Getting Started
with IDL

IDL Version 7.1

May 2009 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

0509IDL71GS

Restricted Rights Notice

The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to
therestrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document
at any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

The software and associated documentation are subject to U.S. export controls including the United States Export Administration
Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These
laws include restrictions on destinations, end users, and end use.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of I TT Visual Information Solutions.

ESRI®, ArcGIS®, ArcView®, and Arcinfo® are registered trademarks of ESRI.

Portions of thiswork are Copyright © 2008 ESRI. All rights reserved.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
QUAC and FLAASH are licensed from Spectral Sciences, Inc. under U.S. Patent No. 6,909,815 and U.S. Patent No. 7,046,859 B2.
Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Chapter 1

The POWEr Of IDL ..coooiiiiceeee e 7
USING thISIMANUALooeecieceee et s st sre e sne e e e neesreens 10
OLNEr RESDUITESiiiiieiiciesiee sttt sttt ettt sa e et e e te s e s besseesneesreesneesaeensensrenns 11
Chapter 2

Super QUICK SEart ..o e 13
Chapter 3

The IDL WOrkbench ... 19
About the IDL WOrKDENCHcceieeee et 20
PEISPECHIVES ...uveiieeiieie sttt et et e et e sae e s seesaeesatesbeesreesreesaeesaeenrennrenns 23
T I VY0 2 o= Vo I | 24
Compiling and Running an IDL Programcccceeceeseeneeieeesieseesiesessessseesseeseessesssenns 31
Breakpoints and DEDUGGING ...veevreiieie et ees et e e s ae e s ae e e s esre e sneesaeenreesraens 32
LT 1] o [o 1 1 o TSR 35
1= = 1= 0= SO 37
Updating the IDL WOIrKBENCNcviiiiie et 38

Getting Started with IDL 3

Chapter 4

T = o) 41
] =g To b2 N = 14 o O 42
Plotting With the TOOI PalEttecccviiiiie et e e 43
PLOLEING WItN TPLOL ..o re e 44
Plotting With DIireCt GraphiCScc.eeoeiereieeie e eae e ee e 50
]I To JeC 2T = o141 o O 52
Chapter 5

L F=T0 1= T PP 53
0 I Vo g F= TS 54
Displaying IMEJEScceieiuiriiieieieerie ettt b 55
Displaying Images with DireCt GraphiCscoccoeieeeeeere e 63
Chapter 6

1= 10 1 T PP 65
]I g To 1V =T o 11 o ST 66
Displaying iMaps TOOIc.eeiiiieiieeec ettt ae e b re e 67
[Kol [N YL aTo AV =" o I I - - P 70
Fitting an Image to @aProjECLIONccceeeeiese ettt 71
Plotting a Portion of the GIODE ... e s 72
[Lo dl gl l DI = o g 1Y, = o = P 74
Warping IMageStO IMERScecceeiiriieiieiieseeseesteesteesreesteesteesteestesntesteesaesneeseesanesnsessnnas 77
Displaying Vector Dataon aMaDccccccveeieereiesesieeesiesesteeae e s se e s eneeae e 80
Chapter 7

Surfaces and CONTOUIS ...uuuuiiiiiii et ee e eaeeeaaeees 81
Surfaces and CoNtOUIS IN IDLcoueioieieii e 82
Displaying SUIMACEScveieeciiiiiiese ettt re s aesresresreebeee s 83
Displaying Surfaces with DireCt GraphiCsccooeeeeeeresereee e 86
(DK o] = Y7o [@] (U S 87
Displaying Contours with DIireCt GraphiCscccoceeiieriieesieeiieesee e e seee e e enee e 89
Working with Irregularly Gridded Datacceceveiieiceesesiecee e 91

Contents Getting Started with IDL

Chapter 8

VOIUMES ..ot e s e e e e e e e e e eeeeeeeeessennnnnnnns 93
IDL and Volume ViSUBIIZEHIONccocueiririirieieieie st 94
Volume Rendering With IVOIUMEooiiiir e e 95
Volume Rendering with DIireCt GraphiCscccoiviiieieeieese et 99
Chapter 9

Signal Processing With IDLcooiiiiii i 103
IDL and SigNal PrOCESSING ...cveeeeireeierieeeiteseeseesieessesseesseessesssesssesssesssessseessesssesssesssens 104
Signal ProCessing CONCEPLSccviiiieerieieitieeeiee e ste e e steste e eseeseestesaesreeeesresreeneaneeseennes 105
Creating @aDaa SELoecceiee e e e e e re e sreeenen 107
Signal Processing With SMOOTHooioiiieic e st 109
Frequency Domain FIltEriNGccooieiieiie e s e st sre e s re e s reeneas 110
Creating CUSLOM FIILErScoocieceiceeese et s sre e ennas 113
Wavelet FIltering EXAMPIEoooe ettt ettt e 114
Chapter 10

Programming iN IDLcoooiiiiiii e 115
About Programming iN IDLccooiieeieee et 116
TYPES OF IDL PrOQIraIMScueeitiriirieeierieste et see st sseese e sttt sbe e se bbb e see e saeenes 118
IDL Language EIEBMENLSccecceiece ettt es s ee st e e te s s e st te e e ne e s reenreeneas 120
Arrays and Efficient Programmingcccccceeveeiiiesi s 124
IDL Programming Concepts and TOOIScccvvuriieerieiiesee e see st seeesee e sseesneesneens 128
IDL WOrKDENCH EQITOTcoveieiieiiesie ettt e 130
Executing a Simple IDL Programcccceceeieeieene e seeseeses s sreesaeeseestessreensesnnens 131
)= 11 o o 1 oo P 133
Chapter 11

User INterfaces iN IDLooooviiiiiiiiiiie et 135
User Interface OPtioNS N IDLcooiieicieeseee et 136
NON-Graphical USEr INLEIFACESccocvcieeeiisie et 137
EXIisting iTOOI INTEITACES ..ovveieee ettt st re s 138
Graphical Interfaces With IDL WIAQELScccocvieeieeecece e 139
A Simple Widget EXAMPIEccciiiiiiecie et see e see et eeste s sre s re e e enne e e e neenens 140
CUuStOM ITOO! INEEITACESvveriiriieeer e e e 142
Yo 1= U 143

Getting Started with IDL Contents

Chapter 1

The Power of IDL

IDL, the Interactive Data Language, isthe ideal software for data analysis,
visualization, and cross-platform application development. IDL integrates apowerful,
array-oriented language with numerous mathematical analysis and graphical display
techniques, thus giving you incredible flexibility.

Interactive Analysis

A few lines of IDL can do the job of
hundreds of lines of Java, FORTRAN,

or C — without losing flexibility or
performance. Using IDL, tasksthat require
days or weeks of programming with i m m @ @
traditional languages can be accomplished Gmessesiie g e e

in hours. Explore data interactively using '
IDL commands and then create complete
applications by writing IDL programs.

Getting Started with IDL 7

Chapter 1: The Power of IDL

Data Analysis and Signal
Processing

Use IDL to read datain awide variety
of formats — from simple ASCI|I to
structured data formats like HDF, CDF,
and NetCDF to modern image formats
such as JPEG2000. Fit irregularly-
sampled datato aregular grid, and use
IDL’s signal processing routinesto
extract and analyze the signals
contained therein, using techniques from traditional filtering and transform
operations to statistical methods such as prediction analysis. Use IDL's powerful
graphical visualization tools to view the results of your analysisin two- and three-
dimensional visualizations.

Image Processing and Display

IDL reads most common imagefileswith
asingle command. Onceyou’'veimported
image datainto IDL, use awide variety
of image processing techniques to filter
out noise, expose anomalies, and
highlight true data characteristics. Create
publication-quality, fully-annotated

image displays.

Combine Data and Maps

Easily overlay sampled data on a map
display to extract geographical information
from your data. Modify the map projection
and coordinates to inspect any location on
the globe.

Getting Started with IDL

Chapter 1: The Power of IDL

Rapid Application
Development

Use the powerful code
development and debugging
tools of the IDL Workbench to
rapidly create complex
applicationsin the IDL
language. Distribute your code
to other IDL users, or provide a
compiled version that runsin the
freely-available IDL Virtual
Machine.

42 IDL - CAITTADL70\(ib\itools\frameworklidlittool__define.pro - DL Workbench LEE

R R B 5| @ oL |35 pebug
0,23 =o
dsteroperation, strieme, strClassNeme, § ~

PROXY=PROXY, §
IDENTIFIER=IDENTIFIER, _EXTRA= extra

compile opt idlz, hidden
if (not keyword set [IDENTIFIER]) then IDENTIFIER-striame
self->register, strNeme, strClassNeme, §

IDENTIFIER="Operations/ "+IDENTIFIER, §
/SINGLETON, PROXT=PROXY, _extra= extra

ikable Smart Insert | 404133

User Interface Toolkit

&1IDL Wolume [Untitled*]

JEed

Fie Edic Insert Operations Window Hefp

Dlel@ls] of-[s]sle] v o] 1] s alNololele| IDL’s user interface toolkit

—

] XLoadct

Done | Hep

@ Tables (DOptions (" Funclion

4
Stietch Baltom

4 velume |

alows you to quickly
S develop graphical user
interfaces entirely in IDL.

¥ BiioFande Cr%te S mpl e | nterfa(:&

et = with only afew lines of code

se sl using IDL'sbuilt-in widgets,
or use the iTools framework
to build complex interactive
applicationsin afraction of

& diag selection box

481,133 the t| me you WOUI d spend

Getting Started with IDL

creating asimilar interface
in other languages.

10 Chapter 1: The Power of IDL

Using this Manual

The chapters included in this manual provide a“hands-on” way to learn basic IDL
concepts and techniques. Getting Sarted with IDL demonstrates a number of
common IDL applications; each section introducesbasic IDL concepts and highlights
some of the commonly-used IDL commands.

Each chapter functions similarly to atutorial and is a demonstration of a particular
IDL feature. It is recommended that you walk through each short, interactive chapter
to preserve continuity, since many commands rely upon previous commands. Each
chapter assumes the most basic level of IDL experience.

A Note on the Example Code

You don’t have to read all of the descriptive passages that accompany each chapter.
Simply enter the IDL commands shown in courier type at the IDL Command Line
(the “IDL>" prompt) and observe the results. Unless otherwise noted, each line
shown isacomplete IDL command (press RETURN after typing each command). If
you want more information about a specific command, you can read the explanations
or consult IDL’s online help system by selecting Help — Help Contentsin the IDL
Workbench.
Tip
The dollar sign ($) at theend of alineisthe IDL continuation character. It allows
you to enter long IDL commands as multiple lines.

A Note on the Graphics Displays

Many of the examplesin this manual use IDL’siTools, which provide an interactive
graphical interface to visualizations such as plots or images. TheiToolsuseIDL's
Object graphics system, and will automatically adjust to display correctly on any
computer running IDL.

Other examples use IDL’s Direct graphics routines (which have names like PLOT,
CONTOUR, or TV). The Direct graphics system is simpler to use in some situations,
but lacks some of the display management features of the Object graphics system. As
aresult, on most newer systems you will want to tell IDL to use a maximum of 256
colorsin its graphics displays by entering the following command at the IDL
command prompt:

DEVICE, RETAIN=2, DECOMPOSED=0

Using this Manual Getting Started with IDL

Chapter 1: The Power of IDL 11

Other Resources

This manual provides examplesthat will give you a glimpse of the many ways |DL
can speed your data analysis, visualization, and cross-platform development tasks.
The following are some additional resources that can help you continue learning
about IDL.

IDL Documentation

The IDL documentation set isinstalled along with IDL in hypertext format. To view
the documentation, enter “ 2" at the 1pL> prompt or select Help Contents from the
Help menu of the IDL Workbench.

IDL’s online help system is fully hyperlinked and indexed, and includes a powerful
full-text searching mechanism. See “ Getting Help” on page 35 and the Using IDL

Help topicin the IDL Online Help system for information on using the help system
itself.

In addition, Adobe Portable Document Format (PDF) versions of most books in the
IDL documentation set are included in the info/docs directory of the IDL
distribution disk.

ITT Visual Information Solutions Web Site

ThelTT Visual Information Solutions web site (www. ittvis.com) provides
additional information about IDL and other ITT Visua Information Solutions
products. On our web site you will find:

e User forums, which allow you to correspond directly with other users of IDL
to discuss problems, solutions, and techniques.

e ThelTT Visua Information Solutions Code Contribution Library, which
alows you to share source code, images, data, and more with other IDL users.

e Tipsand Tricksfor using IDL.

* Technical Support resources, including a database of common IDL questions
and answers.

* Stories about customers' innovative uses of IDL.

Getting Started with IDL Other Resources

12 Chapter 1: The Power of IDL

IDL Workbench Welcome Page

Numerous local and web-

6 0L -Default/hetiowor d.pro - DL Workbench AR
based resources are
available within the IDL
Workbench interface.
Select Welcome from the
Help menu to display the
Welcome screen, then
click on What's New to
gain access to up-to-date
information from ITT
Visua Information
Solutions, including news
and announcements of
new downloadable
modulesfor IDL. Click on Web Resources to get quick access to devel oper news
items, user forums, and other network resources. Click on Tutorials to access short
lessons describing how to accomplish common tasksin IDL and the IDL Workbench.

IDL Newsgroup

The IDL newsgroup is an independent forum for IDL usersto discuss problems and
solutionsin IDL. Point your news reading software at the comp . 1lang . id1l-pvwave
USENET newsgroup, or use aweb-based reader such as

http://groups.google.com/group/comp.lang.idl-pvwave

to read and join in the discussion.

Other Resources Getting Started with IDL

Chapter 2

Super Quick Start

If you'd like to begin experimenting with IDL right away, before reading any more,
try the following things:

Open the IDL Workbench

The IDL Workbench is a graphical interface and code development environment for
IDL. To start the IDL Workbench:

e On Windows platforms, use the Start menu to select IDL Workbench from
the IDL 7.1 program group.

e On Macintosh platforms, click on the IDL Workbench iconintheIDL 7.1
folder or launch an X 11 terminal window and type idlde at the prompt.

e On Solarisand Linux systems, type id1de at the shell prompt.

The IDL Workbench is described in more detail in “The IDL Workbench” on
page 19.

Getting Started with IDL 13

14

Chapter 2: Super Quick Start

Display an Image

To quickly display animage using IDL:

1. Select File— Openin

IDL’s image display and image
processing facilities are
described in more detail in
“Images’ on page 53.

the IDL Workbench and o o e ‘e i 5 —Cx
browse to the Dllmlg| of-| &[] s ook 2 o] A\\\n\c;lﬂ:\l
examples/data o e of o Slolelel
subdirectory of your IDL !
installation. o

Select thefilerose. jpg s |
and click Open. The
image isdisplayed in an
ilmage window.

Charnnel | Red
I~ Link Al

Click on item o select, or click & drag selection box [435,440]

Create a 2-D Plot

To further analyze the image displayed in the previous section, you might want to
create a plot showing the values of selected pixels plotted against their positionsin
the image (aline profile). You can do thisin two ways:

Click the Line Profile button Q in the ilmage tool and draw aline
interactively acrosstheimage. Threeline profiles— one each for the red, blue,
and green channels of the image, are displayed in an iPlot window.

Select aline in the image array numerically. To do this, we'll use the IDL
variable ROSE_JPG created automatically when we open the rose. jpg filein
the previous section. (If you haven't aready, go back and do that now.)

Use the Variables view in the IDL Workbench to inspect the ROSE_JPG
variable, or type

HELP, ROSE_JPG

at the IDL command prompt. This shows us that the ROSE_JPG variableisa
[3, 227, 149] bytearray consisting of red, green, and blue image planes,
each of whichisa 227 x 149 pixel array. To extract a single vector of data,
we'll use IDL’s array indexing syntax:

rose_slice = REFORM(ROSE_JPG[0,200,*])

Getting Started with IDL

Chapter 2: Super Quick Start 15

ThistellsIDL to create a e N

new variable named Pl £t Inaert Operator Window e
rose slicethat containsa |DI=EIS] =l [w ol je] af fv-] Alvolol<le

vector consisting of the 149

elements found in column o o o
200 of the red image plane 250 = =
(image plane 0, which isthe - .
first image planein the e E
aray). 0 [S
Finaly, enter 100 -

iplot, rose_slice

50 o by b b b Ly
0 20 40 60 80 100 120 140

at the DL command prompt. g o a
TheiPlot window displays
the selected line profile.

Click & drag or use: anaw keys to anslate [#30257]

Clearly, creating aline profile

interactively using the ilmage tool

is quicker in this example, but numerically selecting a vector from within an array is

more precise and can be accomplished without mouse interaction.

Tip
You can quickly modify the appearance of your plot using the i Tools property sheet

controls. Simply double-click on an item (the plot line, for example) to display the
property sheet. Change the selected options and see the results immediately.

IDL provides many tools for creating, annotating, and modifying two-dimensional
plots. See“Line Plots’ on page 41 for additional details.

Overlay an Image on a Map
If your datais associated with geographic coordinates, you can easily overlay your
dataon amap using any of several map projections availablein IDL:

1. Enter imap at the IDL command prompt. The iMap window appears.

2. Select File — Open in theiMap window and browse to the examples/data
subdirectory of your IDL installation.

3. Sdectthefileavhrr.png and click Open. TheiMap Register Image wizard
appears, alowing you to specify how the pixelsin the image map to
geographic coordinates.

Getting Started with IDL

16

4. Click Next, then Finish

Chapter 2: Super Quick Start

. . &1 1DL iMap [Untitled*] M=%
inthe Register Image [ar e cpmes e s
wizard to accept the o e~ o

default values.

On the M ap tab, click
Edit Projection and
select Mollweide in the

| Lonaiuds s

Projection field and i e
click OK.

Minc [80
Select Insert - Map — == Wac 0
Countries (low res) ° Loreioin. |
to Overl ay COU ntry Click an item to select, or click & drag selection box [500,14]
boundaries.

See“*Maps’ on page 65 for
more on working with mapsin IDL.

Create a Simple IDL Program

Creating and running a program in IDL can be as simple asthis:
1. Create anew IDL sourcefilein the IDL Workbench by clicking the New I DL

Tip

Sour ce file toolbar button & .
Enter the following text in the editor window:

PRO helloWorld
PRINT, 'Hello, World!'

END

Select File — Save and then click OK in the Save As dialog that appears,
accepting the default filename and location. (This saves your codein afile
named helloworld.pro inyour default IDL project directory.)

Select Run — Run helloworld or press F8. Your routineis compiled and the
string Hello, World! isprinted in the Console view.

You could aso run your program by entering helloworld at the IDL command
prompt, or from within another IDL program.

Getting Started with IDL

Chapter 2: Super Quick Start 17

See “Programming in IDL” on page 115 for more on creating programsin the IDL
language.

Get Help

IDL provides several ways to get help, depending on what sort of assistance you
require:

To launch the IDL online help system, which contains both reference and user
documentation for IDL, select Help Contentsfrom the Help menu or type “ 2"
at the 1pL> prompt. Seethe Using IDL Help topicin the IDL Online Help for
more information.

In the Editor view of the IDL Workbench, hover the mouse pointer over name
of aprocedure or function. After a second, text describing the syntax of the
routine appears. For example, if youtypea = sin inan editor window and
hover the mouse pointer, you'll see something like this:

a = sin|

Syntax:
Result = SIN(x, TPOOL_MAX_ELTS = null, TROOL_MIN_ELTS = null, TPOOL_NOTHREAD = null)
Prezs 'F2' For focus

Thisdisplay (known as “hover help”) shows you the syntax for the SIN
routine. Note that IDL keyword values are always shown as “null” in the hover

help display.

Click on aroutine name in the editor window. Press F1 (Windows/Macintosh)
or Shift+F1 (Solaris/Linux). The full IDL help entry for the routineis

displayed.
Begin anew line in the editor and type the following:
file = dialog

Without moving the cursor from the end of the word “dialog”, press
Ctrl+space. The following windows appear:

file = dialog|
EHD &2 DIALOG_DECOMNECTY) Syntan:

P DIALOG_MESSAGED Result = DIALOG_PICKFILE(DEFALLT_EXTENSION =

@ = rll, DIALOG_PARENT = null, DIRECTORY = null,
DIALOG_PICKFILE() DISPLAY_MAME = rull, FILE = null, FILTER = ruil,
@2 DIALOG_PRINTERSETUR() FIX_FILTER = null, GEl':'_PATH =l GROhIP = null,

@ MULTIPLE_FILES = null, MUST_EXIST = null,

@RDIALOG_PRINTIOE() OVERWRITE_PROMPT = null, PATH = null, READ =
f:@l’ﬂnl s RFAM TRMASF™ el REEsa R RARAE —dl TrTie - AT

Thisdisplay isknown as “content assist.” Use the arrow keys to select
DIALOG_PICKFILE() from the left-hand list, noting that the syntax for the
DIALOG_PICKFILE function is displayed. Press Enter and the function
name isinserted into the editor window. Press Ctrl+space again to seethe list

Getting Started with IDL

18

Chapter 2: Super Quick Start
of keywords for the routine, followed by functions whose values could be
entered as arguments.

Note
Content assist is also available in the IDL Command Line view.

Getting Started with IDL

Chapter 3

The IDL Workbench

This chapter introduces the IDL Workbench and its capabilities.

About the IDL Workbench 20
Perspectivesl 23
IDL WorkbenchTour 24

Compiling and Running an IDL Program .. 31

Getting Started with IDL

Breakpointsand Debugging 32
GettingHelp 35
Preferencesl 37
Updating the IDL Workbench 38

19

20 Chapter 3: The IDL Workbench

About the IDL Workbench

IDL includes a graphical front-end called the IDL Workbench that provides
sophisticated code management, devel opment, and debugging tools. The Workbench
is created using the Eclipse framework — an extensible cross-platform environment
that appears as a native application on all platforms. The IDL Workbench looks and
behaves like a Windows application on Windows machines, like a Macintosh
application on Macintosh machines, and like a Linux or Solaris application on those
systems.

Note that the Eclipse features that make up the IDL Workbench are just a front-end:
IDL’s powerful computational engine is still used to analyze and display your data.

For additional information on working with IDL and the IDL Workbench, refer to the
Using IDL manual, located in the IDL Online Help.

Starting the IDL Workbench

Note
For information on installing and licensing IDL, see the IDL installation
instructions for your platform.

To start the IDL Workbench, follow the instructions according to your Operating

System:
Sy IDL Workbench Instructions
System

Windows Select Start — IDL <version> — | DL Workbench

Solarig/Linux At the shell prompt, enter idlde

MacOS X In your IDL installation folder, double-click on the IDL
Wor kbench icon
OR
At the X11 Terminal window shell prompt, enter id1de

About the IDL Workbench Getting Started with IDL

../com.rsi.idl.doc.core/Introducing_IDL.html

Chapter 3: The IDL Workbench 21

Command Line Options

You can alter some IDL behaviors by supplying command-line switches along with
the command used to invoke IDL. IDL’s options are described in detail in Command
Line Optionsfor IDL Sartup in the IDL Online help, but the following are among the
most useful.

-batch

Syntax: idlde -batch filename

Specifiesthat filename should be executed in non-interactive “batch” mode. Note that
filename should specify the full path to the batch file.

-e
Syntax: id1de -e IDL_statement

Specifiesasingle IDL statement to be executed. Once the statement has executed,
IDL waits for any widget applications to exit, and then IDL itself exits. Only the last
-e switch on the command line is honored.

Note
If the IDL statement includes spaces, it must be enclosed in quote marks.

-nl

Syntax: idlde -n1 locale
Sdectsadifferent locale (language). Locale is a two-letter abbreviation, such as en
(English), fr (French), it (Italian), or ja (Japanese).

Eclipse and the IDL Workbench are both internationalized, but do not share the same
languagelist. If alanguage is chosen that both platforms do not support, there will be
translation mismatches in the Ul (Eclipse portions of the Ul will be documented in
one language, and IDL Workbench portions documented in another).

Getting Started with IDL Command Line Options

22

Chapter 3: The IDL Workbench

Starting IDL in Command Line Mode

In command-line mode, IDL uses atext-only interface and sends output to your
terminal screen or shell window. Graphics are displayed in IDL graphics windows.

To start IDL in command-line mode, follow the instructions according to your

Operating System:

ngsr?;ir:g Command-line Mode Instructions
Windows Select Start — IDL <version>— IDL Command Line
Solarig/Linux At the shell prompt, enter id1.
MacOS X In your IDL installation folder, double-click on the IDL icon
OR
At the X11 Terminal window shell prompt, enter id1.

For more information about using IDL in command-line mode, see the Launching
IDL topicinthe DL Online Help.

Tip

The command line options described above are also useful in command-line mode.

Starting IDL in Command Line Mode Getting Started with IDL

Chapter 3: The IDL Workbench 23

Perspectives

A perspective is a collection of workbench views that combine to make it easy to
accomplish the work you want to perform. For example, if you want to quickly
visualize data, use the Visualize perspective. When you are programming, you may
want to use the IDL perspective. To troubleshoot your code, use the Debug
perspective.

All the perspectives show the command line, the console, and the editor, which are
important no matter what you are doingin IDL.

The differences between the perspectives are:

* Visualize Per spective—contains the Visualization Pal ette and makes the
Variables view more prominent. The main workflow in this perspectiveisto
drag and drop variables onto the tools in the Visualization Pal ette.

e |IDL Perspective—shows alarger Editor view and Project Explorer. The main
workflows for this perspective are creating and running IDL programs.

» Debug Per spective—contains the Debug and Program Outline views, and
makes the Variables and Breakpoints views more prominent. The main
workflows for this perspective are creating and troubleshooting IDL programs.

Asyou work in the Workbench, you will probably switch perspectives frequently.

The Per spectivestab is located at the top right of the IDL Workbench. To switch
perspectives, ssimply click on the perspective’s name in the Per spectivestab at thetop
right of the IDL Workbench:

T o8 wisuslize |8 0L | %5 Debug

Customizing IDL Perspectives

You can customize any of the perspectives to reflect your own workflows and
preferences. Views can be rearranged within the perspective, added to the
perspective, or removed from the perspective as you choose. For instructions on how
to move views, see the Views topic in the IDL Online Help.

You can always restore IDL’s default configuration for a perspective by selecting
Window — Reset Per spective ...

Getting Started with IDL Perspectives

24 Chapter 3: The IDL Workbench

IDL Workbench Tour

Menu Bar P i
; erspective Buttons
\ Toolbar Editor Area P
File Edit' Mavigate Search Project Run Window Help ‘ \
= @ B [& visualize @@ oL 35 Debug
. @ -
N1 = B || [project Expla 52 5= cutline| = & =g
= T =S
?J % == Default
e
Plot
Image .
9= Yariables 7 = ¥ =08 s Visualizations &3 =8
Mame VYalus Type ™| | Learn by watching the Videos, or read Getting Started,
Surface % % pLoTH Float[300] Float[3C
3 # % pLOTY Float[300] Float[3C VIeWS
% pLoTZ Float[300] Float[3t —
Contour
53)
Map
z B consale 52 @ Command History 2Bl @& =0
Wectar IDL> plotx=Z*!PI/100*FINDGEN (300 i
IDL> ploty=sin(plotx)
IDL> plotz=cos(plotx) ~
“olurme: < >
*El Command Line 2 w5 = O
IDL:>

Figure 3-1: The IDL Workbench

The following sections discuss the components of the IDL Workbench.

Menu Bar File Edit Source Mavigate B Project Rum Window Help
c8E e -
The menu bar, located at thetop of the & projectExplorer 22 5 ™ " Ineturl_widget
IDL Workbench window, allows you to
control various Workbench features.

You can display menu commands for each menu using the following methods:
e Clicking the menu on the menu bar.

e Pressing Alt (Option on the Macintosh) plus the underlined letter in the
menu’stitle. For example, to display the File menu in Windows, press Alt+F.

IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench 25

You can select or execute a menu command using the following methods:
e Clicking theitem in the menu.

e Pressing Alt (Option on the Macintosh) plus the underlined letter in the
menu’stitle, and then pressing the letter underlined in the menu item. For
example, to select the menu item Edit — Undo in Windows, press Alt+E+U.

Note
Many menu items have alternate keyboard shortcuts. If acommand has a keyboard
shortcut, it is displayed to the right of the menu item.

Toolbar c&8¢ . & ®00 @ @ : Rl T

The IDL Workbench toolbar buttons provide a shortcut to execute the most common
tasks found in the main menu. When you position the mouse pointer over atoolbar
button, a brief command description is displayed next to it (along with the keyboard
shortcut, if applicable).

Views

Views are movable windows inside the IDL Workbench that display data, do
analyses, and allow you to interact with the command line interpreter and compiled
programs. For example, the Console view displays output from the command line and
compiled programs.

Moving Views

A view might appear by itself or stacked with other views in atabbed window. You
can change the layout of a perspective by opening and closing views and by docking
them in different positions in the Workbench window.

There are a number of options for moving views:

* You can move aview to another location by clicking on the view's tab and
dragging it to another spot on the Workbench. You can move aview so that it
occupiesits own window, or you can move aview into a group of existing
views (as a new tab).

« A view tab's context menu contains the Detached option, which allows you to
detach the view into its own Workbench-independent window. The context
menu's M ove — View option lets you move asingle view, and the
Move — Tab Group option lets you move a group of views (as a collection of
tabs).

Getting Started with IDL IDL Workbench Tour

26 Chapter 3: The IDL Workbench

Maximizing Views

You can maximize a view within the workbench interface by double-clicking on the
view'stab. All other views are automatically minimized. Double-click on the view's
tab again to restore it and all other views to the original size.

The following sections explain all the views that appear by default when you first run
the IDL Workbench, but there are more views available. To display one of the other
views, select it from the Window — Show View menu.

Tool Palette View

The Tool Paletteisagraphical interface that allows you to quickly visualize data
variables. Thisview isavailable only in the Visualize perspective. The Palette
contains options for visualizing plot, image, surface, contour, map, and volume data.
Simply drag avariable from the Variables view to create a visualization.

Action Pulldown
Toggle ~ Menu Minimize
A Tool Palstte 52 =~ = 5 ——Maximize

Image Actions

B

Image: 1:1 resolution

o
[=)
o

Trage

E

, RSE_TABLE=3:1_pal,

Imane WINDOW _TITLE=Tmage %.1'
-—‘I‘\\
Irmage: Entire image
Surface Image
Tools — f Q , RGE_TABLE="%1_pal, /FIT_TO_VIEW, — Actions
WINDOW_TITLE=Tmage %1’ for tools

Image: 1:1 resolution with colorbar

K3

Image

, RGE_TABLE=%1_pal, /INSERT_COLOREAR,
WINDOW _TITLE=Tmage %:1'

Empty image visualization
IIMAGE

D{
mx
L
=i
o
=

Yolume

Drag actions to the command line, to an editor,
or overplot onto an existing visualization

Figure 3-2: Tool Palette

IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench 27

For greater control over the visualization that is created, click the Action togglein the
Tool Palette menu bar do display the actions associated with each tool. Drag variables
from the Variables view to the highlighted fields in the actions and click the button to
create the visuaization.

Project Explorer P project Exporeri3 5 & v =08
+ bI Default
The Project Explorer view provides a hierarchical = Misc Project
view of the resourcesin the IDL Workbench. From i
here, you can open files for editing or select = 8 testpro
resources for operations such as exporting. % EES:;E:E

+] bI Sample Code

OU tl ne L5 Project Explorer EE Outline &3 =08

The Outline view displaysastructural outline of the | = & idneturl_widget.oro
filethat is currently open in the editor area. The inetrl_widget_istClck_event

idlnetur]_widget_btnBrowse_event

Outline Vie/\/ ShOWI’] a[I’Ight d|q:)|ays a I|§ Of the idlnetur]_widget_btnDownload_event
H H H idlnetur]_widget_btncClose_ewent
procedures contal ned ina. pro fl Ie idineturl_widget_btnConnect_ewvent
idinetur]_widget
< >
Editors
IDL source files have the 8 5 8 =
“ ” : & i i o e ’ &3 | . =
.pro eXtenS on. The idineturl_widget.pro color_test.pro sample_batch.pro
1=pro color test L

IDL Workbench can host 2

many different types of 3| beginfum = 10.0
. . 4 endium = 20.0
editors, but .pro filesare 5 steps = 5
. . &
ajlted us ng thel DL_ 7 templirray = FIHDGEH (steps)
g.]ppl |aj .pro f| Ie ed|t0r =] print, 'templrray = ', templArray
=] v

The editor area of the IDL
Workbench contains the
file editor windows. Any number of editors can be open at once, but only one can be

Getting Started with IDL IDL Workbench Tour

28

Chapter 3: The IDL Workbench

active at atime. By default, editors are displayed as tabs inside the editor area. An
asterisk (*) indicates that an editor has unsaved changes.

Although you will mostly use the IDL-supplied editor to work with .pro files, the
IDL Workbench supports many types of popular editors.

Variables

The Variables view displaysthe —|#= Variables &
values of variables in the current Name alue
execution scope. In the Visualize % 1= System

perspective, you can drag i Tg o 'L{D:E[”;l”;]m”s}}

to the Tool Palette to create

visualizations. In the Debug

perspective, the Variables view allows you to see variable values in the routine in
which execution halted. If the calling context changes during execution—as when
stepping into a procedure or function—the variable list changes to reflect the current
context.

For more information on using the Variables view while debugging, see “ Viewing

Variable Values’ on page 32.

Tip
Right-click on avariable to delete it from the Variables view and from IDL memory.

Visualizations View

When no visualizations are created, the Visualizations view displays links to the
tutorial video and to the relevant online help topic:

&7 visualizations 57 =08 &7 visualizations 52 e — O
To learn more: ﬂ[ﬂ] 1
+ Watch videos —>»
Plat SINE_WA,... [Plob SINE_ WA, ..

* Read online help

When avisualization is created, this view displays thumbnail images that represent
the current visualizations. This view also allows you to control visualizations. To
view avisualization, simply click on the associated thumbnail image. The blue border
around the thumbnail indicates the current iTool. Any overplot action will affect the
current (selected) iTool.

IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench

29

To close avisualization, right-click on it and select Close. To close all visualizations,
click the double-x icon in the upper right of the view.

Console

The Console view displays output from both the
IDL command line and compiled IDL programs.
This output includes:

e IDL command output and errors

* |DL program output

» Compilation information and errors

Command History

B console 52

lToL> x
IDL> ¥
IDL> z

S
7

iz

&Y Command History 53

The Command History view displays alist e

of commands entered at the IDL command
line. You can copy one or more previous
commands and paste or drag them to an
editor or to the IDL command line. You can
a so double-click asingle command to
execute it immediately.

Command Line

*El Command Line 53

The Command Line view mL> |
displaysthe DL command

= Todaw

a =indgen(10,10,10}
x=3

=8

prink, x4y

¥ o+ v

e Commands entered at the IDL command line [**&* rxines =

% @i | (5l &

1L
il
i
]

Date

11/14/07 4:56 PM
11/14/07 4:56 FM
11/14/07 4:56 PM
11/14/07 4:57 PM

line, which is used to execute IDL statements, compile and launch applications, and

create main-level programs.

Tasks

o= Tasks i1
2 ikems

The Tasks view displays tasks

Description

v
inserted into code files. A task IEIEEETESNEN
isashort text stri ng @(plalnlng v| & Redefine the variabl...

e

an action to be completed, in

Getting Started with IDL

Resource

url_docs_ftp_get.pro
idineturl_widget.pro

a +, = =
@ X =

Lacation

Sarnple Codeyl...

Sample CodefI... line 46

>

IDL Workbench Tour

30 Chapter 3: The IDL Workbench

relation to aparticular line of code. When you are done with atask, you can remove it
or mark it as completed.

Projects

InIDL, aproject is adirectory that contains source code files and other resources
(data, image files, documentation, and so on). Projects are especially useful aslogical
containers for related source code and resource files. A project is saved within the
IDL workspace (which is discussed later in the chapter).

While you can build and run individual .pro files, you can also build and run an
entire project, aswell as configure how the project is built.

Workspaces

A workspace is a directory that contains project directories, metadata about the
contained projects, and information about the state of the IDL Workbench. Each
workspace “remembers’ the arrangement of the IDL Workbench views and
perspectives. You can have as many different workspaces as you like, but only one
workspace can be loaded at once.

You can select any location and directory name for your workspace. By default, the
workspace directory is named IDLWorkspace and islocated in your home directory
(as defined by the sHOME environment variable on UNIX-like platformsand in
Documents and Settings\username Of Users\username on Windows
platforms).

IDL Workbench Tour Getting Started with IDL

Chapter 3: The IDL Workbench 31

Compiling and Running an IDL Program

To compile and run an IDL program using the IDL Workbench:
1. Openthefileinthe DL editor:

* Usethe Project Explorer view to select afilelocated in one of your
projects. Double-click on the file to open it in an editor.

o Alternately, use File — Open Fileto select afile from the file system. For
example, you could open the file
examples\demo\demosrc\d_uscensus.pro fromthe DL
installation directory.

2. Compilethefile by clicking the Compile button on the toolbar, or by
selecting Run — Compile filename, where filename is the name of thefile
opened in the IDL editor.

3. Executethefileby clicking the Run button @ onthetool bar, or by selecting
Run — run filename, where filenameis the name of the file opened inthe IDL
editor.

Note
You do not need to explicitly compile your program each time you run it.
Clicking the Run button will compile the file automatically if it has not yet
been compiled. You do need to recompile your program if you compiled it
and then made changes to the source code.

Getting Started with IDL Compiling and Running an IDL Program

32 Chapter 3: The IDL Workbench

Breakpoints and Debugging

The IDL Workbench provides robust tools for finding and correcting problemsin
your code.

Breakpoints

To set a breakpoint, place the cursor on the line where you want the breakpoint to
appear and press Ctr-Shift-B or select Run — Toggle breakpoint. A blue dot
appearsin the left-hand margin of the editor window.

my3tring = 'This iz a tiny IDL routine’
@ PRINT, mystring
; Create some other wariabhles

You can also toggl e breakpoints on and off by double-clicking in the left-hand margin
next to the line of code on which you want IDL to pause.

Debug Perspective

The IDL Workbench makes a distinction between editing and debugging code, and
providesthe ability to switch automatically to the Debug perspective when an error or

breakpoint is encountered. The Debug perspective is a collection of the views most
useful for debugging and analyzing code.

See the Using the Debug Perspective topic in the IDL Online Help for details.
Viewing Variable Values

When you run aroutine that contains a breakpoint, IDL will halt execution when it
reaches the breakpoint. When execution is halted, you can inspect the variable values

in the current execution scope using the Variables view or by hovering the mouse
pointer over avariable in the editor.

Stepping Through Code

When execution is halted due to a breakpoint or an error, you can execute single

statements using the Step commands on the Run menu. See the Stepping Through
Code topic in the IDL Online Help for details.

Breakpoints and Debugging Getting Started with IDL

Chapter 3: The IDL Workbench 33

Debugging a Short Program

Let’swalk through the process of debugging a short program. In this example, we'll
create a program, set a breakpoint, inspect variable values, and step through the code.

1. Tocreateanew .pro file, click the # icon or select
File— New — IDL Source File.

A new editor window appears.
2. Enter the following text into the editor window:

PRO tinyRoutine

; Create a string variable

myString = 'This is a tiny IDL routine'
PRINT, mystring

; Create some other variables

myNumber = 4

myResult = STRING (myNumber * !PI)

; Display the myResult variable

void = DIALOG_MESSAGE ('Result: '+myResult)
END

To save your new .pro file, click the =] icon or select File — Save.

Select “Default” asthe parent folder and click OK, accepting the default
filename (tinyroutine.pro).

5. To execute the program, click the 2 icon, press F8, or select
Run — Run tinyroutine.

The program prints a string to the Console view, displays adialog, and ends. If
you wanted to temporarily stop execution of your routine somewhere in the
middle, you would set a breakpoint.

6. Click OK onthedialog to clear it.
Position the cursor on the words PRINT, myString inthe editor window.

8. Press Ctrl-Shift-B or select Run — Toggle breakpoint. A blue dot appearsin
the left-hand margin of the editor window.

my3tring = 'This iz a tiny IDL routine’
@ PRINT, mystring
; Create some other wariabhles

You can also toggle breakpoints on and off by double-clicking in the left-hand
margin next to the line of code on which you want IDL to pause.

Getting Started with IDL Breakpoints and Debugging

34 Chapter 3: The IDL Workbench

9. Runthe tinyroutine program again (pressF8, clickthe @ icon, or select
Run — Run tinyroutine).

If thisisthe first time you have run a program with a breakpoint (or an error),
you will see the Confirm Per spective Switch dialog.

10. Click Yesto display the IDL Debug perspective.

The IDL Workbench interfaceisrearranged to add several new views at the top
of the screen: Debug, Variables, and Breakpoints.

Notice that the Variables view contains entries for the four variables defined in
the tinyroutine routine, but that only the MysTRING variableis defined. It
is also instructive to examine the contents of the Debug and Console views
when IDL stops at a breakpoint.

11. PressF®6, click the Z icon (on the toolbar in the Debug view), or select
Run — Step Over.

Note how the Debug, Console, Variables, and Editor views adjust as you
repeatedly step through your code.

12. When you have stepped to the end of
tinyroutine (you will seethe text T 8 wisuslize |§§ 0L | %5 Debug
“g Stepped to: $MAINS” inthe
Console view), click the IDL icon on
the Perspective toolbar to return to the IDL perspective.

For additional information on debugging, see the Debugging IDL Code topic in the
IDL Online Help.

Breakpoints and Debugging Getting Started with IDL

Chapter 3: The IDL Workbench 35

Getting Help

There are several sources of user assistance in the IDL Workbench:
¢ Hover Help
e Content Assist
e Context-Sensitive Interface Help
e Online Help System

Hover Help

Hover Help is displayed in a pop-up window that appears when you hover the mouse
cursor over the name of an IDL routine or variable. For routines, Hover Help displays
the syntax documentation. For variables, Hover Help displaysthe current value of the
variable (if execution is stopped in the routine in which the variable is defined).

Content Assist

Content Assistance is displayed in a pop-up window that appears when you place the
mouse cursor in afull or partial IDL routine name and press CtrI-Space. The Content
Assist window displays alist of routine names that begin with the charactersin the

selected string.
file = dialog|
EHD &2 DIALOG_DECOMNECTY) Syntan:
&2 DIALOG. MESSAGED) Result = DIALOG_PICKFILE(DEFALLT_EXTENSION =
@ = rll, DIALGG_PARENT = null, DIRECTORY = null,
DIALOG_PICKFILES) DISPLAY_MNAME = null, FILE = null, FILTER. = ruill,
@2 DIALOG_PRINTERSETUR() FI¥_FILTER = null, GET_PATH = null, GROUP = null,

& MULTIPLE_FILES = rull, MUST_EXIST = nul,
DIALOG-PRINTJOBO OVERWRITE_PROMPT = null, PATH = rull, READ =
@FDIALOG_READ_IMAGE() rll, RESOURCE_MAME = null, TITLE = null, WRITE <
&R DIALOG_WRITE_IMAGE() nul

dialog_wizard() %

Highlighting an item from the Content Assist window displays the syntax for that
routine. Selecting the item inserts it at the cursor location.

Context-Sensitive Interface Help

If you are working through a task and encounter a part of the IDL Workbench
interface that you do not understand, you can summon context-sensitive help. By
default, this displays the Help view and gives you some specific information about
the view/editor/dialog you are using, and possibly some links to topics for further
help.

Getting Started with IDL Getting Help

36

Chapter 3: The IDL Workbench

Context-sensitive help can be accessed by clicking on the interface part in question
and then selecting Help — Dynamic Help or pressing F1 (Windows), Shift+F1
(Linux and Solaris), or Help (Macintosh). Clicking the ? icon in the lower left-hand
corner of many IDL Workbench dialogs will also display context-sensitive help.

Online Help System

Getting Help

For more in-depth information, including general information, programming

reference guides, and tutorials, refer to the IDL Online Help system. The Help system

lets you browse, search, bookmark, and print Help documentation.

Tip
See the Using IDL Help topic in the IDL Online Help for complete information on
using the IDL help system.

You can interact with the Workbench help system using either the Help view or a
separate Help browser. The view and browser provide the same information but in
different ways.

The Help View

The Help view provides help inside the Workbench. You can open the view from the
main menu by selecting Help — Dynamic Help or Help — Search. The view opens
showing the Related Topics or Search page, respectively. By default, typing »
followed by a search term at the IDL command line also displays help topicsin the
Help view. See the Help View Interface topic in the IDL Online Help for additional
information.

The Help Browser

The Help browser provides the same content as the Help view, but in a separate
browser application. You can open the window from the main menu by selecting
Help — Help Contents. The first view shown in the window displays the table of
contents for the product documentation. Click on one of the links to expand the
navigation tree for a set of documentation. On some platforms, the Help browser can
be either a stand-al one application or aweb browser; on other platformsthe Help
browser is always aweb browser. See the Help Browser Interface topic in the IDL
Online Help for additional information.

Getting Started with IDL

Chapter 3: The IDL Workbench

Preferences

Preferences that apply to the IDL
Workbench interface — editor
settings, syntax coloring, and code
templates, for example — are
controlled viathe IDL Workbench
Preferences dialog. Seethe IDL
Preferences topic in the IDL
Online Help for detailson IDL's
workbench preferences. To display
the Preferences dialog, select
Preferences from the Window
menu of the IDL Workbench
interface. IDL Workbench
preferences are grouped together
under the heading IDL .

37

4@ Preferences

type Filter text

Interprater
Paths
Syntax Coloring
Templates

- InstallfUpdate

& RunjDebug

& Team

DL

0L prompt; | IDL>
Directories
Startup file;
Initial working directary:
Temparary directory:

C ibrary comple directory:

Command Histor:

¥
[/] Sawe command history between sessions

History size (ines); | 233

Save Files

[l include user information in SAYE filss

File ©pen Preference
[¥] ¥isualize Images On Open

Configure Console Settinas snd Colars...

CHAITTYIDLT texamplestdata

Browse..,

Restare Defaults Apply

Note that the Preferences dialog also allows you to modify preferences for features
that are not specifically related to IDL. These preferences include things like the
external editors associated with specific file types, tasks to be invoked when starting
up or shutting down the workbench, and keybindings. These non-IDL preferences are
part of the Eclipse framework on which the IDL Workbench is built.

Usethe filter text field at thetop of the tree view in the Preferences dialog to
locate specific itemsin the Preferences dia og.

Note

IDL Workbench preferences apply only when the IDL Workbench is running, and
have no bearing on IDL programs. IDL System preferences, which control how IDL
executes code, are set within IDL itself. Seethe IDL System Preferencestopicin the

IDL Online Help for details.

Getting Started with IDL

Preferences

38

Chapter 3: The IDL Workbench

Updating the IDL Workbench

The IDL Workbench provides an easy way to update and add to your IDL installation
viathe Internet. The Software Updates feature allows you to locate plugins that
provide new features or revisions to existing features and install them automatically.

Types of features you might install include:

Warning

Updates to the IDL Workbench itself, provided by ITT Visual Information
Solutions.

IDL features not included in the standard IDL distribution, such asfile readers
or even entire code libraries. These additional features may be available from
the ITT Visua Information Solutions Code Contribution library or from other
repositories set up by third parties.

Eclipse features not included in the standard IDL Workbench distribution, such
as source code managers (CV'S, Subversion) or other productivity tools. These
features may be available from ITT Visual Information Solutions (asis the
plugin that integrates the CV S source code manager into the IDL Workbench)
or from third parties.

While adding plugins provided by third parties should leave the IDL-specific
features of the IDL Workbench unaltered, ITT Visual Information Solutions cannot
vouch for the stability, quality, or usefulness of plugins from other sources. If you
install a plugin that appearsto adversely affect the IDL Workbench, uninstalling
that single plugin should resolve the problem.

Installing New Features

To install new features, do the following:
1. Select Help — Software Updates — Find and Install...

2. Sdect Search for new featuresto install and click Next>.

3. Sedlect an update site or add a new update site.

The DL Workbenchincludesthe ITT Visual Information Solutions update site
and some Eclipse-related sites by default. You can easily add other update sites
to the list; see the Installing new features with the update manager topic in the
IDL Online Help for details.

For this example, select the ITT Visual Information Solutions update site.

Updating the IDL Workbench Getting Started with IDL

Chapter 3: The IDL Workbench 39

4. Additionsto the IDL

5.

Workbenchitself are [AETEN
contained in the Select Features to installfrom the search result list. [=
Workbench Updates B
section. In this section =L
youwill find plugins that 0 momnn 100
provide additional or 57 S
Updated functl Onal |ty tO []%* source Code Generator for Beginners 1.0.0
the workbench interface.
T he | D L COde ITT Visual Information Solutions - Code Contrib and Workbench Lpdates
Contributions section of 0ok s soleced,

. . Show the latest version of a Feature only
the update site contains [Pt Festuvesncutcin e Fctures ot
featuresthat augment the
IDL _I anguage. These ' -
pluginsgenerally contain

IDL source code, and

may consist of single routines, entire applications, or even code libraries.
Features available in this section have been created by IDL users either within
or outside ITT Visua Information Solutions. While they have not received the
rigorous quality assurance testing that IDL itself receives, they are of high
quality and may be useful depending on your needs.

After selecting afeature to install, click Next>. Read and accept the license
agreement for the feature, and click Next> again.

By default, plugins are installed in a subdirectory of the IDL installation
directory, and IDL’s search path is updated so that IDL can find the new plugin.
You caninstall pluginsin other directories by clicking Change L ocation; note,
however, that if you install pluginsin adifferent location you may need to
manually modify IDL's search path.

Updating Existing Features

To search for updates to features you have already installed, including the IDL
Workbench itself:

1
2.

Select Help — Software Updates — Find and Install...

Select Search for updates of the currently installed features and click
Next>.

The Update manager searches the network for updates to featuresin your
current installation.

Getting Started with IDL Updating the IDL Workbench

40 Chapter 3: The IDL Workbench

4. If it finds updates available, select the features you want to update and click
Next>. Read and accept the license agreement for the feature, and click Next>
again.

Managing Your Configuration

You can also use the Product Configuration dialog to manage your installation,
search for updates, and disable specific plugins.

Select Help — Software Updates — Manage Configuration to display the
Product Configuration dialog.

Updating the IDL Workbench Getting Started with IDL

Chapter 4
Line Plots

This chapter shows how to display and modify two- and three-dimensiona plotswith theiPlot tool
and Direct graphics.

IDLand2-D Plotting 42 Plotting with Direct Graphics........... 50
Plotting withiPlot 44 IDLand3-DPlotting 52

Getting Started with IDL 41

42 Chapter 4: Line Plots
IDL and 2-D Plotting

This section demonstrates how to create and manipulate two-dimensional plots using
the Visualization Tool Palette, theiPlot tool, and IDL’s Direct graphics system.

To learn more about plotting linear datain IDL, seethe Line Plots topic in the IDL
Online Help.

For more information on working with the iPlot tool, see the Working with Plots topic
inthe IDL Online Help.

For alist of Direct graphics plotting routines, refer to the Plotting section of the
Functional List of IDL Routines topic in the IDL Online Help.

IDL and 2-D Plotting Getting Started with IDL

Chapter 4: Line Plots 43

Plotting with the Tool Palette

Using the Tool Palette is an easy way to quickly display your datain graphica form,
without any IDL programming. To create a simple plot with an overplot:

1

The data displaysin theiPlot tool.
4.

Make sure you are viewing the IDL Visualize Perspective. (Click the Visualize
icon in the upper right of the Workbench.)

Enter the following variables at the command line:

A=2*1PI/100*FINDGEN (300)
X=sin(a)
Y=cos(a)

Thea, x, andvy variablesappear inthe
Variables View.

From the Variables View, drag the x
variable to the Plot Tool.

o
=)
‘HI\‘HH

)
@

L eave the iPlot window open and return to
the IDL Workbench. Notice a plot shown in
the Visualizations view.

I I R R s
50 100 150 200 250

o
I\\\‘\\\I‘

o

Click on the Action toggleicon (|:=|) to expand the Tools Palette to display the
Actions.

Click onthe Plot tool to display the Plot Actions. In thefirst action, you should
see x displayed in the variable field.

Fromthe Variablesview, dragthey variableontop of the X [ine gt v
in the first action. FoT - (X

IPLOT
IPLOT, JOYERPLOT

Now click on the down arrow next to the IPLOT button in
that action, and select IPLOT, /OVERPLOT.

Thetwo plots
now display in the original iPlot
window:

05

e
=Y

=3
»

o

=)
4\\\\‘\\\\'

Getting Started with IDL Plotting with the Tool Palette

44 Chapter 4: Line Plots

Plotting with iPlot

The IDL iPlot tool displays your datain plot form. TheiPlot tool then allows you
great flexibility in manipulating and visualizing plot data. iPlot can be used for any
type of two- or three-dimensional plot, including scatter plots, line plots, polar plots,
and histogram plots.

Creating a Simple 2-D Plot

To create asimpleline plot in the iPlot tool, 0z
enter the following code at the IDL command
line:

0.6

iPlot, RANDOMU (seed, 20) o

In this case, we are using the RANDOMU 0ar
function to return twenty uniformly-distributed,
floating-point, pseudo-random numbers that are
greater than 0, and less than 1.0.

Creating a 2-D Overplot

In theiPlot tool, you may plot a new data set

over aprevioudy-drawn data set. This 02
process (called overplotting) is useful for 00
directly comparing multiple data sets. 02

In this example, we will plot a cosine wave 06 L

| L L |
on top of asine wave. ‘ . 1%

L1
150

1. Thevariable theory storesthe points of a sine wave of decreasing amplitude.
theory = SIN(2.0*FINDGEN(200)*!PI/25.0)*EXP(-0.02*FINDGEN (200))
2. Plot the sinewavein theiPlot tool.
IPLOT, theory
3. Create the variable newtheory to contain cosine wave points.

newtheory=C0S (2.0*FINDGEN (200) *!PI/25.0) *EXP (-0.02*FINDGEN (200))

Plotting with iPlot Getting Started with IDL

Chapter 4: Line Plots 45

4.

Overplot the cosinedataintheiPlot tool. — ,,

IPLOT, newtheory, /OVERPLOT, $
LINESTYLE=2 05

This plots the second linein the sameiPlot
window as thefirst. The LINESTYLE
keyword changes the line style property of

the plot to display adashed linerather than *° '
asolid line. You can also overplot in the o s
iPlot tool simply by loading new data over

an older data set.

0.0

?
-
"
-2
J
7
1

Plotting an ASCII Data Set

In this example, we will import an ASCII data set into IDL and plot it with theiPlot
tool. Enter the following code at the IDL command line:

1

© N o o

Create an ASCII template, which defines the format of a particular ASCI| file.
IDL will use thistemplate to import the data. The plotTemplate variable
contains the template.

plotTemplate = ASCII_TEMPLATE()

A dialog appears, prompting you to select afile. Select theplot. txt filein
the examples/data subdirectory of the IDL distribution.

After selecting thefile, the ASCI1 Template dialog appears.

Select the Delimited field type, since the ASCII datais delimited by tabs (or
spaces).

In the Data Starts at Line box, enter avalue of 3. (The data does not start at
line 1 because there are two comment lines at the beginning of thefile.)

Click Next.
Inthe Delimiter Between Data Elements section, select Tab.
Click Next.

Name the ASCI| filefields by selecting arow in the table at the top of the
dialog and entering avalue in the Name box.

e Click on thetable'sfirst row (FIELD1). In the Name box, enter time.
¢ Select the second row and enter temperaturel.

¢ Sdlect the third row and enter temperature?2.

Getting Started with IDL Plotting with iPlot

46

Chapter 4: Line Plots

9. Click Finish.

10. Enter the following code at the IDL command line to import the ASCII data
fileplot. txt using the custom template plotTemplate

plotAscii = READ_ASCII(FILEPATH('plot.txt', SUBDIRECTORY= $
['examples', 'data']l), TEMPLATE=plotTemplate)

11. Plot the temperaturel VS. time data

IPLOT, plotAscii.time, $
plotAscii.temperaturel 10

For more information on importing ASCI| 8
data, see the Reading ASCII Data topic in the
IDL Online Help.

Adding Plot Titles e T T e T

TheiPlot tool alows you to modify your plots by
adding elements such as error bars, legends, and Temperature Over Time
axistitles. You can also manipulate the plot with
tools such as curve fitting or filtering.

In this example, we will add amain title and axis
titles to the ASCI| data plot we created
previously. The VIEW_TITLE keyword adds a
main title, and the XTITLEand YTITLE ‘ L
keywords add axis labels. If you have not already 2 Y Secons
done so this session, do the example “Plotting an

ASCII Data Set” on page 45.

Enter the following code at the IDL command line, which will create anew iPlot
dialog and add titles to the plot.

Temperature Celsius

®
T T T [TT [TIT [T T

®

IPLOT, plotAscii.time, plotAscii.temperaturel, $
VIEW_TITLE='Temperature Over Time', $
XTITLE='Time in Seconds', $
YTITLE="'Temperature Celsius'

Alternately, you could add title annotations to an existing plot by selecting the Text
tool A| , positioning the cursor at the location where you want thetitle to appear, and
typing the text. Double-clicking on the text displays the text annotation property
sheet, which allows you to modify the size, font, color, and other properties of the
annotation.

Plotting with iPlot Getting Started with IDL

Chapter 4: Line Plots 47

Changing the Data Range of a Plot

Your data set may contain more data than you

want to display in a particular plot. While you
could use IDL’s array subscripting syntax to e
create a subset of the original array, it is often nE-
easier to simply limit the range used when o
creating the plot display. . E
For example, suppose you wanted to restrict the N EURTETTIT IV TP PRI |

range displayed in your plot to show only time

values (the X-axis) between 15 and 18 seconds, and temperature values (the Y-axis)
between 8 and 13 degrees. Using the [XY Z]RANGE keywords to the IPLOT routine
allows you to do this when creating the plot:

IPLOT, plotAscii.time, plotAscii.temperaturel, $
XRANGE=[15,18], YRANGE=[8,13]

Alternately, you could start by displaying the full datarange in iPlot, and then alter
the Dataspace properties to reflect the new X and Y ranges:

&
DlslEl] o|-|: el W slole] 2 = alslololsle]
o o o
13 g e -
s E
e E
o E ER
0= E
9= =
8 5 ol
13 14 15 18 17 18
a o o
F1IDL iPlot: Visualization Browser =[]
= W Window Dala Space
=0 View_1 Name Dsts Space ™
& Visuslization Layer Desorph Dats S
@9 Data Space Show T
%Z‘”‘ Isoliopic scalng _ Automat
E“esAmu Arisotropic 20 scale |0.7
E i1
E w2
E w3
@ Annotation Layer

Click on item to select, or click & drag selectios

Minimum » value

Getting Started with IDL Plotting with iPlot

48 Chapter 4: Line Plots

Using Plotting Symbols and :
Line Styles

When plotting several datasetsinasingleplot, it
is often useful to use symboals, line styles, and
legends to differentiate between the data sets.
The following procedure created the plot shown
at right.

@
AGIRARI RN

1. First, plot the temperaturel values
using the standard (solid) line styleand a
diamond symbol to mark the data points:

IPLOT, plotAscii.time, plotAscii.temperaturel, SYM_INDEX=4

Note that we set the SYM_INDEX keyword equal to four to create the
diamond symboals.

2. Next, overplot the temperature2 valuesusing a dashed line
(LINESTYLE=2) and atriangle symbol to mark the data points
(SYM_INDEX=5):

IPLOT, plotAscii.time, plotAscii.temperature2, SYM_INDEX=5, $
LINESTYLE=2, /OVERPLOT

3. Toinsert alegend, click in the plot areato select it (the axis lines around the
plots will be highlighted), then select New Legend from the Insert menu. The
legend is created using default names for the data sets (P1ot and Plot1).

4. Doubleclick on plot inthelegend to bring up the property sheet, and change
the value in the Text field to Temperature 1. Similarly, change P1ot1 to
Temperature 2.

Adding Error Bars

You can add error bars to your plot using the [XY Z]ERROR keyword to IPLOT.

Suppose you know that the temperature values
you have collected are only accurate within 0.3
degrees Celsius. To include error bars on your
plot of temperature versus time, you would do
the following:

1. Create an array with the same number of
elements as you have temperature
readings:

Plotting with iPlot Getting Started with IDL

Chapter 4: Line Plots 49

error_bars = FLTARR (N_ELEMENTS (plotAscii.temperaturel))+0.3

This creates a floating-point array with the same number of elements asthe
plotASCI|.temperaturel array, setting each element’s value equal to 0.3.

Note
The size of the error bar does not need to be the same for every data point.

Each element in the error_bars array could contain a different value.

2. Usethe YERROR keyword to add the error bars:

IPLOT, plotAscii.time, plotAscii.temperaturel, YERROR=error_bars

Getting Started with IDL Plotting with iPlot

50

Plotting with Direct Graphics

Creating a Simple 2-D Plot

1. Sincewe are using Direct graphics, tell

IDL to use a maximum of 256 colors and
load a simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, O

Create the X-axis values. The FINDGEN
function creates an array of one hundred
elements, with each element equal to the
value of the element’s subscript.

X= 2*!PI/100 * FINDGEN(100)
Create the plot.

PLOT, SIN(X)

Creating a 2-D Overplot

Aswiththe DL iPlot tool, you can overlay plots
in Direct graphics. Thisisaccomplished withthe
OPL QT procedure.

It is often agood ideato change the color, line
style, or line thickness parameters when calling
OPLOT to distinguish the data sets. Refer to the
OPLOQOT topicin the IDL Online Help for more
information.

If you have not already done so, do the
example “Creating a Simple 2-D Plot” on
page 50.

Plotting with Direct Graphics

Chapter 4: Line Plots

In IDL’s Direct graphics system, plots are created with the PLOT procedure.

Creating plots using Direct graphicsis not as convenient as using the iPlot tool, but
may be desirable if you are incorporating images into alarger widget-based
application, or if you need to programatically create alarge number of processed
images.

In this example, we will plot a sine wave using the Direct graphics PLOT procedure.

40 &0 80 100

Getting Started with IDL

Chapter 4: Line Plots 51

2. Overplot anew sine wave with twice the frequency. Make the line twice as
thick.

OPLOT, SIN(2*X), THICK = 2

3. Overplot yet another sine wave with triple the frequency. Instead of aline, use
long dashes.

OPLOT, SIN(3*X), LINESTYLE = 5
Printing a Direct Graphics Window

To print an image from an i Tool window, you simply select Print from the iTool’s
Filemenu. Printing the contents of a Direct graphics window is more involved. To
print a Direct graphics plot, enter the following commands at the IDL command line;

1. Savethe current plotting environment variable to alocal variable.
MYDEVICE=!D.NAME
2. Designate the printer as the plot destination.
SET_PLOT, 'printer'
3. Plot your data, with the output now directed to the printer.
PLOT, SIN(X)
4. Closethe printing device.
DEVICE, /CLOSE
5. Restore the original output device for your plots.
SET_PLOT, MYDEVICE

See The Printer Device topic in the IDL Online Help for information on choosing a
system printer for use when printing Direct graphics windows.

Note
If you experience problems printing on a UNIX platform, check that your printer is
correctly configured. For more information, refer to the IDL Printer Setup for UNIX
or Mac OS X topicinthe IDL Online Help.

Getting Started with IDL Plotting with Direct Graphics

52 Chapter 4: Line Plots

IDL and 3-D Plotting

IDL can also create three-dimensional
line plots. As an example, enter the
following code at the IDL command
line to create asimple
three-dimensional plot with the iPlot
tool:

x = FINDGEN(200)

IPLOT, x * COS(x/10), $
x * SIN(x/10), $
%, SYM_INDEX=5

For more information on other types of
three-dimensional plots, see “ Surfaces
and Contours” on page 81.

IDL and 3-D Plotting Getting Started with IDL

Chapter 5
Images

This chapter shows how to display and process images with the ilmage tool and Direct graphics.

IDLandIlmagescccvvviiinann. 54 Displaying Images with Direct Graphics .. 63
Displayinglmages 55

Getting Started with IDL 53

54 Chapter 5: Images

IDL and Images

IDL isideal for working with image data because of itsinteractive operation, uniform
notation, and array-oriented operators and functions. Images are easily represented as
two-dimensional arraysin IDL and can be processed just like any other array. IDL
also contains many procedures and functions specifically designed for image display
and processing. The IDL Workbench provides the Tool Palette in the Visualize
Perspective to quickly visualize data without IDL programming. In addition, the
ilmage tool allows you great flexibility in manipulating and visualizing image data.

To learn more about IDL’s image processing capabilities, see the Image Processing
user guide in the IDL Online Help.

For more information on working with the image tools, see the Image Visualizations
and Working with Images topicsin the IDL Online Help.

For more information on working with images in Direct Graphics, see the Displaying
Images in Direct Graphicstopic inthe IDL Online Help.

IDL and Images Getting Started with IDL

../com.rsi.idl.doc.gs/Displaying_Images_with_Direct_Graphics.html
../com.rsi.idl.doc.gs/Displaying_Images_with_Direct_Graphics.html

Chapter 5: Images 55
Displaying Images

You can easily create image visualizations using the Tool Paletteinthe IDL Visuaize
perspective or from the command line with the IMAGE command. Either way, the
visualization displays in the IDL ilmage tool, which allows you to visualize, modify,
and manipulate image data in an interactive environment.

For more information on working with the images using the Tool Palette, see the
Image Visualizations topic in the IDL Online Help.

For more information on working with the image tools, see the Working with Images
topic in the IDL Online Help.

Tt Operations WindowHel

.
[SIEIES 2| x[o[Fal| af fw=] alN[alolelel

Displaying Images Using
the Tool Palette

This example displays a TIFF image
of an aerial view above Manhattan.

1. Makesureyou are viewing the
IDL Visualize Perspective.
(Click the Visualize button
(|28 wisualize) in the upper right of
the Workbench.)

InIDL, select File —» Open File.
Navigate to the examples\data directory of your IDL installation.
Select thefile image . tif.

Displaying Images Using IIMAGE
You can create the visualization shown in the previous section by opening the ilmage
tool from the IDL command line:
1. AtthelIDL command line, enter il mage.

Theilmage tool displays.

2. Ontheilmagetool, select File — Open, and select image. tif from the
examples\data subdirectory of your IDL installation.

3. Click Open, and thefileisdisplayed in the ilmage tool .

Getting Started with IDL Displaying Images

56 Chapter 5: Images

Resizing Images

There are several easy waysto resize an imagein

the ilmage tool: ENEEE:

* Onthetoolbar, select apercent valuefrom vjey Zdom Size Menu
the Size menu (25%, 75%, and so on).

e Onthetoolbar, click the View Zoom button, click on theimage, and use the
mouse scroll whee! to increase or decrease the image magnification.

Contrast Enhancement

Sometimes changing how the colors are represented is all you need to improve the
look of animage. IDL provides several ways to manipulate the contrast.

Thresholding

The Thresholding operation takes animage
containing a range of pixel values and
produces a two-value image (effectively a
black and white image). Specificaly, all
the pixel values up to a certain value are
represented by either black or white pixels,
and all the pixel values above the threshold
value are represented by the opposite color.
For example, athreshold vaue of 150
produces an image in which all the pixel
values under 150 are represented by black
pixels, and all pixel values of 150 and
above are represented by white pixels.

In the following example, we use the “greater than” operator (GT) to create a
thresholded image in which pixel values greater than 140 are white and all others are
black.

1. Loadthe image.tif fileintoanIDL variable:

img = READ_TIFF(FILEPATH('image.tif',6 $
SUBDIRECTORY=['examples', 'data'l))

2. Theoperation img GT 140 createsan array of ones and zeros. The BY TSCL
command transforms the array into values of 255 and zero.

Displaying Images Getting Started with IDL

Chapter 5: Images 57

Scale the pixel values of the
image.tif fileto the entire range
of abyte (0-256), and send all values
greater than 140 to the ilmage toal.

ITIMAGE, BYTSCL (img GT 140)

To create athresholded image in which
pixels with values less than 140 are white
(the inverse of the previous example), enter
the following code at the IDL command
line:

ITIMAGE, BYTSCL (img LT 140)

In many images, the pixels have values that
are only a small subrange of the possible
values. By spreading the distribution so that
each range of pixel values contains an
approximately equal number of members,
the information content of the display is
maximized. In IDL, the HIST_EQUAL
function performs this redistribution on an

array.
To display a histogram-equalized version of

image. tif, enter thefollowing code at the
IDL command line:

IIMAGE, HIST EQUAL (img)

Smoothing and Sharpening

Images can be rapidly smoothed to soften edges or
compensate for random noise in an image using IDL’s oot
Smooth filter. The Smooth filter performs an equally S I

weighted smoothing using a square neighborhood of an
arbitrary odd width, as shown below.

To smooth an image:

1. Intheilmagetool, select File — Open, and select
image.tif fromthe examples\data g &
subdirectory of your IDL installation. &0z g

Cancel

2. Click Open, and thefileisdisplayed in theilmage
tool.

Getting Started with IDL Displaying Images

58

3. Select Operations — Filter — Smooth.
The Smooth dialog appears.

4. Inthe Width box, enter the value
7. Thiscreatesa7 x 7 pixel-square
smoothing area.

The images at the bottom of the
dialog show the displayed file
before and after the filter is
applied. The image shown at right
is the smoothed image.

5. Click OK.
Unsharp Masking

The previous image looks a bit blurry because it contains

only the low-frequency components of the original image.

Often, an image needs to be sharpened so that edges or
high spatial frequency components of the image are
enhanced. One way to sharpen animageis to subtract a
smoothed image containing only low-frequency
components from the original image. This techniqueis
called unsharp masking.

To unsharp mask an image:

1. Using the smoothed image. tif file usedin the
previous example, select
Operations — Filter — Unsharp Mask.

The Unsharp Mask diaog displays.

2. Inthe Radiusin Pixels box, enter
thevalue 7.

The images at the bottom of the
dialog show the displayed file before
and after thefilter is applied.

3. Click OK.

Displaying Images

Chapter 5: Images

| Unsharp Mask

e
Arnaunt of fiter [%2) 100

Radiusinpisels 7

Clipping theshold 0

ft ey

Getting Started with IDL

Chapter 5: Images 59

Sharpening Images with Differentiation

IDL has other built-in sharpening filters that use differentiation to sharpen images.
The Roberts filter is one of these, and returns the Roberts gradient of an image.

To apply the Raberts filter to an image:

1. Select File— Open, and select image. tif from the examples\data
subdirectory of your IDL installation.

2. Click Open.

Thefileisdisplayed in the ilmage
tool.

3. Select
Operations — Filter — Roberts.

The Roberts filter is applied to the
displayed image.

Another commonly-used gradient
operation is the Sobel filter. IDL's Sobel
filter operates over a3 x 3 pixd region,
making it less sensitive to noise than
some other methods.

To apply the Sobel filter to an image:

1. Seect File— Open, and select image. tif from the examples\data
subdirectory of your IDL installation.

2. Click Open.

Thefileisdisplayedintheilmage
tool.

3. Select
Operations — Filter — Sobel.

The Sobel filter is applied to the
displayed image.

Getting Started with IDL Displaying Images

60 Chapter 5: Images

Loading Alternate Color Tables

Try loading some of the predefined IDL color tables to increase the contrast of the
image.

1. After loading an image into the ilmage tool, click Edit Palette (located on the
Image tab).

The Palette Editor dialog is displayed.

2. Click the Load Predefined... menu at the bottom of the dialog, and select a
color table menu item.

The loaded image will immediately incorporate the new color table. Go ahead
and play with different color tablesto observe their effect on the image.

3. When you are finished experimenting with different color tables, select the
first color table in the menu, B-W Linear (the original black and white color
table you have been working with), and click OK.

Cropping Images

To crop an image:

1. Select File— Open, and select image. tif from the examples\data
subdirectory of your IDL installation.

2. Click Open.

Thefileisdisplayed in the
ilmage tool.

3. Select Operations — Crop.
The Crop dialog displays.

4. Click ontheimage, and drag
the box around the tip of the
peninsula (actualy
Manhattan island).

Displaying Images Getting Started with IDL

Chapter 5: Images 61

5. OntheCrop didog, click Crop.

The cropped portion of the original imageis displayed
(the lower tip of Manhattan, in this case).

You may also crop an image directly using the toolbar:
1. Click the Crop button | on the toolbar.

2. Click on the image and drag the box around the
peninsula.

3. Double-click inside the box.

The cropped portion of the original image is displayed.
Rotating Images

You can easily flip or rotate in image in the ilmage tool.
To rotate an image 90 degrees clockwise:

1. If not aready loaded, load the image. tif fileand
crop Manhattan island (the procedure is explained in
“Cropping Images’ on page 60).

2. Select Operations — Rotate or Flip — Rotate Right.
Therotated image is displayed.

Extracting Profiles

The Line Profile tool plotsimage pixel values
from aline drawn over your image. Theresulting
2-D plot isdisplayed in anew iPlot window.

To create aline profile plot of an image:

1. Ontheilmagetool, select File - Open,
and select image . tif from the
examples\data subdirectory of your
IDL installation.

Click Open, and thefileis displayed in the ilmage tool.
On the ilmage tool bar, click the Line Profile ﬁl button.

Getting Started with IDL Displaying Images

62

4.

Position the mouse pointer over the
spot on the image where you want to
start the line, and click.

Drag the pointer to the end point of
your line, and release the mouse
button.

A new plot window displays showing
aplot of theimage pixel values that
fall along theline.

240

220

200

180

160

140

120

Chapter 5: Images

|-

50

100 150

You can move the line around the image or change the endpoints, and the plot
window continuously updates.

Displaying Images

Getting Started with IDL

Chapter 5: Images 63
Displaying Images with Direct Graphics

The following sections show examples of reading and displaying image data using
IDL’s Direct graphics system. Working with images using Direct graphicsis not as
convenient as using the ilmage tool, but may be desirableif you are incorporating
images into a larger widget-based application, or if you need to programatically
create alarge number of processed images.

For a brief description of the IDL Direct graphics routines for displaying and

mani pulating images, refer to the Direct graphics and Image Processing sections of
the Functional List of IDL Routines topic, found in the Online Help.

Displaying Images
Before processing an image, we must

import theimageinto IDL.

For this example, we will continue to use
the image.tif file.

1. Read thefile by entering the
following code at the IDL
command line;

MYIMAGE=READ_TIFF (FILEPATH('image.tif', $
SUBDIRECTORY=['examples', 'data'l))

Using the IDL command line, you can view an image with two different
routines. The TV procedure writes an array to the display inits original form.
The TV SCL procedure displays the image and scal es the color values so that
al of the table colors are used (up to 256 colors).

2. Sincewe are using Direct graphics, tell IDL to use a maximum of 256 colors
and load a simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, O

3. Display theimage with the TV procedure:

TV, MYIMAGE

Getting Started with IDL Displaying Images with Direct Graphics

64

4. Display the color-scaled image

Resizing Images

1. Create anew image with new

Chapter 5: Images

with the TV SCL procedure:
TVSCL, MYIMAGE

Dismiss the graphics windows by
clicking in the window’s close
icon or by entering WDELETE at
the command line:

WDELETE

The REBIN function makesit easy to resize avector or array to new dimensions. The
supplied dimensions must be proportionate (that is, integral multiples or factors) to
the dimensions of the original image. Since the original image array is 768 by 512,
we need to determine the correct dimensions of the resized image. To resize the
image to half the original size, simply take half of the array’s original dimensions.

dimensions using the REBIN
function:

NEWIMAGE=REBIN (MYIMAGE, 384, 256)

Display theimage:

TV, NEWIMAGE

Displaying Images with Direct Graphics Getting Started with IDL

Chapter 6

Maps

This chapter describes the following topics:

IDLandMappingcocvvivnan.. 66
DisplayingiMapsTool 67
ModifyingMapData 70
Fitting an Image to a Projection 71

Getting Started with IDL

Plotting a Portion of the Globe 72
Plotting DataonMaps 74
Warping ImagestoMaps 77
Displaying Vector DataonaMap 80

65

66 Chapter 6: Maps

IDL and Mapping

IDL’s mapping facilities allow you to plot data over different projections of the globe.
This chapter shows how to display various map projections and plot data over them.

Thefirst part of this chapter demonstrates the mapping capabilities of the Tool Palette
and the iMap tool. The second part discusses how to work with direct graphics
statements at the IDL command line to demonstrate IDL's interactive mapping

capability.
For additional information, see the following topicsin the IDL Online Help:
e Map Visualizations for information on how to use the Tool Palette for mapping

e UsingIDL and IDL Reference Guide for information on the IDL mapping
routines

e Working with Mapsin theiTool User's Guide

IDL and Mapping Getting Started with IDL

Chapter 6: Maps

67

Displaying iMaps Tool

You can easily create map visualizations using the Tool Palette in the IDL Visualize
perspective or from the command line with the IMAP command. Either way, the
visualization displaysin the IDL iMap tool, which allows you to visualize, modify,
and manipulate maps in an interactive environment.

The interactive iMap tool gives you great flexibility in manipulating and visualizing
map data. The iMap tool also alows you to manipulate and edit individual
components of a map display, such as rivers, lakes, or national or state boundaries.

Displaying Maps using the Tool Palette

This example displays a map image warped to a map projection.

1

Make sure you are viewing the IDL Visualize Perspective. (Click the Visualize
button (|4 visuslize) in the upper right of the Workbench.)

At the IDL command line, type the following (or click on the code below):

READ_JPEG, FILEPATH('Clouds.jpg', $
SUBDIR=['examples', 'data']), clouds

The cLouDs variable
appearsin the Variables
View.

Q| Map C:\Program FilesMTTAIDL71\examples\data\Clouds. jpe (Mercator)

Drag the cL.oups variable
to the Map Visualization
tool.The iMap window
appears, with the IDL Map
Register Image dialog on
top.

Note
Registration lets the iMap tool properly display image data in the map
projection you select.

The default selection is Degree. Accept that selection by clicking Next.

Getting Started with IDL Displaying iMaps Tool

68

6.

Chapter 6: Maps

IDL Map Register Image Step 2 dialog appears. Accept the default values by

clicking Finish.

The map image displays with the Mercator projection.

Displaying Maps using IMAP

WEe'll start by simply displaying a projection and then adding a map to the display:

1

To open an iMap window, type IMAP at the IDL command line. An empty

iMap window appears.

To open and view a
projection, select
Operations— Map
Projection fromtheiMap
menu. This command
opens the Map Projection
dialog, shown here:

Choose a projection from
the Projection pull-down
list. A preview displaysin
the dialog. (The example
here uses the Mercator
projection.) Click OK.

Theresultsin theiMap

@l Map Projection

Show dialog
Projection
Ellipsoid [datunm)

Semimsior sxis

Semiminor axis

Center longitude [degrees]

Certer latitude [degrees]

Longitude minirnum [deg)

Longitude masimum [deg]

Latitude minimum [deg)

Trug

Mercator
Clarke 1866
3782064
E25ERB2.E

0
ul
<180
180
75

Latitude maximum [deg)

75

False easting (meters]

0

False narthing [meters]

0

Standard parallel 1 [deg)

0

Map Projection

DES[;[|DI|W'|4EM ap Projection

L
e
%

%
\u-a {}-j

::45

Map projection

Cancel |

window show just the projection, without other mapping elements.

To show the continents against

the projection, select

\;g\'
Insert - Map — Continents. 5

The continent outlines now
display in the iMap window

against the Mercator projection:

Displaying iMaps Tool

Eg\@ E bl Fd %? 2]
.3 v”s\ I b
, g“iﬁ&@ﬂ/gﬁw ,_6}4‘
N . 2
A e i
L /1. kY “ﬂw Ay @
= AR ST A N =TT ; T
T T A L A o T
Pl I A \
T

Getting Started with IDL

Chapter 6: Maps 69

TheiMap tool isagood way to
familiarize yourself with
projections. For example, with a
basic global map such asthis, you
can easily change the projection by
clicking Edit Projection inthe Map
tab on theright side of the iMap
window. In the Map Projection
window, select another projection
and it displaysin the preview
window. This example shows the
Mollweide projection.

1BGW

L 154w - -

To draw amap that looks more like a globe, use the Orthographic projection. Choose
other projections to understand the differencesin how they display maps.

See the Map Projections topic in the IDL Online Help for more on the map
projections that IDL supports.

Getting Started with IDL Displaying iMaps Tool

70

Modifying Map Data

Chapter 6: Maps

The iMap tool alows you to make numerous modifications to maps. This section
shows a simple exercise that guides you through a couple of easy modifications:
adding available land features and changing map feature colors.

1

Note

To open an iMap window, type TMaP at the IDL command line. An empty

iMap window appears.

To open and view a global map, select Insert —» Map — Continentsfrom

the iMap menu. A map of the world appears.

Now add countries to the global map. Select Insert — Map — Countries
(high res) from the iMap menu. The countries of the world appear on the map.

Choose apart of the map that you want to fill
with color. Right-click on that part and select
Properties from the pop-up menu that
appears. (This example changes the display
properties of Australia.)

The IDL iMap Visualization Browser
appears. Change any properties you like.
(This example changes the line thickness and
fill color properties, as shown in thedialog to
theright.)

Changes are made to the map immediately,

4

L
| Name ustralia 2

Z value

Fill color

Australia 2

Color | [Leh]
Line style
Thickness 3
Fil background | True:
D[ZW,T 88.0] j

Transparency |0

Fill color

S0 you can see the results and change them to fit your needs. When you are
finished with changes, close the IDL iMap Visualization Browser.

Result of modificationsto Australia

For more on mapping, see the Working with Maps topic in the IDL Online Help.

Modifying Map Data

Getting Started with IDL

Chapter 6: Maps

71

Fitting an Image to a Projection

IDL gives you the ability to open image data within a map projection through iMap.
IDL warps the image to fit the map automatically. In this example, we'll use IDL's
automatic capabilities to open an image containing 1 km resolution global land cover
data. (Image data courtesy of Reto Stockli, NASA/Goddard Space Flight Center.)

1

See also “Warping
Imagesto Maps’ on

Open an iMap window by
typing tMaP at the IDL
command line. ow s b

Projection
Elipsoid [datum] Clarke 1868

Map Projection

Select Operations —
M ap Pr OJ eCt'on_ Th'S Center longitude [degrees) |0
command opensthe Map o mnmumiaea 160

. . . ongitude maximum [deg) | 160
Projection dialog, SNOWN [serimmien

Latitude maximum [deg) a0

hefe. False easting [meters] 0

False northing [meters) 0

Choose the Mollweide
projection from the
Projection pull-down list, ..

then click OK. ok] _corcel |

Now, open image data

from the IDL examples

files. Select File — Open and navigate to the IDL examples/data directory.
Choose the file named Day . jpg.

The IDL Map Register Image Step 1 dialog appears.

Click Next to accept the default settings. Step Two of the IDL Map Register
Image dialog appears, displaying the default data that IDL usesto fit theimage
to the projection.

Click Finish to e
accept the default i s P x
settings. In the 4 '
iMap window,
the image data
display in the
Mollweide
projection:

page 77.

Getting Started with IDL Fitting an Image to a Projection

72

Chapter 6: Maps

Plotting a Portion of the Globe

You do not always have to display the entire globe, you can view just a section of the
globe by defining an area by latitude and longitude in the Map Panel. This example
displays the North American Continent using the Miller Cylindrical projection.

1. Open aniMap window by typing TmMaP at the IDL command line.

2. Sedlect Operations— Map Projection. This command opens the Map

Projection dialog, shown below.

Choose the Hammer projection from the Projection pull-down list.

Change the Longitude and
Latitude settings as follows
(and shown to the right):

e Longitude minimum -130
e Longitude maximum -70
o Latitude minimum 10

+ Latitude maximum 55

5. Click OK. The iMap window
now displaysagrid:

Plotting a Portion of the Globe

Shaw diclog
Frajection
Ellipsoid [datum)

Center longituds [degiess)

Longitude minimum [deg) -

False northing (meters]

Map projection

Map Projection

Cancel

Getting Started with IDL

Chapter 6: Maps 73

6. Now add amap to display on
this grid. From the iMap menu,
select Insert - Map —
Countries (high res). The
countries within the specified
area appear on the grid.

7. For better readability, you can
change the way the grid and
annotations appear. From the
iMap menu, select Window —
Visualization Browser.

. . . (=M window Map Grid
8. Inthe Visualization ~Qvew H ame e G i .
= 1zualzation Layer Deszcription ap Gri
Browser, expand the - B9 Data Space Show Trus
) i +-(Q Countries thigh res) i 4o tic id False
treeview until you can £ Longitude minium (deg) |30
See the M ap Grl d O Annotation Laper to:_‘tg':-‘de .m.axlmu[r; [d;?Q] ;700
atitude rinirnunm =g
item. Double-click on Lehuch masum ed]
Map Grid to expand Chi Cick o i
the brO\NSGr and Latitude lines ;icrnt; ;;:lit
. . Calor .0,
display the Map Grid oo i =
properties. Make the e 0 ~
following changes.
e Automatic grid = False
e Line style = dotted
e Label position =0.0
The iMap window now displaysthe
map and grid projection with dotted
lines and the grid annotations on the
edges.
10 g . § .
& &
Note

You can add atitle and other annotations using the Text tool on the iMap tool bar.

Getting Started with IDL Plotting a Portion of the Globe

74

Chapter 6: Maps

Plotting Data on Maps

You can annotate plots easily using the Direct graphics programming capabilities of
IDL. Creating map displays using Direct graphics routinesis not as convenient as
using iMap, but may be desirable if you are incorporating maps into alarger, widget-
based application.

To plot the location of the five cities as shown in the following figure, create three
arrays for the datato plot: one each to hold latitude and longitude locations, and one
to hold the names of the cities.

1

From the IDL command line, type the following command to create a
five-element array of floating-point values representing latitudes in degrees
North of zero.

lats=[40.02,34.00,38.55,48.25,17.29]

Thevaluesin LONS are negative because they represent degrees West of zero
longitude.

lons=[-105.16,-119.40,-77.00,-114.21,-88.10]

Create afive-dement array of string values. Text strings can be enclosed in
either single or double quotes.
cities=['Boulder, CO', 'Santa Cruz, CA',S
'Washington, DC', 'Whitefish, MT', 'Belize, Belize']
Since we are using Direct graphics, tell IDL to use a maximum of 256 colors.

Load agray scale color table and set the background to white and the
foreground to black:

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, O

! P.BACKGROUND=255

!'P.COLOR=0

Draw a Mercator projection and define an area that encompasses the United
States and Central America.

MAP_SET, /MERCATOR, [GRID, /CONTINENT, LIMIT=[10,-130,60,-70]

Plotting Data on Maps Getting Started with IDL

Chapter 6: Maps

6. Place aplotting symbol at the

location of each city. The
PSYM keyword creates
diamond-shaped plotting
symbols. SYMSIZE controls
the size of the plotting
symbols.

PLOTS, lons, lats, $
PSYM=4, SYMSIZE=1.4, $
COLOR=120

The result shows awindow
with the map projection of the
areawith the plotting symbols
(shown here).

75

Place the names of the cities near their respective symbols. XYOUTS draws
the characters for each element of the array CITIES at the corresponding
location specified by the array elements of LONS and LATS. The
CHARTHICK keyword controls the thickness of the text characters and the
CHARSIZE keyword controlstheir size (1.0 is the default size). Setting the
ALIGN keyword to 0.5 centers the city names over their corresponding data

points.

XYOUTS, lons, lats, cities,

COLOR=80, $

CHARTHICK=2, CHARSIZE=1.25, ALIGN=0.5

Now the plotting symbols and city names display on the map:

Getting Started with IDL

Plotting Data on Maps

76 Chapter 6: Maps

Reading Latitudes and Longitudes

If amap projection is displayed, IDL can return the position of the cursor over the
map in latitude and longitude coordinates.

1. Enter the command:
CURSOR, lon, lat & PRINT, lat, lon

The CURSOR command readsthe “X” and “Y” positions of the cursor when
the mouse button is pressed and returns those valuesin the LON and LAT
variables. Use the mouse to move the cursor over the map window and click on
any point. Thelatitude and longitude of that point on the map are printed in the
Output Log.

2. When you are finished with your map, close the graphics window.

Plotting Data on Maps Getting Started with IDL

Chapter 6: Maps 77
Warping Images to Maps

Image data can also be displayed on maps using Direct graphics. The MAP_IMAGE
function returns a warped version of an original image that can be displayed over a
map projection. In this example, elevation data for the entire globe is displayed as an
image with continent outlines and grid lines overlaid.

1. Define the map that you want to display, using worLD as the variable in which
to store the map data. Define the data dimensions as a 360 by 360 sgquare array
using the DATA_DIMS function. In the IDL command line, enter:

world = READ_BINARY (FILEPATH ('worldelv.dat', $
SUBDIRECTORY=['examples', 'data']), DATA_DIMS=[360,360])

2. Sincewe are using Direct graphics, tell IDL to use a maximum of 256 colors
and load a color table.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, 26

3. View the data as an image using
the variable worLD that you
defined above.

TV, world

The first column of datain this
image corresponds to 0 degrees
longitude. Because we'll use
MAP_IMAGE later and it
assumes that the first column of
the image corresponds to -180
degrees, we'll use the SHIFT
function on the data set before
proceeding.

4, Shift the array 180 elementsin the row direction and O elementsin the column
direction to make -180 degrees the first columnin the array.

world = SHIFT (world, 180, 0)

Getting Started with IDL Warping Images to Maps

78

Chapter 6: Maps

View the dataas animage again,
noting the difference made by
the shift.

TV, world

From the image contained in the
data, you can create a warped
imageto fit any of the available
map projections. Define amap
projection before using
MAP_IMAGE, because this
routine uses the currently
defined map parameters.

Create a Mollweide projection
with continents and gridlines.

MAP_SET, /MOLLWEIDE, /CONT, /GRID, COLOR=100

Warp the image using bilinear interpolation using the BLIN command to
smooth the warped image and save the result in the variable NEw.

new = MAP_IMAGE (world, sx, sy, /BILINEAR)

The SX and SY output variables in the command above contain the X and Y
starting positions for displaying the image.

Display the new image over
the map:

TV, new, sx, sy

See the map in the previous
figure and note that the
warped image now displays
over the existing continent
and grid lines.

Warping Images to Maps Getting Started with IDL

Chapter 6: Maps 79

9. The continent outlines and thick grid lines can be displayed, as shown next, by
entering:

MAP_CONTINENTS
MAP_GRID, GLINETHICK=3

Getting Started with IDL Warping Images to Maps

80

Chapter 6: Maps

Displaying Vector Data on a Map

You can use the iVector tool along with the iMap tool to easily add vector datain a
map display.

1

L oad some vector data representing global wind patterns:
RESTORE, FILEPATH('globalwinds.dat', SUBDIR=['examples', 'data'l)

This command creates four variables— u, v, x, and y— that contain the vector
data

Create amap display of the globe, using the Mollweide projection:
IMAP, MAP_PROJECTION='Equirectangular', LIMIT=[-35, -90, 35, 90]
Select Insert — Map — Continentsto display the continental outlines.

Double-click on the continental outlinesto display their property sheet. Set the
Transparency vaueto zero and select alight grey fill color.

Finally, launch iVector to create the vector display, coloring the wind vectors
according to their magnitude:

IVECTOR, u, v, X, y, /OVERPLOT, X SUBSAMPLE=3

For additional information on

creating vector displays, see

. . — T T S N r m b o T et

the Working with Vectors and ;ﬁ-g‘g%%}ﬂ;{/}; ALy I g
IVECTOR topicsin the IDL zé’%xé §§3§35 = g%gﬁ‘ F
Online Help. o AR Sk R e P S S S EN
g ST
T B NG Ll v i SR Y

},;:}3»#?::::: %:::gkk}’;/

=R P WA AT I N bl 2 P e e

:::;:y:::: St EE

R P e e - I B I

PATT E R NS Y T RS TF -

Displaying Vector Data on a Map Getting Started with IDL

../com.rsi.idl.doc.core/Working_with_Vectors.html
../com.rsi.idl.doc.core/IVECTOR.html

Chapter 7
Surfaces and Contours

This chapter shows how to display and process images with the i Surface and iContour tools, and
with Direct graphics.

Surfaces and ContoursinIDL 82 DisplayingContours. 87
DisplayingSurfaces 83 Displaying Contours with Direct Graphics 89
Displaying Surfaces with Direct Graphics . 86 Working with Irregularly Gridded Data ... 91

Getting Started with IDL 81

82 Chapter 7: Surfaces and Contours

Surfaces and Contours in IDL

IDL providestoolsfor visualizing and manipul ating many types of three-dimensional
arrays, including contour plots, wire-mesh surfaces, and shaded surfaces. This
chapter demonstrates how to visualize datain three dimensions using the IDL Tool
Palette, iTools, and Direct graphics.

For additional information, see the following topicsin the IDL Online Help:

e Using the Visualize Perspective and Using IDL user’s guide to learn more
about visualizing and manipulating surfaces and contoursin IDL

» Working with Surfaces and Working with Contours for more information on
working with the i Surface and i Contour tools

« SURFACE, SHADE_SURF, and CONTOUR for a description of the
commonly-used Direct graphics routines used for visualizing 3-D data

Surfaces and Contours in IDL Getting Started with IDL

Chapter 7: Surfaces and Contours 83
Displaying Surfaces

You can easily create surface visualizations using the Tool Palettein the IDL
Visualize perspective or from the command line with the ISURFACE command.
Either way, the visualization displaysin the IDL iSurface tool, which alows you to
visualize, modify, and manipulate surfacesin an interactive environment.

Displaying Surfaces using the
Tool Palette

In this example, we use the RESTORE
procedure, which loads IDL variables and
routines into memory that were previously
saved to afile by the SAVE procedure.

1. Makesureyou are viewing the IDL
Visualize Perspective. (Click the
Visualize button (|5 wisualize |) inthe
upper right of the Workbench.)

2. Restorethemarbells.dat SAVE file

RESTORE, FILEPATH('marbells.dat',6 $
SUBDIRECTORY=['examples', 'data'l])

By restoring marbells.dat, the array variable EL.EV isloaded into memory,
and displaysin the Variables view in the Workbench.

3. Fromthe Variables View, drag the ELEV variable to the Surfaceicon in the
Tool Palette.
Displaying Surfaces using ISURFACE
You can create the visualization shown in the previous section using the ISURFACE
command from the IDL command line:
1. Restorethemarbells.dat SAVE file, asdescribed above.
2. Load the surface data into the i Surface tool and display it:

ISURFACE, elev

Getting Started with IDL Displaying Surfaces

84 Chapter 7: Surfaces and Contours

Displaying Shaded Surfaces
In the following example, we will add an external light source to asurfacein the
iSurface tool.
1. If you have not already done so, restore themarbells.dat SAVEfile.

RESTORE, FILEPATH('marbells.dat',s$

SUBDIRECTORY=['examples', 'data'l)
2. Load the surface data into the i Surface
tool and display it.

ISURFACE, elev

3. Add alight source to the image by
selecting Insert — Light.

4. Sdect thelight bulb icon, and move it
around the surface to see how the
surface shadows change.

Modifying Surfaces

The iSurface tool alows you to manipulate and modify displayed surfaces. For
example, rotation tools are provided to make it easier to see all aspects of a 3-D
surface.

To rotate a surface freely or along an axis:
1. If you have not already done so, restore themarbells.dat SAVEfile.

RESTORE, FILEPATH('marbells.dat',6 $
SUBDIRECTORY=['examples', 'data'l)

2. Load the surface datainto the iSurface tool and display it:
ISURFACE, elev
Select the surface in the i Surface window.

Click Rotate 8] on the window toolbar. The rotation sphere is displayed
around the surface.

Displaying Surfaces Getting Started with IDL

Chapter 7: Surfaces and Contours 85

» Torotate the surface freely, position
the mouse pointer over the surface so
that it changesto afree rotation
pointer 5. Click and drag to rotate
the surface in the desired direction.

» Torotate the surface dong an axis,
position the mouse pointer over an
axis so that it changesto an axis
rotation pointer . Click and drag
to rotate the surface along the axisin
the desired direction.

Lo
= R Ve N
YUY Hen TR T
S

To rotate a surface in 90° increments | eft or
right:

1. Sdect the surface in the i Surface window.

2. Sdlect Operations — Rotate — Rotate L eft or
Operations — Rotate — Rotate Right.

To rotate a surface an arbitrary number of degrees:
1. Select the surface in the i Surface window.
2. Select Operations — Rotate — Rotate by Angle.

3. Inthe Rotate Angle dialog, enter the desired number of degreesto rotate the
surface and click OK.

Alternately, you can rotate the surface programmatically, using the IROTATE
procedure:

ISURFACE, elev
IROTATE, 'surface', 10, /XAXIS
IROTATE, 'surface', 10, /YAXIS

There are many other ways to modify a surface in the i Surface tool, including

mani pulating surface color, texture mapping, and surface annotation. For more
information on working with theiSurface tool, see the Working with Surfacestopicin
the IDL Online Help.

Getting Started with IDL Displaying Surfaces

86 Chapter 7: Surfaces and Contours

Displaying Surfaces with Direct Graphics

Working with images using Direct graphics is not as convenient as using the ilmage
tool, but may be desirable if you are incorporating images into alarger widget-based
application, or if you need to programatically create alarge number of processed
images.

In this example, we will display three-dimensional surface data using IDL Direct
graphics. Enter the following commands at the IDL command line:

1. If you have not already done so, restore themarbells.dat SAVEfile.

RESTORE, FILEPATH('marbells.dat',6 $
SUBDIRECTORY=['examples', 'data'l)

2. Sincewe are using Direct graphics, tell IDL to use a maximum of 256 colors
and load a simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, O

3. Usethe CONGRID procedure to
resamplethe data set so that thegrid =
can be displayed at avisiblesize. In
this case, resample the array size to
35 x 45, or one-tenth its original -
size.

O .
Vo

MARBELLS=CONGRID(elev, 35,45)
4. Visualizethegrid.
SURFACE, MARBELLS

The SURFACE procedure can be used to
view your data from different angles. The
AX keyword specifies the surface angle of g
rotation (in degrees towards the viewer) o
about the X axis. The AZ keyword specifies

the surface rotation in degrees,
counterclockwise about the Z axis.

\Q\\ S
N
2o,

5. View the array from adifferent
angle.

SURFACE, MARBELLS, AX = 70, AZ = 25

Displaying Surfaces with Direct Graphics Getting Started with IDL

Chapter 7: Surfaces and Contours 87
Displaying Contours

You can easily create contour visualizations using the Tool Palettein the IDL
Visualize perspective or from the command line with the ICONTOUR command.
Either way, the visualization displaysin the IDL iContour tool, which allows you to
visualize, modify, and manipulate two-dimensional contour data in an interactive

environment.
Displaying Contours in the Tool . . 75
Palette s ﬁg
300 -5 } ot oy ey
- o
In this example, we use the RESTORE mfg// ;;?35/5//5 5 v
procedure, which loads IDL variables and £ —c’g’/f S
routines into memory that were previously saved 10 = g {> ;{7} ;
; o N -
to afile by the SAVE procedure. N A TR N B

o
o
S
=
S
o
=
g
e
@
=]
w
1=
=1

1. If you have not already done so, restore
themarbells.dat SAVE file

RESTORE, FILEPATH('marbells.dat',6 $
SUBDIRECTORY=['examples', 'data'l])

By restoring marbells.dat, the array variable ELEV isloaded into memory,
and displaysin the Variables view in the Workbench.

2. Makesureyou are viewing the IDL Visualize Perspective. (Click the Visualize
button (|4 visualize) in the upper right of the Workbench.)

3. Fromthe Variables View, drag the ELEV variable to the Contour icon in the
Tool Palette.

Displaying Contours Using iContour
You can create the visualization shown in the previous section using the ICONTOUR
command from the IDL command line.
1. Restorethemarbells.dat SAVE file, as described above.
2. Load the datainto the iContour tool and display it.

ICONTOUR, elev

Getting Started with IDL Displaying Contours

88 Chapter 7: Surfaces and Contours

3. Tocreate filled contours:

ICONTOUR, elev, /FILL, $
RGB_TABLE=0, N_LEVELS=10

Modifying Contours

The iContour tool allows you to manipulate and
modify displayed contours. For example, you
can add alegend that shows the contour levels.

To add alegend, from iContour select Insert — New L egend. Double-click on the
legend to display a dialog that allows you to modify the legend contents.

You might, for example, change the

legend title, hide contour levels, or who LT = S 28
change the text style. For more (ug% R
information on working with the wELY f’;f% IS ~
iContour tool, see the Working with oo / / e P 1% {2 5
Contourstopic in the IDL Online E L 5;; = -
Help. CE— L, b g
P S T e

Displaying Contours Getting Started with IDL

Chapter 7: Surfaces and Contours 89

Displaying Contours with Direct Graphics

Working with images using Direct graphics is not as convenient as using the ilmage
tool, but may be desirable if you are incorporating images into alarger widget-based
application, or if you need to programatically create alarge number of processed
images.

In thisexample, we will display atwo-dimensional
array as acontour plot using IDL Direct graphics.
Enter the following commands at the IDL
command line:

1. If you have not already done so, restore the
marbells.dat SAVEffile

RESTORE, FILEPATH('marbells.dat',6 $
SUBDIRECTORY=['examples', 'data'l)

2. Sincewe are using Direct graphics, tell IDL
to use amaximum of 256 colors and load a
simple grayscale color map.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, O

3. Plot the contour.
CONTOUR, elev

4. Create acustomized CONTOUR plot with
more contour lines.

CONTOUR, elev, NLEVELS=8, $
C_LABELS=[0,1]

The NLEVELS keyword directs
CONTOUR to plot eight equally-spaced
contours. The C_LABEL S keyword
specifies which contour levels should be
labeled (by default, every other contour is
labeled).

Getting Started with IDL Displaying Contours with Direct Graphics

90 Chapter 7: Surfaces and Contours

5. Similarly, you can create afilled contour
plot where each contour level isfilled with
adifferent color (or shade of gray) by
using the FILL keyword.

CONTOUR, elev, NLEVELS=8, /FILL

6. To outline the resulting contours, make
another call to CONTOUR and use the
OVERPLOT keyword to overlay the
previous plot.

You can add tickmarks that indicate the

dope of the contours (the tickmarks point

downhill) by using the DOWNHILL

keyword.

CONTOUR, elev, NLEVELS=8, $
/OVERPLOT, /DOWNHILL

7. CONTOUR can plot surface datain a
three-dimensional perspective.

First, set athree-dimensional viewing
angle.

SURFR

8. By using the T3D keyword, the
contours aredrawn in a
three-dimensional perspective.

CONTOUR, elev, NLEVELS=8, /T3D

Displaying Contours with Direct Graphics Getting Started with IDL

Chapter 7: Surfaces and Contours

91

Working with Irregularly Gridded Data

The IDL routines TRIANGULATE
and TRIGRID allow you to fit
irregularly sampled datato aregular
grid, allowing you to visualize the
values using IDL's surface and
contour visualization routines. This
example creates surface plots of
someirregularly sampled data.

1. First, we create a sample data
set from some random val ues.

X

Y
4

RANDOMU (seed, 32)
RANDOMU (seed, 32)

F1 0L iSurface [Untitled*] M=

Flle Edit Insert Operations Window Help

DlE{ElE] =] 2(zle) W ol (1] &) =1 alslslolelel

Translate (538,15

EXP(-3*((x-0.5)"2+(y-0.5)"2))

(For more on IDL’s random number generation, see the RANDOMU topic in

the IDL Online Help.)

2. Usethe TRIANGULATE procedure to construct a Delaunay triangulation of
our set of randomly-generated points:

TRIANGULATE, x, y, tr

Thevariable tr now contains athree-dimensional array listing the trianglesin
the Delaunay triangulation of the points specified by the X and Y arguments.

Use the TRIGRID function to create aregular grid of interpolated Z values,
using the Delaunay triangulation:

grid_linear = TRIGRID(x, y, z, tr)

By default, the TRIGRID function uses linear interpolation. To use quintic
interpolation, set the QUINTIC keyword:

grid_quintic = TRIGRID(x, y, z, tr, /QUINTIC)

Display the interpolated surface values as wire-frame meshes side by sidein
the iSurface tool:

ISURFACE, grid_linear, STYLE=1l, VIEW_GRID=[2,1]
ISURFACE, grid_quintic, STYLE=1l, /VIEW_NEXT

For more information, see the TRIANGULATE and TRIGRID topicsin the IDL
Online Help.

Getting Started with IDL Working with Irregularly Gridded Data

92 Chapter 7: Surfaces and Contours

Working with Irregularly Gridded Data Getting Started with IDL

Chapter 8
Volumes

This chapter describes the following topics:

IDL and Volume Visualization
Volume Rendering withiVolume

Getting Started with IDL

94 Volume Rendering with Direct Graphics .. 99
95

93

94 Chapter 8: Volumes

IDL and Volume Visualization

IDL can be used to visualize multi-dimensional volume data sets either at the
command line or using the Tool Palette or the iVolume tool. Given a 3-D grid of
density measurements, IDL can display a shaded surface representation of a constant-
density surface (also called an isosurface). For example, in medical imaging
applications, a series of 2-D images can be created by computed tomography or
magnetic resonance imaging. When stacked, these images create agrid of density
measurements that can be contoured to display the surfaces of anatomical structures.

This chapter introduces the Tool Palette and the iVolume tool for interactive
exploration of volume data. It also presents some techniques for exploring volume
datausing IDL’s Direct graphics routines.

For additional information, see the following topicsin the IDL Online Help:
* Volume Visualizations to learn how to use the IDL Workbench Tool Palette

» Working with Volumes to learn about the iVolume tool’s powerful capabilities
for creating and manipulating volumes

* The*“Volume Visudization” sectionin IDL's list of 3D Visualization routines
for alist of volume-related routines

e Creating Volume Objects for information on volume objects

IDL and Volume Visualization Getting Started with IDL

Chapter 8: Volumes 95

Volume Rendering with iVolume

The Tool Palette interface and interactive iVolume tools allow you great flexibility in
mani pul ating and visualizing true volume data. Both methods display the
visualization in the IDL iVolume tool, which allows you to visualize, modify, and
mani pulate volumes in an interactive environment.

Displaying a Volume using the
Tool Palette

In this example, we load some volume data and
visualize it using the Tool Palette volume tool.

1. Make sure you are viewing the IDL
Visualize Perspective. (Click the
Visualize button (|4 visualize) in the upper
right of the Workbench.)

2. AtthelIDL command line, read the
example volume data with the following

commands:
file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'l)
head_data = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

These commands designate a file location and how to read the fileinto IDL.
Thevariables FTL.E and HEAD_DATA are loaded into memory and display in
the Variables view in the Workbench.

3. Fromthe Variables View, drag the HEAD_DaATa variable to the Volumetool in
the Tool Palette.

Getting Started with IDL Volume Rendering with iVolume

96 Chapter 8: Volumes

Displaying a Volume using IVOLUME

Here is asimple example of 1100 otume mEE

one Way to VISUa|IZG aVOI ume File Edit Insert Operations Window Help
. . D=l < sl [w ol & e also|e|e|el
using the iVolume tool. sl v 2l 2]

1. AtthelDL command
line, read the example

Wolume:
Data Charnels:
1

volume data as ﬁ

. uto-Riender
described above. i

2. Now invoke the e
iVolume tool to i
visualize the volume;
—

iVolume, head_data

To display the volumein color,
aS the TOOI Pal ette Click oritem to select, or click & drag selection box [463,310]
visualization does, enter the

following command:

ivVolume, head_data, RGB_TABLEO=21
Volume Rendering Quality

In the iVolume tool, Auto Rendering isturned on by default. A volume can be
rendered in two quality modes:

* Low — Donewith astack of 2D texture-mapped semi-transparent polygons.
The polygons are oriented so that the flat sides face the viewer as directly as
possible. On most systems, Low-quality mode renders faster than High-quality
mode, but not as accurately.

* High — Done with the IDLgrVolume ray-casting volume renderer. This
quality mode is CPU-intensive and will usually take much longer than the
Low-quality mode.

Volume Rendering with iVolume Getting Started with IDL

Chapter 8: Volumes 97

Displaying an Isosurface

Anisosurface is a set of pointsin athree-
dimensional array that have the same value. In
volume data, an isosurface generaly defines a
structure of some sort. To display an isosurface
using the iVolume toal:

1
2.

Note

Click on the volume data to select it.

Select
Operations — Volume — | sosurface
from the iVolume menu.

Select the isosurface value and quality using the | sosur face Value Selector
dialog. (Choose an isosurface value of 50 for agood result in this example.)
Click OK.

If you have checked the Auto-Render checkbox on the Volume tab, both the
isosurface and the origina volume will be rendered together. To see only the
isosurface, uncheck the Auto-Render checkbox and click in the iVVolume window.

Displaying Image Planes

Animage planeis atwo-dimensiona dlice
taken through a three-dimensional volume.
When presented as an image, image planes
alow you to look at structures inside the

volume.

To view an image plane:

1

Click on the volume data to select it.
Make sure the Auto-Render checkbox
on the Volume tab is unchecked.

Select Operations — Volume — | mage plane from the iVolume menu.

Click on the image plane and drag back and forth to move the plane across the
volume. To change the orientation of the image plane, double-click to display
the image plane’s property sheet, then select X, Y, or Z from the Orientation
field.

You can also display the image slice in an ilmage tool:

Getting Started with IDL Volume Rendering with iVolume

98 Chapter 8: Volumes

1. Click ontheimage planeto select it.

2. Select Operations — Image Plane — Launch ilmage from the iVolume
menu.

A new ilmagetool is created to contain the image. Moving the image plane or
changing its orientation in the iVolume tool automatically updates the image
displayed in the ilmage tool.

For much more information on working with the iVolume tool, see the Working with
Volumes topic in the IDL Online Help.

Volume Rendering with iVolume Getting Started with IDL

Chapter 8: Volumes 99

Volume Rendering with Direct Graphics

Visualizing volume data using IDL’s Direct graphics routines (as opposed to the
iTools) requires some additional work, but may be desirable if you are incorporating
the volume visualization into a larger widget-based application. The following
sections will guide you through the process of setting up avolume visualization using
Direct graphics routines.

3-D Transformations in Direct Graphics

When creating three-dimensional plots (surface or volume visualizations, for
example) using IDL Direct graphics, you must apply athree-dimensional
transformation matrix to the data before display. The transformation applies a
specified trandation, rotation, and scaling to the three-dimensional data array before
displaying it on the two-dimensional computer screen.

Three-dimensional transformations are especially important when using the

POLY SHADE routine to display volume data. Unless the transformation is set up so
that the entire volume is visible, the volume will not be rendered correctly. Once a
3-D transformation has been established, most IDL plotting routines can be made to
useit by including the T3D keyword.

There are a number of waysto set up atransformation matrix in IDL:

* Modify the transformation matrix stored in the IDL system variable !PT
directly. This method is rather difficult, because you have to figure out the
transformation yourself. Moreinformation about the transformation matrix can
be found in the Coordinate Conversionstopic in the IDL Online Help.

e UsetheT3D, SCALE3, or SURFR routines to modify the !PT transformation
matriX.

e Usethe SURFACE or SHADE_SURF routinesto display some data. These
routines calculate a transformation matrix based on the data you supply and
update the 'P.T system variable automatically.

In the following example, we will use the SCALE3 routine to update the | P.T
transformation matrix.

Displaying an Isosurface
Two IDL routines, SHADE_VOLUME and POLY SHADE, are used together to

create and display an isosurface. SHADE_VOLUME generatesalist of polygons that
define a 3-D surface given a volume data set and a contour (or density) level. The

Getting Started with IDL Volume Rendering with Direct Graphics

100

Chapter 8: Volumes

function POLY SHADE creates a shaded-surface representation of the isosurface
defined by those polygons.

Like many other IDL commands, POLY SHADE accepts the T3D keyword that
makes POLY SHADE use a user-defined 3D transformation. Before you can use
POLY SHADE to render the final image, you need to set up an appropriate three-
dimensional transformation. The XRANGE, YRANGE, and ZRANGE keywords
accept two-element vectors, representing the minimum and maximum axis values, as
arguments. POLY SHADE returns an image based upon the list of vertices, v, and list
of polygons, p. The T3D keyword tells POLY SHADE to use the previousy-defined
3D transformation. The TV procedure displays the shaded-surface image.

Enter the following lines at the IDL command prompt:

1. If you created the data variablein the previous section, you can skip this step.
If you have not yet created ahead_data variable, read some volume datawith
the following commands:

file = FILEPATH('head.dat', SUBDIRECTORY = ['examples', 'data'l])
head_data = READ_BINARY(file, DATA_DIMS = [80, 100, 57])

2. Sincewe are using Direct graphics, tell IDL to use a maximum of 256 colors.
Load asimple grayscale colormap.

DEVICE, RETAIN=2, DECOMPOSED=0
LOADCT, O

3. Create the polygons and vertices that define the isosurface with a value of 50.
Return the verticesin the variable v and the polygonsin the variable p:

SHADE_VOLUME, head_data, 50, VvV, P, /LOW
4. Set up an appropriate 3-D transformation matrix using the SCALE3 procedure:
SCALE3, XRANGE=[0,80], YRANGE=[0,100], ZRANGE=[0,57]

5. Display ashaded-surface
representation of the previously
generated arrays of vertices and
polygons:

TV, POLYSHADE(V, P, /T3D)

Thisisthe same isosurface created using
the iVolume tool in “Displaying an
Isosurface” on page 88.

Volume Rendering with Direct Graphics Getting Started with IDL

Chapter 8: Volumes 101

Displaying an Image Plane

To display an image plane taken from volume data, use IDL’s array indexing syntax
to specify a“dlice” through the three-dimensional data array.

1. Thehead_data array is80 x 100 x 57
elements; to extract an X-Y slicefrom
this array roughly in the middle:

head_slice = head_datal40, *, *]

This command creates a new variable
named head_s1ice containing a
1x 100 x 57 element array.

2. Reformat the 1 x 100 x 57 element array
asatwo-dimensional array with 100 x 57
elements:

head_slice = REFORM (head_slice)
3. Resizethe array to 500 x 400 elements, using cubic interpolation:
head_slice = CONGRID (head_slice, 500, 400, CUBIC=-0.7)
4. Display theimage:
TV, head_slice

Thisis essentially the same process used by the iVolume tool in “Displaying Image
Planes’ on page 89.

Getting Started with IDL Volume Rendering with Direct Graphics

102 Chapter 8: Volumes

Volume Rendering with Direct Graphics Getting Started with IDL

Chapter 9

Signal Processing

with IDL

This chapter describes the following topics:

IDL and Signal Processing 104
Signal Processing Concepts............ 105
CregtingaDataSet 107
Signal Processing with SMOOTH 109

Getting Started with IDL

Frequency Domain Filtering 110
Creating Custom Filters 113
Wavelet Filtering Example 114

103

104 Chapter 9: Signal Processing with IDL

IDL and Signal Processing

This chapter introduces you to IDL's digital signal processing tools. First, we
introduce some basic signal processing concepts such as removing noise, curve
fitting, correlation, and transforms. Then we discuss the process of creating a data set
and adding noise to appear like raw data. We use that “noisy” data set to understand
different methods of removing noise. Finally, we view an existing data set consisting
of damped sine wave data with severe high-frequency noise.

Most of the procedures and functions mentioned here work in two or more
dimensions. For simplicity, only one-dimensional signals are used in the examples.

Using just afew IDL commands, you can perform some complex and powerful signal
processing tasks. IDL has many more signal processing abilities than the ones shown
in this chapter. To take advantage of all of IDL’s powerful capabilities, look for more
information in Chapter 6, “ Signal Processing” (Using IDL).

IDL and Signal Processing Getting Started with IDL

Chapter 9: Signal Processing with IDL 105

Signal Processing Concepts

This section introduces some basic signal processing concepts that you need to know
before working with signal data.

Removing Noise

A signal, by definition, contains information. Any signal obtained from a physical
process also contains unwanted frequency components (noise). IDL provides several
digital filter routines to remove noise.

Some noise can simply be removed by smoothing or masking an image or masking it
within the frequency domain, but some noise requires more filtering. (See the
definition for Wavelet, below.)

See the Digital Filtering topic in the IDL Online Help for more information.
Curve Fitting

Curve fitting is the process of finding various ways to fit a curve to a series of data
points that best represents all points. Curve-fitting can also estimate points between
values aong a continuum. Curve fitting allows you to find intermediate estimates for
these values. IDL's CURVEFIT function uses a gradient-expansion algorithm to
compute a non-linear least squares fit to a user-supplied function with an arbitrary
number of parameters.

See the Curve and Surface Fitting topic in the IDL Online Help for more information.
Convolution and Correlation

The term convolution refers to the relationship between the input signal, output
signal, and impulse response. Correlation isamethod of detecting aknown waveform
in the noisy background signals. Signals of any given typetravel at aknown rate, and
correlation determines if the signal also occursin another signal.

Mathematically, convolution and correlation are similar. They both use two signalsto
produce athird signal. In correlation, thisthird signal is called the cross-correlation
of theinput signals.

See the Correlation and Covariance topic in the IDL Online Help for more
information.

Getting Started with IDL Signal Processing Concepts

106 Chapter 9: Signal Processing with IDL

Transforms

It is often difficult or impossible to make sense of the information contained in a
digital signal by looking at it in itsraw form—that is, as a sequence of real values at
discrete pointsin time. Signal analysis transforms offer natural, meaningful, alternate
representations of the information contained in asignal. Transforms make signa
processing easier by changing the domain in which the underlying signal is
represented.

Most signals can be decomposed into a sum of discrete (usually sinusoidal) signal
components. The result of such decompoasition is afrequency spectrum that can
uniquely identify the signal. IDL provides three transforms to decompose a signal
and prepareit for analysis: the Fourier transform, the Hilbert transform, and the
wavelet transform.

See the Sgnal Analysis Transforms topic in the IDL Online Help for more
information.

Wavelet Analysis

Wavelet analysisis atechnique to transform an array of N numbers from their actual
numerical valuesto an array of N wavelet coefficients. Since the wavel et functions
are compact, the wavel et coefficients measure the variations around just a small part
of the dataarray. Wavelet analysisis useful for signal processing because the wavelet
transform allows you to easily pick out featuresin your data, such as noise or
discontinuities, discrete objects, edges of objects, etc.

See the Using the IDL Wavel et Toolkit topic in the IDL Online Help for more
information.

Signal Processing Concepts Getting Started with IDL

Chapter 9: Signal Processing with IDL 107

Creating a Data Set

In this example, we create a data set and then introduce noise to make it appear more
like real-world data. Then we plot the original data and the “noisy” datatogether in
the same window to see the difference.

First, we need to create a data set to display.

1. Enter the following command to create a sine wave function with a frequency
that increases over time and store it in avariable called paTa:

data = SIN((FINDGEN(200)/35)"2.5)

The FINDGEN function returns a floating-point array in which each element
holds the value of its subscript, giving us the increasing “time” values upon
which the sine wave is based. The sine function of each “time” value divided
by 35 and raised to the 2.5 power is stored in an element of the variable paTa.

2. Toview aquick plot of thisdata set,
shown in the following diagram,
enter:

1.0

0.5+

IPLOT, data

3. Add some uniformly-distributed 00
random noise to this data set and
storeit in anew variable;

_0akF

noisy = data + ((RANDOMU $
(SEED, 200)-.5)/ 2)

The RANDOMU function creates

an array of uniformly distributed

random values. The original data set

plusthe noiseis stored in anew variable called NoTsY. When you plot this data
sat, it looks more like real-world test data.

Getting Started with IDL Creating a Data Set

108 Chapter 9: Signal Processing with IDL

4. Now plot the array:

IPLOT, noisy

5. Display the original data set and the
noisy version simultaneously by osp
entering the following commands:

IPLOT, data, XTITLE="Time",$
YTITLE="Amplitude", THICK=3

6. Then overplot the previous data:

IPLOT, noisy, /OVERPLOT B 50 100 750 200

The XTITLEand YTITLE
keywords are used to create the X
and Y axistitles. The OVERPLOT
keyword plots the NOTISY data set
over the existing plot of paTa.
Setting the THICK keyword causes
the default line thickness to be
multiplied by the value assigned to
THICK, so you can differentiate
between the data. This result can o ‘ ‘ .
be seen in the figure to the right. T = e

Amplitude

Creating a Data Set Getting Started with IDL

Chapter 9: Signal Processing with IDL 109

Signal Processing with SMOOTH

A simple way to smooth out the NOTISY data set created in the previous exampleisto
use IDL’'s SMOQOTH function. It returns an array smoothed with aboxcar average of a
specified width.

1. Create anew variable to hold the smoothed data set by entering the following
command:

SMOOTHED = SMOOTH (noisy, 5)
2. Now plot your new data set:
IPLOT, SMOOTHED, VIEW_TITLE='Smoothed Data'

The TITLE keyword draws the title text centered over the plot. Notice that
while SMOOTH did afairly good job of removing noise spikes, the resulting
amplitudes taper off as the frequency increases.

Smaoathed Dato

0.0

05+ -

-1.0 I I I I
6] j=14] 100 150 200

See the next example for another method of reducing noise in the data set.

Getting Started with IDL Signal Processing with SMOOTH

110

Chapter 9: Signal Processing with IDL

Frequency Domain Filtering

Freguency domain filtering is another (perhaps better) way to eliminate noise. Noise
is unwanted high-frequency content in sampled data. Applying alowpass filter to the
noisy data allows low-frequency components to remain unchanged while high
frequencies are smoothed or attenuated. Construct afilter function by entering the
following step-by-step commands:

1

Create afloating point array using FINDGEN which sets each element to the
value of its subscript and storesit in the variable Y by entering:

y=[FINDGEN (100) , FINDGEN (100)-100]
Next, make the last 99 elements of Y amirror image of the first 99 elements:
y[101:199] =REVERSE (y[0:98])

Now, create a variable filter to hold

the filter function based on Y: e
filter=1.0/(1+(y/40)~10) oal-]
Finally, plot:

0.6

IPLOT, filter

0.4~

The next step applies the filter to
theNOISY data. Tofilter datainthe]
frequency domain, we multiply the

Fast Fourier transform (FFT) of the oo
data by the frequency response of a
filter and then apply an inverse

Fourier transform to return the data

to the spatial domain.

Now we can use alowpass filter on the NOTISY data set and store the filtered
datain the variable 1owpass by entering:

lowpass = FFT(FFT (noisy, 1) *filter,-1)

Frequency Domain Filtering Getting Started with IDL

Chapter 9: Signal Processing with IDL 111

6. Then plot the filtered data:

IPLOT, lowpass

L L L
1] 50 10 150 200

Note
Your plots may look slightly different due to the random number generator.

The same filter function can be used as a high-pass filter (allowing only the high
frequency or noise components through).

7. To accomplish this, enter:
highpass = FFT(FFT(noisy,1)*(1.0-filter),-1)

8. Then plot the result:

IPLOT, highpass

[u-4 o

0.0

_ozk

Getting Started with IDL Frequency Domain Filtering

112 Chapter 9: Signal Processing with IDL

Displaying Multiple Plots in a Single Window

To display all the plots that were created in the previous sections, enter the following
IPLOT commands on the IDL command line:

IPLOT, noisy, VIEW_GRID=[2,2], VIEW_TITLE='Noisy Data Set'
IPLOT, filter, /VIEW_NEXT, VIEW_TITLE='Filter'

IPLOT, lowpass, /VIEW_NEXT, VIEW _TITLE='Low-Pass Filtered'
IPLOT, highpass, /VIEW_NEXT, VIEW_TITLE='High-Pass Filtered'

Theresulting IPLOT window displays all four plots:

Noisy Data Sat Filiar

Low-Pass Filtared High-Pass Filtered

Thefollowing list describes the functionality of the IPLOT keywords used in the
previous commands:

* VIEW_GRID — Definesaplot grid by columns and rows.
 VIEW_TITLE — Definesthe title for the current plot.
* VIEW_NEXT — Defines the next plot in relation to the current plot.

See the IPLOT topic in the IDL Online Help for complete information on these and
other keywords.

Displaying Multiple Plots in a Single Window Getting Started with IDL

Chapter 9: Signal Processing with IDL 113

Creating Custom Filters

IDL providesthe DIGITAL _FILTER function to allow you to compute your own
datafilters. This section gives a quick overview of how a Bandstop Finite Impulse
Response (FIR) Filter works.

FIR filtersare digital filtersthat have an impul se response that reaches zero in afinite
number of steps. An FIR filter can be implemented non-recursively by convolving its
impul se response with the time data sequence it is filtering. FIR filters are somewhat
simpler than Infinite Impulse Response (I1R) filters, which contain one or more
feedback terms and must be implemented with difference equations or some other
recursive technique.

The DIGITAL_FILTER 20 , — T ,
function constructs lowpass, B
highpass, bandpass, or = -
bandstop filters. The figure at
right plots a bandstop filter
that suppresses frequencies
between 7 cycles per second
and 15 cycles per second for
data sampled every 0.02 -40
seconds.

-20

Magnitude in dB

'60 1 1 1 1 T B |

-

10
Frequency in cycles / second

Typee@sigprcl0 a the IDL prompt to run the batch file that creates this display. The
filter consists of 10 IDL statements, plus acall to the IPLOT routine for display. The
source codeislocatedin sigprc10, inthe examples/doc/signal directory. View
the code to start learning how to create your own custom filters. See the Signal
Processing topic in the IDL Online Help for more information.

Getting Started with IDL Creating Custom Filters

114

Chapter 9: Signal Processing with IDL

Wavelet Filtering Example

In this example, we use existing data rather than creating sample data. The example
file is damped sine wave data with severe high-frequency noise.

1

Use the input variable to define the data to use:

input = FILEPATH('damp_sn.dat', $
SUBDIRECTORY=['examples', 'data'l)

Create another variable to contain the output from the READ_BINARY
function. READ_BINARY reads the contents of a file based on keywords or a
predefined template. The DATA_DIMS keyword sets a scalar or array
specifying the size of the data to be read and returned. (The array value of
damp_sn.dat isprovided inthe index.txt filein examples/data.)

output = READ_BINARY (input, DATA_DIMS=[512,11)

Plot the data:
250 I\IIIII TTTTTTTTT[TTITITTITITTI[TTTTITTITTT IIIII\II_
IPLOT, output _
200 ." —
f]
Use the wavelet transform to 150 [l i
reduce the noise in the plot: .
100 |- i
smooth=WV_DENOISE (output, $ - i

'"Coiflet', 3, PERCENT=50) 50 —

D:III\Illlll\II III\I|IIII\IIII|I\IIIIII\|IIIII\IIIF
0 100 200 300 400 500

Plot the smoothed data:
IPLOT, smooth, YRANGE=[0,255]

NOtethawemmifytheYrange 20—‘—L|\||\|||\||||\||||||\||||||\||||\||||||\||
to ensure that it is the same as in YE

the previous plot. m

g

] b b e v 9

100 200 300 400 500

i
0

Wavelet Filtering Example Getting Started with IDL

Chapter 10
Programming in IDL

This chapter describes the following topics:

About ProgramminginIDL 116 IDL Workbench Editor 130
Typesof IDL Programs 118 ExecutingaSimple IDL Program 131
IDL LanguageElements 120 Debuggingcciiiiiii 133

IDL Programming Concepts and Tools . .. 128

Getting Started with IDL 115

116 Chapter 10: Programming in IDL

About Programming in IDL

IDL applications range from the simple (a short program entered at the IDL
command line) to the complex (large programs with graphical user interfaces).
Whether you are writing a small program to analyze a single data set or alarge-scale
application for commercial distribution, you’'ll need to understand the programming
concepts used by the IDL language.

Programming in IDL feels familiar to developers already familiar with C, C++, or
FORTRAN. Like these languages, IDL isahigh-level programming language with
similar syntax and operation.

While the programming environment is similar enough to make the transition easy,
IDL’s structure and tools make programming faster and more efficient. The following
list outlines the benefits IDL offers over other programming languages:

« Array operations—using arrays creates more efficient code by eliminating
the need for loops to perform operations on each data element.

« Dynamic data types—variables do not need to be explicitly typed because
IDL determines the data type from the code context. Variables can be created
or changed at any time, even within the same program.

* |IDL Workbench Development Environment—provides the interactivity to
speed up development, including chromacoding, coding tools, automatic
compilation, and visua debugging tools. Programmers can quickly compile
and run programs for testing and immediately view any problem areas that
cause errors.

e Interactive programming modes—interactive mode allows you to run
commands from the command line to immediately test code lines.

e Graphical User Interface (GUI) Tools—IDL provides severa waysto
develop GUI applications. These toolsinclude:

» Widget Programming—use IDL’s library of widget tools to create simple
controls such as buttons and sliders. Widget programming provides
complete control over user interface design and functionality.

* iTools—use|DL’sbuilt-iniToolsto quickly visualize datawith aminimum
of programming, or create your own custom i Tool application.

e Built-in routines—IDL provides a huge library of routines for graphical user
interface (GUI) programming, numerical analysis, and data visualization.

About Programming in IDL Getting Started with IDL

Chapter 10: Programming in IDL 117

e Integrated development—IDL is able to make callsto externa programs
written in other devel opment languages, and provides the ability to call from
external programsin IDL.

» Distribution—IDL providestools that allow you to distribute your
applications either as source code or in acompiled binary format called a
SAVE file. Anyone with an IDL development license can execute IDL source
code. If your colleagues or customers do not have an IDL development license,
they can run most compiled IDL applicationsin the free IDL Virtual Machine.
If your application uses features available only with an IDL license, you have
the option of purchasing and distributing runtime licenses or embedding a
license directly in the compiled application code.

This chapter gives avery brief introduction and overview into programming in IDL.
To continueto learn to program in IDL, see the Application Programming manual
and the documentation for specific routinesin the IDL Reference Guide.

Getting Started with IDL About Programming in IDL

118 Chapter 10: Programming in IDL

Types of IDL Programs

There are multiple ways of writing and executing programs within IDL. These
involve varying levels of complexity and include $MAIN$ programs, procedures, and
functions.

$Main$

You typically create a $MAIN$ program at the IDL command line when you have a
few commands you want to run without creating a separate file. SMAIN$ programs
are not explicitly named by a procedure (PRO) or function (FUNCTION) heading.
They do require an END statement, just as procedures and functions do. Since they
are not named, $MAIN$ programs cannot be called from other routines and cannot be
passed arguments. $SMAINS$ programs can be run from the command line using the
.RUN command or saved in afile and run later.

When IDL encounters amain program either asthe result of a.RUN command orina
text file, it compiles the code into the special program named $MAIN$ and
immediately executesit. Afterwards, it can be executed again using the .GO
command.

Note
Only one main program unit may exist within an IDL project window at any time.

Named Programs: Procedures and Functions

Procedures and functions are both modular programs that can be run individually and
called from other programs. A program may include multiple procedures and
functions and call as many other programs as necessary. Devel opers can choose
whether to save many individual procedures and functions or to combine them in the
same file. Reusing the same procedure or function for multiple programs can be a
deciding factor in saving them separately. See the following sections for more
information about how procedures and functions differ and when to use them.

Note
To view programs written in IDL, use the demo programs that come with IDL,
found in the \examples\demo\demosrc Of the IDL distribution. Open and view
these programs to help you understand procedures and functions, but don’t save any
changes you make, as you and other users may use these programs for
demonstration and training purposes.

Types of IDL Programs Getting Started with IDL

Chapter 10: Programming in IDL 119

Procedure

A procedure is a self-contained sequence of IDL statements that performs awell-
defined task. A procedureisidentified by a procedure definition statement

(PRO <procedure_name>), Where the procedure name is the name of the IDL
statement you are creating. Parameters are named variables that are used in the
procedure.

Use procedures when you are working on data“in place” or when no value is
returned from the program. For example, a procedure could create a plot display on
the screen but return no values back to IDL.

Function

A function is a self-contained sequence of IDL statements that performs a well-
defined task and returns a value to the calling program unit when it is executed. All
functions return afunction value which is given as a parameter in the RETURN
statement used to exit the function. A function isidentified by afunction definition

statement (FUNCTTION <function_name>), wherethe function nameisthe name of
the IDL statement you are creating.

Use functions when you need easy accessto areturned value, since functions create a
new variable by default.

See the Overview of IDL Program Typestopic in the IDL Online Help for more
information.

Getting Started with IDL Types of IDL Programs

120 Chapter 10: Programming in IDL

IDL Language Elements

The basic language elements of IDL are a bit different from other programming
languages such as FORTRAN, C, and C++. These elementsinclude dynamic data
types, array operations, positional parameters (arguments), keywords, and automatic
compilation. The following sections introduce the basics of these IDL language
elements, along with how to avoid naming conflicts.

Variables and Data Types

IDL isdifferent from other languages that require programmersto specifically
designate a particular data type for each variable. IDL interprets variable types by
their usage. This“loose” or dynamic data typing gives IDL flexibility and the ability
to redefine variable data types at the command line or within programs. With this
flexibility comes the need to keep track of the data types. IDL’s built-in HELP
procedureis an easy tool to useto return the data type of any variable, as shown in the
following command-line example:

IDL> varvalue = 7.99
IDL> help, varvalue
VARVALUE FLOAT = 7.99000

Another example shows how the same variable is redefined as another data type:

IDL> varvalue = '7.99"'
IDL> help, varvalue
VARVALUE STRING = '7.99"

Notice that since the variable value is within single quotes, IDL interpretsit asa
string. IDL does not hold the previous value of the variable in memory, so it can be
changed at any time.

Thethree valid IDL variable organizations are scalars, arrays, and structures:
e Scalars—contain single values
* Arrays—contain multiple values arranged in an n-dimensional “grid.”

e Structures—are collections of scalars, arrays, or other structures.

IDL Language Elements Getting Started with IDL

Chapter 10: Programming in IDL 121

There are 16 variable typesin IDL, which are shown in the following table:

IDL Variable Types

Undefined Structure

Unsigned byte Double precision complex

16-hit integer Pointer heap variable

32-bit integer Object reference heap variable

Single precision floating Unsigned 16-bit integer

Double precision floating Unsigned 32-hit integer

Single precision complex 64-bit integer

String Unsigned 64-bit integer
Arguments

Argumentsin IDL are positional parameters that pass information to aroutine. In
other words, each argument must be given in the order specified by the syntax of the
routine. Some arguments are required, while others are optional, depending on the
routine.

For example, the IDL system routine PLOT has two arguments. x and y. The
arguments must be given in the correct order or the resulting plot’s axes will be
incorrect. If the y argument is not given, the routine plotsy as a function of x, as
shown in the following example:

IPLOT, EXP(FINDGEN(10))

Getting Started with IDL IDL Language Elements

122 Chapter 10: Programming in IDL

The result of this command is the following plot:

8000

6000

4000

2000

o
P
I
[+
[#+]

Keywords

Keywords are optional parameters that consist of keyword-value pairs. They can be
passed to aroutine in any order. If akeyword is not specified, the default value of that
keyword is passed to the routine. A routine may have many available keywords to
choose from. You can use as many or as few as you need.

Continuing with the PLOT example, we adds keywords to label the x and y axes:

IPLOT, EXP(FINDGEN(10)), XTITLE='Time', YTITLE='Velocity'
BOOO =T T 1 L L L T
6000 —
z | N
8 4000 — —
@ - —
-
2000 — —
C IR BT | N
0 2 4 6 8

IDL Language Elements Getting Started with IDL

Chapter 10: Programming in IDL 123

Automatic Compilation

IDL compiles routines any time it encounters a routine name, whether it is typed at
the command line or called from another routine. If the routineisaready in IDL's
memory, IDL runsit. If the routine is not in memory, IDL searches each directory in
the path definition for (i 1ename.pro) and automatically compilesit. (For more on
the IDL path, seethe IDL_PATH topic in the IDL Online Help.)

Note
IDL routines all have specific names, which can conflict with user-written routines
if those routines have the same name. When IDL encounters this conflict, the
automatic compilation mechanism ignores the user-written routine. For more
information, see the Advice for Library Authorstopic in the IDL Online Help.

Code Written in Other Programming Languages

IDL alowsyou to incorporate routines written in other programming languages using
the following methods:

e Call Javaor COM objects and methods using the Import Bridge technology.
See the IDL Import Bridge topic in the IDL Online Help for information.

» Call other types of external sharable object code (C or FORTRAN, for
example). Seethe CALL_EXTERNAL, LINKIMAGE, MAKE_DLL routines,
and the External Development Overview topic in the IDL Online Help for
information.

e You can also export IDL objects for use by Javaor COM programs. See the
IDL Export Bridge topic in the IDL Online Help for information.

Getting Started with IDL IDL Language Elements

124 Chapter 10: Programming in IDL

Arrays and Efficient Programming

IDL has been specifically designed to process arrays easily and naturally. You can get
excellent performance in your applications by using the built-in array processing
routines, which allow an operation to be performed on every element in an array,
without having to explicitly create aloop. This functionality makes for smpler
coding and faster computing. For more information, see the Writing Efficient IDL
Programs topic in the IDL Online Help.

Using Operators on Arrays

IDL has alarge number of different operators. In addition to the usual operators —
addition, subtraction, multiplication, division, exponentiation, relations (EQ, NE, GT,
etc.), andlogical arithmetic (& &, ||, ~, AND, OR, NOT, and XOR) — other operators
exist to find minima, maxima, select scalars and subarrays from arrays (subscripting),
and to concatenate scalars and arrays to form new arrays.

All of IDL’s operatorscan beapplied to arraysaswell asto scalars.

IDL’s ability to perform operations directly on entire arrays makesit ideal for
processing array data. For example, suppose you had an array A consisting of 100
floating point integers, and you wanted to create a corresponding array containing the
absolute value of each array element. Most languages would require you to write a
loop to create the new array. In IDL, the following single statement suffices:

B = ABS(A)

Thearray B is created as a 100-element array, each element of which contains the
absolute value of the corresponding element in array A.

Similarly, multiplying each element of array C by the corresponding element of array
D issimple:

E=C?*D
See the Arrays and Expressions and Operatorstopicsin the IDL Online help for
additional details.

Subscripts

Subscripts retrieve or modify individual array elements, and are also referred to as
array indices. In IDL subscripts, the first array index element is always zero. Thisis
different from FORTRAN, where indices start by default with one. In a one-
dimensional array, elements are numbered starting at 0 with the first element, 1 for
the second element, and running to n - 1, the subscript of the last element.

Arrays and Efficient Programming Getting Started with IDL

Chapter 10: Programming in IDL 125

You can use array subscripts to access one element, a range of elements, or a number
of non-sequential elementsin an array. You can also use subscripts to designate new
values for array elements.

For example, the following expression gives the value of the seventh element of the
variable arr (remember that array subscripts start at zero, not 1).

arr[6]

The next statement stores the number three at the seventh element of arr, with no
changes to other array elements.

arr[6] = 3
Using Array Operators to Avoid IF Statements

Suppose you want to add all positive elements of array B to array A:
e Using aloop will be slow:
FOR I=0, (N-1)DO IF B[I]GT O THEN A[I]=A[I] + BI[I]
* Fast way: Mask out negative elements using array operations.
A=A+ (BGT 0) *B
e Fasterway: AddB >0
A=A+ (B>0)

When an | F statement appears in the middle of aloop with each element of an
array inthe conditional, the loop can often be eliminated by using logical array
expressions.

Using Array Operators and the WHERE Function

In the example below, each element of the array C is set to the square-root of the
corresponding element of array A if A[i] is positive; otherwise, C[i] is set to minus
the square-root of the absolute value of A[i].

e Using an IF statement is slow:

FOR I=0, (N-1) DO IF A[I] LE 0 THEN C[I]=-SQRT(-A[I]) ELSE
C[I]=SQRT(A[I])

e Fast way:
C= ((AGT 0) *2 - 1) * SQRT(ABS(A))

Theexpression (2 T 0) hasthevalue 1if A[l] is positive and has the value
Oif A[l]isnot. (a aT 0)* 2 - 1isequal to+1if A[l] ispositiveor -1if

Getting Started with IDL Arrays and Efficient Programming

126 Chapter 10: Programming in IDL

A[l] is negative, accomplishing the desired result without resorting to loops or
|F statements.

Another method is to use the WHERE function to determine the subscripts of the
negative elements of A and negate the corresponding elements of the result.

* Get subscripts of negative elements.
negs = WHERE (A LT 0)
* Takeroot of absolute value.
C = SQRT(ABS(A))
* Negate elementsin C corresponding to negative elementsin A.

C[negs] = -Clnegs]
Using Vector and Array Operations

Whenever possible, vector and array data should be processed with IDL array
operationsinstead of scalar operationsin aloop. For example, consider the problem
of flipping a512 x 512 image. This problem arises because approximately half the
available image display devices consider the origin to be the lower-left corner of the
screen, while the other half recognize it as the upper-left corner.

Note
The following example is for demonstration only. The IDL system variable
IORDER and corresponding featuresin the iTools and Direct graphicsimage
display routines are easier to use and more efficient.

A programmer without experiencein using IDL might be tempted to write the
following nested loop structure to solve this problem:

FOR I = 0, 511 DO FOR J = 0, 255 DO BEGIN
e Temporarily save pixel:
TEMP=IMAGE[I, J]

» Exchange pixel in same column from corresponding row at bottom.

image[I, J] = imagel[I, 511 - J]
image[I, 511-J] = temp
ENDFOR

Arrays and Efficient Programming Getting Started with IDL

Chapter 10: Programming in IDL 127

A more efficient approach to this problem capitalizes on IDL’s ability to process
arrays as asingle entity.

e Enter at the IDL Command Line:
FOR J = 0, 255 DO BEGIN

e Temporarily save current row.
temp = imagel[*, J]

* Exchange row with corresponding row at bottom.

image[*, J] = imagel[*, 511-J]
image[*, 511-J] = temp
ENDFOR

At the cost of using twice as much memory, processing can be simplified even further
by using the following statements:

* Get asecond array to hold inverted copy.
image2 = BYTARR(512, 512)
* Copy the rows from the bottom up.
FOR J = 0, 511 DO image2[*, J] = image[*, 511-J]
« Even moreefficient isthe single line:
image2 = image[*, 511 - INDGEN(512)]
that reverses the array using subscript ranges and array-val ued subscripts.
e Using the built-in ROTATE function:
image = ROTATE (image, 7)

Thisworks because inverting the image is equival ent to transposing it and
rotating it 270 degrees clockwise.

e Using the built-in REVERSE function:

image = REVERSE (image, 2)

Getting Started with IDL Arrays and Efficient Programming

128 Chapter 10: Programming in IDL

IDL Programming Concepts and Tools

IDL’s programming environment provides tools that help you organize and accelerate
code development. The IDL workspace and projects provide the basic framework for
IDL programming. The different programming tools include object and GUI
programming, including the iTools library. These concepts are introduced in the
following sections, along with how to distribute your IDL applications.

Workspace

The Workbench in IDL uses the concept of a workspace, where IDL stores all
projects, folders, and filesin a single directory. All projects reside in the workspace.
You can choose where the workspace physically resides on your system, and you can
create multiple workspaces, but only one can be open at atime.

Projects

AnIDL project isavirtua collection of folders, files, and metadata. Projects are not
required by IDL, but the benefits of saving programs in projectsinclude cross-project
searching and easy navigation. You can also use projects for customizing builds,
version management, sharing, and resource organization.

In the IDL workflow, you first create a project using the Workbench and specify a
location for it in the file system. Code files are then associated with the project.

Object Programming

Object-oriented programming blurs the lines between routines and the data that they
act upon. The benefits of using object-oriented programming include reusable classes
and more modular code (easier to find and fix errors). Object-oriented applications
can aso be easier to maintain and extend.

IDL began as a procedural language, but object-oriented programming was
introduced in IDL 5.0. One of the driving reasons was to simplify 3D graphics
capabilities (known as Object graphicsin IDL). The IDL Object graphics systemisa
collection of pre-defined object classes that act as building blocks. To build a useful
application, you must use several of these building blocks together. Compared to
IDL’s Direct graphics, object graphics are more complex, but produce robust, 3-D
visualizations. Another difference is that object graphics are meant for application
development rather than for command-line users.

IDL Programming Concepts and Tools Getting Started with IDL

Chapter 10: Programming in IDL 129

For more information, see The Basics of Using Objectsin IDL topicinthe IDL
Online Help.

Graphical User Interface (GUI) Programming

IDL provides several programming options for creating user interfaces. The
following list shows the options in order from simplest to most complex:

e Command-line—using the IDL command line, you can display datain the IDL
output log or direct graphics visualizations. For example, using statements
such as PLOT, PRINT, and TV.

e iTool Interface—using an existing i Tool allows you to quickly display dataand
mani pul ate images. Existing iToolsinclude iPlot, ilmage, iContour, iSurface,
and iVolume.

e Custom Widget Interface—IDL provides alibrary of widget tools to create
simple controls such as buttons and dliders. Using widgets offers you complete
control over user interface design, but you must code al the underlying
functionality. It is possible for more advanced programmersto create
applications that combine i Tools and widgets.

e Custom iTool—The most complex programming option is creating custom
iTool interfaces. This option allows you to expand the capabilities and
appearance of the standard i Tools.

iTool Programming

Theterm iTools stands for intelligent tools, which are a collection of IDL
applications that share a common framework. The iTools all have a graphical user
interface (GUI) that allows you to program applications with custom toolbars, menus,
buttons, etc. IDL provides severa predefined iTools, and you can develop your own
using iTool programming.

Programming in i Tools uses the iTools Component Framework, which isaset of class
filesand utilities that help you create new tools or extend the existing iTools.

For more information, see the Creating an iTool topic in the IDL Online Help.
Distributing Programs
Once you have completed your application, you can quickly and easily create a

distribution of your software product. See the Running and Building Projectstopicin
the IDL Online Help for information on packaging your application for distribution.

Getting Started with IDL IDL Programming Concepts and Tools

130 Chapter 10: Programming in IDL

IDL Workbench Editor

The Editor isthe IDL Workbench area where you create, view, and edit code. Within
the Editor, you'll find toolsthat help you format, comment, test, and debug code. The
Editor providestoolsthat help you create code faster and more efficiently than you
could in asimple text editor.

Some of the features of the IDL Editor that are discussed in this chapter are:

» Writing Code—The Editor providestools such as content assist, key bindings,
and commenting code to help you speed up code development.

» Formatting Code—Tools such as syntax coloring and other formatting options
help you quickly format the code for readability.

* Viewing and Finding Code—Features such as code folding, open declaration,
and hover help allow you to quickly scan your code. Finding what you need is
easy with the find and replace and parentheses matching tools.

e Organizing Code—The bookmark and task markers help you easily annotate
and organize your code.

« Testing and Debugging Code—T he debugging features of the IDL Workbench
include setting breakpoints in the Editor.

* Code Versioning—The Editor allows you to compare the current version of a
file with previous versions to restore any necessary revisions.

For more information, see the IDL Editor Tipsand Trickstopic inthe IDL Online
Help.

IDL Workbench Editor Getting Started with IDL

Chapter 10: Programming in IDL 131

Executing a Simple IDL Program

To show IDL’s programming capabilities, the following program example uses the
iVolume iTool to display volume data. This example uses Black Hole volume data
provided by the University of North Carolina

1. From the IDL Workbench, open anew IDL Editor window by selecting
File— New — IDL SourceFile.

2. Type (or copy) the following lines of code into the new Editor window to form
aprogram:

PRO my_ivolume, _EXTRA=_extra

; Set the variable fname to the black hole volume data file
fname = FILEPATH('cduskcD1400.sav', SUBDIR=]['examples', 'data'l])
RESTORE, fname
; load a color table and supress the color table message using
; the keyword /SILENT
LOADCT, 15, /SILENT
; Return the Red, Green, Blue values from the
; internal color tables
; to the variables r, g, b
TVLCT, r, g, b, /GET
; Display the data using the iVolume iTool

IVOLUME, density, RGB_TABLEO=[I[r], [gl,[b]l]l, $

/AUTO_RENDER, /NO_SAVEPROMPT

END

Note
Semicolons (;) in IDL code areindicators of the beginning of comment lines, which
explain what the actual code lines are doing and/or help you understand your code
(while being ignored by IDL itself).

Note
The dollar sign ($) at the end of alineisthe IDL continuation character. It allows
you to enter long IDL commands as multiple lines.

Getting Started with IDL Executing a Simple IDL Program

132

Saving, Compiling, and Running

Chapter 10: Programming in IDL

To view the program at work, IDL requires afew additional steps:

1. Savethefileasmy_ivolume.pro by selecting File — Save As and then

entering “my_ivolume.pro”.

2. Run the program by selecting Run — Run my_ivolume.pro (IDL
automatically compiles the program if itisin the IDL path).

The resulting iVolume window displays the following image:

<Al IDL iVolume
File Edit Insert Operatio

D] <||s e [w ol &f fw=~] alnalo|ele

4 volu |

Name:
Yolume

Data Channels:
1

Render
I Auto-Fiender

Guality

Low [textures] =

Boundary

Solid walls hd

Render Step
W |1—
-
Z |1—

[Click onitem to select, or click & drag selection bax

Note

If your program encounters an error while executing, be sure to check your code for

typographical errors.

Executing a Simple IDL Program

Getting Started with IDL

Chapter 10: Programming in IDL 133
Debugging

Debugging is the process of finding and correcting errors or undesirable behavior in
your code. The IDL Workbench suppliestools that let you monitor the execution of
your program, stop and re-start execution, step through the program one statement at
atime, and inspect or change the values of variables.

The debugging process begins when IDL temporarily stops execution before it
reaches the end of a program. There are two ways this can happen: when IDL
encounters an error that forces either compilation or execution to halt, or when IDL
encounters a breakpoint you have set in the code to cause atemporary halt. Note that
not every error in your code will cause IDL to halt execution; many problemsinvolve
code that runs correctly to completion but creates incorrect results.

For complete information, see the Debugging and Error-Handling topic in the IDL
Online Help.

Getting Started with IDL Debugging

134 Chapter 10: Programming in IDL

Debugging Getting Started with IDL

Chapter 11
User Interfaces in IDL

This chapter describes the following topics:

User Interface OptionsinIDL 136 Graphical Interfaces with IDL Widgets .. 139
Non-Graphical User Interfaces 137 CustomiTool Interfaces 142
Existing iTool Interfaces 138 A Simple Widget Example 140

Getting Started with IDL 135

136

Chapter 11: User Interfaces in IDL

User Interface Options in IDL

If you create an application that requires user interaction, you will need to supply a
user interface. IDL gives you several options for supplying an interface. In order of
increasing complexity, you can use any of the following:

Non-graphical Interface — You can use the IDL command line as a non-
graphical user interface to request simple textual user input, display Direct
graphics visualizations, or display datain the IDL Console view. See “Non-
Graphica User Interfaces’ on page 137 for more information.

Existing iTool Interface — You can use an existing i Tool to provide quick data
display and manipulation capabilities for image, plot, surface, volume and map
data. See“Existing iTool Interfaces’ on page 138 for more information.

Graphical Interface— You can use IDL widgetsto build a complete graphical
interface of your own design. Creating a user interface from scratch (as
opposed to using the iTools framework) gives you complete control over the
appearance and functionality of theinterface, but you must code al underlying
functionality. You can also create a hybrid widget-i Tool application, but this
requires additional programming expertise. See “ Graphical Interfaces with
IDL Widgets’ on page 139 for more information.

Custom iTool — You can create a custom iTool interface that allows you to
expand on the capabilities of the standard iTool design and configure the
appearance of your iTool. This option requires the most programming
expertise. It islikely that one of the other options will meet the needs of the
majority of applications, but this level of customization is available for those
who requireit. See “ Custom iTool Interfaces’ on page 142 for more
information.

User Interface Options in IDL Getting Started with IDL

Chapter 11: User Interfaces in IDL 137

Non-Graphical User Interfaces

If your application requires little interaction

Trom the user and rqns inafull IDL E console 52 ¥4 Tasks | 69= varishles | [21 Pr
I_nSta”atlon (that IS, If your user hasa % Compiled module: CALCULATE.
licensed copy of IDL and can use either the Enter first value: 29

IDL Workbench or the IDL command line
version), you may not need to create a
graphical user interface at all. For example,
if you have created a simple program that = =
requires the user to enter a small number of
data values and returns a numerical result,

Enter second wvalue: 54

you may not want the overhead of a i ge
graphical interface.
The READ routine allows you to use the SRS, B ks
IDL command line to prompt the user for ¥ Complled module: CALCULATE.

- Enter first walus: 29
values, providing arecord of both the A
prompts and the values entered in the The result is: 1566

Console view. See the READ/READF topic
inthe IDL Online Help for details.

Thiskind of textual interface behaves
identically on al systemsthat run IDL and
requires very little programming, but it does e

require that alicensed version of IDL be

available. Applications using graphical

interfaces can run using aruntime | DL

license or inthe IDL Virtual Machine, neither of which requires that the application’s
end user have afull IDL license.

Getting Started with IDL Non-Graphical User Interfaces

138 Chapter 11: User Interfaces in IDL

Existing iTool Interfaces

The IDL Intelligent Tools (iTools) are a set of interactive utilities that combine data
analysis and visualization with the task of producing presentation quality graphics.
Based on the IDL Object graphics system, the iTools are desighed to help you get the
most out of your datawith minimal effort. They allow you to continue to benefit from
the control of a programming language, while enjoying the convenience of a point-
and-click environment.

Using an existing i Tool user

X . #JIDL iVolume [9][=1%]
interface for data display Fio E6t Tt Operetirs Vindow il
and modification is the X e -~ o o

4| Volurne

easiest way to allow your
user to access, visualize,

and modify plot, volume,
surface, map, and image

data.

Name;
“Yaolume

Data Channels.

™ Auto-Render

Qualty
Low [iestures]
Boundary

Solid walls -

Render Step

The example exercisesin
this manual use theiTools
extensively. Trying the
examples and
experimenting with the
iTools should give you a kon o o st o ik £ g slstonbon ez
good idea of whether an
existing iTool can provide
the interface your
application needs. See the Introducing the IDL iTools topic in the IDL Online Help
for information on using theiTools.

111

If you need functionality beyond that provided by an existing iTool, you can expand
the functionality by adding:

e Custom operations or manipulators to standard visualization types
e Custom file writers or file readers
e Custom messages

Using an existing iTool lets you provide your users with a great deal of pre-built
functionality. For information on expanding the iTool functionality mentioned above,
see theiTool Programming topic in the IDL Online Help.

Existing iTool Interfaces Getting Started with IDL

Chapter 11: User Interfaces in IDL 139

Graphical Interfaces with IDL Widgets

IDL allows you to construct and manipulate graphical user interfaces using widgets.
Widgets are simple graphical objects such as pushbuttons or sliders that allow user
interaction via a pointing device (usually amouse) and a keyboard. Widget
applications can be simple or complex; the IDL iTools are examples of sophisticated
applications with agraphical user interface constructed from IDL widgets.

While creating an interface using IDL widgetsis significantly simpler than building a
similar interface using native window system graphical interface toolkits, the style of
programming required is fundamentally different than in other IDL programs. A
program written to be used from the IDL command line generally acceptsits inputs
when the program isinvoked. The program then proceeds in a well-defined order to
process those inputs and provide some output — a calculated value, a plot, an image,
etc. In contrast, widget applications are event-driven.

In an event-driven system, the program creates an interface and then waits for
messages (events) to be sent to it from the window system. Events are generated in
response to user manipulation, such as pressing a button or moving a slider. The
program responds to events by carrying out the action or computation specified by the
programmer, and then waiting for the next event.

See “A Simple Widget Example” on page 140 for code that creates avery simple
widget application that allows you to choose and display a JPEG image file from the
IDL distribution.

E— e

Please Select a File for Reading E]
Look in: |5 dala 5
LY &) Clouds.jpg
£ ¥ cthone157.jpg
My Recent %) Day.jpg
Documer I
9 B endacell.jpg
5] glowing_as.ipg
Desktop [E)marsglobe.jpg
¥ md1107g82.ipg
__] & mds290fc1.jpg
] met ter.
My Document ts e eorLraerIeg
&) muscle.jpg
o %] n_vasinfecta.jpg
5 i vight o
My Computer | Ed0Nare.ipg
%] pdthoraxiz4.jpg
o)
My Metwark File name [| Open
Places
Filess of type: [*ipg | Cancel

Getting Started with IDL Graphical Interfaces with IDL Widgets

140 Chapter 11: User Interfaces in IDL

A Simple Widget Example

The following lines of IDL code create the simple application described in
“Graphical Interfaces with IDL Widgets’ on page 139.

PRO simple_image_viewer_event, ev

WIDGET CONTROL, ev.TOP, GET_UVALUE=drawid
WIDGET_CONTROL, ev.ID, GET UVALUE=uval
CASE uval OF
'get_image' : BEGIN
path = !DIR+'/examples/data'
file = DIALOG_PICKFILE (PATH=path, /READ, $
FILTER='*.jpg', /FIX_FILTER)
image = READ_IMAGE(file)
WSET, drawid
ERASE
IF (SIZE(image, /N_DIMENSIONS) EQ 3) THEN BEGIN
TV, image, /TRUE
ENDIF ELSE BEGIN
TV, image
ENDELSE
END
'done' : WIDGET_ CONTROL, ev.top, /DESTROY
ENDCASE

END
PRO simple_image_viewer

main_base = WIDGET_BASE(/ROW, XSIZE=400, YSIZE=255)

draw = WIDGET_ DRAW (main_base, XSIZE=250, YSIZE=250)

button_base = WIDGET BASE (main_base, /COLUMN)

button = WIDGET_BUTTON (button_base, VALUE='Get image', $
UVALUE='get_image"')

button = widget_button (button_base, VALUE='Done',6 $
UVALUE="'done"')

WIDGET_ _CONTROL, main_base, /REALIZE
WIDGET_CONTROL, draw, GET_VALUE=drawid
WIDGET_CONTROL, main_base, SET _UVALUE=drawid

XMANAGER, 'simple_image_viewer', main_base, /NO_BLOCK

END

It is beyond the scope of this manual to describe every detail of the
simple_image_viewer program. But asyou can seg, it requiresfewer than 40 lines

A Simple Widget Example Getting Started with IDL

Chapter 11: User Interfaces in IDL 141

of IDL code to create a program that allows you to quickly select and view the
contents of an imagefile.

If you are interested in trying the simple_image_viewer program, do the
following:

1

2
3.
4

Open the IDL Workbench.
Select File - New — IDL Source File to create a new editor window.
Enter the code lines from the previous page in the editor window.

Select File — Save and then click OK in the Save As dialog that appears,
accepting the default filename and location. (This saves your codein afile
named simple_image_viewer.pro inyour default IDL project directory.)

Select Run — Run simple_image viewer or press F8. The programis
executed and the graphical interface is displayed.

Click Browse to choose a JPEG image to be displayed. Click Done to dismiss
the application.

For more on using the IDL Workbench to create programs, see “The IDL
Workbench” on page 19. For more on creating graphical user interfacesusing IDL
widgets, seethe Creating Widget Applicationstopic in the IDL Online Help.

Getting Started with IDL A Simple Widget Example

142 Chapter 11: User Interfaces in IDL

Custom iTool Interfaces

Each of the standard iTools (such as the iPlot or ilmage tools) have the same basic
interface style. Beyond adding operations or manipulators, you can modify the
existing iTool interface by adding:

* Moda dialogs, implemented through a user interface service

e iTool panels, which provide a set of controlsthat are attached to avisualization
window and are always available

Beyond this, you have the option of modifying the standard i Tool interface. Standard
iTools are constructed of a number of compound widgets designed to work explicitly
within the iTool architecture. You can modify the standard iTool interface by creating
acustom iTool-widget interface, a hybrid tool that combines traditional widget
functionality and iTool compound widgets. This requires knowledge of widget
programming, how to create an iTool, how to create a Ul service, and how to use the
iTool compound widgets. For more information on the previous topics, see the iTool
Programming topic in the IDL Online Help.

Custom iTool Interfaces Getting Started with IDL

Index

Symbols

$sign, 10, 131
$Main$ program, 118
; comment, 131

Numerics

2D plot, 107
3D contour plot, 90
3D contours, 90

A

adding
error bars with iPlot, 48
plot titleswith iPlot, 46

Getting Started with IDL

annotating maps, 74

arguments, 121

array
definition, 120
operations, 116, 124
subscripts, 124

automatic compilation, 123, 132

B

bandpassfilters, 113
bandstop filters, 113
breakpoints, 32

143

144

C cropping in the ilmage tool, 60
code
breakpoints, 32 D
commenting, 131
compiling, 31 data
debugging, 32, 133 images, 71
development, 130 sets, creating, 107
efficient, 116, 124 types, 116, 120
line continuation, 131 vector, 80
modular, 128 debugging, 32, 133
PRO, 119 decomposed color, 10
running, 31 DEVICE command, 10
coding, interactive, 116, 118, 120, 129 differentiation, 59
colors DIGITAL_FILTER function, 113
alternate color tables with ilmage, 60 Direct graphics
contrast enhancement, 56 creating 2-D plots, 50
decomposed, 10 displaying
filling contours, 90 contours, 89, 90
in Direct graphics examples, 10 images, 63
COM, 123 surfaces, 86
command mapping, 74, 77
history view, 29 printing, 51
line resizing images, 64
coding, 116, 118, 120, 129 displaying
mode, 22 contours
view, 29 Direct graphics, 89, 89, 90
comments, 131 iContour, 87
compiling, 31, 123, 132 ilmage, 55
console view, 29 images
continuation character, 10, 131 Direct graphics, 50, 63
contours, 87—90 ilmage, 55
contrast enhancement, 56, 56 iMap, 71
copyrights, 2 maps, 67
creating plots, 44
2-D plots surfaces
Direct graphics, 50 Direct graphics, 86
iPlot, 44 iSurface, 83
3-D plots visualizations, 83
iPlot, 52 volumes
data sets, 107 Direct graphics, 99
surface plots of irregularly sampled data, 91 iVolume, 96

Index Getting Started with IDL

distributing IDL applications, 117, 129
dollar sign, 131
dynamic data types, 116, 120

E

Editor, 27, 130
efficient programming, 116, 124
elevation levels, contours, 89
entering commands, 10
error handling, 133
example

code, 10, 131

widget program, 140
executing programs, 132
export restrictions, 2
external programs, 117
extracting profilesin ilmage, 61

F

Fast Fourier transform, 110

filling contours, 90

filters, 110-113

finite impul se response (FIR) filters, 113
FIR filter, 113

frequency domain filtering, 110
functions, overview, 118-119

G

getting help, 10
globe
drawing, 69
plotting, 72
Graphica User Interface (see GUI)
graphics
mapping, 71
object, 128

Getting Started with IDL

145

GUI
iTools, 116, 129, 138, 142
routines, 116
widget programming, 116, 129
widgets, 136, 139

H
highpassfilters, 113

iContour, 87—90
IDL
distributing applications, 117, 129
Editor, 130
external programs, 117
programming, 116
projects, 128
quick start, 13
routines, 116
Workbench, 13, 116, 128, 133
see al soWor kbench
workspace, 128
ilmage
about, 55
cropping, 60
differentiation, 59
displaying images, 55
extracting profiles, 61
line profile tool, 61
loading alternate color tables, 60
resizing images, 56
rotating images, 61
sharpening, 58
smoothing, 57
thresholding, 56
unsharp masking, 58

Index

146

images

contrast enhancement, 56

display routines, 63

displaying (quick start), 14

ilmage, 55

mapping, 71, 77

opening, 63

planes, 97

reading, 63

sharpening, 57

smoothing, 57

working within IDL, 54
iMap

about, 67

areaplot, 73

map data, 70

overview, 67

vector data, 80

visualization, 70
interactive programming, 116, 118, 120, 129
iPlot

2-D plots, 44

3-D plots, 52

about, 44

ASCI| data set, 45

changing a plot data range, 47

error bars, 48

plot titles, 46

symbols and line styles, 48
isosurfaces, 97
iSurface

about, 83, 87, 95

displaying surfaces, 83

rotating surfaces, 84
iTools

programming, 116, 129

user interface, 138
iVector, 80
iVolume, 95, 132

Index

Java, 123

K
keywords, 122

L

|atitude, 72, 76

legalities, 2

legends with iContour, 88
leves, contour, 89

line continuation, 131
longitude, 72, 76

lowpass filters, 113

M

main programs, 118
MAP_IMAGE, 78
mapping
annotations, 74
area, 72
data, 70, 77
Direct graphics, 74
display (quick start), 15
graphics, 71
grid, 73
images, 71
iMap, 67
latitude, 72, 76
longitude, 72, 76
overview, 66
plotting data, 74
projections, 67, 69
vector data, 80
warping images, 77

maximizing views, 26

Getting Started with IDL

menu bar, 24

Mercator projection, 68, 74
modular code, 128
Mollweide projection, 71, 78
moving average filter, 113
moving views, 25

N

named programs, 118-119
naming conflicts, 123

noise reduction filter, 110
non-graphical user interface, 137

O

object

graphics, 128

programming, 128
opening imagefiles, 63
orthographic map projection, 69
outline view, 27
overplotting, 44, 50, 90

P

partia globe, 72
perspectives, 23
plot
2D, 107
displaying (quick start), 14
map, 74
plotting
annotating maps, 74
ASCII data set withiPlot, 45
overplotting, 90
preferences, 37

printing a Direct graphics window, 51

PRO code, 119

Getting Started with IDL

procedures
overview, 118-119
programming
arguments, 121
debugging, 133
development, 130
efficient, 116, 124
example, 131
executing, 132
file names, 123
functions, 118-119
GUI, 129
interactive, 116, 118, 120, 129
iTools, 116, 129
keywords, 122
line continuation, 131
main programs, 118
object-oriented, 128
overview, 116
procedures, 118-119
quick start, 16
saving programs, 132
subscripts, 124
widget, 116, 129
project explorer view, 27
projections
Mercator, 68, 74
Mollweide, 71, 78
orthographic, 69
overview, 67
projects, 30, 128
PSYM keyword, 75

Q

quick start, 13

R
reading images, 63

147

Index

148

rendering volumes, 96, 99 toolbar, 25

resizing images with Direct graphics, 64 trademarks, 2

reusable code, 128 tutorials, 10

rotating
imagesin ilmage, 61
surfacesin iSurface, 84 U

I‘O;:I Tjersnents 121 unsharp masking, 58, 58
IDgL 116 ' updating the IDL Workbench, 38
N user interface
image display, 63 custom. 139
keywords, 122 GUI, léG

running programs, 31, 132 iTools, 138, 142

non-graphical, 137

S widgets, 139

saving programs, 132

scalars, 120 vV

:i:rlpcgrll?r?é . variables
differentiation, 59 types, 120
images, 57, 58 view, 28
e vector data, 80

signal processing, 104
SIN function, 107
sinewave function, 107
smoothing images, 57, 57
starting
IDL in command line mode, 22
the IDL Workbench, 20

views
command history, 29
command line, 29
console, 29
explanation, 25
maximizing, 26

structures, 120 moving, 25
subscripts, 124 Olrjct:'ler::?ei?Iorer 27
SYMSIZE keyword, 75 f asésl 0 Prorer,
Tool Paette, 26
T variables, 28
Visualizations, 28
tasks view, 29 Visualization Browser, 70
three-dimensional Visualizations
contour plot, 90 displaying surfaces, 83
transformation matrix, 99 view, 28

thresholding, 56
Tool Palette, 26

Index Getting Started with IDL

149

volumes programming, 74, 116, 129
image planes, 97, 101 Workbench
isosurfaces, 97, 99 adding features, 38
iVolume, 95 Editor, 27, 130
rendering, 96 overview, 116
visualizing, 95 perspectives, 23

preferences, 37
projects, 30
W starting, 13, 20
N tools, 133

Wgrplng images, 77 updating, 38

widgets
example, 140 workspaces, 30, 128

overview, 136 workspaces, 30, 128

Getting Started with IDL Index

	Online Manuals
	IDL Documentation
	What's New in IDL 7.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Advanced Math and Stats
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Getting Started with IDL
	Contents
	The Power of IDL
	Using this Manual
	Other Resources

	Super Quick Start
	The IDL Workbench
	About the IDL Workbench
	Command Line Options
	Starting IDL in Command Line Mode

	Perspectives
	IDL Workbench Tour
	Compiling and Running an IDL Program
	Breakpoints and Debugging
	Getting Help
	Preferences
	Updating the IDL Workbench

	Line Plots
	IDL and 2-D Plotting
	Plotting with the Tool Palette
	Plotting with iPlot
	Plotting with Direct Graphics
	IDL and 3-D Plotting

	Images
	IDL and Images
	Displaying Images
	Displaying Images with Direct Graphics

	Maps
	IDL and Mapping
	Displaying iMaps Tool
	Modifying Map Data
	Fitting an Image to a Projection
	Plotting a Portion of the Globe
	Plotting Data on Maps
	Warping Images to Maps
	Displaying Vector Data on a Map

	Surfaces and Contours
	Surfaces and Contours in IDL
	Displaying Surfaces
	Displaying Surfaces with Direct Graphics
	Displaying Contours
	Displaying Contours with Direct Graphics
	Working with Irregularly Gridded Data

	Volumes
	IDL and Volume Visualization
	Volume Rendering with iVolume
	Volume Rendering with Direct Graphics

	Signal Processing with IDL
	IDL and Signal Processing
	Signal Processing Concepts
	Creating a Data Set
	Signal Processing with SMOOTH
	Frequency Domain Filtering
	Displaying Multiple Plots in a Single Window

	Creating Custom Filters
	Wavelet Filtering Example

	Programming in IDL
	About Programming in IDL
	Types of IDL Programs
	IDL Language Elements
	Arrays and Efficient Programming
	IDL Programming Concepts and Tools
	IDL Workbench Editor
	Executing a Simple IDL Program
	Debugging

	User Interfaces in IDL
	User Interface Options in IDL
	Non-Graphical User Interfaces
	Existing iTool Interfaces
	Graphical Interfaces with IDL Widgets
	A Simple Widget Example
	Custom iTool Interfaces

	Index

