETCURRENT (TOOL=0Tool)
idMedian = oTool->FindIdentifiers('*median*', /OPERATIONS)
success = o0Tool->DoAction (idMedian)

The Median operation would be applied. If the SHOW_EXECUTION_UI property
for the operation is set to True, the operation’s dial og appears before the operation is
executed. See “Note on the SHOW_EXECUTION_UI Property” on page 393.

Warning
Thisexamplerelies on the fact that the plot is selected after the iTool is created; see

“Selecting Itemsin theiTool” on page 395 for details on how to set the selection
explicitly.

You can insert one or more calls to the DoSetProperty method (as described in
“Changing Property Values’ on page 391) before the call to the DoA ction method.
For example, to change the Width property used by the Median operation to 9, and set
the Even Average property to True you could do the following:

1idTool = IGETCURRENT (TOOL=0Tool)

idMedian = oTool->FindIdentifiers('*median*', /OPERATIONS)
oTool->DoSetProperty (idMedian, 'WIDTH', 9)
oTool->DoSetProperty (idMedian, 'EVEN', 1)
oTool->DoAction (idMedian)

success
success
success

In this example both property changes and the application of the Median operation
are entered into the undo-redo buffer as asingle item.

Note on the SHOW_EXECUTION_UI Property

Every iTool operation included with the standard i Tools that has a visible user
interface has aregistered property named SHOW_EXECUTION_UI. Setting this
property to 1 (True) will cause the operation’s graphical user interface to be displayed
before the operation is executed, giving the user the option to change any parameters
the operation may have. If the property is set to O (False), the operation will execute
without displaying the graphical user interface.

iTool Developer's Guide Running Operations

394

Appendix A: Controlling iTools from the IDL Command Line

When executing operations using the mechanisms described in this chapter, you may
want to set the SHOW_EXECUTION_UI property to 0 (False), sinceleaving it set to
True will require user interaction. To change the value of the property temporarily,
you could use statements similar to the following to first retrieve the value of the
property, save that value, and set it back after the operation has executed:

1idTool = IGETCURRENT (TOOL=0Tool)

idMedian = oTool->FindIdentifiers('*median*', /OPERATIONS)
oMedian = oTool->GetByIdentifier (idMedian)
oMedian->GetProperty, SHOW_EXECUTION_UI=init_val
oMedian->SetProperty, SHOW_EXECUTION_UI=0

success = 0Tool->DoAction (idMedian)

oMedian->SetProperty, SHOW_EXECUTION_ UI=init_val

Notice that we retrieve an object reference to the Median operation and use the
SetProperty method rather than the DoSetProperty method to set the value of the
SHOW_EXECUTION_UI property. We do this because we do not want the last call
to SetProperty to be placed in the undo-redo buffer. Since the call to the DoAction
method will place al outstanding changes into the undo-redo buffer, all of the
changes except for the very last are undoable. But since the last line simply sets the
value of the SHOW_EXECUTION_UI property back to itsinitial value, thereisno
need to place this change in the undo-redo buffer as a separate item — in fact we
would rather it not be placed in the buffer at all.

If we used DoSetProperty for the final change, the change would be placed in the
undo-redo buffer the next time actions were committed, either by a call to DoAction
or by acall to CommitActions.

Note
We could have used the GetPropertyByldentifer and SetPropertyByldentifier
methods rather than the GetProperty and SetProperty methods. Thiswould not
affect the outcome of the series of statements shown, and since the name of the
property whose value we are getting and setting is fixed, using GetProperty and
SetProperty works just as well.

Running Operations iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 395

Selecting Items in the iTool

When you execute an operation in an iTool, the operation will be applied to the
currently selected item. You can use the Select method of the IDLitVisualization class
to ensure that the correct item is selected.

To select an item, do the following:

1. Findthe object’sfull identifier as described in “ Retrieving Component
Identifiers’ on page 384. Note that only visualizations and annotations can be
selected.

2. Get an object reference to the object using the GetByldentifier method of the
IDLitContainer class.

3. Cadll the Select method.
Example: Selecting an Item Programmatically

For example, suppose you create an iPlot tool with two plot lines, using the following
statements:

IPLOT, RANDOMU (seed, 15)*FINDGEN(15)
IPLOT, FINDGEN(15), /OVERPLOT

After these statements have been executed, the second (straight) plot line will be
selected in the tool. To select thefirst plot line, you would use the following
statements:

idTool = IGETCURRENT (TOOL=0Tool)

plotIDs = oTool->FindIdentifiers('*plot*', /VISUALIZATIONS)
plotObj0 = oTool->GetByIdentifier (plotIDs[0])
plotObjO0->Select

To apply the smooth operation to the first plot line (which has now been
programmatically selected), setting the value of the SHOW_EXECUTION_UI
property to O (False), you would use the following statements:

idSmooth = oTool->FindIdentifiers('*smooth', /OPERATIONS)
oTool->DoSetProperty (idSmooth, 'SHOW_EXECUTION_UI', 0)
oTool->DoAction (idSmooth)

success
success

iTool Developer's Guide Selecting Items in the iTool

396 Appendix A: Controlling iTools from the IDL Command Line

Replacing Data in an iTool

You can replace or update datain an existing i Tool using either of two methods: using
the iTool’s creation routine and one of the VIEW keywords, or by retrieving the data
object and calling the SetData method. Both methods will change the datastored in
the Data Manager and will cause the display to be updated automatically.

Using the iTool Creation Routine

You can replace datain an existing iTool by using the iTool’s creation command with
the VIEW_NUMBER or VIEW_NEXT keyword set to aview that uses the data you
wish to replace.

Note
The visualization is removed and recreated when you replace data using this
technique. Any property changes you may have made to the old visualization will
be lost. To preserve changes made to the visualization, see “Using the SetData
Method” on page 397.

For example, suppose you have an iPlot tool with asingle view, created with the
following command:

IPLOT, myDatal

Assuming theiPlot tool is selected, the following command will replace the datain
the tool (myData1l) with anew data set (myData2):

IPLOT, myData2, VIEW_NUMBER=1

Note
The view number starts at 1, and corresponds to the position of the view within the
graphics window (not necessarily the position on the screen). In the case of a
gridded window layout, views are added to the i Tool window beginning in the upper
left-hand corner, and proceeding left to right and then down. You can see the
position of a given view within the container by inspecting the tree view of the
Visualization Browser. You can aso re-order views using the itemsin the
Edit — Order menuintheiTool.

In our example, if myDatal isnotin use by any other iTool, it will be removed from
the iTools Data Manager by this operation. If myDatal isused by avisualization in
another view or another iTool, it will not be deleted.

Replacing Data in an iTool iTool Developer’s Guide

Appendix A: Controlling iTools from the IDL Command Line 397

Note
If the currently-active iTool contains only one view, setting the VIEW_NEXT
keyword has the same effect as setting VIEW_NUMBER=1.

Using the SetData Method

You can replace the data that underlies a visualization using the SetData method of
the IDLitData class. This technique has the advantage of preserving other changes
you may have made to your visualization (property changes, etc.), but requires that
you first retrieve the object identifier for the dataitem you want to replace. This, in
turn, requiresthat you know the parameter name of the of the parameter that contains
the data.

Retrieving Parameter Names from the Visualization

Toretrieve alist of parameter namesfor avisualization type, use the QueryParameter
method of the IDLitParameter class. The following example creates a plot
visualization and retrieves the names of the plot visualization’s registered parameters:

; Create the plot visualization
IPLOT, RANDOMU (seed, 15)
1idTool = IGETCURRENT (TOOL=0Tool)

; Retrieve the object reference to the plot visualization object.
idPlot = oTool->FindIdentifiers('*plot', /VISUALIZATIONS)
oPlot = oTool->GetByIdentifier (idPlot)

; Retrieve and print the parameter names.
oPlotParams = oPlot->QueryParameter (COUNT=count)
For 1=0,count-1 DO PRINT, oPlotParams[i]

IDL prints:

Y

X

VERTICES

Y ERROR

X ERROR
PALETTE
VERTEX_COLORS

Setting a New Data Value

Once you know the name of the parameter whose data you wish to change, retrieve
the IDLitData object associated with that parameter using the GetParameter method
of the IDLitParameter class. You can then use the SetData method of the IDLitData

iTool Developer's Guide Replacing Data in an iTool

398

Appendix A: Controlling iTools from the IDL Command Line

classto insert new datainto the parameter. The following example changes the data
associated with the “Y” parameter of the plot visualization created in the previous
section:

oDataY = oPlot->GetParameter('Y"')
success = oDataY->SetData (FINDGEN (50))

Using the Findldentifiers Method

It is aso possible to use the Findldentifiers method to retrieve the full identifier of a
data object stored in the Data M anager, and use that identifier to retrieve the
IDLitData object using the GetByldentifier method of the IDLitContainer class.
While this approach might seem simpler than retrieving the parameter names from
the visualization and using the GetParameter method, it has the drawback that
identifiers for objects in the Data Manager do not necessarily correspond to asingle
visualization. As aresult, it can be difficult to determine which data item is which,
based solely on inspection of the identifier.

Under some circumstances this may not be a problem. For example, if your code
creates a new visualization based on data supplied at the command line, you will
know that the data object or objects created in the Data Manager will be the last items
in the Data Manager container object. The following code creates a new surface
visualization using the ISURFACE command, and then immediately retrieves the
dataidentifier of the last dataitem inserted into the Data Manager:

ISURFACE, DIST(40)

idTool = IGETCURRENT (TOOL=0Tool)

allData = oTool->FindIdentifiers (/DATA_MANAGER, COUNT=c)
idDataSurface = allData[c-1]

PRINT, idDataSurface

IDL prints:
/DATA MANAGER/SURFACE PARAMETERS/Z

You then could the use the data identifier to retrieve areference to the data object and
change the data value using the SetData method:

oSurfaceData = oTool->GetByIdentifier (idDataSurface)
success = oSurfaceData->SetData(1l/(DIST(40)+1))

Replacing Data in an iTool iTool Developer’s Guide

Appendix B

ITool Compound
Widgets

This appendix contains reference documentation for IDL compound widgets used by the iTools.

Overview of iTools Compound Widgets .. 400 CW _ITSTATUSBAR 410
CW_ITMENUoonn.. 401 CW_ITTOOLBARcovvin.. 413
CW_ITPANELiiat. 406 CW_ITWINDOW 418

iTool Developer’s Guide 399

400 Appendix B: iTool Compound Widgets

Skerview of iTools Compound Widgets

The compound widgets described in this appendix provide the base functionality
needed to create an iTool user interface using IDL widgets. These widgets are useful
only in the context of creating an iTool interface; they require the presence of the

iTools system object to function properly. Attempts to use these widgets outside the
context of the iToolswill not succeed.

Before attempting to use these compound widgets to create an i Tool user interface,
you should be familiar with (at a minimum) the following concepts:

e TheiTool object hierarchy (see Chapter 2, “iTool System Architecture”)
e Creating an iTool (see Chapter 5, “ Creating an iTool”)

e iTool user interface concepts (see Chapter 11, “iTool User Interface
Architecture”)

e Creating aniTool interface using IDL widgets (see Chapter 15, “Creating a
Custom iTool Widget Interface”)

Overview of iTools Compound Widgets iTool Developer’s Guide

[/Dest /OVERVIEW:ITOOLSCOMPOUNDWIDGETS /DEST

Appendix B: iTool Compound Widgets 401

EW ITMENU

The CW_ITMENU function creates atop-level pulldown menu compound widget.
The menu itemsin the pulldown menu correspond to the operations contained in a
specified container object within the OPERATIONS container of the associated
iTool. (See“iTool Object Hierarchy” on page 31 for a description of the iTool object
hierarchy.)

Warning
This routine can only be used in the context of a user-created iTool. See “Overview
of iTools Compound Widgets’ on page 400 for details.

The CW_ITMENU widget automatically performs the following actions:

1. For each child in thefolder, creates either a submenu (if the child isacontainer
object) or amenu item (if the child is aregistered operation). In both cases the
child’'s NAME property is used for the menu item value.

« Ifthechildisacontainer, CW_ITMENU recursively creates submenus and
menu items for that child’'s children.

» If thechildisan operation, CW_ITMENU creates amenu item. The
child’'s ACCELERATOR property is used for the keyboard accel erator
(unlessthe CONTEXT_MENU keyword is set). The DISABLE property
is used to determineinitial sensitivity. If the CHECKED property isset, a
checked menu itemis created. If SEPARATOR is set, amenu separator is
inserted before the menu item. See IDLitTool::RegisterOperation for
details on using these properties.

Registers the newly-created menu with the specified user interface object.

3. Addsitself as an observer of the specified container. If any changes occur to
items within the container, then the menu will be notified and will

iTool Developer's Guide CW_ITMENU

[/Dest /CW_ITMENU /DEST

402 Appendix B: iTool Compound Widgets

automatically update itself. The CW_ITMENU widget listens for the
following messages:

Message Value Description / Result

ADDITEMS Object identifier An object was added to the
container. New menu and
submenu items are added as
necessary.

REMOVEITEMS | Object identifier An object was removed from
the container. Menu and
submenu items are removed as

necessary.
SELECT Oorl For checked menu items, the

menu item is displayed as

checked (1) or unchecked (0).
SENSITIVE Oorl The menu item is displayed as

sensitive (1) or insensitive (0).

SETPROPERTY Property identifier | If the NAME property changed,
the menu item name is updated
with the new value.

Table B-1: Messages Understood by CW_ITMENU

See “iTool Messaging System” on page 41 for a discussion of observers and
notifications.

4. When amenu item is selected, callsthe IDLitTool::DoAction method to
execute the corresponding operation.

Syntax

Result = CW_ITMENU(Parent, Ul, Target [, /CONTEXT_MENU]
[, UNAME=string] [, UVALUE=value])

Return Value

This function returns the widget ID of the newly-created pulldown menu.

CW_ITMENU iTool Developer’s Guide

Appendix B: iTool Compound Widgets 403

Arguments

Parent

Ul

The widget 1D of the parent for the new menu. The parent must be one of the
following:

1. A basewidget.

2. A widget created using the MBAR keyword on atop-level base.
3. A button widget which has the MENU keyword set.
4

If the CONTEXT_MENU keyword is set, a widget that supports context
events.

An object reference to the IDLitUI object associated with the iTool. See “User
Interface Object” on page 343 for information on creating user interface objects.

Target

A string specifying the identifier of an item of class IDLitContainer that contains the
itemsto beincluded in the menu. Target can be either afull identifier or relative to the
IDLitTool object associated with the user interface object specified by UI.

All items within the Target container must either be of class IDLitContainer or be
operations registered with the IDLitTool object associated with the user interface
object specified by UI.

Keywords

CONTEXT_MENU

Set this keyword to create a context menu instead of a standard pulldown menu. If
this keyword is set, Parent must be awidget of one of the following types:
WIDGET_BASE, WIDGET_DRAW, WIDGET_TEXT, WIDGET_LIST,
WIDGET_PROPERTY SHEET, WIDGET_TABLE, WIDGET_TEXT, or
WIDGET_TREE.

Note
If the CONTEXT_MENU keyword is set, the ACCELERATOR property isignored

for all contained items.

iTool Developer's Guide CW_ITMENU

404 Appendix B: iTool Compound Widgets

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget'sinitial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “Creating a Compound Widget” (Chapter 2, User Interface Programming) for a
more compl ete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ITMENU Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viathe i Tool messaging system and the callback

mechanism implemented in the user interface creation routine.

Version History

Introduced: 6.1

CW_ITMENU iTool Developer’s Guide

Appendix B: iTool Compound Widgets 405

See Also

Chapter 15, “Creating a Custom iTool Widget Interface”, CW_ITPANEL,
CW_ITSTATUSBAR, CW_ITTOOLBAR, CW_ITWINDOW

iTool Developer's Guide CW_ITMENU

406 Appendix B: iTool Compound Widgets

EW ITPANEL

The CW_ITPANEL function creates an i Tool base compound widget that will contain
any user interface panels registered with the specified IDLitUI object’s associated
iTool. See Chapter 14, “ Creating a User Interface Panel” for information on user
interface panels.

Warning
This routine can only be used in the context of a user-created iTool. See “Overview
of iTools Compound Widgets’ on page 400 for details.

The CW_ITPANEL widget automatically performs the following actions:
1. Creates a base widget to contain the registered user interface panels.

2. Constructs any user interface panels registered with the iTool using tab
widgets. (See IREGISTER for information on registering a user interface
panel.)

3. Addsitself as an observer of the iTool object. If any changes affecting
registered user interface panels occur, then the panel base widget will be
notified and will automatically update itself. The CW_ITPANEL widget
listens for the following messages.

Message Value Description / Result
ADDUIPANELS | Nameof callback | Add anew panel using the
procedure specified callback procedure.
SHOWUIPANELS | Oor1 Show (1) or hide (0) the Ul
panel.

Table B-2: Messages Understood by CW_ITPANEL

See “iTool Messaging System” on page 41 for a discussion of observers and
notifications.

4. Handles events generated by the show/hide panel button.
Resizing CW_ITPANEL Widgets

The CW_ITPANEL widget does not automatically resize itself to the size of its
parent widget. To resize the CW_ITPANEL widget, your event handling code must

CW_ITPANEL iTool Developer’s Guide

[/Dest /CW_ITPANEL /DEST

Appendix B: iTool Compound Widgets 407

call the CW_ITPANEL _RESIZE procedure to specify the new size. The
CW_ITPANEL_RESIZE procedure has the following interface:

CW_ITPANEL_RESIZE, Widget_ID, Ysize

wherewidget_1Disthe CW_ITPANEL widget ID, and Ysize isthe new height of
the pandl.

Syntax

Result = CW_ITPANEL (Parent, Ul [, ORIENTATION=[O | 1]] [, UNAME-=string]
[, UVALUE=valug])

Return Value
This function returns the widget ID of the newly-created panel widget.
Arguments

Parent
The widget ID of the parent base widget.
Ul

An object reference of the IDLitUI object associated with the iTool. See “User
Interface Object” on page 343 for information on creating user interface objects.

Keywords

ORIENTATION

Set this keyword to an integer specifying which side of the parent base the panel is
on. Possible values are:

e 0: The panel is on the left-hand side of its parent base
e 1: The panel is on the right-hand side of its parent base (thisis the default)

iTool Developer's Guide CW_ITPANEL

408 Appendix B: iTool Compound Widgets

Note
The ORIENTATION keyword does not affect where the panel widget is placed; it
only controls how the panel show/hide button is displayed. Place the panel on the
left or right side of the widget interface using normal widget layout techniques.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget'sinitial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “Creating a Compound Widget” (Chapter 2, User Interface Programming) for a
more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET _INFO.

CW_ITPANEL iTool Developer’s Guide

Appendix B: iTool Compound Widgets 409

Widget Events Returned by the CW_ITPANEL Widget

CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viathe i Tool messaging system and the callback
mechanism implemented in the user interface creation routine.

Version History
Introduced: 6.1

See Also

Chapter 15, “Creating a Custom i Tool Widget Interface”, CW_ITMENU,
CW_ITSTATUSBAR, CW_ITTOOLBAR, CW_ITWINDOW

iTool Developer's Guide CW_ITPANEL

410

Appendix B: iTool Compound Widgets

EW ITSTATUSBAR

The CW_ITSTATUSBAR function creates an iTool status bar compound widget that
will contain any status bars registered with the specified IDLitUI object’s associated
iTool. See “ Status Messages’ on page 289 for additional details on status bars.

Warning
Thisroutine can only be used in the context of a user-created iTool. See “ Overview
of iTools Compound Widgets’ on page 400 for details.

The CW_ITSTATUSBAR widget automatically performs the following actions:
1. Creates abase widget to contain the status bars.

2. Constructs any status bars registered with the iTool using label widgets. See
IDLitTool::RegisterStatusBarSegment for details.

3. Addsitself as an observer of each status bar segment object. The
CW_ITSTATUSBAR widget listens for the following message:

Message Value Description / Result

MESSAGE | String Change the text of the status bar segment.

Table B-3: Messages Understood by CW_ITSTATUSBAR

See “iTool Messaging System” on page 41 for a discussion of observers and
notifications.

Tip
By default, iToolsinclude two status bar segments. The StatusM essage and
ProbeStatusM essage methods of the IDLitIMessaging class can be used to
automatically send the MESSAGE callback to the appropriate status bar segment.
See “ Status Messages’ on page 289 for details.

Resizing CW_ITSTATUSBAR Widgets

The CW_ITSTATUSBAR widget does not automatically resizeitself to the size of its
parent widget. To resize the CW_ITSTATUSBAR widget, your event handling code
must call the CW_ITSTATUSBAR_RESIZE procedure to specify the new size. The
CW_ITSTATUSBAR_RESIZE procedure has the following interface:

CW_ITSTATUSBAR_RESIZE, Widget_ID, Xsize

CW_ITSTATUSBAR iTool Developer’s Guide

[/Dest /CW_ITSTATUSBAR /DEST

Appendix B: iTool Compound Widgets 411

wherewidget_1Disthe CW_ITSTATUSBAR widget ID, and xsize isthe new
width of the status bar.

Syntax

Result = CW_ITSTATUSBAR(Parent, Ul [, UNAME=string] [, UVALUE=value]
[, XSIZE=integer])

Return Value

This function returns the widget ID of the newly-created status bar base widget.

Arguments

Parent

The widget ID of the parent base widget.
Ul

An object reference of the IDLitUI object associated with the iTool. See “User
Interface Object” on page 343 for information on creating user interface objects.

Keywords

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget

hierarchy becausethe FIND_BY_ UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The “user value” to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget'sinitial user value is undefined.

iTool Developer's Guide CW_ITSTATUSBAR

412 Appendix B: iTool Compound Widgets

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

XSIZE

Set this keyword to an integer specifying theinitial width of the status bar. See
“Resizing CW_ITSTATUSBAR Widgets’ on page 410 for additional details. The
default XSIZE is 640 pixels.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “Creating a Compound Widget” (Chapter 2, User Interface Programming) for a
more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW _ITSTATUSBAR
Widget
CW_IT* compound widgets do not return widget events. All interaction with the

iTool user interface is accomplished viathe i Tool messaging system and the callback
mechanism implemented in the user interface creation routine.

Version History
Introduced: 6.1

See Also

Chapter 15, “Creating a Custom i Tool Widget Interface”, CW_ITMENU,
CW_ITPANEL, CW_ITTOOLBAR, CW_ITWINDOW

CW_ITSTATUSBAR iTool Developer’s Guide

Appendix B: iTool Compound Widgets 413

EW ITTOOLBAR

The CW_ITTOOLBAR function creates a toolbar base compound widget. The items
in the toolbar correspond to the operations or manipulators contained in a specified
container object within the OPERATIONS container of the associated iTool. (See
“iTool Object Hierarchy” on page 31 for adescription of theiTool object hierarchy.)

Warning
This routine can only be used in the context of a user-created iTool. See “Overview
of iTools Compound Widgets’ on page 400 for details.

The CW_ITTOOLBAR widget automatically performs the following actions:

1. For each item in the container, creates either a bitmap button or a
droplist/combobox:

« If theitem wasregistered with the DROPLIST _ITEMS property set, a
droplist or combobox is created. If the DROPLIST_EDIT property is set
on the item, an editable combobox widget isincluded on the toolbar —
otherwise adroplist isincluded. The value of the DROPLIST_INDEX
property is used to select theinitial value. The value of the DISABLE
property determinestheinitia sensitivity of the droplist or combobox. See
IDLitTool::RegisterOperation for details on using these properties.

« If theitem was not registered with the DROPLIST_ITEMS property set, a
bitmap button is created. The value of theitem’s ICON property is used for
the bitmap filename (or, if the ICON property is not set, thefile
resource/bitmaps/new.bmp isused). The value of the DISABLE
property determines the initial sensitivity of the button. The value of the
NAME property is used for the button tooltip.

Registersitself with the specified user interface object.

3. Addsitself as an observer of the specified container. If any changes occur to
items within the container, then the toolbar will be notified and will

iTool Developer's Guide CW_ITTOOLBAR

[/Dest /CW_ITTOOLBAR /DEST

414

Appendix B: iTool Compound Widgets

automatically update itself. The CW_ITTOOLBAR widget listens for the
following messages:

Message

Value

Description / Result

ADDITEMS

Object identifier

An object was added to the
container. New buttons or droplists
are added to the toolbar as
necessary.

REMOVEITEMS

Object identifier

An object was removed from the
container. Buttons or droplists are
removed from the toolbar as
necessary.

SELECT

Oorl

For exclusive toolbars, the
exclusive button is displayed as
selected (1) or unselected (0).

SENSITIVE

Oorl

The button is displayed as sensitive
(2) or insensitive (0).

SETPROPERTY

Property identifier

If NAME property changed, the
button tooltip is updated with the
new value.

SETVALUE

String value

The droplist or combobox valueis
changed to match the new string
value. If theitem is a combobox
and the specified string does not
match an existing list item, the new
value is added at the top.

Table B-4: Messages Understood by CW_ITTOOLBAR

See “iTool Messaging System” on page 41 for a discussion of observers and

notifications.

4. When atoolbar button or droplist/combobox item is selected, callsthe
IDLitTool::DoAction method to execute the corresponding operation.

CW_ITTOOLBAR

iTool Developer’s Guide

Appendix B: iTool Compound Widgets 415

Syntax

Result = CW_ITTOOLBAR(Parent, Ul, Target [, /EXCLUSIVE] [, ROW=integer]
[, UNAME=string] [, UVALUE=value])

Return Value

This function returns the widget ID of the newly-created toolbar base.
Arguments

Parent
The widget ID of the parent base for the new toolbar.
Ul

An object reference of the IDLitUI object associated with the iTool. See “User
Interface Object” on page 343 for information on creating user interface objects.

Target

A string specifying the identifier of an item of class IDLitContainer that contains the
items to be included in the toolbar. Target can either be afull identifier or be relative
tothe IDLitTool object associated with the user interface object specified by UI.

All items within the Target container must be operations or manipulators registered
with the IDLitTool object associated with the user interface object specified by Ul.
Keywords

EXCLUSIVE

Set this keyword to create atoolbar with exclusive buttons, where only one button can
be selected at atime, and remains selected until another button is selected. The
default isto create a pushbutton toolbar, which allows multiple selections.

Note
An EXCLUSIVE toolbar cannot contain adroplist or combobox item.

iTool Developer's Guide CW_ITTOOLBAR

416 Appendix B: iTool Compound Widgets

ROW

Set this keyword equal to an integer specifying the number of rows used for laying
out the toolbar buttons and droplists. The default is 1.

Tip
To create a vertical toolbar, set ROW equal to the number of children in the
container specified by Target.

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget
hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The “user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget'sinitial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the
GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

Keywords to WIDGET_CONTROL and WIDGET_INFO

The widget 1D returned by most compound widgetsis actually the ID of the
compound widget's base widget. This means that many keywords to the
WIDGET_CONTROL and WIDGET _INFO routinesthat affect or return information
on base widgets can be used with compound widgets.

See “Creating a Compound Widget” (Chapter 2, User Interface Programming) for a
more complete discussion of controlling compound widgets using
WIDGET_CONTROL and WIDGET_INFO.

Widget Events Returned by the CW_ITTOOLBAR

CW_ITTOOLBAR iTool Developer’s Guide

Appendix B: iTool Compound Widgets 417

Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viathe iTool messaging system and the callback
mechanism implemented in the user interface creation routine.

Version History
Introduced: 6.1

See Also

Chapter 15, “Creating a Custom i Tool Widget Interface”, CW_ITMENU,
CW_ITPANEL, CW_ITSTATUSBAR, CW_ITWINDOW

iTool Developer's Guide CW_ITTOOLBAR

418 Appendix B: iTool Compound Widgets

EW ITWINDOW

The CW_ITWINDOW function creates an iTool draw widget that contains an
IDLitWindow object.

Warning
Thisroutine can only be used in the context of a user-created iTool. See “Overview
of iTools Compound Widgets’ on page 400 for details.

The CW_ITWINDOW widget automatically performs the following actions:
1. Createsascrolling draw widget with the specified dimensions.

2. Addsitself as an observer of the underlying IDLitWindow object. The
CW_ITWINDOW widget listens for the following message:

Message Value Description / Result

CONTEXTMENU | Menu identifier | Change the current context menu.

Table B-5: Messages Understood by CW_ITWINDOW
See “iTool Messaging System” on page 41 for a discussion of observers and
notifications.

3. Handles all mouse and keyboard events. See “IDLitWindow” (IDL Reference
Guide) for alist of the mouse and keyboard callback methods.

Resizing CW_ITWINDOW Widgets

CW_ITWINDOW does not automatically resizeitself to fit its parent widget. To
resize the widget, your base widget must call the CW_ITWINDOW_RESIZE
procedure with the new size. This procedure has the following interface:

CW_ITWINDOW_RESIZE, Widget_ ID, Xsize, Ysize

wherewidget_1Disthe CW_ITWINDOW widget ID, and xsize and Ysize are
the new visible size of the draw window.

Syntax
Result = CW_ITWINDOW (Parent, Ul [, DIMENSIONS=[width, height]]

[, VIRTUAL_DIMENSIONS=[width, height]] [Also accepts dl
WIDGET_DRAW keywords])

CW_ITWINDOW iTool Developer’s Guide

[/Dest /CW_ITWINDOW /DEST

Appendix B: iTool Compound Widgets 419

Return Value

This function returns the widget ID of the newly-created iTool draw widget.

Arguments

Parent

The widget ID of the parent base widget.
Ul

An object reference of the IDLitUI object associated with the iTool. See “User
Interface Object” on page 343 for information on creating user interface objects.

Keywords

DIMENSIONS

Set this keyword to a two-element vector containing the initial width and height of
the visible portion of the draw widget. The default is[640, 480].

UNAME

Set this keyword to a string that can be used to identify the widget in your code. You
can associate a name with each widget in a specific hierarchy, and then use that name
to query the widget hierarchy and get the correct widget ID.

To query the widget hierarchy, use the WIDGET _INFO function with the
FIND_BY_UNAME keyword. The UNAME should be unique to the widget

hierarchy becausethe FIND_BY_UNAME keyword returnsthe ID of the first widget
with the specified name.

UVALUE

The “user value’ to be assigned to the widget. Each widget can contain a user-
specified value of any datatype and organization. Thisvalueis not used by the widget
in any way, but exists entirely for the convenience of the IDL programmer. This
keyword allows you to set this value when the widget isfirst created. If UVALUE is
not present, the widget'sinitial user value is undefined.

The user value for awidget can be accessed and modified at any time by using the

GET_UVALUE and SET_UVALUE keywords to the WIDGET_CONTROL
procedure.

iTool Developer's Guide CW_ITWINDOW

420 Appendix B: iTool Compound Widgets

VIRTUAL_DIMENSIONS

Set this keyword to a two-element vector containing the width and height of the
virtual canvas. The default isto use the same values as DIMENSIONS.

WIDGET_DRAW Keywords Accepted

See WIDGET_DRAW for the description of the following keywords:

APP_SCROLL,BUTTON_EVENTS, CLASSNAME, COLOR_MODEL, COLORS,
EVENT_FUNC, EVENT_PRO, EXPOSE_EVENTS, FRAME,
FUNC_GET_VALUE, GRAPHICS_LEVEL, GROUP_LEADER,
IGNORE_ACCELERATORS, KEYBOARD_EVENTS, KILL_NOTIFY,
MOTION_EVENTS, NO_COPY, NOTIFY_REALIZE, PRO_SET_VALUE,
RENDERER, RESOURCE_NAME, RETAIN, SCR_XSIZE, SCR_Y SIZE,
SCROLL, SENSITIVE, TOOLTIP, TRACKING_EVENTS, UNAME, UNITS,
UVALUE, VIEWPORT_EVENTS, WHEEL_EVENTS, XOFFSET, XSIZE,
X_SCROLL_SIZE, YOFFSET, YSIZE, Y_SCROLL_SIZE

Widget Events Returned by the CW _ITWINDOW
Widget
CW_IT* compound widgets do not return widget events. All interaction with the
iTool user interface is accomplished viathe iTool messaging system and the callback
mechanism implemented in the user interface creation routine.
Version History
Introduced: 6.1
See Also

Chapter 15, “Creating a Custom i Tool Widget Interface”, CW_ITMENU,
CW_ITPANEL, CW_ITSTATUSBAR, CW_ITTOOLBAR

CW_ITWINDOW iTool Developer’s Guide

Index

Symbols
_EXTRA keyword, 104

A

Add method, 81
AddByldentifier method, 53
adding
data to data manager, 53
AddOnNotifyObserver method
IDLitIMessaging, 43
IDLitUI, 285, 317
AGGREGATE keyword, 81
Aggregate method
using, 81
aggregation of properties, 70, 81

iTool Developer’s Guide

architecture
of iTools, 19
attributes, 78
automatic
datatype matching (iTools), 63

B

base class
file reader, 238
file writer, 263
iTool, 95
operation, 156, 169
visualization, 125
bitmaps
icon location, 44

421

422

Boolean
property datatype, 71
ButtonPress, 204

C

callback routines
creating, 320, 354
for user interface panel, 314
observers, 317
registering, 320, 354
Cleanup method
data operation, 158
file reader, 241
file writer, 266
generalized operation, 171
manipulator, 213
visualization, 130
COLOR property datatype, 71

component framework See framework

component registration, 38

components. unregistering, 100

compound widgets

iTools, 340, 401, 406, 410, 413, 418

containers
data, 56
parameter, 57
copyrights, 2
creating
file readers, 230, 235
file writers, 256
iTool manipulators, 197
iTools, 89
operations, 146
user interface services, 299
visualization types, 114, 121
cursor
custom, 220
CW_ITMENU function, 401
CW_ITPANEL function, 406

CW_ITSTATUSBAR function, 410

Index

CW_ITTOOLBAR function, 413
CW_ITWINDOW function, 418

D

data

container, 56

management, 51

manager
adding data, 53
described, 53
removing data, 53

objects
described, 56
IDLitDatalDLArray2D, 58
IDLitDatalDLArray3D, 58
IDLitDatalDLImage, 59
IDLitDatal DL ImagePixds, 59
IDLitDatal DL Palette, 59
IDLitDatal DL Polyvertex, 59
IDLitDatal DLV ector, 60

removing, 53

replacing, 396

types
IDLARRAY 2D, 55
IDLARRAY3D, 55
IDLCONNECTIVITY, 55
IDLIMAGE, 55
IDLIMAGEPIXELS, 55
IDLOPACITY_TABLE, 55
IDLPALETTE, 55
IDLPOLYVERTEX, 55
IDLVECTOR, 55
IDLVERTEX, 55
iTool, 52
matching, 63
parameter, 52, 61
predefined property, 69
property See property datatypes

update mechanism, 65

data-centric operations, 152

iTool Developer’s Guide

DEFAULT property, 223
DESCRIPTION property, 223
DESCRIPTION property attribute, 79
DoAction method
generalized operation, 172
running operations, 393
user interface element, 285
documented classes, 13
DoExecuteUl method
about, 160
DoSetProperty method
about, 391
drawable areain iTools, 350

E

enumerated list properties, 73
ENUMLIST
property attribute, 79
property datatype, 73
error handling, 105
ErrorMessage method, 293
examplel readtiff __define.pro, 250
examplel visimagecontour _define.pro, 140
examplel writetiff__define.pro, 274
examplelopresample _define.pro, 186
exampleltool.pro, 110
exampleltool __define.pro, 108
example2_wdtool.pro, 363
example2toal.pro, 379
example2tool __define.pro, 377
example3_manippalette_define.pro, 227
example3tool__define.pro, 226, 228
example4_panel.pro, 324
exampledtool.pro, 331
exampledtool __define.pro, 331
examples
iTools
data operation, 186
examplel opresample__define.pro, 186
examplel readtiff _define.pro, 250

iTool Developer’s Guide

423

examplel_visimagecontour__define.pro,
140

examplel writetiff__define.pro, 274
exampleltool.pro, 110
exampleltool __define.pro, 108
example2_wdtool.pro, 363
example2tool.pro, 379
example2tool __define.pro, 377
example3_manippaette _define.pro, 227
example3tool __define.pro, 226, 228
exampled_panel .pro, 324
exampledtool.pro, 331
exampledtool __define.pro, 331
file reader, 250
file writer, 274
itpropertyreport.pro, 389
simpleiTool, 108
simple user interface panel, 324
user interface service, 307
visualization type, 140

Execute method

data operation, 159
described, 150

EXPENSIVE_COMPUTATION property,
150, 150, 152, 182

export restrictions, 2

F

file readers
about, 230
creating, 230, 235
example, 250
IDLitReadASCII, 231
IDLitReadBinary, 231
IDLitReadBMP, 231, 231
IDLitReadDICOM, 232
IDLitReadISV, 232
IDLitReadJPEG, 232
IDLitReadJPEG2000, 232
IDLitReadPICT, 233

Index

424

IDLitReadPNG, 233
IDLitReadShapefile, 233
IDLitReadTIFF, 233
IDLitReadWAV, 234
predefined, 231
preferences, 85
registering, 98, 247
standard base class, 238
unregistering, 248
file writers
about, 256
creating, 256
example, 274
IDLitWriteASCII, 257
IDLitWriteBinary, 257
IDLitWriteBMP, 257
IDLitWriteEMF, 258
IDLitWriteEPS, 258
IDLitWritel SV, 258
IDLitWriteJPEG, 258
IDLitWriteJPEG2000, 259
IDLitWritePICT, 259
IDLitWritePNG, 259
IDLitWriteTiff, 259
predefined, 257
preferences, 85
registering, 98, 271
standard base class, 263
unregistering, 272
Findldentifiers method, 384
FLOAT property datatype, 71
floating-point integer properties, 71
framework
advantages, 11
architecture, 19
code base, 13
documented vs. undocumented classes, 13
overview, 11
skillsrequired to use, 15

Index

G

GetData method
IDLitReader, 245
GetTool method, 284

H

help

iniTools, 45
HIDE property attribute, 79
hierarchy

iTools, 31

icon (bitmap) location, 44
ICON property, 183, 224, 271
IDENTIFIER

keyword, 103

property, 183, 224
identifiers

property, 70, 77

retrieving, 384

strings See object identifiers
IDLARRAY 2D datatype, 55
IDLARRAY 3D datatype, 55
IDLCONNECTIVITY datatype, 55
IDLgr* graphics objects, 127
IDLIMAGE datatype, 55
IDLIMAGEPIXELS datatype, 55
IDLit* visualization objects, 127
IDLitData

about, 56

add to data manager, 53
IDLitDataContainer

about, 56

in data manager, 53
IDLitDatalDLArray2D data object, 58
IDLitDatalDLArray3D data object, 58
IDLitDatal DL Image data object, 59

iTool Developer’s Guide

IDLitDatal DL ImagePixels data object, 59

IDLitDatal DL Pal ette data object, 59

IDLitDatal DL Polyvertex data object, 59

IDLitDatal DLV ector data object, 60
IDLitDataOperation
creating object, 152
subclassing, 153, 156
IDLitIMessaging
feedback mechanism, 288
messaging system, 41
IDLitManipulator
CommitUndoV alues
calling, 216
described, 203
RecordUndoV aues
calling, 214, 218
described, 203
subclassing, 207
IDLitOpBytscl operation, 148
IDLitOpConvolution operation, 148
IDLitOpCurvefitting operation, 148
IDLitOperation
subclassing, 166, 169
IDLitOpSmooth operation, 148
IDLitParameterSet
about, 57
creating object, 104
IDLitParameterSet objects, 53
IDLitReadASCII filereader, 231
IDLitReadBinary file reader, 231
IDLitReadBMP file reader, 231, 231
IDLitReadDICOM file reader, 232
IDLitReader
subclassing, 238
IDLitReadISV file reader, 232
IDLitReadJPEG file reader, 232
IDLitReadJPEG2000 file reader, 232
IDLitReadPICT file reader, 233
IDLitReadPNG file reader, 233
IDLitReadShapefile file reader, 233
IDLitReadTIFF file reader, 233

iTool Developer’s Guide

425

IDLitReadWAYV file reader, 234
IDLITSYS _CREATETOOL function, 106
IDLitToolbase

subclassing, 91, 95
IDLitUI

about, 284
IDLitUIHourGlass user interface service, 297
IDLitUlOperationPreview user interface ser-

vice, 298
IDLitUl PropertySheet user interface service,
297

IDLitVisAxisvisualization type, 115
IDLitVisColorbar visualization type, 115
IDLitVisContour visualization type, 115
IDLitVisHistogram visuaization type, 115
IDLitVislmage visualization type, 116, 116
IDLitVisIntVol visualization type, 116
IDLitVislsosurface visualization type, 116
IDLitVisLegend visualization type, 117
IDLitVisLegendlitem visualization type, 117
IDLitVisLight visualization type, 117
IDLitVisLineProfile visualization type, 117
IDLitVisMapGrid visualization type, 117
IDLitVisPlot visualization type, 118
IDLitVisPlot3D visualization type, 118
IDLitVisPlotProfile visualization type, 118
IDLitVisPolygon visualization type, 118
IDLitVisPolyline visualization type, 119
IDLitVisRoi visualization type, 119
IDLitVisShapePoint visualization type, 119
IDLitVisShapePolygon visualization type, 119
IDLitVisShapePolyline visualization type, 119
IDLitVisSurface visualization type, 120
IDLitVisText visudization type, 120
IDLitVisualization

subclassing, 121, 125
IDLitVisVolume visualization type, 120
IDLitWriteASCII file writer, 257
IDLitWriteBinary file writer, 257
IDLitWriteBMP file writer, 257
IDLitWriteEMF file writer, 258

Index

426

IDLitWriteEPS file writer, 258
IDLitWritelSV file writer, 258
IDLitWriteJPEG file writer, 258
IDLitWriteJPEG2000 file writer, 259
IDLitWritePICT file writer, 259
IDLitWritePNG file writer, 259
IDLitWriter
subclassing, 260, 263
IDLitWriteTIFF file writer, 259
IDLOPACITY_TABLE datatype, 55
IDLPALETTE datatype, 55
IDLPOLYVERTEX datatype, 55
IDLVECTOR datatype, 55
IDLVERTEX datatype, 55
IGETCURRENT function, 383
informational messages, 293
INITIAL_DATA keyword, 104
initializing
superclasses, 94, 124, 155, 168, 209, 237,
262
INTEGER property datatype, 71
Intelligent Tool SeeiTool
intersection of aggregated properties, 82
IREGISTER, 101, 304
IsA method
IDLitReader
creating, 244
iTool operations
macro support, 181
iTools
programmatic control, 382
iTools development
about, 10
class, registering, 101
command line arguments, 103
component framework See framework
compound widgets
about, 340
CW_ITMENU, 401
CW_ITPANEL, 406

Index

CW_ITSTATUSBAR, 410
CW_ITTOOLBAR, 413
CW_ITWINDOW, 418
creating, 89
data object classes, predefined, 58
datatypes
composite, 54
described, 52, 54
used by standard iTools, 54
drawable area, 350
error handling in launch routine, 105
help system, 45
instantiating, 106
keyword arguments, 103
launch routine, 103
menus, 346
messaging system, 20
object class definition file, 91
object classes
documented, 13
reference documentation, 12
undocumented, 13
object hierarchy, 31
object model diagram, 21
panel widget, 317
programmatic control, 382
retrieving properties, 389
simple example, 108
standard base class, 95
status bars, 352, 410
system abject, 31
system preferences, 85
toolbars, 348
user interface architecture, 282
user interface object, 284
widget architecture, 282
widgets (custom), 334
itpropertyreport.pro, 389

iTool Developer’s Guide

K

keywords
arguments, iTool launch, 103

L

legalities, 2
LINESTYLE property datatype, 72
locating

iTool bitmap resources, 44

M

macros
iTool
support in custom operations, 181
mani pul ators
about, 194
associated operation, 202
creating, 197
cursors
custom, 220
predefined, 212
mouse events, 213
predefined, 198
public instance data, 204
status bar message, 223
toolbar icon, 224
transient, 212
undo/redo support, 202
wheel events, 217
menus
iTool, 346
messages
from iTool observers, 43
informational, 293
iTool notification, 42
iTool status, 289
messaging system, 20, 41
mouse events
iTool manipulators, 213

iTool Developer’s Guide

427

N

NAME property attribute, 79
names

parameter iniTools, 61
notification

described, 41

message contents, 42

messages, 20

observers, 43

sending, 41

standard messages, 42

system, 41
nSelectionList, 204

O

object descriptors, 30
object identifiers
defined, 28
described, 20
proxy, 30
object reference
retrieving for aniTool, 383
object-oriented programming, 90
observers, 43, 317
OnDataChangeU pdate method
creating, 133
update mechanism, 65
OnDataDisconnect method, 135
operations
creating, 146
data-centric, 152
described, 146
example, 186
IDLitOpBytscl, 148
IDLitOpConvolution, 148
IDLitOpCurvefitting, 148
IDLitOpSmooth, 148
predefined, 148
registering, 96

Index

428

standard base class, 156, 169
undo/redo, 150
unregistering, 184

P

panel widget, 315
parameters

datatypes, 52, 61

defined, 61

names, 61

registered, 61

registering, 125
preferences

file readers, 85

file writers, 85

iTool, 68

iTool system, 85

iTools system, 85
pre-registered properties, 75
presentation layer, 20
ProbeStatusM essage method

about, 289

programmatic control of iTools, 382

prompt
iTool prompt dialogs, 291
PromptUserText method, 292
PromptUserY esNo method, 291
properties
aggregation, 70, 81, 126
attribute val ues, 388
attributes
about, 78
changing, 127
DESCRIPTION, 79
ENUMLIST, 79
HIDE, 79
NAME, 79

PROPERTY _IDENTIFIER, 79

SENSITIVE, 79

Index

TYPE, 79
UNDEFINED, 79
USERDEF, 80
VALID_RANGE, 80
datatypes, 69
BOOLEAN, 71
COLOR, 71
ENUMLIST, 73
FLOAT, 71
INTEGER, 71
LINESTYLE, 72
STRING, 71
SYMBOL, 72
THICKNESS, 73
USERDEF, 71
described, 68
identifiers, 70, 77, 387
interface, 68
intersection of aggregated, 82
pre-registered, 75
registering, 74, 126
registration, 70
retrieving attribute values, 388
retrieving identifiers, 387
retrieving values, 69
setting values, 69, 391
sheets
about, 68
union of aggregated, 82
update mechanism, 84
property sheet widgets
iTool attributes, 78
property sheets
about, 68

PROPERTY _IDENTIFIER property attribute,

79
proxy
identifiers, 30
registration, 39
pSelectionList, 204

iTool Developer’s Guide

R

RecordFinalV alues method
creating, 175

RecordInitial Vaues method, 174

RedoOperation method, 179

reference documentation for iTool classes, 12
REGISTER PROPERTIES keyword, 75

registered parameter, 61

RegisterFileReader method
about, 247

RegisterFileWriter method
about, 271

registering
aniTool class, 101
callback routines, 320, 354
file readers, 98, 247
file writers, 98, 271
manipulators, 223
operations, 96, 182
parameters, 125
properties, 74, 126
user interface panels, 316, 322
user interface services, 304
visualizations, 96

RegisterM anipulator method
about, 223

RegisterOperation method
about, 182

RegisterParameter method
about, 61

RegisterProperty method
callinginaniTool, 74

RegisterUl Service method
about, 284, 305

RegisterVisualization method
about, 136

RegisterWidget method
about, 285, 316

registration
ITREGISTER procedure, 38
methods, 38

iTool Developer’s Guide

properties, 70

proxy, 39

Register* methods, 38

visualization types, 136
RemoveByldentifier method

using, 53

429

REVERSIBLE_OPERATION property, 150,

183
root object, 31

S

Select method, 395
selection visuals, 195
sending
messages, 41
notifications, 41

SENSITIVE property attribute, 79

SET_PROPERTY operation, 202
SetData method

IDLitData, 397

IDLitWriter, 268
SetProperty method

iTools hierarchy item, 392
SetPropertyAttribute method, 78

SHOW_EXECUTION_UI property, 160, 183,

393
dider (iTool property sheet), 80
spinner (iTool property sheet), 80
status bars
iTools, 352

status information, providing, 288

status messages, 289
StatusM essage method
about, 289
STRING property datatype, 71

superclass initiaization, 94, 124, 155, 168,

209, 237, 262
SYMBOL property datatype, 72
system object, 31
system preferences, iTools, 85

Index

430

T

text field, property sheet, 80
THICKNESS property data type, 73
toolbars

iTool, 348
trademarks, 2
TYPE

property, 322

property attribute, 79
TY PES property, 183, 224

U

Ul panel See user interface panel
Ul service See user interface service
UNDEFINED property attribute, 79
undo/redo system, 150
undocumented classes, 13
UndoExecute method

using, 164
UndoOperation method

using, 178
union of aggregated properties, 82
unregistering

components, 100

file readers, 248

file writers, 272

generic component, 100

operation, 184

visualization types, 138
UnRegisterUl Service method

about, 284
UnRegisterWidget method

about, 285
user defined properties, 71
user interface

architecture, 282

custom, 334

elements, 288

panel

Index

callback routines, 314
creation routines, 315
described, 314
example, 324
registering, 316, 322
TY PE property, 322
services
creating, 296, 299
example, 307
executing, 306
function, 299
IDLitUIHourGlass, 297
IDLitUlOperationPreview, 298
IDLitUl Property Sheet, 297
predefined, 297
registering, 304
using, 296
widgets, 334
user interfaces, iTools architecture, 20
USERDEF
property attribute, 80
property datatype, 71

Vv

VALID_RANGE property attribute, 80
visualization types
creating, 121
defined, 114
example, 140
IDLitShapePolygon, 119
IDLitShapePolyline, 119
IDLitVisAXxis, 115
IDLitVisColorbar, 115
IDLitVisContour, 115
IDLitVisHistogram, 115
IDLitVisimage, 116, 116
IDLitVisIintVol, 116
IDLitVislsosurface, 116
IDLitVisLegend, 117
IDLitVisLegenditem, 117

iTool Developer’s Guide

431

IDLitVisLight, 117 ShapePoint, 119

IDLitVisLineProfile, 117 standard base class, 125
IDLitVisMapGrid, 117 unregistering, 138

IDLitVisPlot, 118 VISUALIZATION_TY PE keyword, 107

IDLitVisPlot3D, 118
IDLitVisPlotProfile, 118

IDLitVisPolygon, 118 W

IDL!tV!sPoI_yllne, 119 Wheel events

IDLitVisRol, 119 iTool manipulators, 217

IDLitVisSurface, 120 ot P ’

IDLitVisText, 120 99

IDLitVisvol 120 iniTools, 20
IVISVOIUME, custom interface, 334

predefined, 115 interface, 282

registering, 96, 136

iTool Developer’s Guide Index

	Online Manuals
	IDL Documentation
	What's New in IDL 7.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Advanced Math and Stats
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	iTool Programming
	Contents
	Overview of iTools
	What are iTools?
	What is the iTools Component Framework?
	About this Manual
	About the iTools Code Base
	Skills Required to Use the iTools Component Framework

	Part I: Understanding the iTools Component Framework
	iTool System Architecture
	Overview of the iTool System Architecture
	iTools Object Model Diagram
	iTool Object Identifiers
	iTool Object Hierarchy
	Registering Components
	iTool Messaging System
	System Resources

	Data Management
	Overview of iTool Data Management
	iTool Data Manager
	iTool Data Types
	iTool Data Objects
	Predefined iTool Data Classes
	Parameters
	Data Type Matching
	Data Update Mechanism

	Property Management
	About the Properties Interface
	Property Data Types
	Registering Properties
	Property Identifiers
	Property Attributes
	Property Aggregation
	Property Update Mechanism
	Properties of the iTools System

	Part II: Using the iTools Component Framework
	Creating an iTool
	Overview of iTool Creation
	Creating a New iTool Class
	Registering a New Tool Class
	Creating an iTool Launch Routine
	Example: Simple iTool

	Creating a Visualization
	Overview of iTool Visualization Types
	Predefined iTool Visualization Classes
	Creating a New Visualization Type
	Registering a Visualization Type
	Unregistering a Visualization Type
	Example: Image-Contour Visualization

	Creating an Operation
	Overview of Creating an iTool Operation
	Predefined iTool Operations
	Operations and the Undo/Redo System
	Creating a New Data-Centric Operation
	Creating a New Generalized Operation
	Operations and Macros
	Registering an Operation
	Unregistering an Operation
	Example: Data Resample Operation

	Creating a Manipulator
	Overview of iTool Manipulators
	The Manipulator Creation Process
	Predefined iTool Manipulators
	Manipulators and the Undo/Redo System
	Using Manipulator Public Instance Data
	Creating a New Manipulator
	Registering a Manipulator
	Unregistering a Manipulator
	Example: Color Table Manipulator

	Creating a File Reader
	Overview of iTool File Readers
	Predefined iTool File Readers
	Creating a New File Reader
	Registering a File Reader
	Unregistering a File Reader
	Example: TIFF File Reader

	Creating a File Writer
	Overview of iTool File Writers
	Predefined iTool File Writers
	Creating a New File Writer
	Registering a File Writer
	Unregistering a File Writer
	Example: TIFF File Writer

	Part III: Modifying the iTool User Interface
	iTool User Interface Architecture
	Overview of iTool Interface Architecture
	User Interface Objects

	Using iTool User Interface Elements
	The iTools Feedback Mechanism
	Status Messages
	Prompts
	Informational Messages

	Creating a User Interface Service
	Overview of the iTool UI Service
	Predefined iTool UI Services
	Creating a New UI Service
	Registering a UI Service
	Executing a User Interface Service
	Example: Changing a Property Value

	Creating a User Interface Panel
	Overview of the iTool UI Panel
	Creating a UI Panel Interface
	Creating Callback Routines
	Registering a UI Panel
	Example: A Simple UI Panel

	Creating a Custom iTool Widget Interface
	About Custom iTool Widget Interfaces
	Overview of Creating an iTool Interface
	iTool Widget Interface Concepts
	Creating the Interface Routine
	Adding Menus
	Adding a Toolbar
	Adding an iTool Window
	Adding a Status Bar
	Adding a User Interface Panel
	Handling Callbacks
	Handling Resize Events
	Handling Shutdown Events
	Creating an iTool Launch Routine
	Example: a Custom iTool Interface

	Controlling iTools from the IDL Command Line
	Overview of iTool Programmatic Control
	Retrieving an iTool Object Reference
	Retrieving Component Identifiers
	Retrieving Property Information
	Changing Property Values
	Running Operations
	Selecting Items in the iTool
	Replacing Data in an iTool

	iTool Compound Widgets
	Overview of iTools Compound Widgets
	CW_ITMENU
	CW_ITPANEL
	CW_ITSTATUSBAR
	CW_ITTOOLBAR
	CW_ITWINDOW

	Index

