
IDL Version 7.1
May 2009 Edition
Copyright © ITT Visual Information Solutions
All Rights Reserved

Object
Programming

0509IDL71OBJ

Restricted Rights Notice
The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to
the restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document
at any time and without notice.

Limitation of Warranty
ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual
If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information
The software and associated documentation are subject to U.S. export controls including the United States Export Administration
Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These
laws include restrictions on destinations, end users, and end use.

Acknowledgments
ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of ITT Visual Information Solutions.

ESRI®, ArcGIS®, ArcView®, and ArcInfo® are registered trademarks of ESRI.

Portions of this work are Copyright © 2008 ESRI. All rights reserved.

Numerical Recipes™ is a trademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ is a trademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.

NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has a commercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN is licensed from the United States of America under U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.

QUAC and FLAASH are licensed from Spectral Sciences, Inc. under U.S. Patent No. 6,909,815 and U.S. Patent No. 7,046,859 B2.

Portions of this software are copyrighted by Merge Technologies Incorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.

IMSL is a trademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visual Numerics, Inc. All Rights Reserved.

Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents
Chapter 1
The Basics of Using Objects in IDL ... 15
Object-Oriented Programming Concepts .. 16
Using IDL Objects ... 17
Creating Objects .. 18
Acting on Objects Using Methods .. 19

Object Method Syntax .. 19
Arguments ... 20

Modifying Object Properties ... 22
Properties and the Property Sheet Interface .. 22
Setting Properties at Initialization ... 23
Setting Properties of Existing Objects .. 23
Retrieving Property Settings ... 24
About Object Property Descriptions ... 24

Destroying Objects .. 26
Object Programming 3

4

Using Operations with Objects .. 27
Object Assignment .. 27
Object Equality and Inequality .. 28

Object Examples .. 29

Chapter 2
Creating an Object Graphics Display ... 31
Overview of Object Graphics Classes ... 32

Naming Conventions ... 32
Creating an Object Graphics Display .. 33
Object Graphics Display Hierarchy ... 35

Components of an Object Graphics Hierarchy .. 36
Destination Objects .. 37
Display Objects .. 38
Visualization Objects ... 40
File Format Objects .. 44
Color in Object Graphics ... 46
Color and Destination Objects ... 48

A Note about Draw Widgets ... 48
Indexed Color Model in Object Graphics ... 48
RGB Color Model in Object Graphics .. 49

Palette Objects ... 50
Creating Palette Objects .. 50
Using Palette Objects .. 50

Specifying Object Color .. 51
Example Specifying RGB Values ... 51

How IDL Interprets Color Values .. 53
Indexed Color Model ... 53
RGB Color Model ... 53

Rendering Objects .. 55
Simple Plot Example ... 56

Controlling the Depth of Objects in a View .. 58
Controlling Object Transparency ... 60

Opacity and Transparency ... 61
Blending Mathematics ... 61
Rendering Order .. 62
Contents Object Programming

5

Viewing and Rotation ... 63
Depth Buffer Updating ... 65

Performance Tuning Object Graphics ... 66
Hardware vs. Software Rendering .. 66

Chapter 3
Positioning Objects in a View .. 69
Positioning Visualizations in a View .. 70

Viewport ... 70
Location .. 70
Coordinate Systems and Scaling ... 70

Viewport .. 71
Location and Dimension ... 71

Projection ... 73
Parallel Projections ... 73
Perspective Projections ... 74

Eye Position ... 75
View Volume .. 77

Viewplane Rectangle .. 77
Near and Far Clipping Planes ... 77
Finding an Appropriate View Volume ... 78

Converting Data to Normal Coordinates ... 80
A Function for Coordinate Conversion .. 81

Example: Centering an Image ... 83
Example: Transforming a Surface ... 86
Zooming within an Object Display ... 88

Zooming in on an Object Graphics Image Display .. 88
Translating, Rotating and Scaling Objects .. 91

Translation .. 92
Rotation ... 92
Scaling .. 93
Combining Transformations ... 94

Interactive 3D Transformations ... 95

Chapter 4
Working with Image Objects .. 97
Overview of Image Objects ... 98
Object Programming Contents

6

Defining Image Palettes .. 98
Configuring Common Object Properties ... 99

Creating Image Objects .. 100
Displaying Binary Images with Object Graphics .. 100
Displaying Grayscale Images with Object Graphics ... 102

Positioning Image Objects in a View ... 105
Displaying Multiple Images in Object Graphics ... 106

Panning in Object Graphics ... 111
Defining Transparency in Image Objects .. 115

Transparency and Image Warping .. 115
Image Transparency Examples ... 115

Warping Image Objects ... 121
Mapping an Image Object onto a Sphere ... 132
Image Tiling ... 136

Image Pyramids ... 137
Image Tiles .. 139

Adding Tiling to Your Application .. 140
Querying Required Tiles ... 141
Panning Tiled Images .. 142
Zooming Tiled Images .. 143
Copying and Printing a Tiled Image ... 146
Preloading Tiles ... 147

Example: JPEG2000 Files for Tiling ... 150

Chapter 5
Working with Plots and Graphs .. 153
Contour Objects ... 154

Creating Contour Objects .. 154
Using Contour Objects .. 154

Plot Objects .. 157
Creating Plot Objects ... 157
Using Plot Objects ... 157
Polar Plots .. 160

Axis Objects ... 161
Creating Axis Objects ... 161
Using Axis Objects .. 162
Contents Object Programming

7

Logarithmic Axes ... 163
Displaying Date/Time Data on Axis Objects .. 165

Displaying Date/Time Data on a Plot Display .. 165
Displaying Date/Time Data on a Contour Display ... 170

Axis Titles and Tickmark Text .. 174
Reverse Axis Plotting ... 174

Symbol Objects ... 176
Creating Symbol Objects .. 176
Using Symbol Objects .. 178

A Plotting Routine ... 180
Improvements to the OBJ_PLOT Routine .. 181

Chapter 6
Working with Surface Objects ... 183
Surface Objects .. 184

Creating Surface Objects .. 184
Using Surface Objects .. 185

An Interactive Surface Example .. 189

Chapter 7
Creating Volume Objects .. 193
Creating a Volume Object ... 194

Using Volume Objects .. 195
Setting Volume Object Attributes ... 196

Volume Opacity .. 196
Volume Color ... 197
Volume Lighting ... 197
Compositing .. 198
ZBuffering .. 198
Interpolation .. 199
Rendering speed .. 199

Chapter 8
Polygon and Polyline Objects .. 201
About Polygon and Polyline Objects .. 202

Creating Polygon and Polyline Objects .. 202
Polygon Objects .. 204
Object Programming Contents

8

Creating Polygon Objects .. 204
Configuring Polygon Objects .. 204

Tessellator Objects ... 206
Creating Tessellator Objects ... 206
Using Tessellator Objects .. 206

Pattern Objects ... 207
Creating Pattern Objects .. 207
Using Pattern Objects .. 207

Polygon Optimization .. 209
Polygon Mesh Optimization .. 209
Back-face Culling .. 212
Normal Computations ... 213

Polyline Objects ... 214
Creating Polyline Objects .. 214
Using Polyline Objects .. 214

Polygon and Polyline Object Examples ... 215

Chapter 9
Annotating an Object Display .. 217
Annotating Object Graphic Displays ... 218
Text Objects ... 219

Creating Text Objects .. 219
Using Text Objects .. 219
A Text Example ... 222

Font Objects ... 223
Creating Font Objects .. 224
Assigning a Font Object to a Text Object ... 225
Font Objects and Resource Use ... 226

ROI Objects ... 227
Legend Objects .. 228

Creating Legend Objects ... 228
Using Legend Objects ... 228

Colorbar Objects .. 231
Creating Colorbar Objects ... 231
Using Colorbar Objects ... 231

Light Objects .. 233
Contents Object Programming

9

Creating Light Objects .. 233
Configuring Light Objects .. 234
Optimizing Light Object Use .. 235

Custom Image Object Annotations ... 236
Annotating Indexed Image Objects .. 236
Annotating RGB Image Objects ... 240

Chapter 10
Animating Objects .. 245
Overview of Object Animation ... 246
Configuring an Animation Model Object ... 248

Using Multiple Models ... 248
Controlling the Animation Rate .. 250
Designing a Behavior Object .. 251
Factors Affecting Animation Performance ... 253

Multiple Image Copies .. 253
Graphics Display Refresh Rate ... 254

Example: Interactive Cine Animation ... 255

Chapter 11
Selecting Objects .. 257
Selection and Data Picking .. 258
Object Selection .. 259

Selecting Views .. 259
Selecting Visualization Objects .. 260
 Selecting Models .. 260

A Selection Example ... 261
Data Picking .. 262
A Data Picking Example ... 263

Chapter 12
Displaying, Copying and Printing Objects .. 265
Overview of Object Graphic Destinations .. 266
Window Objects .. 267

Creating Window Objects ... 267
Color Model .. 267
Note on Window Size Limits .. 268
Object Programming Contents

10
Using Window Objects .. 269
Erasing a Window ... 269
Exposing or Hiding a Window .. 269
Iconifying a Window ... 269
Setting the Window Cursor ... 270
Saving/Restoring Windows ... 270
Saving Window Contents to a File .. 270

Improving Window Drawing Performance ... 272
Retained Graphics and Expose Events .. 272
Instancing to Improve Redraw Performance ... 272

Buffer Objects .. 274
Creating Buffer Objects ... 274

Clipboard Objects .. 275
Creating Clipboard Objects ... 276

Printer Objects ... 277
Creating Printer Objects .. 277
Color Model .. 277
Printer Dialogs ... 277
Drawing to a Printer .. 278
Positioning Objects Within a Page .. 279
Starting a New Page on a Printer ... 283
Submitting a Printer Job .. 283

Bitmap and Vector Graphic Output ... 284
Bitmap Graphics .. 284
Vector Graphics ... 285
Guidelines for Choosing Bitmap or Vector Graphics ... 286
Controlling What is Displayed in Vector Graphics ... 287

Chapter 13
Creating Custom Objects in IDL ... 295
Creating Custom Objects ... 296
IDL Object Overview .. 297

Classes and Instances .. 297
Encapsulation .. 297
Methods ... 297
Polymorphism ... 297
Contents Object Programming

11
Inheritance .. 298
Persistence .. 298

Undocumented Object Classes .. 299
Creating an Object Class Structure ... 300

Automatic Class Structure Definition ... 301
Inheritance .. 302
Null Objects .. 303

Object Heap Variables ... 304
Dangling References ... 305
Heap Variable “Leakage” ... 305
Freeing Heap Variables .. 305

The Object Lifecycle ... 307
Creation and Initialization .. 307
Destruction .. 309

Creating Custom Object Method Routines ... 310
Defining Method Routines .. 310
The Implicit Self Argument .. 311
Calling Method Routines .. 312
Searching for Method Routines .. 313

Method Overriding .. 314
Specifying Class Names in Method Calls ... 315

Object Examples .. 317
Creating Composite Classes or Subclasses ... 317

Chapter 14
Advanced Rendering Using Shader Objects 319
About Shaders ... 320

Why Use Shaders .. 320
Hardware Requirements for Shaders .. 321

About Shader Programs ... 323
Vertex and Fragment Shaders ... 324

How Shaders Enhance Performance ... 326
Using Shaders in an IDL Application ... 328

Display-Only Effects of Shaders .. 329
Passing Information to a Shader Program ... 330

Uniform Variables .. 330
Object Programming Contents

12
Attribute Variables .. 332
Library of Pre-built Shader Objects ... 333
Image Filter Shaders .. 334

Providing a Software Alternative to Shaders .. 335
Caching Shader Results ... 335
Capturing Image Data During Shader Execution .. 335
Altering RGB Levels Using a Shader ... 336
Basic RGB Shader Object Class ... 336
Uniform Variable for RGB Values ... 337
Software Fallback for RGB Shader ... 337
Hardware Shader Program for RGB Shader ... 339
Applying Lookup Tables Using Shaders ... 342
Basic LUT Shader Object Class .. 342
Uniform Variable for LUT Example ... 343
Hardware Shader Program for LUT Shader .. 344
Software Fallback for the LUT Shader ... 346
High Precision Images ... 349
OpenGL Conversion of Image Data to Texture Data .. 349
Examples of Handling High-Precision Images ... 351
Filter Chain Shaders .. 355
Basic Filter Chain Shader Object Class .. 355
Uniform Variables for Filter Chain Example .. 357
Hardware Shader Program for Filter Chain Example ... 357
Software Fallback for the Filter Chain Shader .. 357

Vertex Shaders ... 359
Attribute and Uniform Variables for Vertex Shader ... 359
Hardware Shader Program for Vertex Shader ... 360

Lighting Shaders .. 363
IDL Lights and the OpenGL Light Table .. 363
Adding Lighting and Shading to a Surface ... 365
Uniform and Attribute Variables for Lighting Shader .. 366
Hardware Shader Program for Lighting Shader .. 366

Multi-texture Shaders ... 369
Uniform Variables and Multi-Texture Shaders ... 370
Manipulating Multiple Textures Using Shaders ... 371
Uniform Variables for Multi-texture Shader ... 371
Contents Object Programming

13
Hardware Shader Program for Multi-texture Shader .. 372
Repositioning Textures ... 374
Rotating Earth with Multiple Textures ... 375

Index ... 377
Object Programming Contents

14
Contents Object Programming

Chapter 1

The Basics of Using
Objects in IDL
The following topics are covered in this chapter:
Object-Oriented Programming Concepts . . 16
Using IDL Objects . 17
Creating Objects . 18
Acting on Objects Using Methods 19

Modifying Object Properties 22
Destroying Objects 26
Using Operations with Objects 27
Object Examples . 29
Object Programming 15

16 Chapter 1: The Basics of Using Objects in IDL
Object-Oriented Programming Concepts

Traditional programming techniques make a strong distinction between routines
written in the programming language (procedures and functions in the case of IDL)
and data to be acted upon by the routines. Object-oriented programming begins to
remove this distinction by melding the two into objects that can contain both routines
and data. Object orientation provides a layer of abstraction that allows the
programmer to build robust applications from groups of reusable elements.

Beginning in version 5.0, IDL provides a set of tools for developing object-oriented
applications. IDL’s Object Graphics engine is object-oriented, and a class library of
graphics objects allows you to create applications that provide equivalent graphics
functionality regardless of your (or your users’) computer platform, output devices,
etc. As an IDL programmer, you can use IDL’s traditional procedures and functions
as well as the new object features to create your own object modules. Applications
built from object modules are, in general, easier to maintain and extend than their
traditional counterparts.

This chapter describes how to create, configure and destroy inherent IDL graphic
objects. For information on how to create and use custom object that you create, see
Chapter 13, “Creating Custom Objects in IDL”. If you are developing a custom iTool
or components of an iTool (such as an operation or manipulator) see the iTool
Programming for complete details and examples.

A complete discussion of object orientation is beyond the scope of this book—if you
are new to object oriented programming, consult one of the many references on
object oriented program that are available.
Object-Oriented Programming Concepts Object Programming

Chapter 1: The Basics of Using Objects in IDL 17
Using IDL Objects

The IDL Object Graphics system is a collection of pre-defined object classes, each of
which is designed to encapsulate a particular visual representation. Actions (such as
the modification of attributes, or data picking) may be performed on instances of
these object classes by calling corresponding pre-defined methods. These objects are
designed for building complex three-dimensional data visualizations.

For example, the IDLgrAxis object provides an encapsulation of all of the
components associated with a graphical representation of an axis. One of the actions
that can be performed on an axis is retrieving the current value of one or more of its
attributes (such as its color, tick values, or data range). This action may be performed
via the IDLgrAxis::GetProperty method. See “Graphic Objects—Visualization” in
the functional category “Object Class Library” (IDL Quick Reference) for a complete
listing of these types of objects.

Object Graphics should be thought of as a collection of building blocks. In order to
display something on the screen, the user selects the appropriate set of blocks and
puts them together so that as a group they provide a visual result. In this respect,
Object Graphics are quite different than Direct Graphics. A single line of code is
unlikely to produce a complete visualization. Furthermore, a basic understanding of
the IDL object system is required (for instance, how to create an object, how to call a
method, how to destroy an object, etc.). Because of the level at which these objects
are presented, Object Graphics are aimed at application programmers rather than
command line users.

Object Graphics do not interact in any way with the system variables (such as !P, !X,
!Y, and !Z). Each graphic object is intended to encapsulate all of the information
required to fully describe itself. Reliance on external structures is not condoned. The
advantage of this approach is that once an object is created, it will always behave in
the same way even if the system state is modified by another program, or if the object
is moved to another user’s IDL session, where the system state may have been
customized in a different way than the state in which the object was originally
defined.

Object Graphics are designed for building interactive three-dimensional visualization
applications. Direct manipulation tools (such as the Trackball object) are provided to
aid the application developer. Selection and data picking are also built in, so the
developer can spend less time working out data projection issues and more time
focusing on domain specific data analysis and visualization features. The IDL
Intelligent Tools (iTools) are good examples of currently available applications built
using Object Graphics. For more information, see the iTools User’s Guide.
Additional examples based on Object Graphics can be found in the IDL demo.
Object Programming Using IDL Objects

18 Chapter 1: The Basics of Using Objects in IDL
Creating Objects

To create an object from the IDL object class library, use the OBJ_NEW function.
See “OBJ_NEW” (IDL Reference Guide). The Init method for each class describes
the arguments and keywords available when you are creating a new object.

For example, to create a new object from the IDLgrAxis class, use the following call
to OBJ_NEW along with the arguments and keywords accepted by the
IDLgrAxis::Init method:

myAxis = OBJ_NEW('IDLgrAxis', DIRECTION = 1, RANGE = [0.0, 40.0])

When you create an object, it is persistent, meaning it exists in memory until you
destroy it. You use an object reference (myAxis) to access the data associated with
the object. This object reference actually accesses an object heap variable. (See
“Object Heap Variables” on page 304 for details.)

Once an object has been created, you can access and modify it as needed. (See “The
Object Lifecycle” on page 307 for additional information.) However, you should
always explicitly clean up object references before ending a program. See
“Destroying Objects” on page 26 for more information.
Creating Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 19
Acting on Objects Using Methods

In order to perform an action on an object’s instance data, you must call one of the
object’s methods. In addition to their own specific methods, all object classes shipped
with IDL except for the IDL_Container class have four methods in common:
Cleanup, Init, GetProperty, and SetProperty. The Cleanup and Init methods are life-
cycle methods, and cannot be called directly except within a subclass’ Cleanup or Init
method. (See “The Object Lifecycle” on page 307.) The GetProperty and SetProperty
methods allow you to inspect (get) or change (set) the various properties associated
with a given object. See “Modifying Object Properties” on page 22 for details.

To call a method, you must use the method invocation operator,-> (the hyphen
followed by the greater-than sign).

Object Method Syntax

In the IDL Reference Guide, the Syntax section of each object method shows the
proper syntax for calling the method.

Procedure Methods

IDL procedure methods have the syntax:

Obj->Procedure_Name, Argument [, Optional_Arguments]

where Obj is a valid object reference, Procedure_Name is the name of the procedure
method, Argument is a required parameter, and Optional_Argument is an optional
parameter to the procedure method. The square brackets around optional arguments
are not used in the actual call to the procedure, they are simply used to denote the
optional nature of the arguments within this document.

Function Methods

IDL function methods have the syntax:

Result = Obj->Function_Name(Argument [, Optional_Arguments])

where Obj is a valid object reference, Result is the returned value of the function
method, Function_Name is the name of the function method, Argument is a required
parameter, and Optional_Argument is an optional parameter. The square brackets
around optional arguments are not used in the actual call to the function, they are
simply used to denote the optional nature of the arguments within this document.
Object Programming Acting on Objects Using Methods

20 Chapter 1: The Basics of Using Objects in IDL
Note
All arguments and keywords to functions should be supplied within the parentheses
that follow the function’s name.

Arguments

The Arguments section describes each valid argument to the method.

Note
These arguments are positional parameters that must be supplied in the order
indicated by the method’s syntax.

Named Variables

Often, arguments that contain values upon return from the function or procedure
method (“output arguments”) are described as accepting “named variables.” A named
variable is simply a valid IDL variable name. This variable does not need to be
defined before being used as an output argument. Note, however that when an
argument calls for a named variable, only a named variable can be used—sending an
expression causes an error.

Keywords

The Keywords section describes each valid keyword argument to the method.

Note
Keyword arguments are formal parameters that can be supplied in any order.

Keyword arguments are supplied to IDL methods by including the keyword name
followed by an equal sign (“=”) and the value to which the keyword should be set.
Note that keywords can be abbreviated to their shortest unique length. For example,
the XSTYLE keyword can be abbreviated to XST.

Note
In the case of Init, GetProperty and SetProperty methods, keywords often
correspond to object properties. See “Modifying Object Properties” on page 22 for
additional discussion.
Acting on Objects Using Methods Object Programming

Chapter 1: The Basics of Using Objects in IDL 21
Setting Keywords

When the documentation for a keyword says something similar to, “Set this keyword
to enable logarithmic plotting,” the keyword is simply a switch that turns an option on
and off. In general, setting such keywords equal to 1 (or using the /KEYWORD
syntax) causes the option to be turned on. Explicitly setting the keyword to zero (or
not including the keyword) turns the option off.
Object Programming Acting on Objects Using Methods

22 Chapter 1: The Basics of Using Objects in IDL
Modifying Object Properties

Some IDL objects have properties associated with them — things like color, line
style, size, and so on. Properties are set or changed by supplying property-value pairs
in a call to the object class’ Init or SetProperty method:

Obj->OBJ_NEW('ObjectClass', PROPERTY = value, ...)

or

Obj->SetProperty, PROPERTY = value, ...

where PROPERTY is the name of a property and value is the associated property
value.

Property values are retrieved by supplying property-value pairs in a call to the object
class’ GetProperty method:

Obj->GetProperty, PROPERTY = variable, ...

where PROPERTY is the name of a property and variable is the name of an IDL
variable that will hold the associated property value.

Note
Property-value pairs behave in exactly the same way as Keyword-value pairs. This
means that you can set the value of a boolean property to 1 by preceding the name
of the property with a “/” character. The following are equivalent:

Obj->SetProperty, PROPERTY = 1

Obj->SetProperty, /PROPERTY

If you are familiar with IDL Direct Graphics, you will note that many of the
properties of IDL objects correspond to keywords to the Direct Graphics routines.
Unlike IDL Direct Graphics, the IDL Object Graphics system allows you to change
the value of an object’s properties without re-creating the entire object. Objects must
be redrawn, however, with a call to the destination object’s Draw method, for the
changes to become visible.

Properties and the Property Sheet Interface

In addition to being able to set and change object property values programmatically,
IDL provides a way for users to change property values via a graphical user interface.
The WIDGET_PROPERTYSHEET function creates a user interface that allows users
to select and change property values using the mouse and keyboard.
Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 23
For an object property to be displayed in a property sheet, the property must be
registered.

See “Registered Properties” (Chapter 28, IDL Reference Guide) for additional
discussion.

Setting Properties at Initialization

Often, you will set an object’s properties when creating the object for the first time,
which is done by specifying any keywords to the object’s Init method directly in the
call of OBJ_NEW that creates the object. For example, suppose you are creating a
plot and wish to use a red line to draw the plot line. You could specify the COLOR
keyword to the IDLgrPlot::Init method directly in the call to OBJ_NEW:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, COLOR = [255, 0, 0])

In most cases, an object’s Init method cannot be called directly. Arguments to
OBJ_NEW are passed directly to the Init method when the object is created.

For some graphics objects, you can specify a keyword that has the same meaning as
an argument. In Object Graphics, the value of the keyword overrides the value set by
the argument. For example,

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata, DATAX = newXData)

The Plot object uses the data in newXData for the plot’s X data.

Setting Properties of Existing Objects

After you have created an object, you can also set its properties using the object’s
SetProperty method. For example, the following two statements duplicate the single
call to OBJ_NEW shown above:

myPlot = OBJ_NEW('IDLgrPlot', xdata, ydata)
myPlot->SetProperty, COLOR = [255, 0, 0]

Note
Not all keywords available when the object is being initialized are necessarily
available via the SetProperty method. Keywords available when using an object’s
SetProperty method are noted with the word “Set” in the table included after the
text description of the property.
Object Programming Modifying Object Properties

24 Chapter 1: The Basics of Using Objects in IDL
Retrieving Property Settings

You can retrieve the value of a particular property using an object’s GetProperty
method. The GetProperty method accepts a list of keyword-variable pairs and returns
the value of the specified properties in the variables specified. For example, to return
the value of the COLOR property of the plot object in our example, use the statement:

myPlot->GetProperty, COLOR = plotcolor

The value of the COLOR property is returned in the IDL variable plotcolor.

You can retrieve the values of all of the properties associated with a graphics object
by using the ALL keyword to the object’s GetProperty method. The following
statement:

myPlot->GetProperty, ALL = allprops

returns an anonymous structure in the variable allprops; the structure contains the
values of all of the retrievable properties of the object.

Note
Not all keywords available when the object is being initialized are necessarily
available via the GetProperty method. Keywords available when using an object’s
GetProperty method are noted with the word “Get” in the table included after the
text description of the property.

About Object Property Descriptions

In the documentation for the IDL object class library, the description of each class is
followed by a section describing the properties of the class. Each property description
is followed by a table that looks like this:

where

• Property Type describes the property type associated with the property. If the
property is registered, the property type will be one of a number of registered
property data types. If the property is not registered, this field will describe the
generic IDL data type of the property value.

Property Type Boolean

Name String Hide

Get: Yes Set: No Init: Yes Registered: Yes
Modifying Object Properties Object Programming

Chapter 1: The Basics of Using Objects in IDL 25
• Name String is the default value of the Name property attribute. If the
property is registered, this is the value that appears in the left-hand column
when the property is displayed in a property sheet widget. If the property is not
registered, this field will contain the words not displayed.

• Get, Set, and Init describe whether the property can be specified as a keyword
to the GetProperty, SetProperty, and Init methods, respectively.

• Registered describes whether the property is registered for display in a
property sheet widget.

See Registered Property Data Types and “Registered Properties” (Chapter 28, IDL
Reference Guide) for additional information.
Object Programming Modifying Object Properties

26 Chapter 1: The Basics of Using Objects in IDL
Destroying Objects

Use the OBJ_DESTROY procedure to destroy an object. When an object is created
using OBJ_NEW, memory is reserved for the object on the heap (see “Object Heap
Variables” on page 304 for details). You must explicitly destroy objects in order to
clean up the reference and the remove the data from memory. Objects are released as
with a call to OBJ_DESTROY. Internally, this calls the object’s Cleanup method (see
“Destruction” on page 309 for details).

For example, if you have created an axis object called myAxis, use the following
syntax to clean up the object reference:

OBJ_DESTROY, myAxis

See “OBJ_DESTROY” (IDL Reference Guide) for further details.
Destroying Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 27
Using Operations with Objects

Object reference variables are not directly usable by many of the operators, functions,
or procedures provided by IDL. You cannot, for example, do arithmetic on them or
plot them. You can, of course, do these things with the contents of the structures
contained in the object heap variables referred to by object references, assuming that
they contain non-object data.

There are four IDL operators that work with object reference variables: assignment,
method invocation (described in “Acting on Objects Using Methods” on page 19),
EQ, and NE. The remaining operators (addition, subtraction, etc.) do not make any
sense for object references and are not defined.

Note
The structure dot operator (.) is allowed within methods of a class of a custom
object. See “The Implicit Self Argument” on page 311 for details.

Many non-computational functions and procedures in IDL do work with object
references. Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth
noting that the only I/O allowed directly on object reference variables is default
formatted output, in which they are printed as a symbolic description of the heap
variable they refer to. This is merely a debugging aid for the IDL programmer—
input/output of object reference variables does not make sense in general and is not
allowed. Please note that this does not imply that I/O on the contents of non-object
instance data contained in heap variables is not allowed. Passing non-object instance
data contained in an object heap variable to the PRINT command is a simple example
of this type of I/O.

You can also get information about an object as described in “Returning Object Type
and Validity” on page 81.

Object Assignment

Assignment works in the expected manner—assigning an object reference to a
variable gives you another variable with the same reference. Hence, after executing
the statements:

;Define a class structure.
struct = { cname, data1:0.0 }

;Create an object.
A = OBJ_NEW('cname')
Object Programming Using Operations with Objects

28 Chapter 1: The Basics of Using Objects in IDL
;Create a second object reference.
B = A

HELP, A, B

IDL prints:

A OBJREF = <ObjHeapVar1(CNAME)>
B OBJREF = <ObjHeapVar1(CNAME)>

Note that both A and B are references to the same object heap variable.

Object Equality and Inequality

The EQ and NE operators allow you to compare object references to see if they refer
to the same object heap variable. For example:

;Define a class structure.
struct = {cname, data:0.0}

;Create an object.
A = OBJ_NEW('CNAME')

;B refers to the same object as A.
B = A

;C contains a null object reference.
C = OBJ_NEW()

PRINT, 'A EQ B: ', A EQ B & $
PRINT, 'A NE B: ', A NE B & $
PRINT, 'A EQ C: ', A EQ C & $
PRINT, 'C EQ NULL: ', C EQ OBJ_NEW() & $
PRINT, 'C NE NULL:', C NE OBJ_NEW()

IDL prints:

A EQ B: 1
A NE B: 0
A EQ C: 0
C EQ NULL: 1
C NE NULL: 0
Using Operations with Objects Object Programming

Chapter 1: The Basics of Using Objects in IDL 29
Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimes in expanded form — in the examples/doc/objects subdirectory of the
IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“!PATH” (IDL Reference Guide) for information on IDL's path.
Object Programming Object Examples

30 Chapter 1: The Basics of Using Objects in IDL
Object Examples Object Programming

Chapter 2

Creating an Object
Graphics Display
This chapter discusses creating and configuring Object Graphic displays.
Overview of Object Graphics Classes 32
Creating an Object Graphics Display 33
Object Graphics Display Hierarchy 35
Destination Objects 37
Display Objects . 38
Visualization Objects 40
File Format Objects 44
Color in Object Graphics 46

Color and Destination Objects 48
Palette Objects . 50
Specifying Object Color 51
How IDL Interprets Color Values 53
Rendering Objects 55
Controlling the Depth of Objects in a View 58
Controlling Object Transparency 60
Performance Tuning Object Graphics 66
Object Programming 31

32 Chapter 2: Creating an Object Graphics Display
Overview of Object Graphics Classes

The following sections provide an overview of the different types of objects included
in the IDL Object Graphics class library. In order to describe the attributes of the IDL
Object Graphics classes, we have grouped the objects into functional categories:
Display Objects, Visualization Objects, Destination Objects, and File Format
Objects.

Note
These category names are purely descriptive; for example, display objects contain
the IDLgrModel, IDLgrScene, and IDLgrView classes, but no class named display.

See “Object Graphics Display Hierarchy” on page 35 for a discussion of the object
tree, which shows the relationships between object classes.

There is some commonality among visualization object properties Following sections
provide information about common properties including color, depth-buffering (how
objects are layered in a view), and alpha-channel setting (transparency).

Naming Conventions

In general, object classes shipped with IDL have names of the form:

IDLxxYyyy

where xx represents the broad functional grouping (gr for graphics objects, db for
database objects, and an for analysis, for example). Yyyy is the class name itself
(such as Axis or Surface). Object classes that are useful in more than one
functional context (container objects, for example) omit the functional grouping code
entirely (IDL_Container). All object classes shipped with IDL are prepended with the
letters IDL—we strongly suggest that you do not use this prefix when writing your
own object classes, as we will continue to add new object classes using this
convention.

The typographical convention used to describe IDL objects is slightly different from
that used for non-object functions and procedures. Whereas non-object procedures
are presented in upper case letters, object classes and methods use mixed case. For
example, we refer to the PLOT routine, but to the IDLgrPlot object. Method names
are also presented in mixed case (IDLgrAxis::GetProperty).
Overview of Object Graphics Classes Object Programming

Chapter 2: Creating an Object Graphics Display 33
Creating an Object Graphics Display

All Object Graphics applications require at least two basic building blocks. These
include:

• A destination object - the device (such as a window, memory buffer, file,
clipboard, or printer) to which the visualization is to be rendered.

• A view object - the viewport rectangle (within the destination) within which
the rendering is to appear (as well as how data should be projected into that
rectangle).

For example:

; Create a destination object, in this case a window:
oWindow = OBJ_NEW('IDLgrWindow')
; Create a viewport that fills the entire window:
oView = OBJ_NEW('IDLgrView')
; Draw the view within the window:
OWindow->Draw, oView

By themselves, a window and a single view are not particularly enlightening, but you
will find that these two types of objects are utilized by all Object Graphics
applications. To change an attribute of an object, you do not have to create a new
instance of that object. Instead, use the SetProperty method on the original object to
modify the value of the attribute.

For example, to change the color of the view to gray:

; Set the color property of the view:
OView->SetProperty, COLOR=[60,60,60]
; Redraw:
OWindow->Draw, oView

If more than one view is to be drawn to the destination, then an additional object is
required:

• A scene object - a container of views

For example:

; Create a scene and add our original view to it:
OScene = OBJ_NEW(’IDLgrScene’)
oScene->Add, oView
; Modify our original view so that it covers
; the upper left quadrant of the window.
OView->SetProperty, LOCATION=[0.0,0.5], DIMENSIONS=[0.5,0.5], $

UNITS=3
; Create and add a second red view that covers
Object Programming Creating an Object Graphics Display

34 Chapter 2: Creating an Object Graphics Display
; the right half of the window.
OView2 = OBJ_NEW(’IDLgrView’, LOCATION=[0.5,0.0], $

DIMENSIONS=[0.5,1.0], UNITS=3,COLOR=[255,0,0])
OScene->Add, oView2
; Now draw the scene, rather than the view, to the window:
OWindow->Draw, oScene

In the examples so far, the views have been empty canvases. For data visualization
applications, these views will need some graphical content. To draw visual
representations within the views, two additional types of objects are required:

• A model object - a transformation node

• A visualization graphic object - a graphical representation of data (such as an
axis, plot line, or surface mesh). For more information, see “Visualization
Objects” on page 40.

For example, to include a text label within a view:

; Create a model and add it to the original view:
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel
; Create a text object and add it to the model:
oText = OBJ_NEW('IDLgrText','Hello World',ALIGNMENT=0.5)
oModel->Add, oText
; Redraw the scene:
OWindow->Draw, oScene

Notice that the scene, views, model, and text are all combined together into a self-
contained hierarchy. It is the overall hierarchy that is drawn to the destination object.

The transformation associated with the model can be modified to impact the text it
contains. For example:

; Rotate by 90 degrees about the Z-axis:
oModel->Rotate, [0,0,1], 90
; Redraw:
OWindow->Draw, oScene

When the objects are no longer required, they need to be destroyed. Destination
objects must be destroyed separately, but the graphic hierarchies can be destroyed in
full by simply destroying the root of the hierarchy. For example:

OBJ_DESTROY, oWindow
OBJ_DESTROY, oScene

In this example, the destruction of the scene will cause the destruction of all of its
children (including the views, model, and text).
Creating an Object Graphics Display Object Programming

Chapter 2: Creating an Object Graphics Display 35
Object Graphics Display Hierarchy

An Object Graphics display can be thought of as a group of graphics objects
organized into a hierarchy or tree. For example, a graphics object tree with four
graphics atoms (visualization objects) might be contained in three separate model
objects, which are in turn contained in two distinct view objects, both of which are
contained in one scene object, which is the root of the graphics tree.

Figure 2-1: A Graphics Object Tree
Object Programming Object Graphics Display Hierarchy

36 Chapter 2: Creating an Object Graphics Display
Components of an Object Graphics Hierarchy

An object graphics display is commonly made up of the following components:

• Destination objects — a window, printer, clipboard or memory buffer that
contains the display. One of these objects is required for any graphics tree. For
more information, see “Destination Objects” on page 37. In the tree analogy,
one of these objects is the ground.

• Display objects — a scene, view, or viewgroup that contains one or more
models. Each model controls the spatial positioning of the visualization objects
that it contains. See “Display Objects” on page 38.

Note
IDL_Container, like a view, can act as a container for other objects. Adding
objects to a container object allows you to group disparate IDL objects into
single object, and allows you to easily move or destroy the objects within the
container. See “A Plotting Routine” on page 180 for an example that uses an
IDL_Container object.

• Visualization objects — these low-level objects (shown as graphic atoms in
Figure 2-1) are the used to create visualizations such as plot, contour, surface,
and image displays. These objects contain data and have attributes such as
size, color, or associated color palette. Visualization objects do not have an
independent transformation matrix and do not contain other objects. See
“Visualization Objects” on page 40 for more information.
Object Graphics Display Hierarchy Object Programming

Chapter 2: Creating an Object Graphics Display 37
Destination Objects

Destination objects are objects on which object trees can be rendered (displayed on a
screen or printed on a printer). Detailed information about destination objects is
available in Chapter 12, “Displaying, Copying and Printing Objects”.

Note
When creating an iTool display, there is no need to manually configure a window
object or destination objects. This is automatically done for you. See Chapter 3,
“Visualizations” (iTool User’s Guide) for more information.

Destination Description

Buffer Objects of the IDLgrBuffer class represent an off-screen, in-
memory data area that may serve as a graphics source or
destination.

Clipboard Objects of the IDLgrClipboard class send Object Graphics to
the operating system’s native clipboard or to a file in bitmap or
vector format. See “Clipboard Objects” on page 275 for
examples.

Printer Objects of the IDLgrPrinter class represent a hardcopy
graphics destination. By default, printer objects represent the
default system printer; you can use the IDL routines
DIALOG_PRINTJOB and DIALOG_PRINTERSETUP to
change the printer associated with a printer object. See
“Printer Objects” on page 277 for examples.

Window Objects of the IDLgrWindow class represent an on-screen area
on a display device in which graphic objects can be rendered.
See “Window Objects” on page 267 for more information.
Also see “Saving Window Contents to a File” on page 270 for
information on how to save a view of displayed objects to an
image file.

Table 2-1: Destination Objects
Object Programming Destination Objects

38 Chapter 2: Creating an Object Graphics Display
Display Objects

Minimally, you must have a view object in an Object Graphics display. However, it is
likely that you will use a combination of the following display objects in any display.
The “Object Graphics Display Hierarchy” on page 35 shows the relationship between
these objects as a tree structure.

The advantage of organizing graphic objects into a tree structure is that by
manipulating any of the branches of the tree, all of the sub-branches of that branch
can be altered simultaneously. In Figure 2-1, changes to the spatial transformation
associated with the model containing two graphics atoms will affect both of the
visualization objects. Similarly, calling a window or printer object’s Draw method on
the scene object will render all of the objects in the tree to that window or printer.

Object Description

IDLgrScene A scene, or instance of the IDLgrScene class, is the root-level
object of most graphics trees. Instances of the IDLgrScene
class have Add and Remove methods, which allow you to
include or remove IDLgrView or IDLgrViewgroup objects in a
scene. A scene object is one of the possible arguments for a
destination object’s Draw method.

It is not necessary to create a scene object if your graphics tree
contains only one view object; in that case, the view can serve
as the root of the tree.

IDLgrViewgroup A viewgroup, or instance of the IDLgrViewgroup class, is a
simple container object, similar to the Scene object. The
Viewgroup differs from the Scene in two ways:

1. It will not cause an erase to occur on a destination when
the destination object’s Draw method is called.

2. It can contain objects which do not have Draw methods.

Viewgroups are designed to be placed within a scene, and
therefor do not typically serve as the root-level object of a
graphics tree. However, a viewgroup object can be an
argument for a destination object’s Draw method. Instances of
the IDLgrViewgroup class have Add and Remove methods,
which allow you to include or remove objects in a viewgroup.

Table 2-2: Display Support Objects
Display Objects Object Programming

Chapter 2: Creating an Object Graphics Display 39
See “Creating an Object Graphics Display” on page 33 for an example that
introduces the use of these objects. “Rendering Objects” on page 55 provides
additional information.

“Mapping an Image onto Elevation Data” (Chapter 3, Image Processing in IDL)
provides an example using the display objects to support texture-mapping.

Note
When creating an iTool display, there is no need to manually configure a window
object or destination objects. This is automatically done for you. See Chapter 3,
“Visualizations” (iTool User’s Guide) for more information.

IDLgrView A view, or instance of the IDLgrView class, can serve as the
root-level object of a graphics tree. Instances of the
IDLgrView class have Add and Remove methods, which
allow you to include or remove IDLgrModel objects in a view.
A view object is one of the possible arguments for a
destination object’s Draw method.

Every graphics tree must contain at least one view object.
Often, it is convenient to divide the objects being rendered
into separate views, which are then contained by a viewgroup
or scene object.

IDLgrModel A model, or instance of the IDLgrModel class, serves as
containers for individual graphic objects (plot lines, axes, text,
etc.) and for other model objects. Model objects include a
three-dimensional transformation matrix that describes how
the model and all of its components are positioned in space.

Altering the model’s transformation matrix changes the
position and orientation of any objects the model contains. If a
model object contains another model object, the contained
model is positioned according to both its own transformation
matrix and that of its container. See Chapter 3, “Positioning
Objects in a View” for more information.

Object Description

Table 2-2: Display Support Objects (Continued)
Object Programming Display Objects

40 Chapter 2: Creating an Object Graphics Display
Visualization Objects

Visualization objects contain data that is designed to produce a visualization. These
graphic objects are the basic drawable elements of the IDL Object Graphics system,
and are container for other objects. Visualization objects are added to a model object,
which controls the spatial positioning of all the objects it contains. Visualization
objects combined in a model object (using the model object’s Add method) share the
same transformation matrix and can be rotated, scaled, or translated together.

Within the category of visualization objects, there is a sub-category of attribute
objects. Attribute objects define the appearance of a visualization object, but
themselves are not drawn, and thus do not need to be added to a model object. For
example, an IDLgrFont object is associated with an IDLgrText object through the
FONT property of the text object and defines the type characteristics of the text.
Attribute objects are instances of one of the following classes: IDLgrFont,
IDLgrPalette, IDLgrPattern, or IDLgrSymbol.
Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 41
The following table introduces objects that are commonly see in different types of
object graphics displays. Your display need not contain these specific combinations.

Display Type Description

Plot Objects of the IDLgrPlot class are individual plot lines,
created from a user-supplied vector of dependent data values
(and, optionally, a vector of independent data values). Plots do
not automatically include axes. See Chapter 5, “Working with
Plots and Graphs” for information on plot, symbol and axis
objects. A plot display may include the following objects:

• Axis — IDLgrAxis objects show data ranges (one object
required for each axis to be rendered)

• Legend — IDLgrLegend objects annotate individual data
items or lines in a visualization. See “Legend Objects” on
page 228.

• Colorbar — IDLgrColorbar objects annotate the data
values associated with colors used in a visualization. See
“Colorbar Objects” on page 231.

• Symbol — IDLgrSymbol objects define a graphical
element that can be used when plotting data.

Contour Objects of the IDLgrContour class are lines representing
contour information plotted from user data. Contour displays,
like plot display, may also include legend, colorbar, or symbol
objects. See Chapter 5, “Working with Plots and Graphs”.
You can also use the following:

• Pattern — IDLgrPattern objects defines which pixels are
filled and which are left blank when a graphic object is
filled. Patterns can be applied to successive contour levels.

Table 2-3: Visualization Object Displays
Object Programming Visualization Objects

42 Chapter 2: Creating an Object Graphics Display
Image Objects of the IDLgrImage class are two-dimensional arrays
of data with an associated mapping of the data values to pixel
values. See Chapter 4, “Working with Image Objects”.
Displays containing image objects my also include:

• Palette — IDLgrPalette objects define a color lookup
table that maps indices to red, green, and blue values.

• ROI — IDLgrROI objects are representations of a region
of interest. Regions of interest are described as a set of
vertices that may be connected to generate a path or a
polygon, or may be treated as separate points. Objects of
the IDLgrROIGroup class are representations of a group
of regions of interest.

Surface Objects of the IDLgrSurface class are individual three-
dimensional surfaces, created from a user-supplied array of
data values. See Chapter 6, “Working with Surface Objects”.

• Light — IDLgrLight objects are light sources that
illuminate visualization objects. Light objects are not
actually rendered, but must be contained in a model object
so that they can be positioned and transformed along with
the graphic objects they illuminate. If no light object is
included in a particular view, default lighting is supplied.

Volume Objects of the IDLgrVolume class map a three-dimensional
array of data values to a three-dimensional array of voxel
colors, which, when drawn, are projected to two dimensions.
Volume displays, like surface displays, can also include lights.
See Chapter 7, “Creating Volume Objects”.

Display Type Description

Table 2-3: Visualization Object Displays (Continued)
Visualization Objects Object Programming

Chapter 2: Creating an Object Graphics Display 43
See the “Graphic Objects—Visualization” category of the “Object Class Library”
(IDL Quick Reference) for an alphabetical list of visualization objects.

Note
Objects of the TrackBall class provide a simple interface to allow the user to
translate and rotate three-dimensional Object Graphics hierarchies displayed in an
IDL WIDGET_DRAW window using the mouse. The trackball object translates
widget events from a draw widget (created with the WIDGET_DRAW function)
into transformations that emulate a virtual trackball (for transforming object
graphics in three dimensions). See “Interactive 3D Transformations” on page 95
and “TrackBall” (IDL Reference Guide) for further details.

Polygon and
Polyline

Polygons and polylines are low-level graphic objects that can
be displayed by themselves or with other objects. See Chapter
8, “Polygon and Polyline Objects” for more information.

Objects of the IDLgrPolygon class are individual polygons,
created from a user-supplied array of data values.

• Tessellator — IDLgrTessellator objects convert a simple
concave polygon (or a simple polygon with holes) into a
number of simple convex polygons (general triangles).
Tessellation is useful because IDL’s polygon object
accepts only convex polygons.

Objects of the IDLgrPolyline class are individual polylines,
created from a user-supplied array of data points. Locations of
the data points supplied are connected by a single line.

Text Objects of the IDLgrText class are text strings that can be
positioned within the rendering area. See “Text Objects” on
page 219.

• Font — IDLgrFont objects define the typeface, size,
weight, and style of a text object with which it is
associated. See “Font Objects” on page 223.

Text objects are applicable to any of the previous displays.

Display Type Description

Table 2-3: Visualization Object Displays (Continued)
Object Programming Visualization Objects

44 Chapter 2: Creating an Object Graphics Display
File Format Objects

File format object classes provide access to data stored within files of certain types.
For example, the IDLffXMLSAX and IDLffXMLDOM classes provide access to
attribute information stored in .xml files. The IDLffLangCat class also provides
access to XML data. However, this object allows you to access XML data stored in
language catalog files (.cat), which can be used to support internationalization. File
format objects may or may not have a graphical element that can be displayed.

Format Object Class Information

DICOM Objects of the IDLffDICOM class contain the data for one or
more images embedded in a DICOM Part 10 file. Use this
object for read-only access to the data.

The IDLffDicomEx class represents an extended IDL
interface to DICOM format files, which includes read and
write capabilities. The IDLffDicomEx object is available as a
separately-purchased IDL module, and is described in
Medical Imaging in IDL.

DXF Objects of the IDLffDXF class contain geometry,
connectivity and attributes for graphics primitives.

Note - Also see “XDXF” (IDL Reference Guide) for
information on directly displaying a .dxf file.

JPEG 2000 Objects of the IDLffJPEG2000 class provide an interface to
files in the JPEG 2000 format.

Language Catalogs Objects of the IDLffLangCat class provide an interface to
IDL language catalog files. See Chapter 19, “Using
Language Catalogs” (Application Programming) for usage
details and examples.

Motion JPEG2000 Objects of the IDLffMJPEG2000 class provide a way to
create and display Motion JPEG2000 animations. See
Chapter 6, “Animations” (Using IDL) for more information.

MrSID Objects of the IDLffMrSID class are used to query
information about and load image data from a MrSID (.sid)
image file.

Table 2-4: File Format Objects
File Format Objects Object Programming

Chapter 2: Creating an Object Graphics Display 45
See the “File Format Objects” category of the “Object Class Library” (IDL Quick
Reference) for a list of file format objects.

MPEG Objects of the IDLgrMPEG class allow you to save an array
of image frames as an MPEG movie.

ShapeFiles Objects of the IDLffShape class contain geometry,
connectivity and attributes for graphics primitives accessed
from ESRI Shapefiles.

VRML Objects of the IDLgrVRML class allow you to save the
contents of an Object Graphics hierarchy as a VRML 2.0
format file.

XML XML Parser — Objects of the IDLffXMLSAX class
represent an XML SAX level 2 parser. The XML parser
allows you to read an XML file and store arbitrary data from
the file in IDL variables. See Chapter 20, “Using the XML
Parser Object Class” (Application Programming) for further
details.

XML DOM — The Document Object Model (DOM)
describes the content of XML data in the form of a document
object, which contains other objects that describe the various
data elements of the XML document. Objects of the
IDLffXMLDOM Classes classes represent items in an XML
document; the items can be modified and the XML document
file itself written to disk using these classes. See Chapter 21,
“Using the XML DOM Object Classes” (Application
Programming) for further details.

Format Object Class Information

Table 2-4: File Format Objects (Continued)
Object Programming File Format Objects

46 Chapter 2: Creating an Object Graphics Display
Color in Object Graphics

Color in an Object Graphics display is the result of interaction between the color
model defined for the destination object (e.g. window or printer), the destination
object’s inherent color model, and the color assigned to any visualization objects (e.g.
plot, text or image objects) being displayed. This section explains how to specify
color when using Object Graphics and how IDL interacts with the destination devices
on which graphics are finally displayed.

Note
For general information on color systems (RGB, HSV, HLS, and CMY), and
display color schemes (Indexed and RGB) see “Color Systems” or “Display Device
Color Schemes” (Chapter 5, Using IDL).

Object Graphics supports two color models for newly created destination objects
(such as an IDLgrWindow): an Indexed Color Model and an RGB Color Model.
Indexed color allows you to map data values to color values using a color palette.
RGB color allows you to specify color values explicitly, using an RGB triple. See
“Indexed Color Model” on page 53 and “RGB Color Model in Object Graphics” on
page 49.

Note
For some X11 display situations, IDL may not be able to support a color index
model destination object in object graphics. We do, however, guarantee that an
RGB color model destination will be available for all display situations.

The devices on which graphics are rendered—computer displays, printers, plotters,
frame buffers, etc.—also support one or more color models. IDL performs any
conversions necessary to support either the Indexed or RGB color model on any
physical device. That is, the color model used by IDL is entirely independent of the
color model used by the physical device. “How IDL Interprets Color Values” on
page 53 explains how IDL’s Object System color models interact with different
device color models.

Note
You can specify the color of any graphic object using either a color index or red,
green, and blue (RGB) value, regardless of the color model used by the destination
object or the physical destination device. See “Specifying Object Color” on page 51
for details.
Color in Object Graphics Object Programming

Chapter 2: Creating an Object Graphics Display 47
The majority of graphic visualization objects have a COLOR property that can be set
to an indexed value or an RGB triple. You can set the color of any visualization
object when it is first created and later change it using this property. In addition to the
COLOR property, you can also associate a palette object (an instance of the
IDLgrPalette class) with many visualization objects using the PALETTE property.

One exception is the IDLgrImage object, which does not have a COLOR property.
Instead, you use the PALETTE property to specify a related color table for an
indexed image, or set the INTERLEAVE property to define the arrangement of the
image channels in a RGB image. Palette objects can also be associated with
destination objects. See “Palette Objects” on page 50 for more information.
Object Programming Color in Object Graphics

48 Chapter 2: Creating an Object Graphics Display
Color and Destination Objects

Each destination object has one of the two color models associated with it (an
Indexed Color Model, and the RGB Color Model), shown in the following table.Once
a destination object has been created, you cannot change the associated color model.
You can, however, create destination objects that use different color models in the
same IDL session. That is, it is possible to have two window objects—one using the
Indexed color model and one using the RGB color model—on your computer screen
at the same time.

You can specify the color of any graphic object using either a color index or an RGB
value, regardless of the color model used by the destination object or the physical
destination device. The main distinction between the two color models lies in how
IDL manages the color lookup table (if any) of the physical destination device. See
“How IDL Interprets Color Values” on page 53 for details.

A Note about Draw Widgets

Drawable areas created with the WIDGET_DRAW function deserve a special
mention. When a draw widget is created with the GRAPHICS_LEVEL keyword set
equal to 2, the widget contains an instance of an IDLgrWindow object rather than an
IDL Direct Graphics drawable window. By default, the window object uses the RGB
color model; to use the indexed color model, set the COLOR_MODEL keyword to
WIDGET_DRAW equal to 1 (one).

Indexed Color Model in Object Graphics

In the Indexed color model, you have control over how colors are loaded into a color
lookup table. If the Indexed Color Model is used, a color value (or individual image
pixel) is expected to be an index into the palette associated with the destination
object. To load a particular color table, create a palette object, then set it as a property

Color Model Keyword Value

INDEXED COLOR_MODEL=1

See “Indexed Color Model in Object Graphics” on page 48.

RGB COLOR_MODEL=0 (default)

See “RGB Color Model in Object Graphics” on page 49

Table 2-5: Destination Object Color Models
Color and Destination Objects Object Programming

Chapter 2: Creating an Object Graphics Display 49
of the destination object in which the graphics are to be drawn (using the PALETTE
keyword in the SetProperty method of the destination object). If a palette is not
explicitly provided for a given destination object, a gray scale ramp is loaded by
default.

When the contents of your destination object are rendered on the physical device
(that is, when you call the Draw method for the destination object), the RGB values
from the palette are either:

• passed directly through to the physical device (if it uses RGB values), or

• loaded into the physical device’s lookup table (if it uses Indexed values).

Specify that a destination object should use the Indexed color model by setting the
COLOR_MODEL property of the object equal to 1 (one):

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 1)

Specify a palette object by setting the PALETTE property equal to a palette object:

myWindow->SetProperty, PALETTE=myPalette

When you assign a color index to a visualization object that is drawn on the
destination device, the color index is used to look up an RGB value in the specified
palette. When you assign an RGB value to an object that is drawn on the destination
device, the nearest match within the destination object’s palette is found and used to
represent that color.

See “How IDL Interprets Color Values” on page 53 for information on how a color
assignment to a visualization object is interpreted by a destination object using either
an RGB or Indexed color mode.

RGB Color Model in Object Graphics

In the RGB color model, IDL takes responsibility for filling the color lookup table on
the destination device (if necessary). When the contents of your destination object are
rendered on the physical device (that is, when you call the Draw method for the
destination object), the RGB values are either:

• passed directly through to the physical device (if it uses RGB values), or

• matched as nearly as possible with colors loaded in the physical device’s
lookup table (if it uses Indexed values).

Specify that a destination object should use the RGB color model by setting the
COLOR_MODEL property of the object equal to 0 (zero). This is the default color
model value for newly created destination objects.

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL = 0)
Object Programming Color and Destination Objects

50 Chapter 2: Creating an Object Graphics Display
Palette Objects

Objects of the IDLgrPalette class are used to create color lookup tables. Color lookup
tables assign individual numerical values to color values; this allows you to specify
the color of a graphic object with a single number (a color index) rather than
explicitly providing the red, green, and blue color values (an RGB triple). Palettes are
most useful when you want data values to correspond to color values—that is, if you
want a data value of 200, for example, to always correspond to a single color. This
correspondence is one of the main uses of the Indexed Color Model.

Creating Palette Objects

Specify three vectors representing the red, green, and blue values for the palette when
you call the IDLgrPalette::Init method. The values in the red, green, and blue vectors
must be integers between zero and 255, and the length of each vector must not exceed
256 elements. For example, the following statements create a palette object that
reverses a standard grayscale ramp palette:

rval = (gval = (bval = REVERSE(INDGEN(256))))
myPalette = OBJ_NEW('IDLgrPalette', rval, gval, bval)

Using Palette Objects

Palettes can be associated either with graphics destination objects (windows or
printers) or with individual graphic visualization objects:

myWindow->SetProperty, PALETTE=myPalette

or

myImage->SetProperty, PALETTE=myPalette

Note
Palettes associated with graphic visualization objects are only used when the
destination object uses an RGB color model; if the destination object uses an
indexed color model, the destination object’s palette is always used.

See “IDLgrPalette::Init” (IDL Reference Guide) for details on creating palette objects
and complete examples.
Palette Objects Object Programming

Chapter 2: Creating an Object Graphics Display 51
Specifying Object Color

The color of most graphic objects are specified by the COLOR property of that
object. (The IDLgrImage object has a PALETTE property, not a COLOR property.
See “IDLgrPalette::Init” (IDL Reference Guide) for examples.) In IDL Object
Graphics, colors used for drawing visualization objects (such as an IDLgrText object)
are typically represented in one of two ways:

• Indexed - a color is an index into a palette

• RGB - a color is a three-element vector, [red, green, blue]. See “Color
Systems” (Chapter 5, Using IDL) for complete details.

You can set the color of an object either when the object is created or afterwards. For
example, the following statement creates a view object and sets its color value to the
RGB triple [60, 60, 60] (a dark gray).

myView = OBJ_NEW('IDLgrView', COLOR = [60, 60, 60])

The following statement changes the color value of an existing axis object to the
color value specified for entry 100 in the color palette associated with the axis object.

myAxis->SetProperty, COLOR=100

The interpretation of this color depends upon the color model associated with the
destination object, described in “Color and Destination Objects” on page 48.

Note
Remember that color palettes associated with individual graphic visualization
objects are only used when the destination object uses an RGB color model. If the
destination object uses an Indexed color model, the destination object’s palette is
always used.

Example Specifying RGB Values

RGB values are specified with RGB triples. An RGB triple is a three-element vector
of integer values, [r, g, b], generally ranging between 0 and 255. A value of zero is
the darkest possible value for each of the three channels—thus an RGB triple of
[0, 0, 0] represents black, [0, 255, 0] represents bright green, and [255, 255, 255]
represents white.

For example, suppose we create a plot line with the following statements:

myWindow = OBJ_NEW('IDLgrWindow')
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0, 0, 10, 10])
myModel = OBJ_NEW('IDLgrModel')
Object Programming Specifying Object Color

52 Chapter 2: Creating an Object Graphics Display
myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), THICK = 5)
myModel->Add, myPlot
myView->Add, myModel
myWindow->Draw, myView

Notice the following aspects of the above example:

1. The newly-created window (destination) object uses an RGB color mode (the
default).

2. The default color of the view object—the background against which the plot
line is drawn—is white ([255, 255, 255]).

3. The default color of the plot object (and all objects, for that matter) is black.

Try changing the colors with the following statements:

myPlot->SetProperty, COLOR = [150, 0, 150]
myView->SetProperty, COLOR = [75, 250, 75]
myWindow->Draw, myView

To destroy the window and remove the objects created from memory, use:

OBJ_DESTROY, [myWindow, myView]
Specifying Object Color Object Programming

Chapter 2: Creating an Object Graphics Display 53
How IDL Interprets Color Values

IDL determines colors to display differently based on whether the destination object
uses an Indexed or RGB color model, and on whether the physical destination device
supports an Indexed or RGB color model.

Indexed Color Model

If the destination object uses an Indexed color model, the color displayed is
calculated from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

• If the physical device uses an Indexed color model, the specified color index is
used as an index into the physical device’s lookup table. (Remember that the
physical device’s color lookup table is loaded via the PALETTE keyword to
the destination object.)

• If the physical device uses an RGB color model, the specified color index is
used as an index into the destination object’s palette. The RGB triple stored at
the index’s location in the palette is used as the physical device’s color value.

If an RGB Triple is Specified

• If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device’s color lookup table.

• If the physical device uses an RGB color model, the RGB triple is passed
directly to the device.

RGB Color Model

If the destination object uses an RGB color model, the color displayed is calculated
from the value specified by the object’s COLOR property as follows:

If a Color Index is Specified

If the graphic object for which the color is being determined has a palette associated
with it, the RGB triple at that palette’s color index is retrieved. Otherwise, the RGB
triple at the specified index in the destination object’s palette is retrieved.

• If the physical device uses an Indexed color model, the RGB triple retrieved is
mapped to the index of the nearest match in the device’s color lookup table.
Object Programming How IDL Interprets Color Values

54 Chapter 2: Creating an Object Graphics Display
• If the physical device uses an RGB color model, the RGB triple retrieved is
passed directly to the device.

If an RGB Triple is Specified

• If the physical device uses an Indexed color model, the RGB triple is mapped
to the index of the nearest match in the device’s color lookup table.

• If the physical device uses an RGB color model, the RGB triple is passed
directly to the device.

If the RGB color model is used, the palette associated with a destination object does
not necessarily have a one-to-one mapping to the hardware color lookup table for the
device. For instance, the destination object may have a grayscale ramp loaded as a
palette, but the hardware color lookup table for the device may be loaded with an
even sampling of colors from the RGB color cube. When a user requests that a
graphical object be rendered in a particular color, that object will appear in the
nearest approximation to that color that the device can supply.
How IDL Interprets Color Values Object Programming

Chapter 2: Creating an Object Graphics Display 55
Rendering Objects

In Object Graphics, rendering occurs when the Draw method of a destination object
is called. A scene, viewgroup, or view is typically provided as the argument to this
Draw method. This argument represents the root of a graphics hierarchy. When the
destination’s Draw method is called, the graphics hierarchy is traversed, starting at
the root, then proceeding to children in the order in which they were added to their
parent.

For example, suppose we have the following hierarchy:

oWindow = OBJ_NEW('IDLgrWindow')
oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel
oXAxis = OBJ_NEW('IDLgrAxis', 0)
oModel->Add, oXAxis
oYAxis = OBJ_NEW('IDLgrAxis', 1)
oModel->Add, oYAxis

To draw the view (and its contents) to the window, the Draw method of the window
is called with the view as its argument:

oWindow->Draw, oView

The window’s Draw method will perform any window-specific drawing setup, then
ask the view to draw itself. The view will then perform view-specific drawing (for
example, clearing a rectangular area to a color), then calls the Draw method for each
of its children (in this case, there is only one child, a model). The model’s Draw
method will push its transformation matrix on a stack, then step through each of its
children (in the order in which they were added) and ask them to draw themselves. In
this example, oXAxis will be asked to draw itself first; then oYAxis will be asked to
draw itself. Once each of the model’s children is drawn, the transformation matrix
associated with the model is popped off of the stack.

Thus, for each object in the hierarchy, drawing essentially consists of three steps:

• Perform setup drawing for this object.

• Step through list of contained children and ask them to draw themselves.

• Perform follow-up drawing actions before returning control to parent.

The order in which objects are added to the hierarchy will have an impact on when
the objects are drawn. Drawing order can be changed by using the Move method of a
scene, viewgroup, view, or model to change the position of a specific object within
the hierarchy.
Object Programming Rendering Objects

56 Chapter 2: Creating an Object Graphics Display
The first time a visualization object (such as an axis, plot line, or text) is drawn to a
given destination, a device-specific encapsulation of its visual representation is
created and stored as a cache. Subsequent draws of this visualization object to the
same destination can then be drawn very efficiently. The cache is destroyed only
when necessary (for example, when the data associated with the visualization object
changes). Graphic attribute changes (such as color changes) typically do not cause
cache destruction. To gain maximum benefit from the caches, modification of object
graphic properties should be kept to bare minimum.

Note
See “Performance Tuning Object Graphics” on page 66 for other performance
enhancing strategies.

Simple Plot Example

The following section shows the IDL code used to create a simple object tree. While
you are free to enter the commands shown at the IDL command line, remember that
the IDL Object Graphics API is designed as a programmer’s interface, and is not as
well suited for interactive, ad hoc work at the IDL command prompt as are IDL
Direct Graphics.

The following IDL commands construct a simple plot of an array versus the integer
indices of the array. Note that no axes, title, or other annotations are included; the
commands draw only the plot line itself. (This example is purposefully simple; it is
meant to illustrate the skeleton of a graphics tree, not to produce a useful plot.)

; Create a view 2 units high by 100 units wide
; with its origin at (0,-1):
view = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,-1,100,2])
; Create a model:
model = OBJ_NEW('IDLgrModel')
; Create a plot line of a sine wave:
plot = OBJ_NEW('IDLgrPlot', SIN(FINDGEN(100)/10))
; Create a window into which the plot line will be drawn:
window = OBJ_NEW('IDLgrWindow')
; Add the plot line to the model object:
model->ADD, plot
; Add the model object to the view object:
view->ADD, model
; Render the contents of the view object in the window:
window->DRAW, view
Rendering Objects Object Programming

Chapter 2: Creating an Object Graphics Display 57
To destroy the window and remove the objects created from memory, use the
following commands:

; Destroy the window and the view.
; Destroying the view object destroys all
; of the objects contained in the view:
OBJ_DESTROY, [window, view]
Object Programming Rendering Objects

58 Chapter 2: Creating an Object Graphics Display
Controlling the Depth of Objects in a View

In graphics rendering, the depth buffer is an array of depth values maintained by a
graphics device, one value per pixel, to record the depth of primitives rendered at
each pixel. It is usually used to prevent the drawing of objects located behind other
objects that have already been drawn in order to generate a visually correct scene. In
IDL, smaller depth values are closer to the viewer.

Depth buffer properties provide more control over how Object Graphics primitives
are affected by the depth buffer. You can now control which primitives may be
rejected from rendering by the depth buffer, how the primitives are rejected, and
which primitives may update the depth buffer.

Control of the depth buffer is achieved through a test function or by completely
disabling the buffer. The depth test function is a logical comparison function used by
the graphics device to determine if a pixel should be drawn on the screen. This
decision is based on the depth value currently stored in the depth buffer and the depth
of the primitive at that pixel location.

The test function is applied to each pixel of an object. A pixel of the object is drawn if
the object’s depth at that pixel passes the test function set for that object. If the pixel
passes the depth test, the depth buffer value for that pixel is also updated to the
pixel’s depth value.

The possible test functions are:

• INHERIT - use the test function set for the parent model or view.

• NEVER - never passes.

• LESS - passes if the depth of the object’s pixel is less than the depth buffer’s
value.

• EQUAL - passes if the depth of the object’s pixel is equal to the depth buffer’s
value.

• LESS OR EQUAL - passes if the depth of the object’s pixel is less than or
equal to the depth buffer’s value.

• GREATER - passes if the depth of the object’s pixel is greater than or equal to
the depth buffer’s value.

• NOT EQUAL - passes if the depth of the object’s pixel is not equal to the
depth buffer’s value.
Controlling the Depth of Objects in a View Object Programming

Chapter 2: Creating an Object Graphics Display 59
• GREATER OR EQUAL - passes if the depth of the object’s pixel is greater
than or equal to the depth buffer’s value.

• ALWAYS - always passes

The IDL default is LESS. Commonly used values are LESS and LESS OR EQUAL,
which allow primitives closer to the viewer to be drawn.

Disabling the depth test function allows all primitives to be drawn on the screen
without testing their depth against the values in the depth buffer. When the depth test
is disabled, the graphics device effectively uses the painter’s algorithm to update the
screen. That is, the last item drawn at a location is the item that remains visible. The
depth test function of ALWAYS produces the same result as disabling the depth test.

Moreover, you can disable updating the depth buffer. Disabling depth buffer writing
prevents the updating of depth information as primitives are drawn to the frame
buffer. Such primitives are unprotected in the sense that any other primitive drawn
later at that location will draw over it as if it were not there.

Most visualization objects now have the following properties related to the depth
buffer:

• DEPTH_TEST_DISABLE

• DEPTH_TEST_FUNCTION

• DEPTH_WRITE_DISABLE

For more details on these properties, see each object’s property list in the IDL
Reference Guide.
Object Programming Controlling the Depth of Objects in a View

60 Chapter 2: Creating an Object Graphics Display
Controlling Object Transparency

IDL objects which support an alpha channel are:

Note
The transparency of an IDLgrImage object can be defined using a band of data
defining the alpha values, and/or the ALPHA_CHANNEL property. Regardless of
which way the image transparency is defined, you also need to set
BLEND_FUNCTION property. See “Defining Transparency in Image Objects” on
page 115 for details.

The alpha channel has many uses. One of the most important is drawing primitives
semi-transparently, which can be used to enhance your object graphics scene. An
example might be a text label drawn semi-transparently to let other graphical details
“show through” the text label. This would allow you to use a larger text font size,
rather than using a small font size to squeeze text between details in a scene. Another
use for alpha channel might be to draw polygons and surfaces semi-transparently,
allowing you to see “inside” certain objects and structures.

Some of the most important uses for semi-transparent rendering are discussed in the
following sections.

• “Opacity and Transparency” on page 61

• “Blending Mathematics” on page 61

• “Rendering Order” on page 62

• “Viewing and Rotation” on page 63

• “Depth Buffer Updating” on page 65

• IDLgrAxis • IDLgrContour

• IDLgrImage • IDLgrPlot

• IDLgrPolygon • IDLgrPolyline

• IDLgrROI • IDLgrSurface

• IDLgrSymbol • IDLgrText

• IDLgrVolume
Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 61
Opacity and Transparency

Opacity describes the degree to which an object blocks the appearance of other
objects. In IDL, the value used for the ALPHA_CHANNEL properties in IDLgr*
objects is a measure of the object's opacity. A value of 1.0 indicates complete opacity.
The object completely blocks the appearance of other objects. Conversely, an opacity
value of 0.0 indicates that the object does not block the appearance of objects at all.
Intermediate values indicate varying degrees of visibility for covered objects.

Transparency is essentially the opposite of opacity. Transparency indicates the
degree to which an object does not block the appearance of other objects. Complete
or full transparency is indicated by an opacity value of 0.0, while an object that is not
transparent at all has an opacity value of 1.0.

By default all IDLgr* graphic objects use an ALPHA_CHANNEL value of 1.0,
indicating full opacity (zero transparency), matching the rendering behavior before
the addition of the ALPHA_CHANNEL property. To change the opacity of the
object, simply change the this property to a value between 0.0 (zero opacity or full
transparency) and 1.0.

Blending Mathematics

Blending is the drawing of semi-transparent objects on a screen already containing
objects. During rendering, the color of the pixels belonging to the primitive being
rendered are blended with the color of the pixels that are already on the screen,
producing the desired blending effect. This process is accomplished on a pixel-by-
pixel basis.

IDL uses this well-established blending equation:

newColor = oldColor * (1 - alpha) + primitiveColor * alpha

An example might suppose that you want to draw a red square in an area of the screen
that is completely green. By default, the alpha value is 1.0, so the result is:

[255, 0, 0] = [0, 255, 0] * (1.0 - 1.0) + [255, 0, 0] * 1.0

The green color is removed completely and replaced by red, the expected result of
conventional non-blended rendering.

If the alpha value is changed to equal 0.5, the result is:

[127, 127, 0] = [0, 255, 0] * (1.0-0.5) + [255, 0, 0] * 0.5

The resulting color is the half of the red of the polygon combined with half of the
green of the background, a pale yellow.
Object Programming Controlling Object Transparency

62 Chapter 2: Creating an Object Graphics Display
If you draw another red square in the same place with the same alpha, the red square
is blended with the now current contents of the screen:

[190, 63, 0] = [127, 127, 0] * (1.0-0.5) + [255, 0, 0] * 0.5

Note
Large levels of semi-transparent rendering may reduce rendering performance. This
is because the graphics blending operation that is performed involves reading the
destination pixel from the frame buffer, combining it with the new color value and
then writing the result back to the frame buffer. This is more expensive than simply
overwriting the frame buffer contents with the new color value. The degree to
which your performance will be impacted depends heavily on the hardware and
software components of your graphics system.

Rendering Order

The colors of the pixels on the screen are important when drawing a blended
primitive. Similarly, the order in which the primitives are drawn is also very
important when drawing scenes with blended primitives.

In computer graphics, depth sorting presents a similar challenge. Without depth
sorting, a scene would have to be drawn from back to front to obtain a correct result.
IDL handles depth sorting by providing a "depth buffer" (also known as a "Z-buffer")
allowing you to draw the primitives in any order while allowing the primitives closer
to the viewer to still appear to be on top.

There is no similar feature for alpha-blended primitives. Be sure to draw the blended
primitives carefully so that all primitives behind a blended primitive are drawn before
the blended primitive.

If your scene consists of many primitives that are not blended and a few text labels
that are drawn with blending, it is a good idea to defer the drawing of the labels until
after everything else is drawn. This will allow users to see through all labels and to
see the objects beneath. If a non-blended primitive is drawn on top of and after a
blended primitive, it will cover the blended primitive. If any primitive is drawn
behind but after a blended primitive, the primitive drawn later will not appear where
the blended primitive covers it, due to depth buffering. In other words, it is not
possible to blend primitives unless all objects behind the blended primitive which are
to be blended are already drawn.
Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 63
Note
If you have a complex scene where many primitives are blended, it may be difficult
to determine the proper ordering.

Inter- and Intra-primitive Rendering Orders

Inter-primitive rendering order deals with the ordering of primitive objects within an
IDLgrModel. For primitives which do not intersect each other, it is straightforward to
order these in a back-to-front viewing order, particularly if your scene is fixed so it
cannot be rotated by the user. This is done by arranging your primitives along the Z
direction so that the objects farthest away appear first in the IDLgrModels, which
makes them draw first.

If primitives intersect, it may be necessary to divide the object so that the back parts
of each primitive are drawn first, and then the front parts. This can be a very difficult
issue.

Intra-primitive rendering order deals with the ordering of graphical items within an
IDL graphics primitive. Some primitives, such as IDLgrSurface and IDLgrPolygon
actually consist of a large number of individual polygons. They are not all drawn at
once, and the order in which they are drawn is also important when drawing with
blending.

You can control the order in which the individual polygons are drawn in an
IDLgrPolygon object by ordering the vertices or specifying the order in the
POLYGONS property. Polygons specified first in the POLYGONS list are drawn
first.

Viewing and Rotation

If you draw a typical height field with IDLgrSurface and invoke blending, the object
might look right from some viewing orientations.

For example, try the following:

XOBJVIEW, OBJ_NEW('idlgrsurface',$
BESELJ(shift(dist(40),20,20)/2,0) * 20, STYLE=2,$

ALPHA_CHANNEL=0.5)
Object Programming Controlling Object Transparency

64 Chapter 2: Creating an Object Graphics Display

Notice in the previous figure that you can see-through the waves in the object to see
other waves, but only when you view the object from certain directions. From other
directions, all you see are the waves closer to you.

Solving this problem can be extremely difficult. A complete solution would generate
a scene for every possible viewing angle, where the polygons are drawn back to front,
splitting them if necessary. There are several techniques available for accomplishing
this, one of them being the Binary Space Partition Tree, however this is not supported
directly in IDL. If the objects are simple, it might be possible to construct a few
scenes that give correct or passable results.

For example, if you wanted to look at a semi-transparent sphere from all angles,
creating eight models might suffice. Each of the eight models contains the polygons
sorted in back-to-front order for a viewing direction corresponding to each of the
eight octants formed by the half spaces of the three principle axes. As the user rotates
the scene with a trackball, the program would select the appropriate model, based on
the current viewing direction. More complex scenes may require more models.

Figure 2-2: Viewing Alpha Channel in an Object
Controlling Object Transparency Object Programming

Chapter 2: Creating an Object Graphics Display 65
Depth Buffer Updating

For any value of the ALPHA_CHANNEL property, IDL updates the depth buffer
when the primitive is drawn, unless the DEPTH_WRITE_DISABLE property is set
to a value that disables depth buffer updates. Thus, even if you draw a completely
transparent primitive, the depth buffer is updated as if there were a visible primitive
drawn there. This means that subsequent primitives drawn behind the transparent
object are not visible. Though potentially confusing, this can also be a useful way to
hide objects in certain situations.

After drawing a transparent object, that there may be gaps in objects drawn later. For
example, suppose lines in a plot are drawn with ALPHA_CHANNEL=0
(transparent), and then symbols are drawn. Where the symbols and lines intersect,
there are gaps in the symbols. The gaps are caused by the invisible lines changing the
depth buffer, thus masking out the symbols that are drawn later. At times, the ability
to modify the depth buffer without changing the color buffer is a useful tool for clever
clipping operations. In other contexts, you may consider using invisible polygons to
mask out entire areas. However, if the partial or entire invisibility of objects drawn
after a transparent object is unintended use one of the following options:

• Set the DEPTH_TEST_FUNCTION=4, or disable depth testing entirely using
the DEPTH_WRITE_DISABLE property.

• Set the HIDE property to 1 if ALPHA_CHANNEL becomes 0.

Either of these options would erase the gaps in the symbols caused by the transparent
plot lines as described in the previous situation.
Object Programming Controlling Object Transparency

66 Chapter 2: Creating an Object Graphics Display
Performance Tuning Object Graphics

The Object Graphics subsystem is designed to provide a rich set of graphical
functionality that can be displayed in reasonable time. This section offers suggestions
on how to adjust your system and programs to achieve the best rendering
performance.

See the following topics for details:

• “Hardware vs. Software Rendering” on page 66

• “Polygon Optimization” on page 209

• “Optimizing Light Object Use” on page 235

• “Improving Window Drawing Performance” on page 272

Hardware vs. Software Rendering

The RENDERER property to the IDLgrWindow object (or associated platform-
specific preferences in the IDL Preference system) allows you to select between the
operating system’s native (hardware) rendering system and a platform independent
(software) rendering system for IDL Object Graphics displays.

Hardware rendering allows IDL to make use of 3D graphics accelerators that support
OpenGL, if any are installed in the system. In general, such accelerators will provide
better rendering performance for many object graphics displays. This is typically true
for images rendered using texture-mapped polygons (the default behavior for
IDLgrImage beginning with IDL 6.2).

The software rendering system will generally run more slowly than the hardware
rendering system. However, use of the software rendering system has a few
important advantages:

• Software rendering is available in situations where hardware rendering is not
(remote display to non-OpenGL capable X servers, for example).

• The number of expose events an IDL application will have to respond to is
much smaller when software rendering is used.

• The software rendering system is generally much faster than the hardware
rendering system for Instancing.

• Software rendering can be used to avoid bugs in third-party hardware
rendering system driver software.
Performance Tuning Object Graphics Object Programming

Chapter 2: Creating an Object Graphics Display 67
• Finally, on some displays (most notably SGI systems with 24 or fewer
bitplanes), the quality of the screen display will be better when using the
software rendering system because its design allows more bitplanes to be used.

Note
By default, IDL uses the renderer specified by the IDL_GR_WIN_RENDERER
preference (Microsoft Windows) or the IDL_GR_X_RENDERER preference
(UNIX). If your platform does not have a native OpenGL implementation, IDL uses
its own software implementation regardless of the preference value or the value of
the RENDERER property.
Object Programming Performance Tuning Object Graphics

68 Chapter 2: Creating an Object Graphics Display
Performance Tuning Object Graphics Object Programming

Chapter 3

Positioning Objects in a
View
The following topics are covered in this chapter:
Positioning Visualizations in a View 70
Viewport . 71
Projection . 73
Eye Position . 75
View Volume . 77

Translating, Rotating and Scaling Objects . 91
Example: Centering an Image 83
Example: Centering an Image 83
Example: Transforming a Surface 86
Interactive 3D Transformations 95
Object Programming 69

70 Chapter 3: Positioning Objects in a View
Positioning Visualizations in a View

Unlike IDL Direct Graphics, the IDL Object Graphics system does not automatically
position and size the objects to be rendered. It is up to you, as a programmer, to
properly define how your graphic elements will be positioned when rendered.

There are three aspects to this transformation from a generic depiction of your data to
a representation that can be rendered to an output device (a graphics destination
object, such as a window or printer) with the perspective, size, and location you want.

Viewport

The first aspect is the view of the graphics objects to be rendered: the size of the
viewing area (the viewport), the type of projection used, the position of the viewer’s
eye as it looks at the graphics objects, and the particular view volume in three-
dimensional space that will be rendered to the viewing area. These elements of the
view of your graphics objects are, appropriately, controlled by properties of the
IDLgrView object being rendered. See “Viewport” on page 71.

Location

The second aspect of the transformation is the location and position of your graphics
objects with respect to the viewing area. Graphics objects can be translated, rotated,
or scaled by setting the appropriate properties of the IDLgrModel object that contains
them. See “Translating, Rotating and Scaling Objects” on page 91.

Note
The viewport and location of an object are independent: It is possible, for example,
to translate a graphic object so that it is no longer within the viewing area that is
rendered in a window or on a printer.

Coordinate Systems and Scaling

The third aspect of the transformation is the conversion between data, device, and
normalized coordinates. The IDL Object Graphics system gives you full control over
which data values are used, which are displayed, and which coordinate systems are
used. This means that you must explicitly ensure that the objects to be rendered and
the view object to which they belong use the same coordinate system and are scaled
appropriately. This chapter discusses the properties and methods used to size and
position both your viewing area and the graphics objects you wish to render. See
“Converting Data to Normal Coordinates” on page 80.
Positioning Visualizations in a View Object Programming

Chapter 3: Positioning Objects in a View 71
Viewport

Several elements of an IDLgrView object control how objects appear when
displayed:

• “Location and Dimension” on page 71 — define the viewport within the
destination object

• “Projection” on page 73 — define either a parallel or perspective projection

• “Eye Position” on page 75 — define the distance of eye from the viewing
plane for perspective projections

• “View Volume” on page 77 — define the view volume that is projected into the
viewport

Location and Dimension

One of the first steps in determining how graphics objects will appear when rendered
on a graphics destination object is to select the location and dimensions of the
rectangular area—the viewport—on the destination in which the rendering will be
displayed. Set the location and dimensions of the viewport using the LOCATION and
DIMENSIONS keywords to the IDLgrView::Init method when creating the view
object (or after creation using the SetProperty method).

For example, the following statement creates a view object with a viewport that is
300 pixels by 200 pixels, with its lower left corner located 100 pixels up from the
bottom and 100 pixels to the right of the left edge of the destination object:

myView = OBJ_NEW('IDLgrView', LOCATION=[100,100], $
DIMENSIONS=[300,200])
Object Programming Viewport

72 Chapter 3: Positioning Objects in a View
Both the LOCATION and DIMENSIONS properties of the view object honor the
value of the UNITS property, which specifies the type of units in which
measurements are made. (Pixels are the default units, so no specification of the
UNITS keyword was necessary in the above example.)

The viewport of an existing view can be changed using the SetProperty method:

myView->SetProperty, LOCATION=[0,0], DIMENSIONS=[200,200]

changes the location of the viewport to have its lower left corner at (0, 0) and a size of
200 pixels by 200 pixels.

Note
The eye is positioned in only one dimension (along the z-axis) and always points in
the –z direction.

Figure 3-1: Positioning a View on the Screen
Viewport Object Programming

Chapter 3: Positioning Objects in a View 73
Projection

When three-dimensional graphics are displayed on a flat computer screen or printed
on paper, they must be projected onto the viewing plane. A projection is a way of
converting positions in 3D space into locations in the 2D viewing plane. IDL
supports two types of projections—parallel and perspective—for each view.

Parallel Projections

A parallel projection projects objects in 3D space onto the 2D viewing plane along
parallel rays. The figure below shows a parallel projection; note that two objects that
are the same size but at different locations still appear to be the same size when
projected onto the viewplane.

View objects use a parallel projection by default. To explicitly set a view object to
use a parallel projection, set the PROJECTION keyword to the IDLgrView::Init
method equal to 1 (or use the SetProperty method to set the projection for an exiting
view object):

myView->SetProperty, PROJECTION = 1

Figure 3-2: In a Parallel Projection, Rays Do Not Converge at the Eye
Object Programming Projection

74 Chapter 3: Positioning Objects in a View
Perspective Projections

A perspective projection projects objects in 3D space onto the 2D viewing plane
along rays that converge at the eye position. The figure below shows a perspective
projection; note that objects that are farther from the eye appear smaller when
projected onto the viewplane.

Set the PROJECTION keyword to the IDLgrView::Init method equal to 2 (or use the
SetProperty method to set the projection for an exiting view object) to use a
perspective projection:

myView->SetProperty, PROJECTION = 2

Figure 3-3: In a Perspective Projection, Rays Converge at the Eye
Projection Object Programming

Chapter 3: Positioning Objects in a View 75
Eye Position

The eye position is the position along the z-axis from which a set of objects contained
in a view object are seen. Use the EYE keyword to the IDLgrView::Init method to
specify the distance from the eye position to the viewing plane (or use the
SetProperty method to alter the eye position of an existing view object). The eye
position must be a z value larger than the z value of the near clipping plane (see “Near
and Far Clipping Planes” on page 77) or zero, whichever is greater. That is, the eye
must always be located at a positive z value, and must be outside the volume bounded
by the near and far clipping planes.

For example, the following moves the eye position to z = 5:

myView->SetProperty, EYE=5

The eye is always positioned directly in front of the center of the viewplane rectangle.
That is, if the VIEWPLANE_RECT property is set equal to [–1, –1, 2, 2], the eye will
be located at X=0, Y=0.

Changing the position of the eye has no effect when you are using a parallel
projection. Changing the eye position when you are using a perspective projection
has a somewhat counter-intuitive affect: moving the eye closer to the near clipping
plane causes objects in the volume being rendered to appear smaller rather than
larger. To understand why this should be true, consider the following diagram.

Figure 3-4: Moving the Eye Closer to the Viewplane
Causes Objects to Appear Smaller
Object Programming Eye Position

76 Chapter 3: Positioning Objects in a View
In a perspective projection, rays from the graphic objects in the view volume
converge at the eye position. When the eye is close to the viewing plane, the
projected rays cross the viewing plane (where rendering actually occurs) in a
relatively small area. When the eye moves farther from the viewing plane, the
projected rays become more nearly parallel and occupy a larger area on the viewing
plane when rendered.
Eye Position Object Programming

Chapter 3: Positioning Objects in a View 77
View Volume

The view volume defines the three-dimensional volume in space that, once projected,
is to fit within the viewport. There are two parts to the view volume: the viewplane
rectangle and the near and far clipping planes.

Viewplane Rectangle

The viewplane rectangle defines the bounds in the X and Y directions that will be
mapped into the viewport. Objects (or portions of objects) that lie outside the
viewplane rectangle will not be rendered. The viewplane rectangle is always located
at Z=0.

Use the VIEWPLANE_RECT keyword to the IDLgrView::Init method (or use the
SetProperty method if you have already created the view object) to set the location
and extent of the viewplane rectangle. Set the keyword equal to a four-element
floating-point vector; the first two elements specify the X and Y location of the lower
left corner of the rectangle, and the second two elements specify the width and height.
The default rectangle is located at (-1.0, -1.0) and is two units wide and two units
high ([–1.0, –1.0, 2.0, 2.0]). For example, the following command changes the
viewplane rectangle to be located at (0.0, 0.0) and to be one unit square:

myView->SetProperty, VIEWPLANE_RECT = [0.0, 0.0, 1.0, 1.0]

Note
See “Panning in Object Graphics” on page 111 for an example that modifies the
VIEWPLANE_RECT to control what portion of an image is displayed in a view.

Near and Far Clipping Planes

The near and far clipping planes define the bounds in the Z direction that will be
mapped into the viewport. Objects (or portions of objects) that lie nearer to the eye
than the near clipping plane or farther from the eye than the far clipping plane will not
be rendered. The figure below shows near and far clipping planes.

Use the ZCLIP keyword to the IDLgrView::Init method (or use the SetProperty
method if you have already created the view object) to set the near and far clipping
planes. Set the keyword equal to a two-element floating-point vector that defines the
positions of the two clipping planes: [near, far]. The default clipping planes are at
Object Programming View Volume

78 Chapter 3: Positioning Objects in a View
Z = 1.0 and Z = –1.0 ([1.0, –1.0]). For example, the following command changes the
near and far clipping planes to be located at Z = 2.0 and Z = –3.0, respectively.

myView->SetProperty, ZCLIP = [2.0, -3.0]

Finding an Appropriate View Volume

Finding an appropriate view volume for a given object tree is relatively simple in
theory. To find the appropriate viewplane rectangle, you must find the overall X and
Y range of the object (usually a model or scene object) that contains the items drawn
in the object tree, accounting for any transformations of objects contained in the tree.
Similarly, to find the appropriate near and far clipping planes, you can find the Z
range of the object that contains the items drawn in the object tree. In practice,
however, finding, adding, and transforming the ranges for a large object tree can be
complicated.

Figure 3-5: Near and Far Clipping Planes. Object 2 is not rendered, because it
does not lie between the near and far clipping planes.
View Volume Object Programming

Chapter 3: Positioning Objects in a View 79
Example Code
Two routines contained in the IDL distribution provide an example of how the view
volume can be computed in many cases. These routines are defined in the files
set_view.pro and get_bounds.pro, located in the
examples/doc/utilities subdirectory of the IDL distribution. Run these
example procedures by entering set_view or get_bounds at the IDL command
prompt or view the files in an IDL Editor window by entering .EDIT
set_view.pro or .EDIT get_bounds.pro.

The SET_VIEW procedure accepts as arguments the object references of a view
object and a destination object, computes an appropriate view volume for the view
object, and sets the VIEWPLANE_RECT property of the view object accordingly.
The SET_VIEW procedure calls the GET_BOUNDS procedure to compute the X, Y,
and Z ranges of the objects contained in the view object.

The SET_VIEW and GET_BOUNDS routines are used in the examples in this
volume, and are available for your use when creating and displaying object
hierarchies. They are, however, example code, and are not truly generic in the
situations they address. When you encounter a situation for which these routines do
not produce the desired result, we encourage you to copy and alter the code to suit
your own needs.

Inspect the SET_VIEW.PRO and GET_BOUNDS.PRO files for further details.
Object Programming View Volume

javascript:doIDL("set_view")
javascript:doIDL("get_bounds")
javascript:doIDL(".edit set_view.pro")
javascript:doIDL(".edit set_view.pro")
javascript:doIDL(".edit get_bounds.pro")

80 Chapter 3: Positioning Objects in a View
Converting Data to Normal Coordinates

Most transformations are handled by the transformation matrix of a model object. For
convenience, however, visualization objects may also have a simplified
transformation applied to them. Coordinate transformations applied to individual
graphic visualization objects allow you to change only the translation (position) and
scale; this is useful when converting from one coordinate system to another.

For example, you may build your view object using normalized coordinates, so that
values range between zero and one. If you create a graphic object—a surface object,
say—based on the range of data values, you would need to convert your surface
object (built with a data coordinate system) to match the view object (built with a
normal coordinate system). To do this, use the [XYZ]COORD_CONV keywords to
the graphic object in question. The [XYZ]COORD_CONV keywords take as their
argument a two-element vector that specifies the translation and scale factor for each
dimension.

Suppose you have a surface object whose data is specified in a range from [0, 0,
zMin] to [xMax, yMax, zMax]. If you wanted to work with this surface as if it were in
a normalized [–1, –1, –1] to [1, 1, 1] space, you could use the following coordinate
conversions:

; Create some data:
myZdata = DIST(60)
; Use SIZE to determine size of each dimension of myZdata:
sz = SIZE(myZdata)
; Create a scale factor for the X dimension:
xs = 2.0/(sz[1]-1)
; Create a scale factor for the Y dimension:
ys = 2.0/(sz[2]-1)
; Create a scale factor for the Z dimension:
zs = 2.0/MAX(myZdata)

Now, use the [XYZ]COORD_CONV keywords to the IDLgrSurface::Init method to
translate the surface by minus one unit in each direction, and to scale the surface by
the scale factors:

mySurface = OBJ_NEW('IDLgrSurface', myZdata, $
XCOORD_CONV = [-1, xs], YCOORD_CONV = [-1, ys], $
ZCOORD_CONV = [-1, zs])

Remember that using the [XYZ]COORD_CONV keywords is simply a
convenience—the above example could also have been written as follows:

; Create some data:
myZdata = DIST(60)
; Use SIZE to determine the size of each dimension of myZdata:
Converting Data to Normal Coordinates Object Programming

Chapter 3: Positioning Objects in a View 81
sz = SIZE(myZdata)
; Create a scale factor for the X dimension:
xs = 2.0/(sz(1)-1)
; Create a scale factor for the Y dimension:
ys = 2.0/(sz(2)-1)
; Create a scale factor for the Z dimension:
zs = 2.0/(MAX(myZdata)
; Create a model object:
myModel = OBJ_NEW('IDLgrModel')
; Apply scale factors:
myModel->Scale, xs, ys, zs
; Translate:
myModel->Translate, -1, -1, -1
; Create surface object:
mySurface = OBJ_NEW('IDLgrSurface', myZdata)
; Add surface object to model object:
myModel->Add, mySurface

A Function for Coordinate Conversion

Often, it is convenient to convert minimum and maximum data values so that they fit
in the range from 0.0 to 1.0 (that is, so they are normalized). Rather than adding the
code to make this coordinate conversion to your code in each place it is required, you
may wish to define a coordinate conversion function.

For example, the following function definition accepts a two-element array
representing minimum and maximum values returned by the XYZRANGE keyword
to the GetProperty method, and returns two-element array of scaling parameters
suitable for the XYZCOORD_CONV keywords:

FUNCTION NORM_COORD, range
scale = [-range[0]/(range[1]-range[0]), 1/(range[1]-range[0])]
RETURN, scale

END

If you define a function like this in your code, you can then call it whenever you need
to scale your data ranges into normalized coordinates. The following statements
create a plot object from the variable data, retrieve the values of the X and Y ranges
for the plot, and the use the XYCOORD_CONV keywords to the SetProperty method
and the NORM_COORD function to set the coordinate conversion.

plot = OBJ_NEW('IDLgrPlot', data)
plot->GetProperty, XRANGE=xr, YRANGE=yr
plot->SetProperty, XCOORD_CONV=NORM_COORD(xr), $

YCOORD_CONV=NORM_COORD(yr)
Object Programming Converting Data to Normal Coordinates

82 Chapter 3: Positioning Objects in a View
Example Code
The function NORM_COORD is defined in the file norm_coord.pro in the
examples/doc/utilities subdirectory of the IDL distribution. Run this
example procedure by entering norm_coord at the IDL command prompt or view
the file in an IDL Editor window by entering .EDIT norm_coord.pro.
Converting Data to Normal Coordinates Object Programming

javascript:doIDL("norm_coord")
javascript:doIDL(".edit norm_coord.pro")

Chapter 3: Positioning Objects in a View 83
Example: Centering an Image

The following example steps through the process of creating an image object and
provides two options for centering it within a window.

The first method establishes a viewplane rectangle within a view object. The image
object is added to a model object. The model object is then translated to the center of
the window object.

The second method does not establish a viewplane rectangle. Instead coordinate
conversions are calculated and applied to the image object to center it within the
model. This method works within the normalized coordinate system of the model.

You can also position an image in a view using the LOCATION property of the
image object. For additional information and examples, see “Positioning Image
Objects in a View” on page 105.

This example uses the image from the worldelv.dat file found in the
examples/data directory.

PRO CenteringAnImage

; Determine path to file.
worldelvFile = FILEPATH('worldelv.dat', $
 SUBDIRECTORY = ['examples', 'data'])

; Initialize image parameters.
worldelvSize = [360, 360]
worldelvImage = BYTARR(worldelvSize[0], worldelvSize[1], /NOZERO)

; Open file, read in image, and close file.
OPENR, unit, worldelvFile, /GET_LUN
READU, unit, worldelvImage
FREE_LUN, unit

; Initialize window parameters.
windowSize = [400, 460]
windowMargin = (windowSize - worldelvSize)/2

; First Method: Defining the Viewplane and
; Translating the Model.
;---
Object Programming Example: Centering an Image

84 Chapter 3: Positioning Objects in a View
; Initialize objects required for an Object Graphics
; display.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
 DIMENSIONS = windowSize, $
 TITLE = 'World Elevation: First Method')
oView = OBJ_NEW('IDLgrView', $
 VIEWPLANE_RECT = [0., 0., windowSize])
oModel = OBJ_NEW('IDLgrModel')

; Initialize palette with STD GAMMA-II color table and
; use it to initialize the image object.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette->LOADCT, 5
oImage = OBJ_NEW('IDLgrImage', worldelvImage, PALETTE = oPalette)

; Add image to model, which is added to view. Model
; is translated to center the image within the window.
; Then view is displayed in window.
oModel->Add, oImage
oView->Add, oModel
oModel->Translate, windowMargin[0], windowMargin[1], 0.
oWindow->Draw, oView

; Clean-up object references.
OBJ_DESTROY, [oView, oPalette]

; Second Method: Using Coordinate Conversions.
;---

; Initialize objects required for an Object Graphics
; display.
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
 DIMENSIONS = windowSize, $
 TITLE = 'World Elevation: Second Method')
oView = OBJ_NEW('IDLgrView')
oModel = OBJ_NEW('IDLgrModel')

; Initialize palette with STD GAMMA-II color table and
; use it to initialize the image object.
oPalette = OBJ_NEW('IDLgrPalette')
oPalette->LOADCT, 5
oImage = OBJ_NEW('IDLgrImage', worldelvImage, $
 PALETTE = oPalette)

; Obtain initial coordinate conversions of image object.
oImage->GetProperty, XCOORD_CONV = xConv, $
 YCOORD_CONV = yConv, XRANGE = xRange, YRANGE = yRange
Example: Centering an Image Object Programming

Chapter 3: Positioning Objects in a View 85
; Output initial coordinate conversions.
PRINT, 'Initial xConv: ', xConv
PRINT, 'Initial yConv: ', yConv

; Applying margins to coordinate conversions.
xTranslation = (2.*FLOAT(windowMargin[0])/windowSize[0]) - 1.
xScale = (-2.*xTranslation)/worldelvSize[0]
xConv = [xTranslation, xScale]
yTranslation = (2.*FLOAT(windowMargin[1])/windowSize[1]) - 1.
yScale = (-2.*yTranslation)/worldelvSize[1]
yConv = [yTranslation, yScale]

; Output resulting coordinate conversions.
PRINT, 'Resulting xConv: ', xConv
PRINT, 'Resulting yConv: ', yConv

; Apply resulting conversions to the image object.
oImage->SetProperty, XCOORD_CONV = xConv, $
 YCOORD_CONV = yConv

; Add image to model, which is added to view. Display
; the view in the window.
oModel->Add, oImage
oView->Add, oModel
oWindow->Draw, oView

; Cleanup object references.
OBJ_DESTROY, [oView, oPalette]

END
Object Programming Example: Centering an Image

86 Chapter 3: Positioning Objects in a View
Example: Transforming a Surface

The following example steps through the process of creating a surface object and all
of the supporting objects necessary to display it.

Example Code
The procedure file test_surface.pro, located in the examples/doc/objects
subdirectory of the IDL distribution, contains this example’s code. Run this
example procedure by entering test_surface at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT test_surface.pro.

When creating this procedure, we allow the user to specify keywords that will return
object references to the view, model, surface, and window objects. This allows us to
manipulate the objects directly from the IDL command line after the procedure has
been run.

Play with the example to learn how object transformations work and interact. Try the
following commands at the IDL prompt to observe what they do:

First, compile test_surface.pro:

.RUN test_surface.pro

Now, execute the procedure. The variables you supply via the SURFACE, MODEL,
VIEW, and WINDOW keyword will contain object references you can manipulate
from the command line:

test_surface, VIEW=myview, MODEL=mymodel, $
SURFACE=mysurf, WINDOW=mywin

This will create a window object and display the surface. Now try the following to
translate the object to the right:

mymodel->Translate, 0.2, 0, 0

The model transformation changes as soon as you issue this command. The window
object, however, will not be updated to reflect the new position until you issue a
Draw command:

mywin->Draw, myview

Try a rotation in the y direction:

mymodel->Rotate, [0,1,0], 45
mywin->Draw, myview

Repeat the commands several times and observe what happens.
Example: Transforming a Surface Object Programming

javascript:doIDL("test_surface")
javascript:doIDL(".edit test_surface.pro")

Chapter 3: Positioning Objects in a View 87
Try some of the following. Remember to issue a Draw command after each change in
order to see what you have done.

mymodel->Scale, 0.5, 0.5, 0.5
mymodel->Scale, 1, 0.5, 1
mymodel->Scale, 1, 2, 1
mymodel->Rotate, [0,0,1], 45
mysurf->SetProperty, COLOR = [0, 255, 0]
myview->SetProperty, PROJECTION = 2, EYE = 2
myview->SetProperty, EYE = 1.1
myview->SetProperty, EYE = 6
Object Programming Example: Transforming a Surface

88 Chapter 3: Positioning Objects in a View
Zooming within an Object Display

Enlarging a specific section of an image is known as zooming. How zooming is
performed within IDL depends on the graphics system. In Direct Graphics, you can
use the ZOOM procedure to zoom in on a specific section of an image. If you are
working with RGB images, you can use the ZOOM_24 procedure.

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. Using this method, the entire image is still contained within the image object,
while the view is changed to only show specific areas of the image object. See the
following section for more information.

Zooming in on an Object Graphics Image Display

The following example imports a grayscale image from the convec.dat binary file.
This grayscale image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. The VIEWPLANE_RECT keyword
to the view object is updated to zoom in on the lower left corner of the image.

Example Code
See zooming_object.pro in the examples/doc/objects subdirectory of the
IDL installation directory for code that duplicates this example. Run this example
procedure by entering zooming_object at the IDL command prompt or view the
file in an IDL Editor window by entering .EDIT zooming_object.pro.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')
Zooming within an Object Display Object Programming

javascript:doIDL("zooming_object")
javascript:doIDL(".edit zooming_object.pro")

Chapter 3: Positioning Objects in a View 89
5. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

6. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

7. Initialize another window:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
 DIMENSIONS = imageSize, TITLE = 'Zoomed Image')

8. Change the view to enlarge the lower left quarter of the image:

oView -> SetProperty, $
 VIEWPLANE_RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

9. Display the updated view in the new window:

oWindow -> Draw, oView

Figure 3-6: A Grayscale Image in Object Graphics
Object Programming Zooming within an Object Display

90 Chapter 3: Positioning Objects in a View
The following figure shows the resulting zoomed image.

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Figure 3-7: Enlarged Image Area in Object Graphics
Zooming within an Object Display Object Programming

Chapter 3: Positioning Objects in a View 91
Translating, Rotating and Scaling Objects

An IDLgrModel object is a container for any visualization objects that are to be
rotated, translated, or scaled. Each IDLgrModel object has a transformation property
(set via the TRANSFORM keyword to the IDLgrModel::Init or SetProperty method),
which is a 4 x 4 floating-point matrix. For a general discussion of transformation
matrices and three-dimensional graphics, see “Coordinates of 3-D Graphics”
(Chapter 5, Using IDL).

Note
A model object’s transformation matrix is akin to the transformation matrix used by
IDL Direct Graphics and stored in the !P.T system variable field. Transformation
matrices associated with a model object do not use the value of !P.T, however, and
are not affected by the T3D procedure used in Direct Graphics.

By default, a model object’s transformation matrix is set equal to a 4-by-4 identity
matrix:

You can change the transformation matrix of a model object directly, using the
TRANSFORM keyword to the IDLgrModel::Init or SetProperty method:

myModel = OBJ_NEW('IDLgrModel', TRANSFORM = tmatrix)

where tmatrix is a 4-by-4 transformation matrix. Alternatively, you can use the
Translate, Rotate, and Scale methods to the IDLgrModel object to alter the model’s
transformation matrix.

Figure 3-8:

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0
Object Programming Translating, Rotating and Scaling Objects

92 Chapter 3: Positioning Objects in a View
Translation

The IDLgrModel::Translate method takes three arguments specifying the amount to
translate the model object and its contents in the X, Y, and Z directions. For example,
to translate a model and its contents by 1 unit in the X-direction, you could use the
following statements:

dx = 1 & dy = 0 & dz = 0
myModel->Translate, dx, dy, dz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define translation values:
dx = 1 & dy = 0 & dz = 0
; Get existing transformation matrix:
myModel->GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the translation:
transT = [[1.0, 0.0, 0.0, dx], $

[0.0, 1.0, 0.0, dy], $
[0.0, 0.0, 1.0, dz], $
[0.0, 0.0, 0.0, 1.0]]

; Multiply the existing transformation matrix by
; the matrix that performs the translation:
newT = oldT # transT
; Apply the new transformation matrix to the model object:
myModel->SetProperty, TRANSFORM = newT

Rotation

The IDLgrModel::Rotate method takes two arguments specifying the axis about
which to rotate and the number of degrees to rotate the model object and its contents.
For example, to rotate a model and its contents by 90 degrees around the y-axis, you
could use the following statements:

axis = [0,1,0] & angle = 90
myModel->Rotate, axis, angle

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define rotation values:
axis = [0,1,0] & angle = 90
; Get existing transformation matrix:
myModel->GetProperty, TRANSFORM = oldT
; Define sine and cosine of angle:
cosa = COS(!DTOR*angle)
sina = SIN(!DTOR*angle)
Translating, Rotating and Scaling Objects Object Programming

Chapter 3: Positioning Objects in a View 93
; Provide a transformation matrix that performs the rotation:
rotT = [[cosa, 0.0, sina, 0.0], $

[0.0, 1.0, 0.0, 0.0], $
[-sina, 0.0, cosa, 0.0], $
[0.0, 0.0, 0.0, 1.0]]

; Multiply the existing transformation matrix
; by the matrix that performs the rotation.
newT = oldT # rotT
; Apply the new transformation matrix to the model object:
myModel->SetProperty, TRANSFORM = newT

Scaling

The IDLgrModel::Scale method takes three arguments specifying the amount to scale
the model object and its contents in the x, y, and z directions. For example, to scale a
model and its contents by 2 units in the y direction, you could use the following
statements:

sx = 1 & sy = 2 & sz = 1
myModel->Scale, sx, sy, sz

How does this affect the transformation matrix? Notice that we could change the
transformation matrix in an identical way using the following statements:

; Define scaling values:
sx = 1 & sy = 2 & sz = 1
; Get existing transformation matrix:
myModel->GetProperty, TRANSFORM = oldT
; Provide a transformation matrix that performs the scaling:
scaleT = [[sx, 0.0, 0.0, 0.0], $

[0.0, sy, 0.0, 0.0], $
[0.0, 0.0, sz, 0.0], $
[0.0, 0.0, 0.0, 1.0]]

; Multiply the existing transformation matrix
; by the matrix that performs the scaling.
newT = oldT # scaleT
; Apply the new transformation matrix to the model object:
myModel->SetProperty, TRANSFORM = newT
Object Programming Translating, Rotating and Scaling Objects

94 Chapter 3: Positioning Objects in a View
Combining Transformations

Note that model transformations are cumulative. That is, a model object contained in
another model is subject to both its own transformation and to that of its container.
All transformation matrices that apply to a given model object are multiplied together
when the object is rendered. For example, consider a model that contains another
model:

model1 = OBJ_NEW('IDLgrModel', TRANSFORM = trans1)
model2 = OBJ_NEW('IDLgrModel', TRANSFORM = trans2)
model2->Add, model1

The model1 object is now subject to both its own transformation matrix (trans1)
and to that of its container (trans2). The result is that when model1 is rendered, it
will be rendered with a transformation matrix = trans1 # trans2.
Translating, Rotating and Scaling Objects Object Programming

Chapter 3: Positioning Objects in a View 95
Interactive 3D Transformations

To create truly interactive object graphics, you must allow the user to transform the
position or orientation of objects using the mouse. One way to do this is to provide a
virtual trackball that lets the user manipulate objects interactively on the screen.

Note
The iTools provide extensive interactivity for all types of object data displayed in
an iTool. This interactivity is automatically available when suitable data is
displayed in an iTool. See the iTool User’s Guide for complete details.

The procedure file trackball_ _define.pro, found in the lib directory of the
IDL distribution, contains the object definition procedure for a virtual trackball
object. This trackball object is used in several of the examples presented in this
volume, and is also used by other example and demonstration code included with
IDL. The trackball object has three methods: Init, Update, and Reset. These methods
allow you to retrieve mouse movement events and alter your model transformations
accordingly.

The trackball object behaves as if there were an invisible trackball, centered at a
position you specify, overlaid on a draw widget. The widget application’s event
handler uses the widget event information to update both the trackball’s state and the
model transformation of the objects displayed in the draw widget’s window object.
When the user clicks and drags in the draw widget, objects in the draw widget rotate
as if the user were manipulating them with a physical trackball.

See “TrackBall” (IDL Reference Guide) for details on creating and using trackball
objects. Several of the other example files located in the examples/doc/objects
subdirectory of the IDL distribution include trackball objects, and may be studied for
further insight into the mechanics of transforming object hierarchies based on user
input.

Note
The XOBJVIEW procedure is a utility used to quickly and easily view and
manipulate IDL Object Graphics on screen. Pre-built functionality allows you to
select, rotate, pan and zoom objects contained within the model(s) passed to the
procedure. See “XOBJVIEW” (IDL Reference Guide) for details.
Object Programming Interactive 3D Transformations

96 Chapter 3: Positioning Objects in a View
Interactive 3D Transformations Object Programming

Chapter 4

Working with Image
Objects
The following topics are covered in this chapter:
Overview of Image Objects 98
Creating Image Objects 100
Positioning Image Objects in a View 105
Panning in Object Graphics 111
Defining Transparency in Image Objects . 115

Warping Image Objects 121
Mapping an Image Object onto a Sphere . 132
Image Tiling . 136
Adding Tiling to Your Application 140
Example: JPEG2000 Files for Tiling 150
Object Programming 97

98 Chapter 4: Working with Image Objects
Overview of Image Objects

An object of the IDLgrImage class (see “IDLgrImage” (IDL Reference Guide))
represents a two-dimensional array of pixel values, rendered on the plane z = 0. The
image object stores image data using the byte data type, and can take any of the
following forms:

• An array with dimensions [n, m]. Each pixel is interpreted as an index into a
palette, or as an explicit gray scale value (if the GREYSCALE keyword is set).

• An array with dimensions [2, n, m] or [n, 2, m] or [n, m, 2]. Each pixel consists
of a gray scale value and an associated alpha channel value (alpha is used for
transparency effects).

• An array with dimensions [3, n, m] or [n, 3, m] or [n, m, 3]. Each pixel consists
of an RGB triple.

• An array with dimensions [4, n, m] or [n, 4, m] or [n, m, 4]. Each pixel consists
of an RGB triple and an associated alpha channel value.

The index or RGB triple for each pixel is interpreted according to the color model set
for the destination object in which it is to be drawn. The Alpha channel, if present,
determines the transparency of the pixel.

Note
The position of the color bands in an RGB image array is know as interleaving. See
“RGB Image Interleaving” (Chapter 5, Using IDL) for details. The INTERLEAVE
property of the image object describes this arrangement.

Defining Image Palettes

If your image array contains indexed color data (that is, if it is an m-by-n array), you
can specify a palette object to control the conversion between the image data and the
palette used by an RGB-mode destination object. (See “How IDL Interprets Color
Values” on page 53 for a discussion of the interaction between indexed color objects
and RGB color destinations.) Set the PALETTE property of the image object equal to
an instance of an IDLgrPalette object:

myimage->SetProperty, PALETTE = mypalette

To specify that an image be drawn in greyscale mode rather than through an existing
color palette, set the GREYSCALE property equal to 1 (one). The GREYSCALE
property is only used if the image data is a single channel (an m-by-n array).
Overview of Image Objects Object Programming

Chapter 4: Working with Image Objects 99
Note
A 2-by-m-by-n array is considered to be a greyscale image with an Alpha channel.
An image containing indexed color data cannot have an alpha channel.

For examples, see “Displaying Indexed Images with Object Graphics” in the
Examples section of “IDLgrPalette” (IDL Reference Guide).

Configuring Common Object Properties

IDLgrImage properties allow you to configure how image objects are displayed. You
can alter the transparency (using the ALPHA_CHANNEL keyword), or the color
(using the PALETTE keyword for indexed images, or the INTERLEAVE keyword
for RGB images). You may want to fit one image to another using warping or create
a texture map by mapping an image onto a geometric shape. See the following
sections for more information.

• “Creating Image Objects” on page 100 provides examples and resources for
creating image objects containing a variety of data

• “Positioning Image Objects in a View” on page 105

• “Defining Transparency in Image Objects” on page 115

• “Warping Image Objects” on page 121

• “Mapping an Image Object onto a Sphere” on page 132

If you want to display very large images, you can do so with image tiling. See “Image
Tiling” on page 136 for information.
Object Programming Overview of Image Objects

100 Chapter 4: Working with Image Objects
Creating Image Objects

To create an image object, supply an array of pixel values to the IDLgrImage::Init
method. If the image has more than one channel, be sure to set the INTERLEAVE
property of the image object to the appropriate value. (See “RGB Image Interleaving”
(Chapter 5, Using IDL) for details and an example showing how to determine the
interleaving within an image array.) See “IDLgrImage” (IDL Reference Guide) for
details on object properties and methods.

Note
IDLgrImage does not treat NaN data as missing. If the image data includes NaNs, it
is recommended that the BYTSCL function be used to appropriately handle those
values. For example:

oImage->SetProperty, DATA = BYTSCL(myData, /NaN, MIN=0,

MAX=255)

In Object Graphics, binary, grayscale, indexed, and RGB images are contained in
image objects. For display, the image object is contained within an object hierarchy,
which includes a model object and a view object. The view object is then drawn to a
window object. Some types of images must be scaled with the BYTSCL function
prior to display.

For more information, refer to the following examples:

• “Displaying Binary Images with Object Graphics” below

• “Displaying Grayscale Images with Object Graphics” on page 102

• “Displaying Indexed Images with Object Graphics” in the Examples section of
“IDLgrPalette” (IDL Reference Guide).

• “RGB Image Interleaving” (Chapter 5, Using IDL)

Displaying Binary Images with Object Graphics

Binary images are composed of pixels having one of two values, usually zero or one.
With most color tables, pixels having values of zero and one are displayed with
almost the same color, such as with the default grayscale color table. Thus, a binary
image is usually scaled to display the zeros as black and the ones as white.

The following example imports a binary image of the world from the
continent_mask.dat binary file. In this image, the oceans are zeros (black) and
the continents are ones (white). This type of image can be used to mask out (omit)
Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 101
data over the oceans. The image contains byte data values and is 360 pixels by 360
pixels.

Example Code
See displaybinaryimage_object.pro in the examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering displaybinaryimage at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
displaybinaryimage.pro.

1. Determine the path to the continent_mask.dat file:

file = FILEPATH('continent_mask.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [360, 360]

3. Use READ_BINARY to import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Binary Image, Not Scaled')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image)

6. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The resulting window should be all black (blank). The binary image contains
zeros and ones, which are almost the same color (black). A binary image
should be scaled prior to displaying in order to show the ones as white.

7. Initialize another window:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
Object Programming Creating Image Objects

javascript:doIDL("displaybinaryimage")
javascript:doIDL(".edit displaybinaryimage.pro")
javascript:doIDL(".edit displaybinaryimage.pro")

102 Chapter 4: Working with Image Objects
TITLE = 'A Binary Image, Scaled')

8. Update the image object with a scaled version of the image:

oImage -> SetProperty, DATA = BYTSCL(image)

9. Display the view in the window:

oWindow -> Draw, oView

The following figure shows the results of scaling this display.

10. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Displaying Grayscale Images with Object Graphics

Since grayscale images are composed of pixels of varying intensities, they are best
displayed with color tables that progress linearly from black to white. IDL provides
several such pre-defined color tables, but the default grayscale color table is generally
suitable.

Figure 4-1: Binary Image in Object Graphics
Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 103
The following example imports a grayscale image from the convec.dat binary file.
This grayscale image shows the convection of the Earth’s mantle. The image contains
byte data values and is 248 pixels by 248 pixels. Since the data type is byte, this
image does not need to be scaled before display. If the data was of any type other than
byte and the data values were not within the range of 0 up to 255, the display would
need to scale the image in order to show its intensities. Complete the following steps
for a detailed description of the process.

Example Code
See displaygrayscaleimage_object.pro in the examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering displaygrayscaleimage at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
displaygrayscaleimage.pro.

1. Determine the path to the convec.dat file:

file = FILEPATH('convec.dat', $
 SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [248, 248]

3. Using READ_BINARY, import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)

6. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView
Object Programming Creating Image Objects

javascript:doIDL("displaygrayscaleimage")
javascript:doIDL(".edit displaygrayscaleimage.pro")
javascript:doIDL(".edit displaygrayscaleimage.pro")

104 Chapter 4: Working with Image Objects
The following figure shows the resulting grayscale image display.

7. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Figure 4-2: Grayscale Image in Object Graphics
Creating Image Objects Object Programming

Chapter 4: Working with Image Objects 105
Positioning Image Objects in a View

By default, IDLgrImage objects are drawn at Z=0 and are positioned and sized with
respect to two points:

p1 = [LOCATION(0), LOCATION(1), 0]
p2 = [LOCATION(0) + DIMENSION(0), LOCATION(1) + DIMENSION(1), 0].

where LOCATION and DIMENSION are properties of the image object. These two
points are transformed in three dimensions, and then projected onto the screen to
form the opposite corners of a 2-D rectangle resulting in screen space points
designated as p1' and p2':

[[p1'[0], p1'[1]], [[p2'[0], p1'[1]],
[[p2'[0], p2'[1]], [[p1'[0], p2'[1]]]

The image data is drawn on the display as a 2-D image within this 2-D rectangle
whose sides are parallel to the screen sides. The image data is scaled in two
dimensions (not rotated) to fit into this projected rectangle and then drawn with Z
buffering disabled.

To draw an image with the current full 3D transformation (the same way other objects
such as polygons are transformed), set the IDLgrImage TRANSFORM_MODE
property to 1. See the IDLgrImage TRANSFORM_MODE property in the IDL
Reference Guide for details.

Objects are drawn to a destination device in the order that they are added (via the Add
method) to the model, view, or scene that contains them. By default, image objects do
not take into account the depth locations of other objects that may be included in the
view object unless you enable depth testing (see “DEPTH_TEST_DISABLE” (IDL
Reference Guide) for details).

This means that objects that are drawn to the destination object (window or printer)
after the image is drawn will appear to be in front of the image, even if they are
located behind the image object. And this also means that objects drawn after the
image is drawn will appear to be in front of the image even if they are located behind
the image. Since the image is drawn by default with depth testing disabled, you can
think of the image primitive as ‘painting’ the image onto the screen without regard
for other objects that might already have been drawn there.

This behavior can be changed by enabling depth testing to make the image primitive
behave like other primitives such as polygons when they are drawn with depth testing
enabled.
Object Programming Positioning Image Objects in a View

106 Chapter 4: Working with Image Objects
The following example uses the LOCATION keyword to control image position. For
information on other ways to define the position of an image object in a view, see
“Example: Centering an Image” on page 83.

Displaying Multiple Images in Object Graphics

The following example imports an RGB image from the rose.jpg image file. This
RGB image is a close-up photograph of a red rose and is pixel interleaved. This
example extracts the three color channels of this image, and displays them as
grayscale images in various locations within the same window. Complete the
following steps for a detailed description of the process.

Example Code
See displaymultiples_object.pro in the examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering displaymultiples_object at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
displaymultiples_object.pro.

1. Determine the path to the rose.jpg file:

file = FILEPATH('rose.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Use QUERY_IMAGE to query the file to determine image parameters:

queryStatus = QUERY_IMAGE(file, imageInfo)

3. Set the image size parameter from the query information:

imageSize = imageInfo.dimensions

4. Use READ_IMAGE to import the image from the file:

image = READ_IMAGE(file)

5. Extract the channels (as images) from the pixel interleaved RGB image:

redChannel = REFORM(image[0, *, *])
greenChannel = REFORM(image[1, *, *])
blueChannel = REFORM(image[2, *, *])

The LOCATION keyword to the Init method of the image object can be used
to position an image within a window. The LOCATION keyword uses data
coordinates, which are the same as device coordinates for images. Before
initializing the image objects, you should initialize the display objects. The
following steps display multiple images horizontally, vertically, and
diagonally.
Positioning Image Objects in a View Object Programming

javascript:doIDL("displaymultiples_object")
javascript:doIDL(".edit displaymultiples_object.pro")
javascript:doIDL(".edit displaymultiples_object.pro")

Chapter 4: Working with Image Objects 107
6. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[3, 1], $
TITLE = 'The Channels of an RGB Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 3, 1])

oModel = OBJ_NEW('IDLgrModel')

7. Now initialize the image objects and arrange them with the LOCATION
keyword, see IDLgrImage for more information:

oRedChannel = OBJ_NEW('IDLgrImage', redChannel)
oGreenChannel = OBJ_NEW('IDLgrImage', greenChannel, $

LOCATION = [imageSize[0], 0])
oBlueChannel = OBJ_NEW('IDLgrImage', blueChannel, $

LOCATION = [2*imageSize[0], 0])

8. Add the image objects to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oRedChannel
oModel -> Add, oGreenChannel
oModel -> Add, oBlueChannel
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

These images can be displayed vertically in another window by first
initializing another window and then updating the view and images with
different location information.

Figure 4-3: Horizontal Display of RGB Channels in Object Graphics
Object Programming Positioning Image Objects in a View

108 Chapter 4: Working with Image Objects
9. Initialize another window object:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[1, 3], $
TITLE = 'The Channels of an RGB Image')

10. Change the view from horizontal to vertical:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 1, 3]

11. Change the locations of the channels:

oGreenChannel -> SetProperty, LOCATION = [0, imageSize[1]]
oBlueChannel -> SetProperty, LOCATION = [0, 2*imageSize[1]]

12. Display the updated view within the new window:

oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-4: Vertical Display of RGB Channels in Object Graphics
Positioning Image Objects in a View Object Programming

Chapter 4: Working with Image Objects 109
These images can also be displayed diagonally in another window by first
initializing the other window and then updating the view and images with
different location information.The LOCATION can also be used to create a
display overlapping images. When overlapping images in Object Graphics,
you must remember the last image added to the model will be in front of the
previous images.

13. Initialize another window object:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize*[2, 2], $
TITLE = 'The Channels of an RGB Image')

14. Change the view to prepare for a diagonal display:

oView -> SetProperty, $
VIEWPLANE_RECT = [0., 0., imageSize]*[0, 0, 2, 2]

15. Change the locations of the channels:

oGreenChannel -> SetProperty, $
LOCATION = [imageSize[0]/2, imageSize[1]/2]

oBlueChannel -> SetProperty, $
LOCATION = [imageSize[0], imageSize[1]]

16. Display the updated view within the new window:

oWindow -> Draw, oView

The following figure shows the resulting grayscale images.

Figure 4-5: Diagonal Display of RGB Channels in Object Graphics
Object Programming Positioning Image Objects in a View

110 Chapter 4: Working with Image Objects
17. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView
Positioning Image Objects in a View Object Programming

Chapter 4: Working with Image Objects 111
Panning in Object Graphics

In Object Graphics, the VIEWPLANE_RECT keyword is used to change the view
object. The entire image is still contained within the image object, but the view is
changed to pan over specific areas of the image object.

The following example imports a grayscale image from the nyny.dat binary file.
This grayscale image is an aerial view of New York City. The image contains byte
data values and is 768 pixels by 512 pixels. The VIEWPLANE_RECT keyword to
the view object is updated to zoom in on the lower left corner of the image. Then the
VIEWPLANE_RECT keyword is used to pan over the bottom edge of the image.
Complete the following steps for a detailed description of the process.

Example Code
See panning_object.pro in the examples/doc/objects subdirectory of the
IDL installation directory for code that duplicates this example. Run the example
procedure by entering panning_object at the IDL command prompt or view the
file in an IDL Editor window by entering .EDIT panning_object.pro.

1. Determine the path to the nyny.dat file:

file = FILEPATH('nyny.dat', $
SUBDIRECTORY = ['examples', 'data'])

2. Initialize the image size parameter:

imageSize = [768, 512]

3. Import the image from the file:

image = READ_BINARY(file, DATA_DIMS = imageSize)

4. Resize this large image to entirely display it on the screen:

imageSize = [256, 256]
image = CONGRID(image, imageSize[0], imageSize[1])

5. Initialize the display objects:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = imageSize, $
TITLE = 'A Grayscale Image')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., imageSize])

oModel = OBJ_NEW('IDLgrModel')

6. Initialize the image object:

oImage = OBJ_NEW('IDLgrImage', image, /GREYSCALE)
Object Programming Panning in Object Graphics

javascript:doIDL("panning_object")
javascript:doIDL(".edit panning_object.pro")

112 Chapter 4: Working with Image Objects
7. Add the image object to the model, which is added to the view, then display
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the resulting grayscale image display.

8. Initialize another window:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
 DIMENSIONS = imageSize, TITLE = 'Panning Enlarged Image')

9. Change the view to zoom into the lower left quarter of the image:

viewplane = [0., 0., imageSize/2]
oView -> SetProperty, $
 VIEWPLANE_RECT = [0., 0., imageSize/2]

The view object still contains the entire image object, but the region displayed
by the view (the viewplane rectangle) is reduced in size by half in both
directions. Since the window object remains the same size, the view region is
enlarged to fit it to the window.

10. Display the updated view in the new window:

oWindow -> Draw, oView

Figure 4-6: A Grayscale Image Of New York in Object Graphics
Panning in Object Graphics Object Programming

Chapter 4: Working with Image Objects 113
The following figure shows the resulting enlarged image area.

11. Pan the view from the left side of the image to the right side of the image:

FOR i = 0, ((imageSize[0]/2) - 1) DO BEGIN & $
 viewplane = viewplane + [1., 0., 0., 0.] & $
 oView -> SetProperty, VIEWPLANE_RECT = viewplane & $
 oWindow -> Draw, oView & $
ENDFOR

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in Panning_Object.pro in
the examples/doc/objects subdirectory of the IDL installation directory.

Figure 4-7: Enlarged Image Area of New York in Object Graphics
Object Programming Panning in Object Graphics

114 Chapter 4: Working with Image Objects
The following figure shows the resulting enlarged image area panned to the
right side.

12. Clean up the object references. When working with objects always remember
to clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object.

OBJ_DESTROY, oView

Figure 4-8: Enlarged New York Image Area Panned to the Right in Object
Graphics
Panning in Object Graphics Object Programming

Chapter 4: Working with Image Objects 115
Defining Transparency in Image Objects

In Object Graphics, a transparent image can be created by adding an alpha channel to
the image array or by setting the ALPHA_CHANNEL property. The alpha channel is
used to define the level of transparency in an image object. If you have an image
containing both alpha channel data and a value for the ALPHA_CHANNEL
property, the alpha values are combined by multiplying each image pixel alpha value
by the ALPHA_CHANNEL property value.

If your image data includes an alpha channel, or if you set the ALPHA_CHANNEL
property, use the BLEND_FUNCTION property of the image object to control how
the alpha channel values will be interpreted. (See BLEND_FUNCTION property of
IDLgrImage for details on how the blending is calculated.) This is known as alpha
blending. For example, setting BLEND_FUNCTION = [3, 4] creates an image in
which you can see through the foreground image to the background to the extent
defined by the alpha channel values of the foreground image.

Transparency and Image Warping

Creating a transparent image is useful in the warping process when you want to
overlay a transparency of the warped image onto the reference image (the image in
which Xo, Yo control points were selected). See “Warping Image Objects” on
page 121 for an example that uses transparent image objects.

For background information on warping images and selecting control points, see
“Overview of Warping Images” (Chapter 5, Image Processing in IDL).

Image Transparency Examples

See the following topics for examples of creating transparent image objects:

• “Example: Applying a Transparent Image Overlay” on page 116 — layers two
medical scan images of the brain. The opacity of the top image is controlled
using the IDLgrImage ALPHA_CHANNEL property.

• “Example: Cumulative Alpha Blending” on page 118 — adds an alpha channel
to an RGB image, masks out values, and then uses the ALPHA_CHANNEL
property to control the image transparency.
Object Programming Defining Transparency in Image Objects

116 Chapter 4: Working with Image Objects
Example: Applying a Transparent Image Overlay

The following example reads in two medical images, a computed tomography (CT)
file that contains structural information, and a PET (positron emission tomography)
file that contains metabolic data. A color table is applied to the PET file, and the
transparency is set using the ALPHA_CHANNEL property. The PET image object is
then overlaid on top of the base CT image. This is done by adding the transparent
PET image to the model after (and therefore displayed in front of) the base CT image.

Example Code
See alphaimage_obj_doc.pro in the examples/doc/objects subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering alphaimage_obj_doc at the IDL command
prompt or view the file in an IDL Editor window by entering .EDIT
alphaimage_obj_doc.pro.

To replicate this example, create a new .pro file and complete the following steps:

1. Load CT and PET images and get the image dimensions.

file_pt = FILEPATH('head_pt.dcm', $
 SUBDIRECTORY=['examples', 'data'])
file_ct = FILEPATH('head_ct.dcm', $
 SUBDIRECTORY=['examples', 'data'])
img_pt = READ_DICOM(file_pt)
img_ct = READ_DICOM(file_ct)
dims_ct = SIZE(img_ct, /DIMENSIONS)
dims_pt = SIZE(img_pt, /DIMENSIONS)

2. Check for dimension equality and resize if different.

IF dims_pt[0] NE dims_ct[0] THEN BEGIN
 x = dims_ct[0]/dims_pt[0]
 img_pt = REBIN(img_pt, dims_pt[0]*x, dims_pt[1]*x)
 dims_pt = x*dims_pt
 If dims_pt[0] NE dims_ct[0] THEN BEGIN
 status = DIALOG_MESSAGE ('Incompatible images', /ERROR)
 ENDIF
ENDIF

3. Change the data to byte type before creating the base CT image.

img_ct = BYTSCL(img_ct)
oImageCT = OBJ_NEW('IDLgrImage', img_ct)

4. Create display objects and display the CT image.

oWindow = OBJ_NEW('IDLgrWindow', RETAIN=2, $
 DIMENSIONS=[dims_ct[0], dims_ct[1]], TITLE='CT Image')
Defining Transparency in Image Objects Object Programming

javascript:doIDL("alphaimage_obj_doc")
javascript:doIDL(".edit alphaimage_obj_doc.pro")
javascript:doIDL(".edit alphaimage_obj_doc.pro")

Chapter 4: Working with Image Objects 117
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0., 0., $
 dims_ct[0], dims_ct[1]])
oModel = OBJ_NEW('IDLgrModel')
oModel->Add, oImageCT
oView->Add, oModel
oWindow->Draw, oView

5. Create a palette object and load the red-temperature table.

oPalette = OBJ_NEW('IDLgrPalette')
oPalette->Loadct, 3

6. Change the data type to byte and create the PET image object. Set the
BLEND_FUNCTION and ALPHA_CHANNEL properties to support image
transparency.

img_pt = BYTSCL(img_pt)
oImagePT = OBJ_NEW('IDLgrImage', img_pt, $
 PALETTE=oPalette, BLEND_FUNCTION=[3,4], $

ALPHA_CHANNEL=0.50)

7. Create a second window, add the semi-transparent image to the model
containing the original image and display the overlay.

oWindow2 = OBJ_NEW('IDLgrWindow', RETAIN=2, $
 DIMENSIONS=[dims_pt[0], dims_pt[1]], $
 LOCATION=[dims_ct[0]+10, 0], TITLE='CT/PET Transparency')
oModel -> Add, oImagePT
oWindow2 -> Draw, oView

8. Clean-up object references.

OBJ_DESTROY, [oView, oImageCT, oImagePT]

The results of this example are shown in the following figure.

Figure 4-9: CT Image (Left) and CT with Semi-transparent PET Overlay (Right)
Object Programming Defining Transparency in Image Objects

118 Chapter 4: Working with Image Objects
Example: Cumulative Alpha Blending

The following example shows the additive effects of displaying an image object with
alpha channel data and an image with an ALPHA_CHANNEL property setting. In
this example, the alpha channel is used to mask out values, and the
ALPHA_CHANNEL property is used to control the object transparency. However, it
is easy to modify the code and investigate the relationship between setting image
transparency using the alpha channel data and ALPHA_CHANNEL property. For
example, defining 50% transparency for each results in 25% opacity overall.

The two initial images are displayed in the following figure. The black portion of the
land classification image (left) will be removed and this image will then be overlaid
on top of the map image.

Example Code
See alphacomposite_image_doc.pro in the examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering alphacomposite_image at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
.EDIT alphacomposite_image.pro.

To replicate this example, create a new .pro file complete the following steps:

1. Open the political map, the base image.

mapFile = FILEPATH('afrpolitsm.png', $
 SUBDIRECTORY = ['examples', 'data'])
mapImg = READ_PNG(mapFile, mapR, mapG, mapB)

Figure 4-10: Original Land and Map Images
Defining Transparency in Image Objects Object Programming

javascript:doIDL("alphacomposite_doc")
javascript:doIDL(".edit alphacomposite_image.pro")
javascript:doIDL(".edit alphacomposite_image.pro")

Chapter 4: Working with Image Objects 119
2. Assign the color table of the map image to a palette object.

mapPalette = OBJ_NEW('IDLgrPalette', mapR, mapG, mapB)

3. Create an image object containing the map data.

oMapImg = OBJ_NEW('IDLgrImage', mapImg, $
 DIMENSIONS=[600, 600], PALETTE=mapPalette)

4. Open the land cover characteristics image.

landFile = FILEPATH('africavlc.png', $
 SUBDIRECTORY = ['examples', 'data'])
landImg = READ_PNG(landFile, landR, landG, landB)
landImgDims = SIZE(landImg, /DIMENSIONS)

5. To mask out the black values of the land classification image, create a 4
channel array for the red, green, blue, and alpha data.

alphaLand = BYTARR(4, landImgDims[0], landImgDims[1],$
/NOZERO)

6. Get the red, green and blue values used by the image and assign them to the
first three channels of the alpha image array.

alphaLand[0, *, *] = landR[landImg]
alphaLand[1, *, *] = landG[landImg]
alphaLand[2, *, *] = landB[landImg]

7. Mask out the black pixels with a value of 0. Multiply the mask value by 255
for complete opacity. You could set this to a value between 0 (completely
transparent) and 255 (opaque) to control the transparency. Any value set here
will be combined with any value set for the ALPHA_CHANNEL property on
the image object.

mask = (landImg GT 0)
alphaLand [3, *, *] = mask*255B

8. Create the semi-transparent image object. ALPHA_CHANNEL values can
range from 0.0 (transparent) to 1.0 (opaque). The image will appear semi-
transparent when the BLEND_FUNCTION property is set to [3,4].

oAlphaLand = OBJ_NEW('IDLgrImage', alphaLand, $
 DIMENSIONS=[600, 600], BLEND_FUNCTION=[3,4], $
 ALPHA_CHANNEL=0.35)

9. Create the display objects.

oWindow = OBJ_NEW('IDLgrWindow', $
 DIMENSIONS=[600, 600], RETAIN=2, $
 TITLE='Overlay of Land Cover Transparency')
viewRect = [0, 0, 600, 600]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=viewRect)
Object Programming Defining Transparency in Image Objects

120 Chapter 4: Working with Image Objects
oModel = OBJ_NEW('IDLgrModel')

10. Add the semi-transparent image to the model after the base image.

oModel->Add, oMapImg
oModel->Add, oAlphaLand
oView->Add, oModel
oWindow->Draw, oView

11. Clean up objects.

OBJ_DESTROY, [oView, oMapImg, oAlphaLand, mapPalette]

The results appear in the following figure.

Note
You can use control points to warp the images and properly align the transparent
image over the map image. See “Warping Image Objects” on page 121 for details.

Figure 4-11: Land Image (35% Opaque) Overlaid the Map Image
Defining Transparency in Image Objects Object Programming

Chapter 4: Working with Image Objects 121
Warping Image Objects

Object Graphics allows precise control over the color palettes used to display image
objects. By initializing a palette object, both the reference image object and the
transparent, warped image object can be displayed using individual color palettes.

The following example warps an African land-cover characteristics image to a
political map of the continent. After displaying the images and selecting control
points in each image using the XROI utility, the resulting warped image is altered to
include an alpha channel, enabling transparency. Image objects are then created and
displayed in an IDL Object Graphics display. Complete the following steps for a
detailed description of the process.

Example Code
See transparentwarping_object.pro in the examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering transparentwarping_object at the
IDL command prompt or view the file in an IDL Editor window by entering .EDIT
transparentwarping_object.pro.

Note
For background information on warping images and selecting control points, see
“Overview of Warping Images” (Chapter 5, Image Processing in IDL).

1. Select the political map image. This is the reference image to which the land
cover image will be warped:

mapFile= FILEPATH('afrpolitsm.png', $
Subdirectory = ['examples', 'data'])

2. Use READ_PNG routine to read in the file. Specify mapR, mapG, mapB to
read in the image’s associated color table:

mapImg = READ_PNG(mapFile, mapR, mapG, mapB)

3. Using IDLgrPalette::Init, assign the image’s color table to a palette object,
which will be applied to an image object in a later step:

mapPalette = OBJ_NEW('IDLgrPalette', mapR, mapG, mapB)

4. Select and open the land cover input image, which will be warped to the map:

landFile = FILEPATH('africavlc.png', $
Subdirectory = ['examples', 'data'])

landImg = READ_PNG (landFile, landR, landG, landB)
Object Programming Warping Image Objects

javascript:doIDL("transparentwarping_object")
javascript:doIDL(".edit transparentwarping_object.pro")
javascript:doIDL(".edit transparentwarping_object.pro")

122 Chapter 4: Working with Image Objects
Selecting Control Points for Image Object Warping

This section describes using the XROI utility to select corresponding control points
in the two images. The arrays of control points in the input image, (Xi, Yi), will be
mapped to the array of points selected in the reference image, (Xo, Yo).

Note
The Xi and Yi vectors and the Xo and Yo vectors must be the same length, meaning
that you must select the same number of control points in the reference image as
you select in the input image. The control points must also be selected in the same
order since the point Xi1, Yi1 will be warped to Xo1, Yo1.

The following figure shows the points to be selected in the input image.

Figure 4-12: Selecting Control Points in the Input Image
Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 123
Reasonably precise warping of the land classification image to the political map
requires selecting numerous control points because of the irregularity of the
continent’s border. Select the control points in the land classification image as
described in the following steps.

1. Load the image and its associated color table into the XROI utility, specifying
the REGIONS_OUT keyword to save the region defined by the control points
in the landROIout object:

XROI, landImg, landR, landG, landB, $
REGIONS_OUT = landROIout, /BLOCK

Select the Draw Polygon button from the XROI utility toolbar shown in the
following figure. Position the crosshairs symbol over CP1, shown in the
previous figure, and click the left mouse button. Repeat this action for each
successive control point. After selecting the sixteenth control point, position
the crosshairs over the first point selected and click the right mouse button to
close the region. Your display should appear similar to the following figure.
Object Programming Warping Image Objects

124 Chapter 4: Working with Image Objects
Note
It is of no concern that portions of the continent lie outside the polygonal
boundary. The EXTRAPOLATE keyword to WARP_TRI enables warping of
the image areas lying outside of the boundary of control points. However,
images requiring more aggressive warp models may not have good results
outside of the extent of the control points when WARP_TRI is used with the
/EXTRAPOLATE keyword.

2. Close the XROI window and assign the landROIout object data to the Xi and
Yi control point vectors:

landROIout -> GetProperty, DATA = landROIdata
Xi = landROIdata[0,*]
Yi = landROIdata[1,*]

Figure 4-13: Selecting Control Points Using XROI

Draw Polygon
Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 125
The following figure displays the corresponding control points to be selected
in the reference image of the political map. These control points will make up
the Xo and Yo arrays required by the IDL warping routines.

3. Load the image of the political map and its associated color table into the
XROI utility, specifying the REGIONS_OUT keyword to save the selected
region in the mapROIout object:

XROI, mapImg, mapR, mapG, mapB, $
REGIONS_OUT=mapROIout,/BLOCK

Select the Draw Polygon button from the XROI utility toolbar. Position the
crosshairs symbol over CP1, shown in the previous figure, and click the left

Figure 4-14: Control Points to be Selected in the Reference Image
Object Programming Warping Image Objects

126 Chapter 4: Working with Image Objects
mouse button. Repeat this action for each successive control point. After
selecting the sixteenth control point, position the crosshairs over the first point
selected and click the right mouse button to close the region. Your display
should appear similar to the following figure.

4. Close the XROI window and assign the mapROIout object data to the Xo and
Yo control point vectors:

mapROIout -> GetProperty, DATA=mapROIdata
Xo = mapROIdata[0,*]
Yo = mapROIdata[1,*]

Figure 4-15: Selecting Control Points Using XROI
Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 127
Warping and Displaying a Transparent Image Object

The following section describes warping the land cover image to the political map
and creating image objects. The resulting warped image will then be made into a
transparency by creating an alpha channel for the image. Finally, the transparent
object will be displayed as an overlay to the original political map.

1. Warp the input image, landImg, onto the reference image using WARP_TRI.
This function uses the irregular grid of the reference image, defined by Xo, Yo,
as a basis for triangulation, defining the surfaces associated with (Xo, Yo, Xi)
and (Xo, Yo, Yi). Each pixel in the input image is then transferred to the
appropriate position in the resulting output image as designated by
interpolation. Using the WARP_TRI syntax,

Result = WARP_TRI(Xo, Yo, Xi, Yi, Image
[, OUTPUT_SIZE=vector][, /QUINTIC] [, /EXTRAPOLATE])

set the OUTPUT_SIZE equal to the reference image dimensions since this
image forms the basis of the warped, output image. Use the EXTRAPOLATE
keyword to display the portions of the image which fall outside of the
boundary of selected control points:

warpImg = WARP_TRI(Xo, Yo, Xi, Yi, landImg, $
OUTPUT_SIZE=[600, 600], /EXTRAPOLATE)

2. While not required, you can quickly check the precision of the warp in a Direct
Graphics display before proceeding with creating a transparency by entering
the following lines:

DEVICE, DECOMPOSED = 0
TVLCT, landR, landG, landB
WINDOW, 3, XSIZE = 600, YSIZE = 600, $

TITLE = 'Image Warped with WARP_TRI'
TV, warpImg

Precise control point selection results in accurate warping. If there is little
distortion, as in the following figure, control points were successfully selected
in nearly corresponding positions in both images.
Object Programming Warping Image Objects

128 Chapter 4: Working with Image Objects
3. A transparent image object must be a grayscale or an RGB (24-bit) image
containing an alpha channel. The alpha channel controls the transparency of
the pixels. See IDLgrImage::Init for more information.

The following lines convert the warped image and its associated color table
into a RGB image containing four channels (red, green, blue, and alpha). First,
get the dimensions of the warped image and then use BYTARR to create
alphaWarp, a 4-channel by xdim by ydim array, where (xdim, ydim) are the
dimensions of the warped image:

warpImgDims = SIZE(warpImg, /Dimensions)
alphaWarp = BYTARR(4, warpImgDims[0], warpImgDims[1],$

/NOZERO)

4. Load the red, green and blue channels of the warped land characteristics image
into the first three channels of the alphaWarp array:

alphaWarp[0, *, *] = landR[warpImg]
alphaWarp[1, *, *] = landG[warpImg]
alphaWarp[2, *, *] = landB[warpImg]

Figure 4-16: Resulting Warped Image
Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 129
5. Define the transparency of the alpha channel. First, create an array, masking
out the black background of the warped image (where pixel values equal 0) by
retaining only pixels with values greater than 0:

mask = (warpImg GT 0)

Apply the resulting mask to the alpha channel, the fourth channel of the array.
This channel creates a 50% transparency of the pixels of the first three
channels (red, green, blue) of the alphaWarp by multiplying the mask by 128B
(byte). Alpha channel values range from 0 (completely transparent) to 255
(completely opaque):

alphaWarp [3, *, *] = mask*128B

Note
You can set the transparency of an entire image. To set the transparency of
all pixels at 50% in this example, your could replace the two previous steps
with the following two lines:

mask = BYTARR(s[0], s[1]) + 128
alphaWarp [3, *, *] = mask

6. Initialize the transparent image object using IDLgrImage::Init. Specify the
BLEND_FUNCTION property of the image object to control how the alpha
channel is interpreted. Setting the BLEND_FUNCTION to [3, 4] allows you to
see through the foreground image to the background. The foreground opacity
is defined by the alpha channel value, specified in the previous step:

oAlphaWarp = OBJ_NEW('IDLgrImage', alphaWarp, $
DIMENSIONS = [600, 600], BLEND_FUNCTION = [3, 4])

7. Initialize the reference image object, applying the palette created earlier:

oMapImg = OBJ_NEW('IDLgrImage', mapImg, $
DIMENSIONS = [600,600], PALETTE = mapPalette)

8. Using IDLgrWindow::Init, initialize a window object in which to display the
images:

oWindow = OBJ_NEW('IDLgrWindow', DIMENSIONS = [600, 600], $
RETAIN = 2, TITLE = 'Overlay of Land Cover Transparency')
Object Programming Warping Image Objects

130 Chapter 4: Working with Image Objects
9. Create a view object using IDLgrView::Init. The VIEWPLANE_RECT
keyword controls the image display in the Object Graphics window. First
create an array, viewRect, which specifies the x-placement, y-placement, width,
and height of the view surface. The values 0, 0 place the (0, 0) coordinate of
viewing surface in the lower-left corner of the Object Graphics window:

viewRect = [0, 0, 600, 600]
oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT = viewRect)

10. Using IDLgrModel::Init, initialize a model object to which the images will be
applied. Add the base image and the transparent alpha image to the model:

oModel = OBJ_NEW('IDLgrModel')
oModel -> Add, oMapImg
oModel -> Add, oAlphaWarp

Note
Image objects appear in the Object Graphics window in the order in which
they are added to the model. If a transparent object is added to the model
before an opaque object, it will not be visible.

11. Add the model, containing the images, to the view and draw the view in the
window:

oView -> Add, oModel
oWindow -> Draw, oView

The following figure shows the warped image transparency overlaid onto the
original reference image, the political map.
Warping Image Objects Object Programming

Chapter 4: Working with Image Objects 131
12. Use OBJ_DESTROY to clean up unneeded object references including the
region objects:

OBJ_DESTROY, [oView, oMapImg, oAlphaWarp, $
mapPalette, landROIout, mapROIout]

Figure 4-17: Object Graphics Display of the Political Map with a Transparent
Land Cover Overlay
Object Programming Warping Image Objects

132 Chapter 4: Working with Image Objects
Mapping an Image Object onto a Sphere

This example maps an image containing world elevation data onto the surface of a
sphere and displays the result using the XOBJVIEW utility. This utility automatically
creates the window object and the view object. Therefore, this example creates an
object based on IDLgrModel that contains the sphere, the image and the image
palette, as shown in the conceptual representation in the following figure.

Note
For an example that maps a satellite image onto Digital Elevation Model data, see
“Mapping an Image onto Elevation Data” (Chapter 3, Image Processing in IDL).

Complete the following steps for a detailed description of the process.

Example Code
See maponsphere_object.pro in the examples/doc/objects subdirectory
of the IDL installation directory for code that duplicates this example. Run the
example procedure by entering maponsphere_object at the IDL command
prompt or view the file in an IDL Editor window by entering .EDIT
maponsphere_object.pro.

1. Select the world elevation image. Define the array, read in the data and close
the file.

file = FILEPATH('worldelv.dat', $
SUBDIRECTORY = ['examples', 'data'])

Figure 4-18: Conceptualization of XOBJVIEW Object Graphics Example

oModel - an IDLgrModel object
containing the sphere, image, and
palette
oPolygon - an object defining the sphere,

oImage - an object containing the image
oPalette - an object defining the color table

containing the image and palette
Mapping an Image Object onto a Sphere Object Programming

javascript:doIDL("maponsphere_object")
javascript:doIDL(".edit maponsphere_object.pro")
javascript:doIDL(".edit maponsphere_object.pro")

Chapter 4: Working with Image Objects 133
image = READ_BINARY(file, DATA_DIMS = [360, 360])

2. Use the MESH_OBJ procedure to create a sphere onto which the image will be
mapped. The following invocation of MESH_OBJ uses a value of 4, which
represents a spherical mesh:

MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)

When the MESH_OBJ procedure completes, the vertices and polygons
variables contain the mesh vertices and polygonal mesh connectivity
information, respectively. Although our image is 360 by 360, we can texture
map the image to a mesh that has fewer vertices. IDL interpolates the image
data across the mesh, retaining all the image detail between polygon vertices.
The number of mesh vertices determines how close to perfectly round the
sphere will be. Fewer vertices produce a sphere with larger facets, while more
vertices make a sphere with smaller facets and more closely approximates a
perfect sphere. A large number of mesh vertices will increase the time required
to draw the sphere. In this example, MESH_OBJ produces a 101 by 101 array
of vertices that are located in a sphere shape with a radius of 0.25.

3. Initialize the display objects. In this example, it is necessary to define a model
object that will contain the sphere, the image and the color table palette. Using
the syntax, oNewObject = OBJ_NEW('Class_Name'), create the model,
palette and image objects:

oModel = OBJ_NEW('IDLgrModel')
oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LOADCT, 33
oPalette -> SetRGB, 255, 255, 255, 255
oImage = OBJ_NEW('IDLgrImage', image, PALETTE = oPalette)

The previous lines initialize the oPalette object with the color table and then
set the final index value of the red, green and blue bands to 255 (white) in
order to use white (instead of black) to designate the highest areas of elevation.
The palette object is created before the image object so that the palette can be
applied when initializing the image object. For more information, see
IDLgrModel::Init, IDLgrPalette::Init and IDLgrImage::Init.

4. Create texture coordinates that define how the texture map is applied to the
mesh. A texture coordinate is associated with each vertex in the mesh. The
value of the texture coordinate at a vertex determines what part of the texture
will be mapped to the mesh at that vertex. Texture coordinates run from 0.0 to
1.0 across a texture, so a texture coordinate of [0.5, 0.5] at a vertex specifies
that the image pixel at the exact center of the image is mapped to the mesh at
that vertex.
Object Programming Mapping an Image Object onto a Sphere

134 Chapter 4: Working with Image Objects
In this example, we want to do a simple linear mapping of the texture around
the sphere, so we create a convenience vector that describes the mapping in
each of the texture’s x- and y-directions, and then create these texture
coordinates:

vector = FINDGEN(101)/100.
texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates[0, *, *] = vector # REPLICATE(1., 101)
texure_coordinates[1, *, *] = REPLICATE(1., 101) # vector

The code above copies the convenience vector through the array in each
direction.

5. Enter the following line to initialize a polygon object with the image and
geometry data using the IDLgrPolygon::Init function. Set SHADING = 1 for
gouraud (smoother) shading. Set the DATA keyword equal to the sphere defined
with the MESH_OBJ function. Set COLOR to draw a white sphere onto which
the image will be mapped. Set TEXTURE_COORD equal to the texture
coordinates created in the previous steps. Assign the image object to the
polygon object using the TEXTURE_MAP keyword and force bilinear
interpolation:

oPolygons = OBJ_NEW('IDLgrPolygon', SHADING = 1, $
DATA = vertices, POLYGONS = polygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = oImage, /TEXTURE_INTERP)

Note
When mapping an image onto an IDLgrPolygon object, you must specify
both TEXTURE_MAP and TEXTURE_COORD keywords.

6. Add the polygon containing the image and the palette to the model object:

oModel -> ADD, oPolygons

7. Rotate the model -90° along the x-axis and y-axis:

oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90

8. Display the results using XOBJVIEW, an interactive utility allowing you to
rotate and resize objects:

XOBJVIEW, oModel, /BLOCK
Mapping an Image Object onto a Sphere Object Programming

Chapter 4: Working with Image Objects 135
After displaying the object, you can rotate the sphere by clicking in the display
window and dragging your mouse. Select the magnify button and click near
the middle of the sphere. Drag your mouse away from the center of the display
to magnify the image or toward the center of the display to shrink the image.
Select the left-most button on the XOBJVIEW toolbar to reset the display. The
previous figure shows a rotated and magnified view of the world elevation
object.

9. After closing the XOBJVIEW display, remove unneeded object references:

OBJ_DESTROY, [oModel, oImage, oPalette]

Figure 4-19: Magnified View of World Elevation Object
Object Programming Mapping an Image Object onto a Sphere

136 Chapter 4: Working with Image Objects
Image Tiling

The IDLgrImage object supports tiling, which lets you display images that are too
large to be read entirely into memory. For example, some satellite images can be over
a gigabyte in size, which is impossible to fit into memory and display as a single unit
on a typical computer. However, it can be displayed by segmenting it into smaller,
more manageable image tiles.

When tiling is enabled for an IDLgrImage object, the image is initially created
without any data. The image pixels are only loaded when a tile section comes into
view through panning. Also, you can create an image pyramid to support level-of-
detail (LOD) rendering for large images. This changes the resolution of an image
when you zoom in or out within an image display. As you zoom out, successively
smaller, less detailed images can be displayed. This quickly provides a full view of
the larger image, lets you choose an area of interest, and zoom in on that area. As you
zoom in, progressively detailed image layers can be loaded. The IDLgrImage object
is aware of the LOD required and will communicate that to the application when the
application requests the tile visibility information. See the following sections for
more tiling information:

• “Image Pyramids” on page 137 and “Image Tiles” on page 139

• “Adding Tiling to Your Application” on page 140

• “Example: JPEG2000 Files for Tiling” on page 150
Image Tiling Object Programming

Chapter 4: Working with Image Objects 137
Image Pyramids

The use of image tiling and image pyramids supports the display of high-resolution
images with a high level of performance. An image pyramid consists of a base image
and a series of successively smaller sub-images, each at half the resolution of the
previous image. The following figure shows the base image and successively smaller
sub-images. The sub-images corresponds to lower resolution levels.

Creating Image Pyramids

You have two options if your image file does not already contain an image pyramid:

• Create an IDLffJPEG2000 object from your image data. You can define the
number of levels, the size of the tiles and other properties when you create the
image. The tiles and image levels are then automatically created for you.

• Create the image pyramid manually by creating a series of images, each with
half the resolution of the previous image. You can use Gaussian or Laplacian
filtering in combination with the subsampling if desired.

Figure 4-20: Image Pyramid
Object Programming Image Tiling

138 Chapter 4: Working with Image Objects
For example, taking a 4096 by 4096 base image (level 0), you could create the
pyramid as follows:

The resolution of level n+1 should be half that of level n. If level n is not
wholly divisible by two, then level n+1 should be rounded down as shown in
the following table.

Note
See “Zooming Tiled Images” on page 143 for information on which IDLgrImage
properties are typically set to take full advantage of an image pyramid, and for
information on how to calculate exactly how many image levels you need based on
the image and tile size.

Level Resolution

0 4096 by 4096 pixels

1 2048 by 2048 pixels

2 1024 by 1024 pixels

... ...

Table 4-1: Sample Resolutions of Image Pyramid Levels

Level and Resolution Comment

Level 0: 20105 by 20005 Base image. Divide by 2.

Level 1: 10052 by 10002 Rounded down 20005/2 to 10002

Level 2: 5026 by 5001 Divided Level 1 by 2.

Level 3: 2513 by 2500 Rounded down 5001/2 to 2500

... ...

Table 4-2: Rounding Down Resolutions of Image Pyramid Levels
Image Tiling Object Programming

Chapter 4: Working with Image Objects 139
Image Tiles

Tiling an image segments it into a number of smaller rectangular areas called tiles. If
you are using a JPEG2000 image, the tile size is defined in the image, and you should
use this value when creating the IDLgrImage object. If you are creating your own
image pyramid, which does not have an inherent tile size defined, it is recommended
that you accept the default tile size of the IDLgrImage object (1024 by 1024 pixels).

The size of the drawing area, the tile size, and the image level all play a part in the
display of a tiled image. With a large, full-resolution image, only a portion of it
appears in the view, so only a subset of the image tiles are displayed. In the following
figure, the full-resolution, level 0 image is shown on the left. Only two of the 1024 by
1024 tiles are loaded to support what is shown in the 800 by 800 pixel drawing area,
indicated by the dotted box.

If you zoom out to a zoom level of 50% or less, IDL can show the level 1 image
(which is half the resolution of the level 0 image). Only a single tile is required to fill
the drawing area. If you reduce the zoom level by another 50%, the level 2 image can
be displayed, and the entire image is visible in the drawing area.

Figure 4-21: Dotted Box Showing Size of Drawing Area and Visible Tiles
Object Programming Image Tiling

140 Chapter 4: Working with Image Objects
Adding Tiling to Your Application

Large image tiling results from the interaction between an IDLgrImage object, an
IDLgrView object, and a destination object (IDLgrWindow, IDLgrClipboard,
IDLgrBuffer, or IDLgrPrinter). The destination and view objects are key in
determining what data the image object should contain. Each destination object has a
QueryRequiredTiles method that determines the visible data based on the view and
zoom level, and returns information about the visible image tiles. This information
and image data are then passed to the image object SetTileData method. Initially,
however, an image that supports tiling does not contain data.

To create an image that supports tiling, you must minimally set two IDLgrImage
object properties:

• TILING = 1 enables tiling

• TILED_IMAGE_DIMENSIONS = [width, height] in pixels is the size of the
image

You can also define how tiles from image levels in an image pyramid are accessed
using the TILE_LEVEL_MODE mode property. Set it to 1 (automatic mode) to have
IDL automatically request the proper tile level based on the zoom level. This is useful
when you have an image pyramid and want to use lower resolution images when
zooming out.

Note
You should not set TILE_LEVEL_MODE to automatic unless you have an image
pyramid. Otherwise IDL will request non-existent lower-resolution data.

The default TILE_LEVEL_MODE value is zero (manual mode), meaning your
application must specify which level should be used (where
TILE_CURRENT_LEVEL defines that tile level). QueryRequiredTiles will always
request tiles at this level and the image will always render using this level. This is
useful if you will be panning the image without zooming. If your application does
allow zooming, it is best to create an image pyramid so that you can take advantage
of the memory savings afforded by displaying lower resolution images when the view
is zoomed out.

Even after you have set the necessary image properties that enable tiling, the image
still does not contain data. If you attempt to draw the image at this point, it will be the
color of the TILE_COLOR property. You must call the QueryRequiredTiles method
on the destination object (a window, printer, buffer, or clipboard object) to determine
what portion of the image needs to be drawn.
Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 141
Note
The following sections provide general information and code examples using tiling
elements in IDL. For a complete, working example, see “Example: JPEG2000 Files
for Tiling” on page 150.

Querying Required Tiles

The QueryRequiredTiles method requires references to a view object and an image
object. It returns an array of structures (one for each required tile) that contains
information about the tile data needed to fill the view. Once this information has been
passed to the IDLgrImage object SetTileData method, call the destination object’s
Draw method to display the tiled image data.

For example, suppose your application displays a region of a large image (20,000 by
20,000 pixels at full resolution, where one image pixel maps to one screen pixel).
Your application window is 800 by 800 pixels, which means that only this much of
the image is visible at any one time. To enable tiling in this instance, create the
IDLgrWindow object and then create the IDLgrImage object that supports tiling as
follows:

oImage = OBJ_NEW('IDLgrImage', TILING=1, $
TILED_IMAGE_DIMENSIONS=[20000,20000], $
TILE_LEVEL_MODE=0)

Setting TILING=1 denotes this image will contain tile data, and
TILED_IMAGE_DIMENSIONS defines the size of the full resolution image. The
TILE_LEVEL_MODE=0 indicates manual level control (by default, the full
resolution, level 0 image is always displayed). Not setting the TILE_DIMENSIONS
accepts the default tile size, 1024 by 1024 pixels.

Initialize the IDLgrView object so the lower-left corner of the image is displayed.
Where windowDims = [800,800], configure the viewplane rectangle as follows:

oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,$
 windowDims[0],windowDims[1]])

Create a IDLgrModel object and add the image. After you add this model to the view,
you can call QueryRequiredTiles to determine which tiles are visible in the view and
need data as follows:

ReqTiles = oWindow->QueryRequiredTiles(oView, oImage, $
COUNT=nTiles)

ReqTiles is an nTiles element array of named structures describing the tiles
required. See “IDLgrWindow::QueryRequiredTiles” (IDL Reference Guide) for
information on the fields in this structure. The destination objects that support tiling
Object Programming Adding Tiling to Your Application

142 Chapter 4: Working with Image Objects
share this method and named structure. Your application will need to iterate through
this array, extracting the tile data from the image data and passing it to
IDLgrImage::SetTileData.

For a TIFF image (largeimage.tif), you can use the READ_TIFF routine’s
SUB_RECT keyword to extract the tile data from the image as follows:

FOR i = 0, nTiles - 1 DO BEGIN
SubRect = [ReqTiles[i].X, ReqTiles[i].Y, $

ReqTiles[i].Width, ReqTiles[i].Height]
TileData = READ_TIFF('largeimage.tif', SUB_RECT=SubRect)
TileData = BYTSCL(TileData, MIN=0, MAX=1024)
oImage->SetTileData, ReqTiles[i], TileData

ENDFOR

For a JPEG2000 image (oJP2File) with the same SubRect variable as that defined
in the previous example, you can use the IDLffJPEG2000::GetData method’s
REGION keyword to extract the data as follows:

; Load the data.
TileData = oJP2File->GetData(REGION=SubRect)
oImage->SetTileData, ReqTiles[i], TileData

When the destination object’s Draw method is called, the display will contain the
correct portion of the image since the data associated with the visible tiles has been
loaded.

Note
You do not need to pass only a single tile to SetTileData. You can pass a row of tiles
or load tiles without a prior call to QueryRequiredTiles (tile caching). See
“Preloading Tiles” on page 147 for details.

Panning Tiled Images

To pan an image, you can query and assign the tile data without regard for image
level as shown in the previous section, “Querying Required Tiles” on page 141.
Panning is accomplished by changing the x and y elements of the view object’s
VIEWPLANE_RECT property, where [x, y, width, height] describe the visible view
area. After changing the VIEWPLANE_RECT, call the window object’s
QueryRequiredTiles method to determine if new data is required. If so, load the data
as before. The following code shows an example of modifying the viewplane for
panning:

oView->GetProperty, VIEWPLANE_RECT=vp

; Panning. This is done by changing the position of the
Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 143
; VIEWPLANE_RECT (vp) which is described by [x,y,width,height]
; where x and y are the lower-left corner. How far to move it
; is computed from the distance of the mouse from the center of
; the window (xDelta,yDelta) and the 'zoom factor',
; (vp[2] / windowDims[0]), which is the viewplane
; width divided by the window x dimension. The farther
; the cursor is from the center of the window, the faster the
; view pans.
factor = (vp[2] / windowDims[0])
vp[0] += xDelta * factor
vp[1] += yDelta * factor
(*pState).oView->SetProperty, VIEWPLANE_RECT=vp

See “Example: JPEG2000 Files for Tiling” on page 150 for information on where to
locate the full tiling example.

Zooming Tiled Images

As with panning, you can use the view object’s VIEWPLANE_RECT to zoom (by
changing the width and height elements). However, care must be taken when
zooming out as many tiles of high-resolution data may need to be loaded, which
could exhaust the tile cache. It is best to enable zooming for very large images only
when you have an image pyramid of lower resolution images.

When you zoom out to view more of an image, multiple image pixels are mapped to a
single pixel on the screen. When dealing with large tiled images, you can take
advantage of this situation by displaying a series of lower resolution images (an
image pyramid), which uses memory more efficiently. There is no need to use the full
resolution image. For example, say you have an image that is 20,000 by 20,000 pixels
and over 300 MB. Without an image pyramid, if you zoom out so that the entire
image is visible in an 800 by 800 pixel view, the entire image (381 MB) will be
loaded into memory. While this might be possible, it isn’t efficient. With an image
pyramid, you could easily display a lower resolution image that fit the window size.
This image would likely be less than one MB in size, would easily fit into memory,
and would still be of a sufficient resolution for identifying general areas of interest.

Note
Unless the image file format automatically includes an image pyramid (such as
JPEG2000 files), you will need to either create a JPEG2000 file that contains your
image data or create an image pyramid manually. See “Image Pyramids” on
page 137 for details.
Object Programming Adding Tiling to Your Application

144 Chapter 4: Working with Image Objects
The following code shows how to modify the viewplane rectangle associated with the
view object to support zooming:

; Zooming. This is done by changing the position and dimensions
; of the VIEWPLANE_RECT (vp), is described by [x,y,width,height]
; where x and y are the lower-left corner. When zooming in, a
; smaller portion of the total image is displayed in the viewplane
; rectangle, which is reflected in smaller vp width and height
; values. The rectangle size is computed from:
; factor - the vp width divided by the window x dimension.
; delta - yDelta (the absolute vertical change from the

; center of the image times the factor. The
; further the mouse cursor is from the center,
; the faster the zoom.

; aspect - the window y dimension divided by the x dimension.

factor = (vp[2] / windowDims[0])
delta = yDelta * factor
aspect = float(windowDims[1]) / windowDims[0]
vp[0] += delta/2
vp[1] += delta * aspect /2
vp[2] -= delta
vp[3] -= delta * aspect
oView->SetProperty, VIEWPLANE_RECT=vp
zoom = windowDims[0] / vp[2]

See “Example: JPEG2000 Files for Tiling” on page 150 for information on where to
locate the full tiling example. See “Using Image LEVEL When Zooming” on
page 145 for information on how to request tile data based on zoom level.

Calculating the Number of Image Pyramid Levels

When you have an image pyramid, you will want to set the IDLgrImage
TILE_LEVEL_MODE property to 1 (automatic). Doing so causes
TILE_NUM_LEVELS to automatically calculate the number of levels needed unless
you set a different value. IDL requests levels up to TILE_NUM_LEVELS - 1. This
property is based on the original (level 0) image size and the tile size such that the
lowest resolution image is just slightly smaller than the tile size. See
“TILE_NUM_LEVELS” (IDL Reference Guide) for an example.

To figure out how many levels are needed, create an image object with dimensions
equal to the dimensions of your image, the tile mode to automatic, and tiling equal to
1. For example, for the 20,000 by 20,000 image, with the default tile size (1024 by
1024 pixels), create an image object as follows:

oImage = OBJ_NEW('IDLgrImage', $
TILED_IMAGE_DIMENSIONS=[20000,20000], $
TILING=1, TILE_LEVEL_MODE=1)
Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 145
Here TILE_LEVEL_MODE is set to 1 (automatic) so the level requested by the
destination object’s QueryRequiredTiles method is calculated automatically from the
view information. Return the number of levels that are needed in an image pyramid
as follows:

oImage->GetProperty, TILE_NUM_LEVELS=nLevels

The nLevels variable contains the number of levels IDL will request. You will need
nLevels - 1 levels in your pyramid since level 0 is the full resolution image.

Using Image LEVEL When Zooming

In an application that has an image pyramid and supports zooming, you will use
information returned by QueryRequiredTiles to load different resolution image tiles.
As in the basic query example (“Querying Required Tiles” on page 141), create and
initialize the view so the lower-left corner of the image is initially displayed:

oView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0, 0, 800, 800])

Again, create an IDLgrModel, and add the image. Once the model has been added to
the view (not shown), call QueryRequiredTiles to determine which tiles are visible
and need data.

ReqTiles = oWindow->QueryRequiredTiles(oView, oImage, $
COUNT=nTiles)

Rather than reading from the original, full-resolution image, determine which image
to use based on the LEVEL field of the returned structure contained in ReqTiles. If
you have created an image pyramid for TIFF images, consider using the following
naming scheme to return the correct resolution image based on the LEVEL field:

filenames = strarr(6)
filenames[0] = 'largeimage.tif' ; Full-resolution image
filenames[1] = 'largeimage1.tif' ; Half-resolution image
filenames[2] = 'largeimage2.tif' ; Quarter-resolution image
filenames[3] = 'largeimage3.tif' ; Eighth-resolution image
filenames[4] = 'largeimage4.tif' ; 1/16-resolution image
filenames[5] = 'largeimage5.tif' ; 1/32-resolution image

You can then request the correct image level (level) and set tile data as follows:

FOR i = 0, nTiles - 1 DO BEGIN
SubRect = [ReqTiles[i].X, ReqTiles[i].Y, $

ReqTiles[i].Width, ReqTiles[i].Height]
level = ReqTiles[i].Level
TileData = READ_TIFF(filenames[Level], SUB_RECT=SubRect)
TileData = BYTSCL(TileData, MIN=0, MAX=1024)
oImage->SetTileData, ReqTiles[i], TileData

ENDFOR
Object Programming Adding Tiling to Your Application

146 Chapter 4: Working with Image Objects
For a JPEG2000 image (oJP2File), you can use the IDLffJPEG2000::GetData
method’s DISCARD_LEVELS keyword to return the correct image level as follows:

FOR i = 0, nTiles - 1 DO BEGIN
SubRect = [ReqTiles[i].x, ReqTiles[i].y, $

ReqTiles[i].width, ReqTiles[i].height]

; Convert to JPEG2000 canvas coords.
level = ReqTiles[i].level
Scale = ISHFT(1, level)
SubRect = SubRect * Scale

; Load the data.
TileData = oJP2File->GetData(REGION=SubRect, $

DISCARD_LEVELS=level, ORDER=1)
oImage->SetTileData, ReqTiles[i], TileData

ENDFOR

An image that supports TILE_LEVEL_MODE=1 (automatic) can be panned and
zoomed using VIEWPLANE_RECT and the above QueryRequiredTiles and
SetTileData combination. This determines tile visibility and loads the appropriate
data. As the image is zoomed out, lower resolution data will be automatically
requested to ensure physical memory does not run out.

Note
See “Example: JPEG2000 Files for Tiling” on page 150 for the complete JPEG2000
tiling example.

Copying and Printing a Tiled Image

The IDLgrClipboard and IDLgrPrinter objects have a QueryRequiredTiles method
just like IDLgrWindow. Return the visible tiles using QueryRequiredTiles, set the
data on the image object, and use the Draw method of the printer or clipboard object
to output the portion of the tiles that are visible in the view. This is all that is required
for a clipboard object. For a printer object, you need to take the view dimensions into
account when printing. The following code excerpt shows this for the object,
oPrinter:

; Set the dimensions of the view so the aspect ratio is
; correct when printed.
windowAspect = FLOAT(windowDims[0]) / windowDims[1])
oPrinter->GetProperty, DIMENSIONS = pageSize
pageSize[1] = pageSize[0] / windowAspect
oView->SetProperty, DIMENSIONS=pageSize
Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 147
Call QueryRequiredTiles on the printer object and set the tile data using SetTileData
on the image object (as described in “Querying Required Tiles” on page 141). It is
then simple to print the output:

;...PRINT!...
oPrinter->Draw, oView, VECTOR=0
oPrinter->NewDocument

Note
Clipboard and printer vector output (VECTOR=1) is not supported for tiled images.

An example in the IDL distribution provides working examples of copying and
printing a tiled image. See “Example: JPEG2000 Files for Tiling” on page 150 for
information on where to locate the full tiling example.

Preloading Tiles

You can load more tiles of data than what are currently visible in a view in a couple
of ways:

• Pass a row of tile data to SetTileData based on an initial query (see “Loading a
Row of Tiles” on page 147 below)

• Pass data to SetTileData without a query (see “Caching Non-Visible Tiles” on
page 148)

Loading a Row of Tiles

SetTileData can accept more than a single tile's worth of data in one call. In some
cases, it can be more efficient to read an entire row of tiles rather than extract single
tiles from that row. In general, raw binary image formats (such as TIFF) that are not
stored on disk in a blocked manner can be tiled more efficiently by passing rows of
data. The following code shows how to load entire scanlines at once when using these
image formats.

As in the example shown in “Querying Required Tiles” on page 141, which creates
view and image objects, call the destination object’s QueryRequiredTiles method to
determine what tile data is initially visible in the viewport as follows:

; Return structure information for visible tiles.
ReqTiles = oWindow->QueryRequiredTiles(oView, oImage, $

COUNT=nTiles)

; While there are tiles, determine the width of the information to
; be requested by dividing the width of the original image by the
; current level.
WHILE (nTiles gt 0) DO BEGIN
Object Programming Adding Tiling to Your Application

148 Chapter 4: Working with Image Objects
TileInfo = ReqTiles[0]
level = TileInfo.Level
width = imageDims[0] / (2 ^ level)

; Set the area to be read (equal to image width) to the SubRect
; variable.
SubRect = [0, TileInfo.Y, width, TileInfo.Height]

; Insert code here to read the tile data, passing SubRect to the
; correct data access procedure for your file type.
; ...

; Update the tile structure.
TileInfo.X = 0L
TileInfo.Width = width

; Set the row of tile data to the image.
oImage->SetTileData, TileInfo, TileData

ReqTiles = oWindow->QueryRequiredTiles(oView, oImage, $
COUNT=nTiles)

ENDWHILE

SubRect is set such that the entire width of the image is read at the requested level
for the given vertical position and height. The tile structure is updated to reflect the
fact that the information being passed to SetTileData starts at X=0 and is the entire
width of the image. Notice that rather than iterate through the entire ReqTiles array
the code calls QueryRequiredTiles again after calling SetTileData since the
remaining tiles in the array can now be loaded.

Caching Non-Visible Tiles

You do not need to call QueryRequiredTiles before passing data to the SetTileData
method. The QueryRequiredTiles call just limits the requested data to those tiles that
are visible in the view. Setting tile data without first requesting it has a couple of
important uses: loading an entire level and predictive tile caching.

When an application starts, it can automatically load an entire level of low-resolution
tile data. If higher resolution data is requested but not currently available, the lower
resolution tiles are used. For example, if level 3 tile data has been loaded, but you
attempt to zoom in so that the level 0 data is needed, level 3 data will continue to be
displayed until the higher resolution data can be loaded. This results in a blurred or
blocky version of the image, which can still be used until the required level has been
loaded.

To load an entire level (assumed to be level 3, 2500 by 2500 pixels in this example),
you first need to request that level of data from your image pyramid. How you access
Adding Tiling to Your Application Object Programming

Chapter 4: Working with Image Objects 149
this data depends on the file type. For example, if you have created a series of TIFF
files, access the image data using the file name:

TileData = READ_TIFF('largeimage3.tif')

If you have created a JPEG2000 image, access the image data using the GetData
method where level should be set to the level of data you want to return (e.g., 3):

TileData = oJP2File->GetData(DISCARD_LEVELS=level)

Create a tile structure that encompasses the entire level and pass the data to
SetTileData:

tile = { IDLIMAGETILE, X:0, Y:0, Width:2500, Height:2500, $
Level:3, Dest:oWindow }

oImage->SetTileData, tile, TileData

The second use for preloading tiles is predictive tile loading. For example, if the user
is panning right, but tiles to the right of the view that are not yet visible, these tiles
can be preloaded if there is any idle time. Then when the view reaches those tiles,
there will be no interruption as the tiles have already been loaded.
Object Programming Adding Tiling to Your Application

150 Chapter 4: Working with Image Objects
Example: JPEG2000 Files for Tiling

The tiling example provided in the IDL distribution takes a 5000 by 5000 pixel JPEG
file containing an aerial photograph of Chicago’s O’Hare International Airport and
creates a JPEG2000 file from the data. This file type provides inherent support for
image tiles.

Example Code
See tilingjp2_doc.pro in the examples/doc/objects subdirectory of the
IDL installation directory for the tiling application code. Run the example
procedure by entering tilingjp2_doc at the IDL command prompt or view the
file in an IDL Editor window by entering .EDIT tilingjp2_doc.pro.

Note
The first time you run this application, it generates the JPEG2000 file. This might
take a noticeable amount of time, depending on your system speed. However, once
the JPEG2000 image is created, this file will be used instead of being recreated.
Example: JPEG2000 Files for Tiling Object Programming

javascript:doIDL("tilingjp2_doc")
javascript:doIDL(".edit tilingjp2_doc.pro")

Chapter 4: Working with Image Objects 151
The following figure shows the O’Hare image. When the application opens, the view
is positioned in the upper-left corner of the full-resolution image.

Figure 4-22: O’Hare Image
Object Programming Example: JPEG2000 Files for Tiling

152 Chapter 4: Working with Image Objects
Example: JPEG2000 Files for Tiling Object Programming

Chapter 5

Working with Plots and
Graphs
This chapter describes the use of contour, polygon, polyline, and plot objects to create plots and
graphs. The following topics are covered in this chapter:
Contour Objects . 154
Plot Objects . 157
Axis Objects . 161

Symbol Objects . 176
A Plotting Routine 180
Object Programming 153

154 Chapter 5: Working with Plots and Graphs
Contour Objects

Contour objects create a set of contour lines from data stored in a rectangular array or
in a set of unstructured points. Contour objects can consist either of lines or of filled
regions.

Creating Contour Objects

To create a contour object, provide a vector or two-dimensional array containing the
values to be contoured to the IDLgrContour::Init method. For example, the following
statement creates a contour from a two-dimensional array returned by the IDL DIST
function:

mycontour = OBJ_NEW('IDLgrContour', DIST(20))

See “IDLgrContour” (IDL Reference Guide) for details on creating contour objects.

Using Contour Objects

Contour objects have a number of properties that determine how they are rendered.
See “IDLgrContour Properties” (IDL Reference Guide) for a complete listing. The
following code displays the contour object created above in the X-Y plane.

Note
In order to display the contour as on the plane (rather than as a three-dimensional
image), you must set the PLANAR property of the contour object equal to one and
explicitly set the GEOMZ property equal to zero.

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,19,19])
mymodel = OBJ_NEW('IDLgrModel')
data = DIST(20)
mycontour = OBJ_NEW('IDLgrContour', data, COLOR=[100,150,200], $

C_LINESTYLE=[0,2,4], /PLANAR, GEOMZ=0, C_VALUE=INDGEN(20))

myview->Add, mymodel
mymodel->Add, mycontour
mywindow->Draw, myview
Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 155
This results in the following figure.

Figure 5-1: Contour Object
Object Programming Contour Objects

156 Chapter 5: Working with Plots and Graphs
A more complex example using a contour object is shown in the contour demo. To
start the demos, type demo at the IDL command prompt. Both the terrain elevation
and vehicle tire data sets are displayed using the contour object.

Figure 5-2: Complex Contour Object
Contour Objects Object Programming

Chapter 5: Working with Plots and Graphs 157
Plot Objects

Plot objects maps a set of abscissa values to a set of ordinate values and creates a
polyline connecting the points. Note that plot objects do not automatically create axes
for the plot lines they create.

Creating Plot Objects

Create a plot line by providing a vector of Y values, and, optionally, a vector of X
values. If no X values are provided, the Y values are plotted against the element
indices of the Y vector.

The following statement creates a plot object plotting the values [2, 9, 4, 4, 6, 2, 8]
against their own indices:

myplot = OBJ_NEW('IDLgrPlot', [2,9,4,4,6,2,8])

The following statements plot the same data versus a series of primes:

datay = [2,9,4,4,6,2,8]
datax = [0,1,2,5,7,11,13]
myplot = OBJ_NEW('IDLgrPlot', datax, datay)

See “IDLgrPlot” (IDL Reference Guide) for details on creating plot objects.

Using Plot Objects

Plot objects can be configured to draw regular X vs. Y, histogram, or polar plots. Set
the HISTOGRAM property to create a histogram plot, or the POLAR property to
create a polar plot. The following example uses the same data set to create a standard
plot, a histogram plot, and a standard plot using a boxcar filter. All three plots are
displayed in the same view.

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-10,-10,20,20])
mymodel = OBJ_NEW('IDLgrModel')

x = (FINDGEN(21) / 10.0 - 1.0) * 10.0
y = [3.0, -2.0, 0.5, 4.5, 3.0, 9.5, 9.0, 4.0, 1.0, -8.0, $

-6.5, -7.0, -2.0, 5.0, -1.0, -2.0, -6.0, 3.0, 5.5, 2.5, -3.0]
myplot1 = OBJ_NEW('IDLgrPlot', x, y, COLOR=[120, 120, 120])
myplot2 = OBJ_NEW('IDLgrPlot', x, y, /HISTOGRAM, LINESTYLE=4)
y2 = SMOOTH(y, 5)
myplot3 = OBJ_NEW('IDLgrPlot', x, y2, LINESTYLE=2)

myview->Add, mymodel
Object Programming Plot Objects

158 Chapter 5: Working with Plots and Graphs
mymodel->Add, myplot1
mymodel->Add, myplot2
mymodel->Add, myplot3
mywindow->Draw, myview

Minimum and Maximum Values

You can control the minimum and maximum values of data plotted by a plot object.
Set the MAX_VALUE property of the plot object to disregard data values higher than
a specified value. Set the MIN_VALUE property to disregard data values lower than
a specified value. Floating-point Not-a-Number (NaN) values are also treated as
missing data and are not plotted.

For example, the following statement changes the minimum and maximum values of
the histogram plot, and re-draws the view object:

myplot2->SetProperty, MAX_VALUE=8, MIN_VALUE=2
mywindow->Draw, myview

Figure 5-3: Plot Object
Plot Objects Object Programming

Chapter 5: Working with Plots and Graphs 159
Using Plotting Symbols

Set the SYMBOL property of a plot object equal to the object reference of a symbol
object to display that symbol at each data point. For example, to use a triangle symbol
at each data point, create the following symbol object, set the plot object’s SYMBOL
property, and re-draw:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, SIZE=[.3,.3])
myplot1->SetProperty, SYMBOL=mySymbol
mywindow->Draw, myview

Averaging Points

Use the NSUM property of the plot object to average the values of a group of data
points before plotting. If there are m data points, m/NSUM data points are plotted.
For example, the following statement causes IDL to average pairs of data points
when plotting the line for the histogram plot.

Figure 5-4: Plotting Symbols
Object Programming Plot Objects

160 Chapter 5: Working with Plots and Graphs
myplot2->SetProperty, NSUM=2
mywindow->Draw, myview

Polar Plots

To create a polar plot, provide a vector of radius values, a vector of theta values, and
set the POLAR property to a nonzero value. The following example creates a simple
polar plot:

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[-100,-100,200,200])
mymodel = OBJ_NEW('IDLgrModel')
r = FINDGEN(100)
theta = r/5
mypolarplot = OBJ_NEW('IDLgrPlot', r, theta, /POLAR)
myview->Add, mymodel
mymodel->Add, mypolarplot
mywindow->Draw, myview

Figure 5-5: Polar Plot
Plot Objects Object Programming

Chapter 5: Working with Plots and Graphs 161
Axis Objects

Axis objects provide a visual notation of data values in two- and three-dimensional
plots and graphs. Each axis is represented by an individual axis object; that is, if you
have a plot in X and Y, you will need to create an x-axis object and a y-axis object.

Note
Axis objects do not take their range values from data values or other objects, as you
might expect if you are familiar with IDL Direct Graphics. Instead, axis objects
have a default range of 0.0 to 1.0; you must explicitly set the range of values
covered by the axis object using the RANGE property.

Creating Axis Objects

To create an axis object, specify an integer argument to the IDLgrAxis::Init method
when calling OBJ_NEW. Specify 0 (zero) to create an x-axis object, 1 (one) to create
a y-axis object, or 2 to create a z-axis object:

xaxis = OBJ_NEW('IDLgrAxis', 0)
yaxis = OBJ_NEW('IDLgrAxis', 1)
zaxis = OBJ_NEW('IDLgrAxis', 2)

The various keywords to the Init method allow you to control the number of major
and minor ticks, the tick length and direction, the data range, and other attributes. For
example, to create an x-axis object whose data range is between –5 and 5, with the
tick marks below the axis line, use the following command:

xaxis = OBJ_NEW('IDLgrAxis', 0, RANGE=[-5.0, 5.0], TICKDIR=1)

To suppress minor tick marks:

xaxis->SetProperty, MINOR=0

See “IDLgrAxis” (IDL Reference Guide) for details on creating axis objects.
Object Programming Axis Objects

162 Chapter 5: Working with Plots and Graphs
Using Axis Objects

Suppose you wish to create an X-Y plot of some data and wish to include both x- and
y-axes.

Example Code
The following example code is included in a procedure file named obj_axis.pro,
located in the examples/doc/objects subdirectory of the IDL distribution. Run
the example procedure by entering obj_axis at the IDL command prompt or view
the file in an IDL Editor window by entering .EDIT obj_axis.pro.

First, we create some data to plot, the plot object, and the axis objects:

data = FINDGEN(100)
myplot = OBJ_NEW('IDLgrPlot', data)
xaxis = OBJ_NEW('IDLgrAxis', 0)
yaxis = OBJ_NEW('IDLgrAxis', 1)

Next, we retrieve the data range from the plot object and set the x- and y-axis objects’
RANGE properly so that the axes will match the data when displayed:

myplot->GetProperty, XRANGE=xr, YRANGE=yr
xaxis->SetProperty, RANGE=xr
yaxis->SetProperty, RANGE=yr

By default, major tickmarks are 0.2 data units in length. Since the data range in this
example is 0 to 99, we set the tick length to 2% of the data range instead:

xtl = 0.02 * (xr[1] - xr[0])
ytl = 0.02 * (yr[1] - yr[0])
xaxis->SetProperty, TICKLEN=xtl
yaxis->SetProperty, TICKLEN=ytl

Create model and view objects to contain the object tree, and a window object to
display it:

mymodel = OBJ_NEW('IDLgrModel')
myview = OBJ_NEW('IDLgrView')
mywindow = OBJ_NEW('IDLgrWindow')
mymodel->Add, myplot
mymodel->Add, xaxis
mymodel->Add, yaxis
myview->Add, mymodel

Use the SET_VIEW procedure to add an appropriate viewplane rectangle to the view
object. (See “Finding an Appropriate View Volume” on page 78 for information on
SET_VIEW).

SET_VIEW, myview, mywindow
Axis Objects Object Programming

javascript:doIDL("obj_axis")
javascript:doIDL(".edit obj_axis.pro")

Chapter 5: Working with Plots and Graphs 163
Now, display the plot:

mywindow->Draw, myview

Logarithmic Axes

Creating a plot of logarithmic data requires that you create a logarithmic axis as well.
The example referenced here first creates a linear plot, then takes a logarithm of the
same data and creates a log-linear plot.

Example Code
The example code for logarithmic axes is included in a procedure file named
obj_logaxis.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Run the example procedure by entering obj_logaxis at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
obj_logaxis.pro.

Figure 5-6: Axis Object
Object Programming Axis Objects

javascript:doIDL("obj_logaxis")
javascript:doIDL(".edit obj_logaxis.pro")
javascript:doIDL(".edit obj_logaxis.pro")

164 Chapter 5: Working with Plots and Graphs
When you run this example, notice that you need to position your mouse cursor at the
IDL command prompt and hit you Enter key to step through the program and arrive at
the following output.

Figure 5-7: Logarithmic Axes
Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 165
Displaying Date/Time Data on Axis Objects

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data). For information on Julian dates and times, the Precision of
Date/Time data, and information on how to generate Date/Time data, see “Date/Time
Data” (Chapter 13, Application Programming).

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (x, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data:

• “Displaying Date/Time Data on a Plot Display” below

• “Displaying Date/Time Data on a Contour Display” on page 170

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
displacement = SIN(10.*!DTOR*FINDGEN(number_samples))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import data from a file; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional data with the IDLgrPlot object, the format of
the date/time values is specified through the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = ['%I:%S'])

where %I represents minutes and %S represents seconds.
Object Programming Displaying Date/Time Data on Axis Objects

166 Chapter 5: Working with Plots and Graphs
Before applying the results from LABEL_DATE, we must first create (initialize) our
display objects:

oPlotWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [800, 600])

oPlotView = OBJ_NEW('IDLgrView', /DOUBLE)
oPlotModel = OBJ_NEW('IDLgrModel')
oPlot = OBJ_NEW('IDLgrPlot', date_time, displacement, $

/DOUBLE)

The oPlotModel object will contain the IDLgrPlot and IDLgrAxis objects. The
oPlotView object contains the oPlotModel object with the DOUBLE keyword. The
DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time
data is made up of double-precision floating-point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAxis object, the oPlot object is created first to provide a display
region for the axes:

oPlot->GetProperty, XRANGE = xr, YRANGE = yr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
oPlot->SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys

The NORM_COORD routine is used to create a normalized (0 to 1) display
coordinate system. This coordinate system will also apply to the IDLgrAxis objects:

; X-axis title.
oTextXAxis = OBJ_NEW('IDLgrText', 'Time (seconds)')
; X-axis (date/time axis).
oPlotXAxis = OBJ_NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextXAxis, $
LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])), $
TICKFORMAT = ['LABEL_DATE'], TICKINTERVAL = 5, $
TICKUNITS = ['Time'])

; Y-axis title.
oTextYAxis = OBJ_NEW('IDLgrText', 'Displacement (inches)')
; Y-axis.
oPlotYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextYAxis, $
LOCATION = [xr[0], yr[0]], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1] - xr[0])))

; Plot title.
oPlotText = OBJ_NEW('IDLgrText', 'Measured Signal', $

LOCATIONS = [(xr[0] + xr[1])/2., $
(yr[1] + (0.02*(yr[0] + yr[1])))], $
Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 167
XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-
axis as a date/time axis.

These objects are now added to the oPlotModel object and this model is added to the
oPlotView object:

oPlotModel->Add, oPlot
oPlotModel->Add, oPlotXAxis
oPlotModel->Add, oPlotYAxis
oPlotModel->Add, oPlotText
oPlotView->Add, oPlotModel

Now the oPlotView object, which contains all of these objects, can be viewed in the
oPlotWindow object:

oPlotWindow->Draw, oPlotView

The Draw method to the oPlotWindow object produces the following results:

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
also includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levels to draw and the units used at each level with the TICKUNITS keyword. You

Figure 5-8: Displaying Date/Time data with IDLgrPlot
Object Programming Displaying Date/Time Data on Axis Objects

168 Chapter 5: Working with Plots and Graphs
can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, the first level (closest to the axis) will contain minute and second
values separated by a colon (%I:%S). The second level (just below the first level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL_DATE routine, we must also change the
settings of the IDLgrAxis properties to specify a multiple level axis:

oPlotXAxis->SetProperty, $
TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day']
Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 169
The TICKFORMAT is now set to a string array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL’s memory, the object references for oPlotView, oTextXAxis, and
oTextYAxis should be destroyed. Therefore, after the display is drawn, the
OBJ_DESTROY routine should be called:

OBJ_DESTROY, [oPlotView, oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL’s memory.

Figure 5-9: Displaying Three Levels of Date/Time data with IDLgrPlot
Object Programming Displaying Date/Time Data on Axis Objects

170 Chapter 5: Working with Plots and Graphs
Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of a single circle on a sphere recorded at every second for 37 seconds
after the initial recording of 59 minutes and 30 seconds after 2 o’clock pm (14
hundred hours) on the 30th day of March in the year 2000:

number_samples = 37
date_time = TIMEGEN(number_samples, UNITS = 'Seconds', $

START = JULDAY(3, 30, 2000, 14, 59, 30))
angle = 10.*FINDGEN(number_samples)
temperature = BYTSCL(SIN(10.*!DTOR* $

FINDGEN(number_samples)) # COS(!DTOR*angle))

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL_DATE routine as follows:

date_label = LABEL_DATE(DATE_FORMAT = $
['%I:%S', '%H', '%D %M, %Y'])

where %I represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

The first level (closest to the axis) will contain minute and second values separated
by a colon (%I:%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will be filled, we should define a color palette:

oContourPalette = OBJ_NEW('IDLgrPalette')
oContourPalette->LoadCT, 5

As in the one-dimensional example, the display must be initialized:

oContourWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [800, 600])

oContourView = OBJ_NEW('IDLgrView', /DOUBLE)
oContourModel = OBJ_NEW('IDLgrModel')
oContour = OBJ_NEW('IDLgrContour', temperature, $

GEOMX = angle, GEOMY = date_time, GEOMZ = 0., $
/PLANAR, /FILL, PALETTE = oContourPalette, $
/DOUBLE_GEOM, C_VALUE = BYTSCL(INDGEN(8)), $
C_COLOR = BYTSCL(INDGEN(8)))

; Applying contour lines over the original contour display.
oContourLines = OBJ_NEW('IDLgrContour', temperature, $

GEOMX = angle, GEOMY = date_time, GEOMZ = 0.001, $
/PLANAR, /DOUBLE_GEOM, C_VALUE = BYTSCL(INDGEN(8)))
Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 171
The oContourModel object will contain the IDLgrContour and IDLgrAxis objects.
The oContourView object contains the oContourModel with the DOUBLE keyword.
The DOUBLE and DOUBLE_GEOM keywords are set for the oContourView and
oContour objects because date/time data is made up of double-precision floating-
point values.

Although the date/time part of the data will actually be contained and displayed
through the IDLgrAxis object, the oContour object is created first to provide a
display region for the axes:

oContour->GetProperty, XRANGE = xr, YRANGE = yr, ZRange = zr
xs = NORM_COORD(xr)
xs[0] = xs[0] - 0.5
ys = NORM_COORD(yr)
ys[0] = ys[0] - 0.5
oContour->SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys
oContourLines->SetProperty, XCOORD_CONV = xs, YCOORD_CONV = ys

The oContourLines object is created to display contour lines over the filled contours.
Note these lines have a GEOMZ difference of 0.001 from the filled contours. This
difference is provided to display the lines over the filled contours and not in the same
view plane. The NORM_COORD routine is used to create a normalized (0 to 1)
display coordinate system. This coordinate system will also apply to the IDLgrAxis
objects:

; X-axis title.
oTextXAxis = OBJ_NEW('IDLgrText', 'Angle (degrees)')
; X-axis.
oContourXAxis = OBJ_NEW('IDLgrAxis', 0, /EXACT, RANGE = xr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextXAxis, $
LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])))

; Y-axis title.
oTextYAxis = OBJ_NEW('IDLgrText', 'Time (seconds)')
; Y-axis (date/time axis).
oContourYAxis = OBJ_NEW('IDLgrAxis', 1, /EXACT, RANGE = yr, $

XCOORD_CONV = xs, YCOORD_CONV = ys, TITLE = oTextYAxis, $
LOCATION = [xr[0], yr[0], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(xr[1] - xr[0])), $
TICKFORMAT = ['LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day'], $
TICKLAYOUT = 2)

oContourText = OBJ_NEW('IDLgrText', $
'Measured Temperature (degrees Celsius)', $
LOCATIONS = [(xr[0] + xr[1])/2., $

(yr[1] + (0.02*(yr[0] + yr[1])))], $
XCOORD_CONV = xs, YCOORD_CONV = ys, $
ALIGNMENT = 0.5)
Object Programming Displaying Date/Time Data on Axis Objects

172 Chapter 5: Working with Plots and Graphs
The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the Y-
axis as a date/time axis, which contains three levels related to the formats presented
in the call to the LABEL_DATE routine. This example also contains the
TICKLAYOUT keyword. By default, this keyword is set to 0, which provides the
date/time layout shown in the plot example. In this example, TICKLAYOUT is set to
2, which rotates and boxes the tick labels.

These objects are now added to the oContourModel object and this model is added to
the oContourView object:

oContourModel->Add, oContour
oContourModel->Add, oContourLines
oContourModel->Add, oContourXAxis
oContourModel->Add, oContourYAxis
oContourModel->Add, oContourText
oContourView->Add, oContourModel

Now the oContourView object, which contains all of these objects, can be viewed in
the oContourWindow object:

oContourWindow->Draw, oContourView

The Draw method to oContourWindow produces the following results:

Notice the three levels of the Y-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

Figure 5-10: Displaying Date/Time data with IDLgrContour
Displaying Date/Time Data on Axis Objects Object Programming

Chapter 5: Working with Plots and Graphs 173
To maintain IDL's memory, the object references for oContourView,
oContourPalette, oTextXAxis, and oTextYAxis should be destroyed. Therefore, after
the display is drawn, the OBJ_DESTROY routine should be called:

OBJ_DESTROY, [oContourView, oContourPalette, $
oTextXAxis, oTextYAxis]

The display will remain until closed, but the object references are now freed from
IDL's memory.
Object Programming Displaying Date/Time Data on Axis Objects

174 Chapter 5: Working with Plots and Graphs
Axis Titles and Tickmark Text

You can supply an axis title for an axis by setting the TITLE property equal to the
object reference of an IDLgrText object. Text objects connected to axis objects via
the TITLE property are automatically centered under or next to the axis they belong
with.

Note
Titles and tickmark text inherit the color specified for the IDLgrAxis object itself,
even if the COLOR property is specified for the IDLgrText object specified, unless
the USE_TEXT_COLOR property for the axis is nonzero.

By default, major tick marks are labelled with the data values. You can supply a set of
tickmark text values by setting the TICKTEXT property equal to either a single
instance of an IDLgrText object containing a vector of text strings or to a vector of
IDLgrText objects, each of which contains a single text string.

Note
Make sure that you have the same number of tick label strings as there are major
tick marks for the axis.

Reverse Axis Plotting

IDL also allows you to plot data in Object Graphics by reversing the order of axis tick
values. This is known as reverse axis plotting.

When using Object Graphics, each core object is a building block. Any number of
building blocks may be combined together in a hierarchical tree to create an overall
scene. An individual object is not aware of the other objects in the hierarchy;
therefore, the designer of the hierarchy must control all interactions between the
objects. For example, to properly display a reverse axis plot in Object Graphics, the
designer must appropriately set the properties on the X axis, the Y axis, and the plot
line, each of which contribute to the overall displayed results.

Example Code
You can run this example by entering EX_REVERSE_PLOT at the IDL command
line. You can view the source for this example, ex_reverse_plot.pro, in the
examples/doc/objects directory. Run the example procedure by entering
ex_reverse_plot at the IDL command prompt or view the file in an IDL Editor
window by entering .EDIT ex_reverse_plot.pro.
Axis Titles and Tickmark Text Object Programming

javascript:doIDL("ex_reverse_plot")
javascript:doIDL(".edit ex_reverse_plot.pro")

Chapter 5: Working with Plots and Graphs 175
The following figure demonstrates how you can reverse the order of axis tick values
using Object Graphics.

Figure 5-11: Reverse Axis Plotting Example
Object Programming Axis Titles and Tickmark Text

176 Chapter 5: Working with Plots and Graphs
Symbol Objects

Objects of the IDLgrSymbol class are used to display individual data points, either in
an IDLgrPlot object or an IDLgrPolyline object. You can create symbol objects that
display one of seven pre-defined symbols, any visualization object, or any model
object.

Creating Symbol Objects

Specify the type of symbol to use when you call the IDLgrSymbol::Init method.

To Use a Pre-defined Symbol

Specify one of the following values for the symbol type:

For example, to create a symbol object using a red triangle for the symbol, use the
following statement:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])

To Use a Graphic Object as a Symbol

You can use an visualization object or a model object as a symbol. For best results,
create an object that fills the domain between –1 and 1 in all directions. For example,
the following statements create a polygon object in the shape of a pentagon and
define a symbol object to use the polygon:

pentagon=OBJ_NEW('IDLgrPolygon', [-0.8,0.0,0.8,0.4,-0.4], $
[0.2,0.8,0.2,-0.8,-0.8], COLOR=[0,0,255])

mySymbol = OBJ_NEW('IDLgrSymbol', pentagon)

1 Plus sign (the default)

2 Asterisk

3 Period

4 Diamond

5 Triangle

6 Square

7 X
Symbol Objects Object Programming

Chapter 5: Working with Plots and Graphs 177
Note that we create the pentagon to fit in the plane between –1 and 1 in both the X
and Y directions. We could also have created the pentagon to fit in a unit square and
then scaled it to fit the domain between –1 and 1.

For example:

pentagon=OBJ_NEW('IDLgrPolygon', [0.1,0.5,0.9,0.7,0.3], $
[0.6,0.9,0.6,0.1,0.1], COLOR=[0,0,255])

symModel = OBJ_NEW('IDLgrModel')
symModel->Add, pentagon
symModel->Scale, 2, 2, 1
symModel->Translate, -1, -1, 0
mySymbol = OBJ_NEW('IDLgrSymbol', symModel)

Note
We create the symbol object to use the model object rather than the polygon object.
Using a model object as a symbol allows you to apply transformations to the
symbol even after it has been created.

Setting Size

By default, symbols extend one unit to each side of the data point they represent. Set
the SIZE property of the symbol object to a two-element vector that describes the
scaling factor in X and Y to apply to the symbol to change the size of the symbols that
are rendered. For example, to scale a symbol so that it extends one tenth of a unit to
each side of the data point, use the statement:

mySymbol->SetProperty, SIZE=[0.1, 0.1]

Setting Color

If you are using a pre-defined symbol, you can set its color using the COLOR
property of the symbol object. If you are using a graphic object as a symbol, the
symbol’s color is determined by the color of the graphic object and the setting of the
COLOR property of the symbol object itself is ignored. For example, the following
statements create a symbol object that uses a red triangle:

mySymbol = OBJ_NEW('IDLgrSymbol', 5, COLOR=[255,0,0])

See “IDLgrSymbol” (IDL Reference Guide) for details on creating symbol objects.
Object Programming Symbol Objects

178 Chapter 5: Working with Plots and Graphs
Using Symbol Objects

To use a symbol, set the SYMBOL property of an IDLgrPlot or IDLgrPolyline object
equal to the symbol object reference:

myPlot->SetProperty, SYMBOL=mySymbol

Suppose you wish to create a symbol object using the pentagon we created above.
Suppose also that you wish to be able to use the pentagon code in more than one
instance, and would like to be able to make changes to the pentagon object’s color,
size, and orientation. You might create a procedure to define a pentagon object
contained in a model object, and return the object references.

Example Code
See file penta.pro, located in the examples/doc/objects subdirectory of the
IDL distribution to view the source code for this example. Run the example
procedure by entering penta at the IDL command prompt or view the file in an
IDL Editor window by entering .EDIT penta.pro.

Once you have compiled the penta procedure, call it with the SYMBOL and MODEL
keywords set equal to named variables that will contain the object references of the
model and polygon objects:

PENTA, SYMBOL=sym, MODEL=symmodel

Next, create a symbol object using the pentagon:

mySymbol = OBJ_NEW('IDLgrSymbol', symmodel)

Now, create a plot object using the pentagon as the plot symbol:

myPlot = OBJ_NEW('IDLgrPlot', FINDGEN(10), SYMBOL=mySymbol)

Next, display the plot:

myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
myModel = OBJ_NEW('IDLgrModel')
myView->Add, myModel
myModel->Add, myPlot
myWindow = OBJ_NEW('IDLgrWindow')
myWindow->Draw, myView

Note that the plotting symbols are larger than you might wish. Try making them
smaller:

mySymbol->SetProperty, SIZE=[0.2,0.2]
myWindow->Draw, myView
Symbol Objects Object Programming

javascript:doIDL("penta")
javascript:doIDL(".edit penta.pro")

Chapter 5: Working with Plots and Graphs 179
Or, create the following procedure to spin the pentagons around the z-axis (enter
.RUN at the command prompt, followed by these statements):

PRO SPIN, model, view, window, steps
FOR i = 0, steps do begin

model->Rotate, [0,0,1], 10
window->Draw, view

END
END

After compiling the SPIN procedure, call it from the command line and watch the
pentagons spin:

SPIN, symmodel, myView, myWindow, 100

While it is unlikely that you will wish to create spinning plot symbols, this example
demonstrates one of the key advantages of IDL Object Graphics over IDL Direct
Graphics—once created, graphics objects can be easily manipulated in a variety of
ways without the need to recreate the entire graph or image after each change.
Object Programming Symbol Objects

180 Chapter 5: Working with Plots and Graphs
A Plotting Routine

This section develops a plotting routine that uses many of the object graphics features
discussed here and in previous chapters.

Example Code
The code for this example is contained in the file obj_plot.pro, located in the
examples/doc/objects subdirectory of the IDL distribution. Run the example
procedure by entering obj_plot at the IDL command prompt or view the file in an
IDL Editor window by entering .EDIT obj_plot.pro.

The OBJ_PLOT routine will create a window object, and display within it a view of a
single model object, which will contain a plot object, x- and y-axis objects, and an x-
axis title object. It will use the Times Roman font for the axis title.

In creating the procedure, we allow the user to specify the data to be plotted, and we
define keyword variables which can return the object references for the view, model,
window, axis, and plot objects. This allows the user to manipulate the object tree after
it has been created. We also specify the _EXTRA keyword, which allows the user to
include other keyword parameters in the call. OBJ_PLOT itself passes any extra
keyword parameters only to the plot object, but a more complex program could pass
keyword parameters to any of the objects created. The following lines begin the
procedure.

Note
See “A Function for Coordinate Conversion” on page 81 for a discussion of the
NORM_COORD function used in this example. Also, SET_VIEW is discussed in
“Finding an Appropriate View Volume” on page 78. (The files set_view.pro and
norm_coord.pro are included in the examples/doc/utilities subdirectory
of the IDL distribution. NORM_COORD is also defined in the obj_plot.pro
file.)

Now, the OBJ_PLOT routine can be called with only the data parameter, if you
choose. For example, the statement

OBJ_PLOT, FINDGEN(10)

creates and displays the object hierarchy with a simple plot line. However, if you do
not retrieve the window, view, and other object references via the keywords, there is
no way you can interactively modify the plot.
A Plotting Routine Object Programming

javascript:doIDL("obj_plot")
javascript:doIDL(".edit obj_plot.pro")

Chapter 5: Working with Plots and Graphs 181
A better way to call OBJ_PLOT would be:

OBJ_PLOT, FINDGEN(10), WINDOW=win, VIEW=view, PLOT=plot,
CONTAINER=cont

This statement creates the same object hierarchy, but returns the object references for
the window, view, and plot objects in named variables. Having access the object
references allows you to do things like change the color of the plot:

plot->SetProperty, COLOR=[255,255,255]
window->Draw, view

enlarge the viewplane rectangle by 10 percent:

view->GetProperty, VIEWPLANE_RECT=vr
vr2 = [vr[0]-(vr[0]*0.1), vr[1]-(vr[1]*0.1), $

vr[2]+(vr[2]*0.1), vr[2]+(vr[2]*0.1)]
view->SetProperty, VIEWPLANE_RECT = vr2
window->Draw, view

or just clean it up:

OBJ_DESTROY, cont

Note that when using the OBJ_DESTROY procedure, any object added to the
specified object (using the Add method) are also destroyed, recursively. We use a
container object to collect all of the objects, including attribute objects and text object
that are not explicitly added to the object tree, which allows you to destroy the entire
collection with a single call to OBJ_DESTROY.

Improvements to the OBJ_PLOT Routine

A number of improvements to the OBJ_PLOT routine are left as exercises for the
programmer:

• Provide error checking on the input arguments.

• Provide a way to set properties of the axis and text objects when calling
obj_plot.

• Provide a graphical user interface to using IDL widgets.

• Do the object cleanup (destroying the objects created by obj_plot) when the
user is finished with the routine. (This is easily accomplished if the routine has
a widget interface.)

• Provide a way to retrieve data values once the data has been plotted, using the
mouse to select data points.
Object Programming A Plotting Routine

182 Chapter 5: Working with Plots and Graphs
A Plotting Routine Object Programming

Chapter 6

Working with Surface
Objects
This chapter describes the use of surface and light objects. The following topics are covered in this
chapter:
Surface Objects . 184 An Interactive Surface Example 189
Object Programming 183

184 Chapter 6: Working with Surface Objects
Surface Objects

Surface objects create a representation of functions of two variables. Surfaces are
presented as three-dimensional objects in three-dimensional space, and thus are good
candidates for interactive rotation, and scaling. Examples in this chapter discuss
interactive manipulation of surface objects.

Note
Also see “Mapping an Image onto Elevation Data” (Chapter 3, Image Processing in
IDL) for additional examples using the surface object.

Creating Surface Objects

To create a surface object, provide a two-dimensional array of surface values (Z
values) to the IDLgrSurface::Init method. Optionally, you can supply two vectors or
arrays X and Y that specify the locations in the XY plane of the Z values provided. If
X and Y are not provided, the surface is generated as a function of the array indices of
each element of the Z array.

For example, the following statements create a surface object from the two-
dimensional array created by the IDL command DIST, as a function of the Z data
array indices:

zdata = DIST(40)
mysurf = OBJ_NEW('IDLgrSurface', zdata)
Surface Objects Object Programming

Chapter 6: Working with Surface Objects 185
Similarly, if xdata and ydata are either 40-element vectors or 40x40 element arrays
specifying the X and Y values which, when evaluated by some function, result in the
zdata array, you would create the surface object with the following statement:

mysurf = OBJ_NEW('IDLgrSurface', zdata, xdata, ydata)

See “IDLgrSurface” (IDL Reference Guide) for details on creating surface objects.

Using Surface Objects

Surface objects have numerous properties controlling how they are rendered. You
can set these properties when creating the surface object, or use the SetProperty
method to the surface object to change these properties after creation.

Style

Set the STYLE property to an integer value that controls how the surface is rendered.
Set the STYLE property equal to one of the following integer values:

0 = Display a single pixel for each data point.

1 = Display the surface as a wire mesh. (This is the default.)

2 = Display the surface as a solid.

Figure 6-1: Surface Object
Object Programming Surface Objects

186 Chapter 6: Working with Surface Objects
3 = Display the surface using only lines drawn parallel to the x-axis.

4 = Display the surface using only lines drawn parallel to the y-axis.

5 = Display a wire mesh lego-type surface (similar to a histogram plot).

6 = Display a solid lego-type surface (similar to a histogram plot).

For example, the following statement changes the surface object to display the
surface as a wire mesh, with the lines drawn in blue:

mysurf->SetProperty, STYLE=1, COLOR=[0,0,255]

The following statement draws the surface as a solid lego-type surface in green:

mysurf->SetProperty, STYLE=6, COLOR=[0,255,0]

Vertex Colors

You can supply a vector of vertex colors via the VERT_COLORS property. The
colors in the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0,100,200],[200,150,200],[150,200,250],[250,0,100]]
mysurf->SetProperty, STYLE=1, VERT_COLORS=vcolors

Shading

IDL provides two types of shading for surfaces. In Flat shading, the color of the first
vertex in the surface is used to define the color for the entire surface. The color has a
constant intensity. In Gouraud shading, the colors along each line are interpolated
between vertex colors, and then along scanlines from each of the edge intensities.

Note
By default, only ambient lighting is provided for surfaces. If you do not supply a
light source for your object hierarchy, solid surface objects will appear flat with
either Flat or Gouraud shading. See “Light Objects” on page 233 for details on
creating and using light objects.

Set the SHADING property of the surface object equal to 0 (zero) to use flat shading
(this is the default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mysurf->SetProperty, STYLE=2, SHADING=1
Surface Objects Object Programming

Chapter 6: Working with Surface Objects 187
creates a surface in which the color values are interpolated between the vertex colors.

Skirts

You can draw a skirt around the bottom edge of your surface object by setting the
SHOW_SKIRT property of the surface object to 1. The skirt extends from the edge of
the surface to a Z value specified by the SKIRT property. For example, the following
statements draw the surface in wire mesh mode, with a skirt extending from the
bottom of the surface to the value z = 0.1:

mysurf->SetProperty, STYLE=1, /SHOW_SKIRT, SKIRT=0.1

Hidden Line Removal

Set the HIDDEN_LINES property to the surface object equal to one to remove lines
that are behind the visible parts of the surface from the rendering. By default, hidden
lines are drawn. The following statement alters the surface to remove the hidden
lines:

mysurf->SetProperty, /HIDDEN_LINES

Warning
Hidden line removal can be time-consuming.

Figure 6-2: Surface Object Shading
Object Programming Surface Objects

188 Chapter 6: Working with Surface Objects
Texture Mapping

You can map an image onto a surface object by specifying an IDLgrImage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the surface’s vertices. If
the TEXTURE_COORD property is not specified, the surface object will map the
texture onto the entire data space (the region between 0.0 and 1.0 in normalized
coordinates). See Chapter 3, “Mapping an Image onto Geometry” (Image Processing
in IDL) for examples.

Figure 6-3: Surface Object Hidden Lines
Surface Objects Object Programming

Chapter 6: Working with Surface Objects 189
An Interactive Surface Example

With a little programming, we can create an application that allows the user to
display a surface object and transform its model tree interactively using the mouse.

Example Code
Example code is located in surf_track.pro in the examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering
surf_track at the IDL command prompt or view the file in an IDL Editor window
by entering .EDIT surf_track.pro.

This example uses IDL widgets to create a graphical user interface to an object tree.
The SURF_TRACK procedure creates a surface object from user-specified data (or
from default data, if none is specified), and places the surface object in an IDL draw
widget. The SURF_TRACK interface allows the user to specify several attributes of
the object hierarchy via pull-down menus. Finally, the SURF_TRACK procedure
uses the example trackball object (see “Interactive 3D Transformations” on page 95
for details) to allow the user to rotate the surface in three dimensions.

Call the SURF_TRACK procedure without an argument to use the default surface (a
Bessel function) or with a two-dimensional array as its argument:

; Make up some data:
zdata = DIST(40)
SURF_TRACK, zdata
Object Programming An Interactive Surface Example

javascript:doIDL("surf_track")
javascript:doIDL(".edit surf_track.pro")

190 Chapter 6: Working with Surface Objects
We encourage you to inspect the code in surf_track.pro for hints on how to
create a widget application around a draw widget that uses Object Graphics. Note
especially that the SURF_TRACK procedure is well-behaved when it exits,
destroying all of the objects it creates so as not to tie up memory with leftover objects
for which object references are no longer available.

Figure 6-4: STYLE=3 (Ruled xz), HIDDEN_LINES=1 (hidden lines removed)

Figure 6-5: SHADING=1 (Gouraud), STYLE=2 (Solid)
An Interactive Surface Example Object Programming

Chapter 6: Working with Surface Objects 191
Figure 6-6: SKIRT=-0.402645
Object Programming An Interactive Surface Example

192 Chapter 6: Working with Surface Objects
An Interactive Surface Example Object Programming

Chapter 7

Creating Volume
Objects
This chapter describes the process of creating and displaying volume objects. The following topics
are covered in this chapter:
Creating a Volume Object 194 Setting Volume Object Attributes 196
Object Programming 193

194 Chapter 7: Creating Volume Objects
Creating a Volume Object

A volume object contains a three dimensional data array of voxel values and a set of
rendering attributes. The voxel array is mapped to colors and opacity values through
a set of lookup tables in the volume object. Several rendering methods are provided
to draw the volume to a destination.

To create a volume object, create a three dimensional array of voxels and pass them
to the IDLgrVolume::Init method. Voxel arrays must be of BYTE type. For example,
the following will create a simple volume data set and create a volume object which
uses it:

data = BYTARR(64,64,64, /NOZERO)
FOR i=0,63 DO data[*,i,0:i] = i*2
data[5:15, 5:15, 5:55] = 128
data[45:55, 45:55, 5:15] = 255
myvolume = OBJ_NEW('IDLgrVolume', data)

The volume contains a shaded prism along with two brighter cubes (one located
within the prism).

See “IDLgrVolume” (IDL Reference Guide) for details on creating volume objects.

Example Code
The example code discussed in the following sections is contained in the procedure
file obj_vol.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Run the example procedure by entering .EDIT obj_vol at the
IDL command prompt or view the file in an IDL Editor window by entering
obj_vol.pro. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.
Creating a Volume Object Object Programming

javascript:doIDL("obj_vol")
javascript:doIDL(".edit obj_vol.pro")

Chapter 7: Creating Volume Objects 195
Using Volume Objects

A volume object has spatial dimensions equal to the size of the data in the volume. In
the example, the volume object occupies the range 0-63 in the x-, y-, and z-axes. To
make the volume easier to manipulate, we use the XCOORD_CONV,
YCOORD_CONV, and ZCOORD_CONV properties of the volume object to center
the volume at 0,0,0 and scale it to fit in a unit cube.

Figure 7-1: Volume Object
Object Programming Creating a Volume Object

196 Chapter 7: Creating Volume Objects
Setting Volume Object Attributes

Volume objects have numerous properties controlling how they are rendered. These
properties can be set when the object is created or set using the SetProperty method.

Example Code
The example code discussed in the following sections is contained in the procedure
file obj_vol.pro, located in the examples/doc/objects subdirectory of the
IDL distribution. Run the example procedure by entering obj_vol at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
obj_vol.pro. The procedure file stops after each operation (roughly
corresponding to each section below) and requests that you press return before
continuing.

Volume Opacity

The opacity table controls the transparency of a given voxel value. Manipulation of
the opacity table is critical to improving the quality of a rendering. The following
figure reflect the sample code, which makes the prism transparent and the cubes
opaque, allowing the cube within the prism to be seen. This is done by setting the
OPACITY_TABLE0 array to low values for the prism and high values for the cubes.
Setting Volume Object Attributes Object Programming

javascript:doIDL("obj_vol")
javascript:doIDL(".edit obj_vol.pro")
javascript:doIDL(".edit obj_vol.pro")

Chapter 7: Creating Volume Objects 197
Volume Color

Each voxel value can be assigned an individual color as well. This color mapping can
be changed by changing the RGB_TABLE0 property. To further highlight the cubes,
we change their colors to blue and red, as shown in the example code,
obj_vol.pro, located in the examples/doc/objects subdirectory of the IDL
distribution.

Volume Lighting

Adding lights enhances the edges of volumes. Gradients within the volume are used
to approximate a surface normal for each voxel, and the lights in the current view are
then applied. The gradient shading is enabled by setting the LIGHTING_MODEL
property equal to one. The ambient volume color is selected by setting the
AMBIENT property of the volume object to a color value. Setting the TWO_SIDED
property allows both sides of a voxel to be lighted. See obj_vol.pro in the
examples/doc/objects subdirectory of the IDL distribution for an example of
using a light source.

Figure 7-2: Volume Object Opacity
Object Programming Setting Volume Object Attributes

198 Chapter 7: Creating Volume Objects
Note
Only DIRECTIONAL light sources are honored by the volume object. Because
normals must be computed for all voxels in a lighted view, enabling light sources
increases the rendering time.

See “Light Objects” on page 233 for more details on creating and using light objects.

Compositing

The volume object supports a number of methods for blending the projected voxels
together to form an image. By default, Alpha blending is used. (In Alpha blending,
each voxel occludes voxels behind it according to the opacity of the voxel in front).
Another common compositing technique is the maximum intensity projection (MIP).
Set the volume object to use MIP compositing by setting the
COMPOSITE_FUNCTION property equal to one as shown in obj_vol.pro,
located in the examples/doc/objects subdirectory of the IDL distribution. See
“IDLgrVolume Properties” (IDL Reference Guide) for other options.

ZBuffering

When combining a volume with other geometry in the Object Graphics system,
volume objects should in general be drawn last to ensure they intersect the other
(solid) objects properly. To increase rendering speed, the intersection operation is
disabled by default. To enable the intersection calculations, set the ZBUFFER
property of the volume object equal to one.

Additionally, volume objects allow for control over the rendering of invisible
(opacity equals zero) voxels. By default, the zbuffer will be updated for such voxels
(even though no change is made in the image color). This writing to the zbuffer by
transparent voxels be disabled by setting the ZERO_OPACITY_SKIP property.

These properties are set near the beginning of the obj_vol.pro file, located in the
examples/doc/objects subdirectory of the IDL distribution.

Note
In volumes with large numbers of voxels with their opacity set to zero, enabling
ZERO_OPACITY_SKIP can improve rendering performance.
Setting Volume Object Attributes Object Programming

Chapter 7: Creating Volume Objects 199
Interpolation

By default, when rendering a volume object, values between the voxels are estimated
using nearest neighbor sampling. When higher quality rendering is desired, trilinear
interpolation can be selected instead by setting the INTERPOLATE property equal to
one.

myvolume->SetProperty, INTERPOLATE=1

Note
Trilinear interpolation will cause the rendering to take considerably longer than
nearest neighbor interpolation. See “Interpolation Methods” (Chapter 5, Using IDL)
for more information on interpolation.

Rendering speed

Rendering speed can be improved by reducing the quality of the rendering. Use the
RENDER_STEP property to control this speed/quality trade-off. The value of the
RENDER_STEP property specifies a step size in the screen dimensions which is
used to skip voxels during the rendering process. Larger values yield faster rendering
times, but lower final image quality. For example, to render only half as many voxels
in the screen Z dimension, use the following statement:

myvolume->SetProperty, RENDER_STEP=[1,1,2]

A more complex example using a volume object is shown in the volume visualization
demo. To start the demos, type demo at the IDL command prompt.

Figure 7-3: Volume Object Rendering
Object Programming Setting Volume Object Attributes

200 Chapter 7: Creating Volume Objects
Setting Volume Object Attributes Object Programming

Chapter 8

Polygon and Polyline
Objects
This chapter describes the use of polygon, polyline objects. The following topics are covered in
this chapter:
About Polygon and Polyline Objects 202
Polygon Objects . 204
Tessellator Objects 206
Pattern Objects . 207

Polygon Optimization 209
Polyline Objects . 214
Polygon and Polyline Object Examples . . 215
Object Programming 201

202 Chapter 8: Polygon and Polyline Objects
About Polygon and Polyline Objects

Polygon and Polyline objects are both defined by set of vertices that share rendering
attributes. This chapter introduces how to create and configure polygon and polyline
objects.

Creating Polygon and Polyline Objects

You can define the shape of a polygon or polyline object by either setting vertex data
directly (by passing a 2-by-n or a 3-by-n array to the DATA property), or by passing a
descriptive array to the IDLgrPolygon POLYGONS property or the IDLgrPolyline
POLYLINES property. This section describes the later method, which uses a
connectivity array to define the shape of an IDLgrPolygon or IDLgrPolyline object.

Note
The following description of the connectivity array applies to polygons and
polylines with the exception that for a polyline mesh, vertex data includes color, but
not normals or texture coordinates.

A polygon description is a numeric list of the form: [n, i0, i1, ..., in-1], where n is the
number of vertices that define the polygon, and i0..in-1 are indices into a polygon
vertex list. For example, the list [5, 0, 1, 2, 3, 4] describes a polygon with 5 vertices
comprised of the first 5 vertices in the vertex list.

The polygon description list, also known as a connectivity array, allows an individual
object to contain more than one polygon. The polygons can be independent and
distinct, sharing no vertices amongst the polygons. Alternatively, the connectivity
array can describe a mesh, where vertices are shared by a number of polygons,
usually triangles or quads, in the mesh. In the case of a mesh, the vertex information,
including normals, colors, and texture coordinates, is also shared by the polygons
composing the mesh. See “Polygon Mesh Optimization” on page 209 for more
information.

A polygon description list may contain “skipped” polygon descriptions by replacing
a description with zeroes. This may be more convenient than building a new array.
For example, if we have a polygon description list containing three triangles:

[3, 14, 90, 21, 3, 4, 5, 34, 3, 6, 1, 2]

we can skip drawing the middle triangle by setting the array to:

[3, 14, 90, 21, 0, 0, 0, 0, 3, 6, 1, 2]
About Polygon and Polyline Objects Object Programming

Chapter 8: Polygon and Polyline Objects 203
The same effect can be achieved by:

twoList = [threeList[0:3], threeList[8:11]]

A polygon description list can also be terminated early by putting a -1 in the array in
the position after the last polygon to be drawn.

[3, 14, 90, 21, 3, 4, 5, 34, -1, 6, 1, 2]

The -1 at index 8 effectively makes this a list of two polygon descriptions. Entries
after the -1 are ignored.

See “Polygon Objects” on page 204 and “Polyline Objects” on page 214 for more
information about configuring these object.
Object Programming About Polygon and Polyline Objects

204 Chapter 8: Polygon and Polyline Objects
Polygon Objects

Polygon objects represent one or more filled polygons that share a given set of
vertices and rendering attributes. All polygons must be simple (the edges of the
polygon should not intersect) and convex (the shape of the polygon should not have
any indentations). Concave polygons can be converted into convex polygons using
the helper object IDLgrTessellator. See “Tessellator Objects” on page 206 for more
on tessellator objects.

Creating Polygon Objects

To create a polygon object, provide a two- or three-dimensional array (or two or three
vectors) containing the locations of the polygon’s vertices to the IDLgrPolygon::Init
method. For example, the following statement creates a square with sides one unit in
length, with the lower left corner at the origin:

mypolygon = OBJ_NEW('IDLgrPolygon', [[0,0], [0,1], [1,1], [1,0]])

Setting vertex data upon initialization is the same as using the DATA property. You
can also use the POLYGONS property to define the object shape as described in
“Creating Polygon and Polyline Objects” on page 202.

See “IDLgrPolygon” (IDL Reference Guide) for complete reference information.

Configuring Polygon Objects

Polygon objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polygon object, or use the SetProperty
method to the polygon object to change these properties after creation.

Style

Set the STYLE property to an integer value that controls how the polygon is rendered.
Set the STYLE property equal to 0 (zero) to render only the vertices. The following
statement changes the polygon to display only the vertex points, in blue:

mypolygon->SetProperty, STYLE=0, COLOR=[0,0,255]

Set the STYLE property equal to 1 (one) to render the vertices and lines connecting
them. The following statement draws the polygon’s outline in green:

mypolygon->SetProperty, STYLE=1, COLOR=[0,255,0,]

The default setting for the STYLE property is 2, which produces a filled polygon. The
following statement draws the filled polygon in red:
Polygon Objects Object Programming

Chapter 8: Polygon and Polyline Objects 205
mypolygon->SetProperty, STYLE=2, COLOR=[255,0,0]

Vertex Colors

You can supply a vector of vertex colors via the VERT_COLORS property. The
colors in the vector will be applied to each vertex in turn. If there are more vertices
than colors supplied for the VERT_COLORS property, IDL will cycle through the
colors. For example, the following statements color each vertex and connecting line
one of four colors:

vcolors =[[0,100,200],[200,150,200],[150,200,250],[250,0,100]]
mypolygon->SetProperty, STYLE=1, VERT_COLORS=vcolors

Fill Patterns

As demonstrated in “Pattern Objects” on page 207, you can fill a polygon with a
pattern contained in an IDLgrPattern object. Set the FILL_PATTERN property equal
to the object reference of the pattern object. If you have created a pattern object called
mypattern, the following statement uses that pattern as the polygon’s fill pattern:

mypolygon->SetProperty, STYLE=2, FILL_PATTERN=mypattern

Shading

IDL provides two types of shading for filled objects. In Flat shading, the color of the
first vertex in each polygon is used to define the color for the entire polygon. The
polygon color has a constant intensity. In Gouraud shading, the colors along each line
are interpolated between vertex colors, and then along scanlines from each of the
edge intensities.

Set the SHADING property of the polygon object equal to 0 (zero) to use flat shading
(this is the default), or equal to 1 (one) to use Gouraud shading. In the above example
using vertex colors, adding the following statement:

mypolygon->SetProperty, STYLE=2, SHADING=1

creates a polygon fill in which the color values are interpolated between the vertex
colors.

Texture Mapping

You can map an image onto a polygon object by specifying an IDLgrImage object to
the TEXTURE_MAP property. The TEXTURE_COORD property defines how
individual data points within the image data are mapped to the polygon’s vertices.
Note that you must specify both TEXTURE_MAP and TEXTURE_COORD to
enable texture mapping.
Object Programming Polygon Objects

206 Chapter 8: Polygon and Polyline Objects
Tessellator Objects

The IDLgrTessellator class is a helper class that converts a simple concave polygon
(or a simple polygon with holes) into a number of simple convex polygons (general
triangles). A polygon is simple if it includes no duplicate vertices, if the edges
intersect only at vertices, and exactly two edges meet at any vertex.

Tessellation is useful because the IDLgrPolygon object accepts only convex
polygons. Using the IDLgrTessellator object, you can convert a concave polygon into
a group of convex polygons.

Creating Tessellator Objects

The IDLgrTessellator::Init method takes no arguments. Use the following statement
to create a tessellator object:

myTess = OBJ_NEW('IDLgrTessellator')

See “IDLgrTessellator” (IDL Reference Guide) for details on creating tessellator
objects.

Using Tessellator Objects

The obj_tess.pro procedure creates a concave polygon, attempts to draw it, and
then tessellates the polygon and re-draws. Finally, the procedure demonstrates adding
a hole to a polygon. (You will be prompted to press Return after each step is
displayed.) You can also inspect the source code in the obj_tess.pro file for hints
on using the tessellator object.

Example Code
The procedure file obj_tess.pro, located in the examples/doc/objects
subdirectory of the IDL distribution, provides an example using the
IDLgrTessellator object. Run the example procedure by entering obj_tess at the
IDL command prompt or view the file in an IDL Editor window by entering .EDIT
obj_tess.pro.
Tessellator Objects Object Programming

javascript:doIDL("obj_vol")
javascript:doIDL(".edit obj_tess.pro")
javascript:doIDL(".edit obj_tess.pro")

Chapter 8: Polygon and Polyline Objects 207
Pattern Objects

Objects of the IDLgrPattern class are used to fill objects of the IDLgrPolygon class.
Pattern objects can create a solid fill (the default), a line fill (with control over the
orientation, spacing, and thickness of the lines used), or a pattern fill (using a byte
pattern you specify). Pattern objects do not have a color of their own; patterns take
their color from the COLOR property of the polygon they fill.

Creating Pattern Objects

Specify a fill-pattern style when you call the IDLgrPattern::Init method. Set the
argument to the Init method equal to zero to create a solid fill, equal to one to create a
line pattern, or equal to two to use a bitmap byte array as the fill pattern. For example,
the following statement creates a pattern object with a solid fill:

myPattern = OBJ_NEW('IDLgrPattern', 0)

The following statement creates a pattern object with lines ten pixels apart, 5 pixels
wide, at an angle of 30 degrees:

myPattern = OBJ_NEW('IDLgrPattern', 1, SPACING=10, THICK=5, $
ORIENTATION=30)

To create a pattern fill, specify a 32-by-4 byte array via the PATTERN property of
the pattern object. The byte array you specify will be tiled over the area of the
polygon to be filled. For example, the following statements create a pattern fill with a
random speckle. The first statement creates a 32-by-4 byte array with random values
ranging between 0 and 255. The second statement creates the pattern object.

pattern = BYTE(RANDOMN(seed, 32, 4)*255)
myPattern = OBJ_NEW('IDLgrPattern', 2, PATTERN=pattern)

See “IDLgrPattern” (IDL Reference Guide) for details on creating pattern objects.

Using Pattern Objects

To fill a polygon with the pattern specified by a pattern object, set the
FILL_PATTERN property equal to the pattern object reference:

myPolygon->SetProperty, FILL_PATTERN = myPattern

The following statements create a triangle and fills it with the random speckle
pattern:

pattern = BYTE(RANDOMN(seed, 32, 4)*255)
myPattern = OBJ_NEW('IDLgrPattern', 2, PATTERN=pattern)
myView = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
Object Programming Pattern Objects

208 Chapter 8: Polygon and Polyline Objects
myModel = OBJ_NEW('IDLgrModel')
myPolygon = OBJ_NEW('IDLgrPolygon', [4, 7, 3], [8, 6, 3],$

color=[255,0,255], fill_pattern=myPattern)
myView->Add, myModel
myModel->Add, myPolygon
myWindow = OBJ_NEW('IDLgrWindow')
myWindow->Draw, myView
Pattern Objects Object Programming

Chapter 8: Polygon and Polyline Objects 209
Polygon Optimization

Polygon object can be used in a wide variety of graphic displays. Consider consulting
the following topics for information on improving the performance of polygon
creation and rendering:

• “Polygon Mesh Optimization” on page 209 — describes how to optimize
polygon meshes associated with a polygon through the POLYGON keyword

• “Back-face Culling” on page 212 — lets you skip rendering the unseen side of
closed polygons

• “Normal Computations” on page 213 — uses normals that can be computed by
COMPUTE_MESH_NORMALS instead of the expensive generation of
default normals each time a polygon is drawn

Polygon Mesh Optimization

IDLgrPolygon objects consist of a set of vertices and, optionally—via the
POLYGON keyword—a connectivity array describing how those vertices are to be
connected to form one or more polygons. Internally, IDL can identify three special
types of polygonal meshes that may be represented very efficiently and therefore
displayed substantially faster than individually described polygons. These special
mesh types are characterized by repetitive patterns in the connectivity of the vertices.
In performance terms, it is to your advantage to utilize this optimization whenever
possible by appropriately preparing the connectivity list according to the rules
described for the corresponding type of mesh. The special mesh types are as follows:

• “Quad Strips” on page 210

• “Triangle Fans” on page 211

• “Triangle Strips” on page 211
Object Programming Polygon Optimization

210 Chapter 8: Polygon and Polyline Objects
Quad Strips

A quad strip is a connected set of four-sided polygons. To take advantage of
accelerated quad strips, the connectivity should be set up so that the first and last
vertex for one quad are the same as the second and third of the previous quad. See the
figure below.

For example, to use a quad strip optimization for the polygons shown above, the
connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10 ,v11]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $

POLYGON=[4, 0, 1, 5, 4, $
4, 1, 2 ,6, 5, $
4, 2, 3, 7, 6, $
4, 4, 5, 9, 8, $
4, 5, 6, 10, 9, $
4, 6, 7, 11, 10])

An alternate connectivity list that still uses quad strip optimization can also be used
as in the following example, which orients each quad in the opposite direction of the
first example.

oPoly = OBJ_NEW('IDLgrPolygon', verts, $
POLYGON=[4, 4, 5, 1, 0, $

4, 5, 6, 2, 1, $
4, 6, 7, 3, 2, $
4, 8, 9, 5, 4, $
4, 9, 10, 6, 5,$
4, 10, 11, 7, 6])

Figure 8-1: Quad Strip Mesh

0 1 2 3

4 5 6 7

8 9 10 11
Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 211
Triangle Fans

A triangle fan is a set of connected triangles that all share a common vertex. To take
advantage of accelerated triangle fans, the connectivity should be set up so that the
first vertex in every triangle is the common vertex, and the second vertex is the same
as the last vertex of the previous triangle, as shown below.

For example, to use a triangle fan optimization for the polygons shown in the left side
of the figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $

POLYGON=[3, 0, 1, 2, $
3, 0, 2, 3, $
3, 0, 3, 4, $
3, 0, 4, 5])

Triangle Strips

A triangle strip is a set of connected triangles, each of which share two vertices with
the previous triangle. To take advantage of accelerated triangle strips, the
connectivity should be set up so that the first two vertices in every triangle must have
been in the previous triangle and ordered in the same direction (counter-clockwise or
clockwise) and the final vertex must be new, as shown in the right side of the
previous figure.

Figure 8-2: Triangle Fan Mesh (left) and Triangle Strip Mesh (right)

2 3 4

1 0 5

0 2 4

1 3 5
Object Programming Polygon Optimization

212 Chapter 8: Polygon and Polyline Objects
For example, to use the triangle strip optimization for the polygons shown in the
right-hand figure, the connectivity for the vertices should be as follows:

verts = [v0, v1, v2, v3, v4, v5]
oPoly = OBJ_NEW(IDLgrPolygon, verts, $

POLYGON=[3, 0, 1, 2, $
3, 2, 1, 3, $
3, 2, 3, 4, $
3, 4, 3, 5])

No limits are imposed on the number of meshes or types of meshes within any given
polygon object. A single POLYGON keyword value might contain any combination
of quad strips, triangle strips, triangle fans, or non-specialized polygons.

As the length of the strips or fans grows, and as the percentage of vertex connections
that are optimized by the rules described above increases, the performance upgrade
becomes more perceptible. The optimizations are a result of minimizing the time
required to perform vertex transforms. If the drawing of the polygons are otherwise
limited by fill-rate (as might occur on some systems if texture-mapping is being
applied, for instance), these optimizations may not be of significant benefit. In any
case, performance will not be hindered in any way by utilizing these specialized
meshes, so it is suggested that they be applied whenever possible.

Note
The IDLgrSurface object always takes advantage of the quad mesh optimization
automatically without programmer intervention.

Back-face Culling

For polygonal meshes that describe a closed shape (for example, a sphere), it is often
wasteful to spend any time rendering the polygons whose normal vector faces away
from the eye because it is known that the polygons whose normals face toward the
eye will obscure those back-facing polygons. Therefore, for efficiency, it may be
beneficial to employ back-face culling, which is simply the process of choosing to
skip the rasterization of any polygons whose normal vector faces away from the eye.

On an IDLgrPolygon object, set the REJECT property to a value of 1 to enable
back-face culling.
Polygon Optimization Object Programming

Chapter 8: Polygon and Polyline Objects 213
Normal Computations

For IDLgrPolygon objects, normal vectors are computed by default at each vertex by
averaging the normals of the polygons that share that vertex. These normals are then
used to compute illumination intensities across the surface of the polygon.
Computing default normals is a computationally expensive operation. Each time the
polygon is drawn, this computation will be repeated if the polygon has changed
significantly enough to warrant a new internal cache (for example, if the
connectivity, vertices, shading, or style have changed). In some cases, the normals do
not actually change as other modifications are made. In these cases, the expense of
default normal computation can be bypassed if the user provides the normals
explicitly (via the NORMALS keyword). These normals can be computed by using
the COMPUTE_MESH_NORMALS routine in the IDL Reference Guide. The
resulting normals, if passed in via the NORMALS keyword of the IDLgrPolygon
object, will be reused every time the polygon is drawn (without further computation)
until they are replaced explicitly by the user.
Object Programming Polygon Optimization

214 Chapter 8: Polygon and Polyline Objects
Polyline Objects

Polyline objects lines connect a series of points in two- or three-dimensional space.

Creating Polyline Objects

To create a polyline object, provide a 2-by-n or 3-by-n array (or two or three vectors)
containing the locations of the polyline’s constituent points to the IDLgrPolyline::Init
method. For example, the following statement creates a line from the origin, to the
point X = 1, Y = 2, then to the point X = 4, Y = 3:

mypolyline = OBJ_NEW('IDLgrPolyline', [[0,0], [1,2], [4,3]])

Setting vertex data upon initialization is the same as using the DATA property. You
can also use the POLYLINES property to define the object shape as described in
“Creating Polygon and Polyline Objects” on page 202.

See “IDLgrPolyline” (IDL Reference Guide) for complete reference information.

Using Polyline Objects

Polyline objects have numerous properties controlling how they are rendered. You
can set these properties when creating the polyline object, or use the SetProperty
method to the polyline object to change these properties after creation.

Symbols

You can specify a symbol to render at each point in the polyline’s path by setting the
SYMBOL property to the object reference of an IDLgrSymbol object (or to an array
of IDLgrSymbol objects). See “Symbol Objects” on page 176 for details.

Shading and Vertex Coloring

Polyline object can be shaded or their vertex points colored in the same manner as
polygon objects. See “Shading” and “Vertex Colors” in “Configuring Polygon
Objects” on page 204 for details.
Polyline Objects Object Programming

Chapter 8: Polygon and Polyline Objects 215
Polygon and Polyline Object Examples

These objects can be used as underlying structures for other objects (such as when
texture-mapping an image onto a polygon), or can create an independent
3-dimensional visualization of data as shown in the following examples:

• “Mapping an Image Object onto a Sphere” on page 132

• “Creating a Surface Mesh of an ROI Group” (Image Processing in IDL)

Polylines and polygons can also be used in plotting to represent plot data or support
the display of plot data as shown in the following examples:

• “DENDROGRAM” (IDL Reference Guide) contains an example that uses an
IDLgrPolyline

• “Custom Image Object Annotations” on page 236 uses polylines and polygons
to construct a custom legend colorbar
Object Programming Polygon and Polyline Object Examples

216 Chapter 8: Polygon and Polyline Objects
Polygon and Polyline Object Examples Object Programming

Chapter 9

Annotating an Object
Display
The following topics are covered in this chapter:
Annotating Object Graphic Displays 218
Text Objects . 219
Font Objects . 223
ROI Objects . 227

Legend Objects . 228
Colorbar Objects 231
Light Objects . 233
Custom Image Object Annotations 236
Object Programming 217

218 Chapter 9: Annotating an Object Display
Annotating Object Graphic Displays

Additional objects can be added to the main subjects of an object graphic display
(such as a plot, surface, image or volume) to provide explanatory notes or otherwise
enhance the information displayed. The objects discussed in this chapter are typically
used to further illustrate characteristics of the main subjects of a display. For
example, text objects can add descriptive titles, legend objects can distinguish plot
data, and light objects can reveal characteristics of surfaces or volumes.
Annotating Object Graphic Displays Object Programming

Chapter 9: Annotating an Object Display 219
Text Objects

Text objects contain string values that are drawn to the destination object at a location
you specify. You have control over the font used (via an IDLgrFont object), the angle
of the text baseline, and the vertical direction of the text.

Creating Text Objects

To create a text object, specify a string or an array of strings to the IDLgrText::Init
method when calling OBJ_NEW.

mytext = OBJ_NEW('IDLgrText', 'A Text String')

or

mytextarr = OBJ_NEW('IDLgrText', $
['First String', 'Second String', 'Third String'])

See “IDLgrText” (IDL Reference Guide) for details on creating text objects.

Using Text Objects

Creating text annotations in their simplest form—two-dimensional text displayed at a
given location—involves only specifying the text, and the location. For example, to
display the words Text String in a window in the default font, the following
statements suffice:

mywindow = OBJ_NEW('IDLgrWindow', DIMENSIONS=[400,400])
myview = OBJ_NEW('IDLgrView', VIEWPLANE_RECT=[0,0,10,10])
mymodel = OBJ_NEW('IDLgrModel')
mytext = OBJ_NEW('IDLgrText', 'Text String', LOCATION=[4,4], $

COLOR=[50,100,150])
myview->Add, mymodel
mymodel->Add, mytext
mywindow->Draw, myview

The text is drawn at the specified location, with the baseline parallel to the x-axis.

Location and Alignment

Specifying a location via the LOCATION property picks a point in space where the
text object will be placed. By default, text objects are aligned with their lower left
edge located at the point specified by the LOCATION property.

You can change the horizontal position of the text object with respect to the point
specified by LOCATION by changing the ALIGNMENT property to a floating-point
Object Programming Text Objects

220 Chapter 9: Annotating an Object Display
value between 0.0 and 1.0. The default value (0.0) aligns and left-justifies text at the
location specified. Setting ALIGNMENT to 1.0 right-justifies the text; setting it to
0.5 centers the text above the point specified. The vertical position with respect to
location can also be set using the VERTICAL_ALIGNMENT property. The default
value (0.0) bottom-justifies the text at the given location. A vertical alignment of 1.0
top-justifies the text.

3D Text and Text “On the Glass”

Text objects, like all graphics atoms, are located and oriented in three-dimensional
space. (We often ignore the third dimension when making simple plots and graphs—
in these cases we simply use the default z value of zero.) With text objects, however,
there is an option to project text on the glass.

Projecting text on the glass ensures that it is displayed as if it were in flat, two-
dimensional space no matter what its true orientation in three-dimensional space may
be. In cases where text objects may be rotated at arbitrary angles, projecting on the
glass ensures that the text will be readable.

To project text on the glass, set the ONGLASS property of the text object to a value
other than zero.

Figure 9-1: 3D Text and Text “On the Glass”
Text Objects Object Programming

Chapter 9: Annotating an Object Display 221
Baseline

The text baseline can be altered from its default orientation (parallel to the x-axis) by
setting the text object’s BASELINE property to a two- or three-element array. The
new baseline will be oriented parallel to a line drawn between the origin and the
coordinates specified. For example, the following statement makes the text baseline
parallel to a line drawn between the points [0, 0] and [1, 2]:

mytext->SetProperty, BASELINE=[1,2]

The following statement makes the baseline parallel to a line drawn between the
origin and a point located at [2, 1, 3]:

mytext->SetProperty, BASELINE=[2,1,3]

Notice that the orientation of the baseline is only an orientation; changing value of
the BASELINE property does not change the location of the text object.

Figure 9-2: Baseline
Object Programming Text Objects

222 Chapter 9: Annotating an Object Display
Upward Direction

In addition to the baseline orientation, you can control the upward direction of the
text object. (The upward direction is the direction defined by a vector pointing from
the origin to the point specified.) The upward direction defines the plane on which
text is drawn; by specifying a baseline and an upward direction, you define the plane.

Note
The upward direction does not specify a slant angle. That is, even if you specify a
direction that is not perpendicular to the baseline for the upward direction, the text
will still be perpendicular to the baseline. All that matters is the plane defined by the
baseline and upward direction.

For example, in the default situation, the baseline is oriented parallel to the x-axis,
and the upward direction is parallel to the y-axis, pointing in the positive y direction.

Warning
If the baseline and upward direction are coincident—that is, if they do not define a
plane on which to draw the text—IDL generates an error message.

Fonts

The type style and size of the characters displayed in a text object are controlled by
the FONT property. Set the FONT property equal to the object reference of an
IDLgrFont object to use that font’s properties for the text object. If no font object is
specified, IDL uses the default font (12 point Helvetica regular).

Font objects are discussed in “Font Objects” on page 223.

A Text Example

The rot_text.pro example creates a simple text string, rotates it around the y- and
z-axes using the BASELINE and UPDIR properties, and displays several different
fonts. Also see “Object Graphics Embedded Formatting Examples” on page 225.

Example Code
The procedure rot_text.pro is included in the examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering
rot_text at the IDL command prompt or view the file in an IDL Editor window
by entering .EDIT rot_text.pro.
Text Objects Object Programming

javascript:doIDL("rot_text")
javascript:doIDL(".edit rot_text.pro")

Chapter 9: Annotating an Object Display 223
Font Objects

Font objects allow you to specify the type style and size used when rendering objects
of the IDLgrText class. You can use either TrueType outline fonts or IDL’s built-in
Hershey vector fonts. IDL’s default font is 12 point Helvetica regular.

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey vector fonts will not be returned
as they are constant—see Appendix H, “Fonts” (IDL Reference Guide) for more
information. To return all of the TrueType fonts that can be displayed in a window
object (oWindow), use the following code:

fontname=oWindow->GetFontnames("*")
PRINT, fontname

See the destination object’s GetFontnames method for information on how to return
fonts that match specific characteristics.

TrueType Fonts

IDL provides five TrueType outline fonts for use in font objects: Courier, Helvetica,
Monospace Symbol, Symbol, and Times. Your system may support additional
TrueType fonts —use them in the same way as those supplied by IDL.

A string containing the font name and modifiers defines the characteristics of a font
object, as described in “Creating Font Objects” on page 224. The TrueType fonts
provided by IDL support the following modifiers:

Font Modifier

Courier bold, italic

Helvetica bold, italic

Monospace Symbol none

Symbol none

Times bold, italic

Table 9-1: TrueType Font Modifiers
Object Programming Font Objects

224 Chapter 9: Annotating an Object Display
Hershey Fonts

IDL supplies a set of vector fonts designed by Dr. A.J. Hershey. See “About Hershey
Vector Fonts” (Appendix H, IDL Reference Guide) for information on Hershey fonts.

Creating Font Objects

Fonts used by font objects are specified in a string constant constructed from a font
name and one or more optional modifiers. When you create a font object, assign the
font name string to the NAME property or use it as the IDLgrFont::Init Fontname
argument. See the following sections for an introduction to creating and configuring
font objects. See “IDLgrFont” (IDL Reference Guide) for all available options when
creating font objects.

Specifying a TrueType Font

The font name is the name by which your computer system knows the font (Times for
the Times Roman font, for example). Modifiers specify the weight, angle, and other
attributes of the font (bold specifies a weight, italic an angle). The font name string
looks like this:

'fontname*weight*angle*other_modifiers'

where other_modifiers can be any other font property supported by a given font, such
as a slant. For example, the font name string for Helvetica bold italic is:

'helvetica*bold*italic'

The font name string for Times Roman Regular is:

'times'

While the font name must come first in the font name string, the order in which the
modifiers are specified is not important. The following statement creates a font object
using a bold version of the Times Roman font, with a size of 20 points by replacing
the Fontname argument with 'times*bold':

myFont = OBJ_NEW('IDLgrFont', 'times*bold', SIZE=20)

See “TrueType Fonts” on page 223 for a list of supported modifiers.

Specifying a Hershey Vector Font

To create a font object using a vector Hershey font, use a string of the format
Hershey*fontnum where fontnum is the Hershey font’s index number. The
following statement creates a font object using the Duplex Roman Hershey font, with
a size of 14 points:
Font Objects Object Programming

Chapter 9: Annotating an Object Display 225
myHersheyFont = OBJ_NEW('IDLgrFont', NAME='hershey*5', SIZE=14)

See “Hershey Vector Font Samples” (Appendix H, IDL Reference Guide) for
descriptions of the Hershey fonts shipped with IDL.

Assigning a Font Object to a Text Object

To use a font object, use the FONT keyword to the IDLgrText::Init method (or
change the text object’s font via the SetProperty method):

myText = OBJ_NEW('IDLgrText', 'Ay, Carumba', FONT = myFont)

or

myText->SetProperty, STRING='Angstrom symbol: ' + STRING("305B), $
 FONT=myHersheyFont

This last example prints the Angstrom symbol by specifying an octal code. See “ISO
Latin 1 Encoding” (Appendix H, IDL Reference Guide) for details.

If no font object is specified, IDL uses the default font—12 point Helvetica.

Object Graphics Embedded Formatting Examples

Embedded formatting commands are in-line commands that allow you to position
text and change fonts within a single line of text. The following examples use both
the positioning commands and the font selection commands. All available embedded
formatting commands are listed in “Embedded Formatting Commands” (Appendix
H, IDL Reference Guide).

Tip
Set the ENABLE_FORMATTING property on the IDLgrText object to use
formatting commands in Object Graphics.

For example, the following lines of code produce the same output as the Direct
Graphics example output shown in “Formatting Command Examples” (Appendix H,
IDL Reference Guide). This example applies embedded formatting commands that
control text positioning.

oText = OBJ_NEW('IDLgrText', /ENABLE_FORMATTING)
oText->SetProperty, STRING='!LLower!S!EExponent!R!IIndex' + $
 '!N Normal!S!EExp!R!IInd!N!S!U Up' + $
 ' !R!D Down!N!S!A Above!R!B Below'
XOBJVIEW, oText

You can also change what fonts are used within the text string. For example, you can
use the special math symbols available in the Hershey vector font character set (Font
9). When you use the !M formatting command, this applies the font change to the
Object Programming Font Objects

226 Chapter 9: Annotating an Object Display
single character immediately following the !M. Subsequent characters return to the
preceding font. The following example produces the same equation as that shown in
“A Complex Equation” (Appendix H, IDL Reference Guide).

; String to produce equation:
SS = '!6F(s) = (2!4p)!e-1/2!n !mi!s!a!e!m' + STRING("44B) +$
 '!r!b!i ' + '-!m' + STRING("44B) + $
 '!nF(x)e !e-i2!4p!3xs!ndx'
myHersheyFont = OBJ_NEW('IDLgrFont', NAME='hershey*5', SIZE=24)
otext = OBJ_NEW('IDLgrText', /ENABLE_FORMATTING)
oText->SetProperty, STRING=ss, FONT=myHersheyFont
XOBJVIEW, oText

The font object in this example must use a Hershey font to create the desired results.
If no font is specified, the default 12 point Helvetica (not a vector font) is used, and
the formatting commands create a different result. See “Changing Fonts within a
String” (Appendix H, IDL Reference Guide), which defines how formatting
commands are applied to Hershey vector and TrueType fonts.

See “Text Objects” on page 219 for details on creating Text objects.

Font Objects and Resource Use

Because font objects are relatively complex, each font object uses a relatively large
amount of system resources. As a result, it is better to re-use an existing font object
than to create a second identical font object.
Font Objects Object Programming

Chapter 9: Annotating an Object Display 227
ROI Objects

A region of interest (ROI) is an area of an image defined for further analysis or
processing. ROIs can be defined programmatically and interactively. The XROI
utility lets you interactively define single or multiple regions from an image using the
mouse. The utility displays defined ROIs and can output ROI data to specified ROI
objects. Any ROI object, whether defined programmatically or interactively, can
undergo further processing as an analysis-oriented IDLanROI object, or can be used
for display as an IDLgrROI object.

See “Regions of Interest” under the functional category, “Image Processing” (IDL
Quick Reference) for a list or ROI creation and manipulation routines. Also see
“Working with Regions of Interest (ROIs)” (Image Processing in IDL) for extensive
examples.
Object Programming ROI Objects

228 Chapter 9: Annotating an Object Display
Legend Objects

Legend objects provide a simple interface for displaying legends. The legend itself
consists of a (filled and/or framed) box around one or more legend items (arranged in
a single column) and an optional title string. Each legend item consists of a glyph
patch positioned to the left of a text string. The glyph patch is drawn in a square
which is a fraction of the legend label font height.

Creating Legend Objects

To create a legend object, you must provide an array of item names, along with arrays
of symbols, line styles, or objects, along with arrays of attributes (such as color or
thickness) for the items. The following simple example creates a legend object with
two items. The first item (Cows) is represented by the predefined symbol number
four (a diamond), and the second item (Weasels) is represented by a line-filled box.

itemNameArr = [’Cows’, ’Weasels’]
mytitle = OBJ_NEW(’IDLgrText’, ’My Legend’)
mysymbol = OBJ_NEW(’IDLgrSymbol’, 4)
mypattern = OBJ_NEW(’IDLgrPattern’, 1)
myLegend = OBJ_NEW(’IDLgrLegend’, itemNameArr, TITLE=mytitle, $

ITEM_TYPE=[0,1], ITEM_OBJECT=[mysymbol, mypattern], $
/SHOW_OUTLINE)

See “IDLgrLegend” (IDL Reference Guide) for details on creating legend objects.
See the next section for a more detailed explanation of the elements of the legend.

Using Legend Objects

The legend object allows you to define the annotations that correspond to the array of
strings used as legend names in a variety of ways. The length of the argument string
array is used to determine the number of items to be displayed. Each item is defined
by taking one element from the ITEM_NAME, ITEM_TYPE, ITEM_LINESTYLE,
ITEM_THICK, ITEM_COLOR, and ITEM_OBJECT vectors, if they are defined. If
the number of items (as defined by the argument array or the ITEM_NAME array)
exceeds any of the attribute vectors, the attribute defaults will be used for any
additional items.

Specify a list of item names either via the argument to IDLgrLegend::Init, or via the
ITEM_NAME property. The length of this array determines the size of the legend.

Use the ITEM_TYPE property to define whether an element in the legend is
represented by a line (with an optional plotting symbol) or by a filled or unfilled box.
Legend Objects Object Programming

Chapter 9: Annotating an Object Display 229
There should be one element of the ITEM_TYPE array per element in the input array
or ITEM_NAME array.

Use the ITEM_LINESTYLE and ITEM_THICK properties to define the style and
thickness of lines used as legend items. These arrays are ignored for elements that are
not lines. Use the ITEM_COLOR property to specify the color of each legend
element independently.

Use the ITEM_OBJECT property to specify that a graphic object be used as an
annotation.

Dimensions

Until the legend is drawn to the destination object, the [XYZ]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation.

The following example builds and displays a three-element legend.

; Create a window, view, and model:
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')
myview->Add, mymodel
; Create the legend with two items:
itemNameArr = ['Original Data', 'Histogram Plot', $

'Boxcar-filtered (Width=5)']
mytitle = OBJ_NEW('IDLgrText', 'Plot Legend')
mysymbol = OBJ_NEW('IDLgrSymbol', 5, SIZE=[0.3, 0.3])
myLegend = OBJ_NEW('IDLgrLegend', itemNameArr, TITLE=mytitle, $

BORDER_GAP=0.8, GAP=0.5, $
ITEM_TYPE=[0,1], ITEM_LINESTYLE=[0,4,2], $
ITEM_OBJECT=[mysymbol, OBJ_NEW(), OBJ_NEW()], $
GLYPH_WIDTH=2.0, /SHOW_OUTLINE)

; Add the legend to the model:
mymodel->Add, mylegend
; Center the legend in the window.
; Note that you must use the ComputeDimensions method
; to get the dimensions of the legend.
dims = mylegend->ComputeDimensions(mywindow)
mymodel->Translate, -(dims[0]/2.), -(dims[1]/2.), 0
; Draw the legend:
mywindow->Draw, myview
Object Programming Legend Objects

230 Chapter 9: Annotating an Object Display
Figure 9-3: Legend Object
Legend Objects Object Programming

Chapter 9: Annotating an Object Display 231
Colorbar Objects

The IDLgrColorbar object consists of a color-ramp with an optional framing box and
annotation axis. The object can be horizontal or vertical.

Creating Colorbar Objects

To create a colorbar object, you must provide a set of red, green, and blue values to
be displayed in the bar. Axis values are determined from the number of elements in
the color arrays unless otherwise specified via the TICKVALUES property. The
following creates a colorbar one tenth of the window dimension wide by four-tenths
of the window dimension high, with a red-green-blue color ramp:

mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')
barDims = [0.1, 0.4]
redValues = BINDGEN(256)
greenValues = redValues
blueValues = REVERSE(redValues)
mycolorbar = OBJ_NEW(’IDLgrColorbar’, redValues, $

greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

See “IDLgrColorbar” (IDL Reference Guide) for details on creating colorbar objects.
See the next section for a more detailed explanation of the elements of the legend.

Using Colorbar Objects

The colorbar object allows you to define the size, colors, and various annotations.

Dimensions

Until the legend is drawn to the destination object, the [XYZ]RANGE properties will
be zero. Because you must know the size of the legend object in order to scale it
properly for your window, you must use the ComputeDimensions method on the
legend object to get the data dimensions of the legend prior to a draw operation.

The following example builds and displays the colorbar described above:

; Create a window, view, and model:
mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrModel')
myview->Add, mymodel
; Create the colorbar. Make the bar one tenth of
; the window size horizontally and four tenths of
; the window size vertically. Show the axis values (using the
Object Programming Colorbar Objects

232 Chapter 9: Annotating an Object Display
; default axis annotations) and draw an outline around the bar.
mytitle = OBJ_NEW('IDLgrText', 'My Colorbar')
barDims = [0.1, 0.4]
redValues = BINDGEN(256)
greenValues = redValues
blueValues = REVERSE(redValues)
mycolorbar = OBJ_NEW('IDLgrColorbar', redValues, $

greenValues, blueValues, TITLE=mytitle, $
DIMENSIONS=barDims, /SHOW_AXIS, /SHOW_OUTLINE)

mymodel->Add, mycolorbar
; Center the colorbar in the window.
; Note that you must use the ComputeDimensions method to
; get the dimensions of the colorbar.
barPlusTextDims = mycolorbar->ComputeDimensions(mywindow)
mymodel->Translate, -barDims[0]+(barPlusTextDims[0]/2.), $

-barDims[1]+(barPlusTextDims[1]/2.), 0
; Draw the colorbar:
mywindow->Draw, myview

For more examples of IDLgrColorbar use, see “Displaying Indexed Images with
Object Graphics” in the Examples section of “IDLgrPalette::Init” (IDL Reference
Guide).

Also see “Custom Image Object Annotations” on page 236 for information on
configuring a colorbar legend using IDLgrPolygon, IDLgrPolyline and IDLgrText
objects.

Figure 9-4: Colorbar Object
Colorbar Objects Object Programming

Chapter 9: Annotating an Object Display 233
Light Objects

Objects of the IDLgrLight class represent sources of illumination for graphic objects.
Although light objects are not rendered themselves, they are part of the model tree
and thus can be transformed along with the graphic objects they illuminate.

If no light sources are specified for a given model, a default ambient light source is
supplied. This allows you to display many objects without explicitly creating a light
source. The use of only ambient light becomes problematic, however, when solid
surfaces and other objects constructed from polygons are displayed. With only
ambient lighting, all solid surfaces appear flat—in fact, they appear to be single two-
dimensional polygons rather than objects in three-dimensional space.

Note
Graphic objects do not automatically cast shadows onto other objects.

Creating Light Objects

There are no arguments to the IDLgrLight::Init method. Keywords to the Init method
allow you to control a number of properties of the light object, including the
attenuation, color, cone angle (area of coverage), direction, focus, intensity, location,
and type of light.

The following statement creates a default light object. The default light object is a
white positional light, located at the origin.

mylight = OBJ_NEW('IDLgrLight')

There are four types of light objects available. Set the TYPE property of the light
object to one of the following integer values:

• 0 = Ambient light. An ambient light is a universal light source, which has no
direction or position. An ambient light illuminates every surface in the scene
equally, which means that no edges are made visible by contrast. Ambient
lights control the overall brightness and color of the entire scene. If no value is
specified for the TYPE property, an ambient light is created.

• 1 = Positional light. A positional light supplies divergent light rays, and will
make the edges of surfaces visible by contrast if properly positioned. A
positional light source can be located anywhere in the scene.

• 2 = Directional light. A directional light supplies parallel light rays. The effect
is that of a positional light source located at an infinite distance from scene.
Object Programming Light Objects

234 Chapter 9: Annotating an Object Display
• 3 = Spot light. A spot light illuminates only a specific area defined by the
light’s position, direction, and the cone angle, or angle which the spotlight
covers.

See “IDLgrLight” (IDL Reference Guide) for details on creating light objects.

Configuring Light Objects

In addition to the type of light source, you can control several other properties of a
light object. The following example creates a solid surface object and displays it first
with only ambient lighting, then adds various light objects to the scene.

Note
The SET_VIEW function is discussed in “Finding an Appropriate View Volume”
on page 78.

Begin by creating some data, the surface object, and supporting objects:

zdata = DIST(40)

mywindow = OBJ_NEW('IDLgrWindow')
myview = OBJ_NEW('IDLgrView')
mymodel = OBJ_NEW('IDLgrMODEL')
mysurf = OBJ_NEW('IDLgrSurface', zdata, STYLE=2)

; Create the object hierarchy:
myview->Add, mymodel
mymodel->Add, mysurf

; Retrieve the X, Y, and Z ranges from the surface object:
mysurf->GetProperty, XRANGE=xr, YRANGE=yr, ZRANGE=zr

; Convert x, y, and z ranges to normalized coordinates.
xnorm = [-xr[0]/(xr[1]-xr[0]), 1/(xr[1]-xr[0])]
ynorm = [-yr[0]/(yr[1]-yr[0]), 1/(yr[1]-yr[0])]
znorm = [-zr[0]/(zr[1]-zr[0]), 1/(zr[1]-zr[0])]

mysurf->SETPROPERTY, XCOORD_CONV=xnorm, $
YCOORD_CONV=ynorm, ZCOORD_CONV=znorm

; Rotate the surface to a convenient orientation:
mymodel->Rotate, [1,0,0], -90
mymodel->Rotate, [0,1,0], 30
mymodel->Rotate, [1,0,0], 30

; Use the SET_VIEW routine to set an appropriate viewplane
; rectangle and zclip region for the view:
Light Objects Object Programming

Chapter 9: Annotating an Object Display 235
SET_VIEW, myview, mywindow

; Draw the contents of the view:
mywindow->Draw, myview

Once the surface object is drawn, we see that there is no definition or apparent three-
dimensional shape to the surface. If we add a positional light one unit in the Z
direction above the XY origin, however, details appear:

mylight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[0,0,1])
mymodel->Add, mylight
mywindow->Draw, myview

We can continue to alter the lighting characteristics by changing the properties of the
existing light or by adding more light objects. (You can have up to eight lights in a
given view object.) We can change the color:

mylight->SetProperty, COLOR=[200,0,200]
mywindow->Draw, myview

We can change the intensity of the light:

mylight->SetProperty, INTENSITY=0.7
mywindow->Draw, myview

Note
Also see “Volume Lighting” on page 197 for volume object specific lighting
information.

Optimizing Light Object Use

Lighting computations are generally set up to compute the light intensity based on the
normal vector for the polygon. If the polygon normal faces away from the eye, the
lighting model will likely determine that the light intensity for that polygon is zero.
When the polygonal mesh being rendered is a closed surface, this is not a problem
because the back-facing polygons will always be obscured. However, when the
polygon mesh represents an open shape (for which back-facing polygons may be
visible), the dark appearance of these polygons may hinder the user’s perception of
the overall shape. In such a case, two-sided lighting can be useful. Two-sided lighting
is the process of reversing the normals for all back-facing polygons before computing
the light intensities for that polygon.

In IDL’s Object Graphics, two-sided lighting is enabled by default. When the
additional lighting calculation is not required, one-sided lighting can be used to
improve rendering performance. On an IDLgrModel object, set the LIGHTING
property to a value of 1 to enable one-sided lighting.
Object Programming Light Objects

236 Chapter 9: Annotating an Object Display
Custom Image Object Annotations

Many images are annotated to explain certain features or highlight specific details.
Color annotations are more noticeable than plain black or white annotations. This
section includes the following examples:

• “Annotating Indexed Image Objects”

• “Annotating RGB Image Objects” on page 240

Annotating Indexed Image Objects

When using Object Graphics, the original color table does not need to be modified.
The color table (palette) pertains only to the image object not the window, view,
model, polygon, or text objects. Color annotations are usually applied to label each
color level within the image or to allow color comparisons. This section shows how
to label each color level on an indexed image in Object Graphics. As an example, an
image of average world temperature is imported from the worldtmp.png file. This
file does not contain a color table associated with this image, so a pre-defined color
table will be applied. This table provides the colors for the polygons and text used to
make a colorbar for this image. Each polygon uses the color of each level in the table.
The text represents the average temperature (in Celsius) of each level. Complete the
following steps for a detailed description of the process.

Example Code
See applycolorbar_indexed_object.pro in the examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.
Run the example procedure by entering applycolorbar_indexed_object at
the IDL command prompt or view the file in an IDL Editor window by entering
.EDIT applycolorbar_indexed_object.pro.

1. Determine the path to the worldtmp.png file:

worldtmpFile = FILEPATH('worldtmp.png', $
SUBDIRECTORY = ['examples', 'demo', 'demodata'])

2. Import the image from the worldtmp.png file into IDL:

worldtmpImage = READ_PNG(worldtmpFile)

3. Determine the size of the imported image:

worldtmpSize = SIZE(worldtmpImage, /DIMENSIONS)

4. Initialize the display objects necessary for an Object Graphics display:
Custom Image Object Annotations Object Programming

javascript:doIDL("applycolorbar_indexed_object")
javascript:doIDL(".edit applycolorbar_indexed_object.pro")

Chapter 9: Annotating an Object Display 237
oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [worldtmpSize[0], worldtmpSize[1]], $
TITLE = 'Average World Temperature (in Celsius)')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0, 0, worldtmpSize[0], $
worldtmpSize[1]])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the palette object, load the Rainbow18 color table into the palette,
and then apply the palette to an image object:

oPalette = OBJ_NEW('IDLgrPalette')
oPalette -> LoadCT, 38
oImage = OBJ_NEW('IDLgrImage', worldtmpImage, $

PALETTE = oPalette)

6. Add the image to the model, then add the model to the view, and finally draw
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following figure is displayed.

Before applying the color polygons and text of each level, you must first
initialize their color values and their locations. The Rainbow18 color table has

Figure 9-5: Temperature Image and Rainbow18 Color Table (Object Graphics)
Object Programming Custom Image Object Annotations

238 Chapter 9: Annotating an Object Display
only 18 different color levels, but still has 256 elements. You can use the
INDGEN routine to make an array of 18 elements ranging from 0 to 17 in
value, where each element contains the index of that element. Then you can
use the BYTSCL routine to scale these values to range from 0 to 255. The
resulting array contains the initial color value (from 0 to 255) of the associated
range (from 0 to 17, equalling 18 elements).

7. Initialize the color level parameter:

fillColor = BYTSCL(INDGEN(18))

8. Initialize the average temperature of each level, which directly depends on the
initial color value of each range. Temperature is linearly scaled to range from
-60 to 40 Celsius. You can convert the resulting temperature value to a string
variable to be used as text:

temperature = STRTRIM(FIX(((20.*fillColor)/51.) - 60), 2)

Note
When the fillColor variable in the previous statement is multiplied by the
floating-point value of 20 (denoted by the decimal after the number), the
elements of the array are converted from byte values to floating-point values.
These elements are then converted to integer values with the FIX routine so
the decimal part will not be displayed. The STRTRIM routine converts the
integer values to string values to be displayed as text. The second argument
to STRTRIM is set to 2 to note the leading and trailing black values should be
trimmed away when the integer values are converted to string values.

With the polygon color and text now defined, you can determine their
locations. You can use a polygon object to draw each polygon and text objects
to display each element of text. The process is repetitive from level to level, so
a FOR/DO loop is used to display the entire colorbar. Since each polygon and
text is drawn individually within the loop, you only need to determine the
location of a single polygon and an array of offsets for each step in the loop.
The following two steps describe this process.

9. Initialize the polygon and the text location parameters. Each polygon is 35
pixels in width and 18 pixels in height. The offset will move the y-location 18
pixels every time a new polygon is displayed:

x = [5., 40., 40., 5., 5.]
y = [5., 5., 23., 23., 5.] + 5.
offset = 18.*FINDGEN(19) + 5.

10. Initialize the polygon and text objects:
Custom Image Object Annotations Object Programming

Chapter 9: Annotating an Object Display 239
oPolygon = OBJARR(18)
oText = OBJARR(18)
FOR i = 0, (N_ELEMENTS(oPolygon) - 1) DO BEGIN & $

oPolygon[i] = OBJ_NEW('IDLgrPolygon', x, $
y + offset[i], COLOR = fillColor[i], $
PALETTE = oPalette) & $
oText[i] = OBJ_NEW('IDLgrText', temperature[i], $
LOCATIONS = [x[0] + 3., y[0] + offset[i] + 3.], $
COLOR = 255*(fillColor[i] LT 255), $
PALETTE = oPalette) & $

ENDFOR

Note
The & after BEGIN and the $ allow you to use the FOR/DO loop at the IDL
command line. These & and $ symbols are not required when the FOR/DO
loop in placed in an IDL program as shown in
ApplyColorbar_Indexed_Object.pro in the
examples/doc/objects subdirectory of the IDL installation.

11. Add the polygons and text to the model, then add the model to the view, and
finally redraw the view in the window:

oModel -> Add, oPolygon
oModel -> Add, oText
oWindow -> Draw, oView

The following figure displays the colorbar annotation applied to the image.
Object Programming Custom Image Object Annotations

240 Chapter 9: Annotating an Object Display
12. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view and the palette
objects:

OBJ_DESTROY, [oView, oPalette]

Annotating RGB Image Objects

When using Object Graphics, colors can be defined just by the values of their red,
green, and blue components. In this example, a color spectrum of additive and
subtractive primary colors will be drawn on an RGB image for comparison with the
colors in that image. The glowing_gas.jpg file (which is provided by the Hubble
Heritage Team, made up of AURA, STScI, and NASA) contains an RGB image of an
expanding shell of glowing gas surrounding a hot, massive star in our Milky Way
Galaxy. This image contains all the colors of this spectrum. Complete the following
steps for a detailed description of the process.

Example Code
See applycolorbar_rgb_object.pro in the examples/doc/objects
subdirectory of the IDL installation directory for code that duplicates this example.

Figure 9-6: Temperature Image and Colorbar (Object Graphics
Custom Image Object Annotations Object Programming

Chapter 9: Annotating an Object Display 241
Run the example procedure by entering applycolorbar_rgb_object at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
applycolorbar_rgb_object.pro.

1. Determine the path to the glowing_gas.jpg file:

cosmicFile = FILEPATH('glowing_gas.jpg', $
SUBDIRECTORY = ['examples', 'data'])

2. Import the image from the glowing_gas.jpg file into IDL:

READ_JPEG, cosmicFile, cosmicImage

3. Determine the size of the imported image. The image contained within this file
is pixel-interleaved (the color information is contained within the first
dimension). You can use the SIZE routine to determine the other dimensions
of this image:

cosmicSize = SIZE(cosmicImage, /DIMENSIONS)

4. Initialize the display objects required for an Object Graphics display:

oWindow = OBJ_NEW('IDLgrWindow', RETAIN = 2, $
DIMENSIONS = [cosmicSize[1], cosmicSize[2]], $
TITLE = 'glowing_gas.jpeg')

oView = OBJ_NEW('IDLgrView', $
VIEWPLANE_RECT = [0., 0., cosmicSize[1], $
cosmicSize[2]])

oModel = OBJ_NEW('IDLgrModel')

5. Initialize the image object. The INTERLEAVE keyword is set to 0 because the
RGB image is pixel-interleaved:

oImage = OBJ_NEW('IDLgrImage', cosmicImage, $
INTERLEAVE = 0, DIMENSIONS = [cosmicSize[1], $
cosmicSize[2]])

6. Add the image to the model, then add the model to the view, and finally draw
the view in the window:

oModel -> Add, oImage
oView -> Add, oModel
oWindow -> Draw, oView

The following image contains all of the colors of the additive and subtractive
primary spectrum. A colorbar annotation can be added to compare the colors
of that spectrum and the colors within the image. The color of each box is
defined in the following array.
Object Programming Custom Image Object Annotations

javascript:doIDL("applycolorbar_rgb_object")
javascript:doIDL(".edit applycolorbar_rgb_object.pro")
javascript:doIDL(".edit applycolorbar_rgb_object.pro")

242 Chapter 9: Annotating an Object Display
You can use the following to determine the color and location parameters for
each polygon.

7. Initialize the color parameters:

fillColor = [[0, 0, 0], $; black
[255, 0, 0], $; red
[255, 255, 0], $; yellow
[0, 255, 0], $; green
[0, 255, 255], $; cyan
[0, 0, 255], $; blue
[255, 0, 255], $; magenta
[255, 255, 255]] ; white

8. After defining the polygon colors, you can determine their locations. Initialize
polygon location parameters:

x = [5., 25., 25., 5., 5.]
y = [5., 5., 25., 25., 5.] + 5.
offset = 20.*FINDGEN(9) + 5.

The x and y variables pertain to the x and y locations (in pixel units) of each
box of color. The offset maintains the spacing (in pixel units) of each box.
Since the image is made up of mostly a black background, the x border of the
colorbar is also determined to draw a white border around the polygons.

Figure 9-7: Cosmic RGB Image (Object Graphics)
Custom Image Object Annotations Object Programming

Chapter 9: Annotating an Object Display 243
9. Initialize location of colorbar border:

x_border = [x[0] + offset[0], x[1] + offset[7], $
x[2] + offset[7], x[3] + offset[0], x[4] + offset[0]]

The y border is already defined by the y variable.

These parameters are used when initializing the polygon and polyline objects
These objects will be used draw the boxes of the color spectrum and the
colorbar border. Each polygon is 20 pixels wide and 20 pixels high. The offset
will move the y-location 20 pixels every time a new polygon is displayed.

10. Initialize the polygon objects. The process is repetitive from level to level, so a
FOR/DO loop will be used to display the entire colorbar. Since each polygon is
drawn individually within the loop, you only need to determine the location of
a single polygon and an array of offsets for each step in the loop:

oPolygon = OBJARR(8)
FOR i = 0, (N_ELEMENTS(oPolygon) - 1) DO oPolygon[i] = $

OBJ_NEW('IDLgrPolygon', x + offset[i], y, $
COLOR = fillColor[*, i])

11. The colorbar border is produced with a polyline object. This polyline object
requires a z variable to define it slightly above the polygons and image. The z
variable is required to place the polyline in front of the polygons. Initialize the
polyline (border) object:

z = [0.001, 0.001, 0.001, 0.001, 0.001]
oPolyline = OBJ_NEW('IDLgrPolyline', x_border, y, z, $

COLOR = [255, 255, 255])

12. The polygon and polyline objects can now be added to the model and then
displayed (re-drawn) in the window. Add the polygons and polyline to the
model, then add the model to the view, and finally redraw the view in the
window:

oModel -> Add, oPolygon
oModel -> Add, oPolyline
oWindow -> Draw, oView

The following figure shows the colorbar annotation applied to the image.
Object Programming Custom Image Object Annotations

244 Chapter 9: Annotating an Object Display
13. Clean up object references. When working with objects always remember to
clean up any object references with the OBJ_DESTROY routine. Since the
view contains all the other objects, except for the window (which is destroyed
by the user), you only need to use OBJ_DESTROY on the view object:

OBJ_DESTROY, oView

Figure 9-8: Specified Colors on an RGB Image (Object Graphics)
Custom Image Object Annotations Object Programming

Chapter 10

Animating Objects
The following topics are covered in this chapter:
Overview of Object Animation 246
Controlling the Animation Rate 250
Configuring an Animation Model Object . 248

Designing a Behavior Object 251
Factors Affecting Animation Performance 253
Example: Interactive Cine Animation . . . 255
Object Programming 245

246 Chapter 10: Animating Objects
Overview of Object Animation

The animation functionality in IDL lets you draw a series of images in rapid
succession, the speed of which has no limit other than that of system capabilities and
graphics hardware. You can easily control the rate and order of the image display, or
synchronize several displays. You can also display overlays that contain other types
of information (such as text, ROIs, or contours) that are either specific to the
currently displayed image or common to all displayed images. In addition to images,
other objects such as surface and volume objects can also be animated.

The key to this flexibility is due to the fact that animation capabilities are provided in
part by an IDLgrModel object, to which you can add any combination of graphic
objects. As shown in the following figure, the object hierarchy for animation is very
similar to a standard window-scene-view-model hierarchy of a typical display. When
the animation model is used in conjunction with an IDLitWindow and a custom
behavior object, the animation display possibilities are nearly limitless.

Figure 10-1: Object Interaction in Animation Support
Overview of Object Animation Object Programming

Chapter 10: Animating Objects 247
While the graphics tree of an animation display is very similar to a standard display,
it is important to note the differences. Animation relies on an IDLitWindow (not
IDLgrWindow), which has a built-in timer mechanism, and an IDLgrModel object
that has an awareness of “Active Position” rendering. There is also a user-defined
object that determines how the contents in the animation model are modified. This
behavior object can incorporate any action, but it will commonly iterate through a
series of images or transform a model object in response to a timer signal received
from the window. See the following topics for more information on adding animation
functionality to a program or application:

• “Configuring an Animation Model Object” on page 248 — describes how
IDLgrModel properties enable animation

• “Controlling the Animation Rate” on page 250 — describes how to
incorporate behavior objects, and how to set IDLgrWindow methods and
parameters to start, stop, and control the rate of an animation

• “Designing a Behavior Object” on page 251 — describes the most important
elements of a behavior object, and provides access to two working animation
examples (a simple Cine loop, and a timer-based surface rotation)

For an example that incorporates animation elements into a widget application that
lets you interactively control the playback of a series of image frames, see “Example:
Interactive Cine Animation” on page 255.

Note
For information on how scene contents, image sizes, and display refresh rates
influence animation performance, see “Factors Affecting Animation Performance”
on page 253.
Object Programming Overview of Object Animation

248 Chapter 10: Animating Objects
Configuring an Animation Model Object

An IDLgrModel object that supports animation acts as a container for any number of
objects. However, instead of displaying all objects when the model is drawn, a model
object that supports animation lets you instruct the object to draw only one of the
objects in its container. For example, this allows you to display a succession of single
images from a series of images that has been added to the animation model.

To create a model object that supports animation, set the RENDER_METHOD
property value to 1 to display single objects from the model collection. Use the
ACTIVE_POSITION property of the model, a zero-based index into the model
collection, to define what object to display. The default RENDER_METHOD value
(0), draws all objects in a model. If your animation model contains a single object
(e.g., when you are rotating a surface), you do not need to set the
RENDER_METHOD property.

The index of the item to draw does not automatically increment when the model is
drawn, so redrawing the scene graph always draws the same content. This maintains
the window contents when the window is refreshed or resized. Therefore, the model
object must be explicitly told which item to draw. The logic that determines which
item to draw is left to the application and is typically encapsulated in a user-defined
behavior class. See “Designing a Behavior Object” on page 251 for more
information.

Using Multiple Models

It is suggested that you create a main-level display model (that renders in the
traditional all-object fashion) in addition to the animation model (that sets the
RENDER_METHOD property). This compartmentalization provides more flexibility
in terms of display content. For example, suppose you have a Cine display. The main-
level display model could contain a text object that is displayed on all image frames.
If you did not have the main-level model, the text would only appear as part of the
Cine, according to its position in the animation model.

If you are adding more than just images to an animation model (e.g., you want a
contour or ROI overlaying an image), then you can create additional sub-models.
These are useful when each frame of an animation is a composite of several
Configuring an Animation Model Object Object Programming

Chapter 10: Animating Objects 249
individual, data-specific objects. The following figure provides a simple illustration
of a possible model hierarchy in animation.

Typically, images can be added directly to a model object. However, if your
application provides a way to interactively change the properties of the images (e.g.,
by filtering or modifying the color table), you should add the images to an object
collection. You can then pass a pointer to this object array, and access the images
when needed. This is significantly easier than accessing the image data from the
animation model. The following short segment of code shows such an image
collection, oImageColl, and the animation model, oAnimationModel:

; Access the image data.
head = READ_BINARY(FILEPATH('head.dat', $
 SUBDIRECTORY=['examples','data']), $
 DATA_DIMS=[80,100, 57])

; Initialize an object array with dimensions equal to the
; number of images in the series.
oImageColl = OBJARR(57)

; Create the image objects, add each to the image collection and
; the animation model.
FOR i=0, 56 DO BEGIN

oImageColl[i] = OBJ_NEW('IDLgrImage', head[*,*,i],
PALETTE=oPalette, /INTERP)

oAnimationModel->Add, oImageColl[i]
ENDFOR

Figure 10-2: Possible Model Object Hierarchy in an Animation Display
Object Programming Configuring an Animation Model Object

250 Chapter 10: Animating Objects
Controlling the Animation Rate

A custom behavior object typically controls the display of objects in a model that
supports animation. However, it is the IDLitWindow object that controls the timing
of the animation, and notifies the behavior object that it is time to initiate an action.
To define what behaviors are initiated when a timer event occurs, add one or more
behavior objects to the AddWindowEventObserver method observer list.

To enable timer events for a window, you need to use the SetEventMask method.
This effectively lets you to turn on or turn off an animation by enabling or disabling a
window’s ability to respond to timer events. (Use the GetEventMask method to
determine which events are enabled in a window.)

The SetTimerInterval method determines the animation rate. Use the
SetTimerInterval method to set a value that specifies how many seconds pass before
the next timer event occurs. In the following sample code, oAnimBehavior is the
custom behavior object, oAnimationModel is the model that contains the
animation, and oWin is an IDLitWindow object.

; Create a custom animation object and initialize it with
; the animation model. Add the new object to the list
; of window observers and set the display rate (10 frames
; per second).
oAnimBehavior = OBJ_NEW('MyAnimation', oAnimationModel)
oWin->AddWindowEventObserver, oAnimBehavior
oWin->SetTimerInterval, 0.1

; Play the animation.
oWin->SetEventMask, /TIMER_EVENTS

To turn off an animation, set TIMER_EVENTS equal to 0.

The SetTimerInterval method interval value determines how often an IDLitWindow
object calls the OnTimer method for the behavior objects in the observer list.
Therefore, each animation behavior object must implement the OnTimer method. See
“Designing a Behavior Object” on page 251 for more information.
Controlling the Animation Rate Object Programming

Chapter 10: Animating Objects 251
Designing a Behavior Object

A behavior object is an instance of a custom class that controls the display of the
object(s) contained in a model object that supports animation. This behavior object
determines what action to take in response to a timer event. When a timer event
occurs, the window object calls the OnTimer method of each window observer (each
behavior object) that implements it. The following figure shows the interaction
between the window and a behavior object.

In the example of a Cine, the behavior object’s OnTimer method tells the model
object which model or graphic to display the next time the scene is drawn. The
behavior object completes its action by signaling the window object to draw the
scene with the updated model. The system is quiescent until the next timer interval
expires, at which point the process begins again. In widget applications, widget
events and other application processing may occur during the quiet time.

The OnTimer method of the behavior object need not be complex. The following
simple OnTimer method of the user-defined behavior object, MyAnimation, simply
iterates through the frames in an image series. The OnTimer method parameter
specifies the IDLitWindow object in which the timer event occurred.

Figure 10-3: Interaction Between Window, Behavior Object, and Animation
Model
Object Programming Designing a Behavior Object

252 Chapter 10: Animating Objects
PRO MyAnimation::OnTimer, oWin

; Add one to the current frame number.
self.currentFrame++

; Iterate through the image frames. Define the frame to display
; by setting the ACTIVE_POSTION property on the model.
IF self.currentFrame GE self.oAnimationModel->Count() THEN $

self.currentFrame = 0
self.oAnimationModel->SetProperty, $

ACTIVE_POSITION=self.currentFrame

; Draw the scene.
oWin->Draw

END

Example Code
For the simple Cine animation example, see animation_image_doc.pro in the
examples/doc/objects subdirectory of the IDL installation directory. Run the
example procedure by entering animation_image_doc at the IDL command
prompt or view the file in an IDL Editor window by entering .EDIT
animation_image_doc.pro. This example shows a simple animation in a
window that continues until the window is closed.

More than one behavior object can be associated with a window, which lets you
create synchronous animations. The window triggers all behaviors associated with it
by calling all observers that are interested in OnTimer notifications. Also, a behavior
can be programmed to perform any arbitrary operation. It is not limited to cycling
through a series of images. For example, it could alter a transform in a model object
to implement a time-based rotation.

Example Code
For a simple surface rotation animation example, see
animation_surface_doc.pro in the examples/doc/objects subdirectory
of the IDL installation directory. Run the example procedure by entering
animation_surface_doc at the IDL command prompt or view the file in an IDL
Editor window by entering .EDIT animation_surface_doc.pro.
Designing a Behavior Object Object Programming

javascript:doIDL("animation_image_doc")
javascript:doIDL(".edit animation_image_doc.pro")
javascript:doIDL(".edit animation_image_doc.pro")
javascript:doIDL("animation_surface_doc")
javascript:doIDL(".edit animation_surface_doc.pro")

Chapter 10: Animating Objects 253
Factors Affecting Animation Performance

Animation performance depends on a large number of factors that include the amount
of graphic content in each frame and the capabilities of the hardware. You adjust the
animation rate by setting the timer interval value of the IDLitWindow object. When
the timer interval expires, IDL calls the OnTimer method of the behavior objects that
are observing the window. If the hardware can draw the entire scene graph within the
requested timer interval, IDL waits until the timer interval expires before calling the
OnTimer methods again, in order to produce the requested animation rate. If IDL was
performing another operation or computation when the timer interval began, it
returns to that task after drawing the scene and until the time interval expires again. If
IDL cannot draw the entire scene graph before the timer interval expires, it finishes
drawing the scene graph and immediately moves on to the next frame by calling the
OnTimer method again, as long as the window timer is running. Any excess timer
expirations are discarded so they do not “pile up” behind the animation. Therefore,
you may experience a “maximum possible frame rate” that depends on the graphic
content and the capabilities of the machine you are using.

Scene graphs that contain a large amount of graphical information and/or render
slowly can reduce the maximum achievable frame rate. Very large polygonal meshes
and volumes are examples of graphical content that will reduce animation
performance.

Multiple Image Copies

If you are animating a very large amount of image data, the maximum frame rate may
also be reduced if the total amount of image data exceeds the space available on the
video card and system memory. IDL attempts to optimize image rendering by
keeping image data in the video card memory and in system memory as video card
memory is exhausted. If the image memory requirements exceed the amount of space
available in “fast” memory, (video and system memory), the system may move
image data out to “slow” memory (paging space). This can reduce image animation
performance as older images need to be swapped back into video memory when they
need to be displayed again. If this occurs, consider using a single IDLgrImage object
in your animation and replace the image data in the image object with image data for
the next frame in the OnTimer method. This reduces the total number of copies of
image data stored in memory at once and still provides good performance. It is best to
put all your image data into IDLgrImage objects when the images all fit into memory
and there is a requirement to rapidly animate all the images in a loop. If all the images
do not fit into memory or if rapid access to all the images is not necessary, it may be
better to use a single IDLgrImage object.
Object Programming Factors Affecting Animation Performance

254 Chapter 10: Animating Objects
Graphics Display Refresh Rate

Maximum frame rates may also be restricted by the refresh rate of your graphics
display device if the screen refresh rate is tied to applications. This can prevent the
application from exceeding the refresh rate of the display device, which is often in the
range of 60-120 frames per second. If you find that you cannot create an animation
faster than the refresh rate, look for a setting on your video card control software to
disable this synchronization. It is often referred to as VSYNC, vertical
synchronization, or “refresh rate override”.

Using application frame rates in excess of display device frame rates with
synchronization turned off is often not useful and can even be distracting because of
missing or “dropped” frames. For example, if you try to display a 10-image
animation on a display device using a 60 Hz refresh rate at 600 frames per second, the
animation will appear stalled, since the user will see the same image over and over.
The other 9 images are drawn to the display between display device refreshes and are
“dropped”.
Factors Affecting Animation Performance Object Programming

Chapter 10: Animating Objects 255
Example: Interactive Cine Animation

You can incorporate animation into a widget application by using the CLASSNAME
keyword to assign an IDLitWindow object to WIDGET_DRAW and using the
properties and methods documented in this chapter. The following widget application
lets you start and stop an animation, and set the frame rate and frame increment. It is
limited to this functionality only to highlight the essential features of animation. You
could incorporate zooming, panning, or the addition of annotative objects (such as
text, ROIs, or contours) in either the main-level model or in individual object models.
See “Using Multiple Models” on page 248 for information on how the placement of
objects and models in the graphics hierarchy affects the display.

Example Code
See animation_doc.pro in the examples/doc/objects subdirectory of the
IDL installation directory for the complete widget animation example. Run the
example procedure by entering animation_doc at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT animation_doc.pro.

Figure 10-4: Simple Widget Animation Interface
Object Programming Example: Interactive Cine Animation

javascript:doIDL("animation_doc")
javascript:doIDL(".edit animation_doc.pro")

256 Chapter 10: Animating Objects
Example: Interactive Cine Animation Object Programming

Chapter 11

Selecting Objects
This chapter will describe the IDL Object Graphics selection and direct manipulation features. The
following topics are covered in this chapter:
Selection and Data Picking 258
Object Selection . 259
A Selection Example 261

Data Picking . 262
A Data Picking Example 263
Object Programming 257

258 Chapter 11: Selecting Objects
Selection and Data Picking

When graphical items are drawn to a window, it is often useful to be able to click the
mouse on a certain location and request a list of the items that are displayed at that
particular location. In IDL, this is called selection. Because IDL object graphics are
retained in memory, they can be uniquely identified by their individual object
references, and therefore can be reported as having been selected.

In many cases, it is also useful to be able to request the data value of the object at the
user-selected location. In IDL, this is called data picking.
Selection and Data Picking Object Programming

Chapter 11: Selecting Objects 259
Object Selection

With object graphics, the process of selection is very similar to drawing, except that
nothing is displayed on the screen, and information about which objects were
selected is returned to the user. Selection is performed via the Select method of an
IDLgrWindow object.

Three types of objects may be selected: view objects, model objects, and
visualization objects. For a given scene that contains more than one view, you can
use the Select method to determine which view is selected at a given location.
Likewise, for a given view, you can use the Select method to determine which
models and/or visualization objects within that view are selected.

An object is considered to be selected if its graphical rendering falls within a box
centered on a given location. The dimensions of the box are set via the
DIMENSIONS keyword to the Select method. Both the location argument and
dimensions keyword values are measured in units specified via the UNITS keyword.

The Select method returns a vector of objects, sorted in depth order (nearest to the
eye is first), that meet the criteria of having been selected at the given location. If no
objects are selected at the given location, the Select method returns –1.

See “IDLgrWindow::Select” (IDL Reference Guide) for a detailed description of the
Select method.

Selecting Views

To determine which of a set of views within a given scene are selected at a given
location, call the Select method on an IDLgrWindow object with an instance of an
IDLgrScene object as its first argument, and the location at which the selection is to
occur as its second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedViews = myWindow->Select(myScene, myLoc)
Object Programming Object Selection

260 Chapter 11: Selecting Objects
Selecting Visualization Objects

To determine which visualization objects within a given view are selected at a given
location, call the Select method on an IDLgrWindow object with an instance of an
IDLgrView object as its first argument, and the location at which the selection is to
occur as the second argument:

myLoc = [myMouseEvent.x, myMouseEvent.y]
mySelectedGraphics = myWindow->Select(myView, myLoc)

Note
If a model within the view is set as a selection target, the model object, rather than
its contained visualization objects, is returned in the vector of selected objects.

 Selecting Models

In some cases, a group of visualization objects may be considered subcomponents of
the model in which they are contained. As a result, you may want to know when a
model object (rather than one or more of its contained visualization objects) has been
selected. To enable selection of a model (rather than its visualization objects), the
model object must be marked as a selection target.

To mark a model as being a selection target, set the SELECT_TARGET property of
the model object to a nonzero value.

myWindow = OBJ_NEW('IDLgrWindow')
myView = OBJ_NEW('IDLgrView')
myModel = OBJ_NEW('IDLgrModel')
myView->Add, myModel
myModel->SetProperty, /SELECT_TARGET
myAxis = OBJ_NEW('IDLgrAxis', 0)
myModel->Add, myAxis
myWindow->Draw, myView

In the above example, if a selection at location [myX, myY] would normally select the
axis object, the returned value of the Select method will be the object reference to
myModel rather than the object reference to myAxis.
Object Selection Object Programming

Chapter 11: Selecting Objects 261
A Selection Example

An example procedure named sel_obj.pro creates two views, places models
within the views, and provides an interface to let you choose between selecting
models or visualization objects. A mouse click in one of the views will update a label
that identifies the current selections.

Example Code
This example, sel_obj.pro, is included in the examples/doc/objects
subdirectory of the IDL distribution. Run the example procedure by entering
sel_obj at the IDL command prompt or view the file in an IDL Editor window by
entering .EDIT sel_obj.pro.
Object Programming A Selection Example

javascript:doIDL("sel_obj")
javascript:doIDL(".edit sel_obj.pro")

262 Chapter 11: Selecting Objects
Data Picking

To get the data value that corresponds to a particular window location, use the
PickData method of an IDLgrWindow object. Note that you must draw the view to
the window before calling the PickData method.

myLoc = [myMouseEvent.x, myMouseEvent.y]
result = myWindow->PickData(myView, myModel, myLoc, returnedXYZ)

The PickData method returns one of the following values:

• 0 (zero) if the pick hit the background of the view

• 1 (one) if the pick hit the one of the visualization objects in the view

• –1 if an error occurred (for instance, if the pick location lies outside of the
given view)

The data value at the pick is returned in the returnedXYZ argument. This value
represents the mapping of the window location to the data space of the model.

The PickData method relies on the contents of the depth buffer at the time it is called
to compute and return its results. Be sure that the depth buffer contents are
appropriate for getting the expected results from PickData.

Note
If you set the DEPTH_WRITE_DISABLE or DEPTH_TEST_DISABLE property
of an object to prevent an object from modifying the depth buffer as it is drawn, this
also prevents the object from being located by the PickData method (the return
value will be 0).
Data Picking Object Programming

Chapter 11: Selecting Objects 263
A Data Picking Example

The example procedure surf_track.pro includes code using the PickData method
to retrieve data values from a surface object. This example is described in “An
Interactive Surface Example” on page 189.

Example Code
See surf_track.pro, located in the examples/doc/objects subdirectory of
the IDL distribution. Run the example procedure by entering surf_track at the
IDL command prompt or view the file in an IDL Editor window by entering .EDIT
surf_track.pro.
Object Programming A Data Picking Example

javascript:doIDL("surf_track")
javascript:doIDL(".edit surf_track.pro")
javascript:doIDL(".edit surf_track.pro")

264 Chapter 11: Selecting Objects
A Data Picking Example Object Programming

Chapter 12

Displaying, Copying
and Printing Objects
The following topics are covered in this chapter:
Overview of Object Graphic Destinations . 266
Window Objects . 267
Using Window Objects 269
Improving Window Drawing Performance 272

Buffer Objects . 274
Clipboard Objects 275
Printer Objects . 277
Bitmap and Vector Graphic Output 284
Object Programming 265

266 Chapter 12: Displaying, Copying and Printing Objects
Overview of Object Graphic Destinations

Once a graphic object tree has been created, it can be displayed, or drawn, to a
physical destination device (such as a computer screen or printer), to a memory
location (such as a buffer or the operating system clipboard), or to a particular file
format (such as a VRML file). Destination objects represent the final locations to
which object graphics are drawn, and provide methods that allow you to control the
properties of the physical device, memory buffer, or file format.

Each destination object includes a GetFontnames method, which returns the list of
available fonts that can be used in IDLgrFont objects. This method will only return
the names of the available TrueType fonts. Hershey fonts will not be returned as they
are fixed—see Appendix H, “Fonts” (IDL Reference Guide) for more information.

There are five destination objects:

• buffers (IDLgrBuffer objects)

• clipboards (IDLgrClipboard objects)

• printers (IDLgrPrinter objects)

• VRML files (IDLgrVRML objects)

• windows (IDLgrWindow objects)

Of the five destination objects, Window objects are the most common and most often
used, and will be addressed first.

Note
Output to IDLgrClipboard and IDLgrPrinter objects can be in bitmap or vector
format. See “Bitmap and Vector Graphic Output” on page 284 for information on
choosing a suitable graphics output type based on scene content.
Overview of Object Graphic Destinations Object Programming

Chapter 12: Displaying, Copying and Printing Objects 267
Window Objects

Objects of the IDLgrWindow class represent a rectangular area on a computer screen
into which graphics hierarchies can be rendered. Window objects can be either stand-
alone windows on the screen or drawable areas in an IDL draw widget.

Creating Window Objects

There are two ways to create window objects: directly via the window object’s Init
method and indirectly by creating a draw widget that uses a window object as its
drawable area.

Using the Init Method

The IDLgrWindow::Init method takes no arguments. Use the following statement to
create a window object:

myWindow = OBJ_NEW('IDLgrWindow')

The window is displayed on the screen as soon as it has been created.

Creating a Draw Widget that Uses a Window Object

To create a draw widget that uses an Object Graphics window object rather than a
Direct Graphics window for its drawable area, set the GRAPHICS_LEVEL keyword
to the WIDGET_DRAW function equal to 2:

drawwid = WIDGET_DRAW(base, GRAPHICS_LEVEL=2)

Once the draw widget has been realized, you can then retrieve the object reference to
the draw widget’s window object using the WIDGET_CONTROL procedure:

WIDGET_CONTROL, drawwid, GET_VALUE=myWindow

Color Model

By default, window objects use the RGB color model. To create a window that uses
the Indexed color model, set the COLOR_MODEL property of the window object
equal to 1 (one) when creating the window:

myWindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL=1)

You cannot change the color model used by a window after it has been created.

See “Color in Object Graphics” on page 46for a discussion of the two color models.
Object Programming Window Objects

268 Chapter 12: Displaying, Copying and Printing Objects
Note on Window Size Limits

The OpenGL libraries IDL uses impose limits on the maximum size of a drawable
area. The limits are device-dependent — they depend both on your graphics hardware
and the setting of the RENDERER property. Currently, the smallest maximum
drawable area on any IDL platform is 1280-by-1024 pixels; the limit on your system
may be larger.
Window Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 269
Using Window Objects

To render a graphics tree to a window, call the IDLgrWindow::Draw method. The
argument must be either an IDLgrView object or an IDLgrScene object.

myWindow->Draw, myView

or

myWindow->Draw, myScene

All objects contained within the view or scene object will be drawn to the window.

Erasing a Window

To erase the contents of a window, call the IDLgrWindow::Erase method. You can
optionally supply a color to use to clear the window. By default, the window is erased
to white.

For example, to erase the window to black:

myWindow->Erase, COLOR=[0,0,0]

Exposing or Hiding a Window

To expose a window so that it is the front-most window on the screen, call the
IDLgrWindow::Show method with a nonzero value as the argument:

myWindow->Show, 1

To hide a window, call the IDLgrWindow::Show method with a zero value as the
argument:

 myWindow->Show, 0

Iconifying a Window

To iconify (minimize) a window, call the IDLgrWindow::Iconify method with a
nonzero value as its argument:

myWindow->Iconify, 1

To restore an iconified window, call the IDLgrWindow::Iconify method with a zero
value as its argument:

myWindow->iconify, 0
Object Programming Using Window Objects

270 Chapter 12: Displaying, Copying and Printing Objects
Setting the Window Cursor

To set the appearance of the mouse cursor in an IDLgrWindow object, call the
IDLgrWindow::SetCurrentCursor method with a string argument representing the
name of the cursor. Valid string values for the cursor name argument are:

The following statement sets the cursor to an up arrow:

myWindow->SetCurrentCursor, 'UP_ARROW'

The ORIGINAL cursor sets the cursor to the window system’s default cursor.

See “IDLgrWindow::SetCurrentCursor” (IDL Reference Guide) for details on cursor
values.

Saving/Restoring Windows

When an instance of an IDLgrWindow object is restored via the RESTORE
procedure), it is not immediately displayed on the screen. It will be displayed as soon
as one of its methods (Draw, Erase, Iconify, etc.) is called.

Saving Window Contents to a File

If you have created a scene or view containing graphical objects and wish to save the
rendering to a file, you will first need to create an image object from which to retrieve
the image data. The following steps render an object to a window, create an image
object from the window, and save the image data as a TIFF file.

ARROW CROSSHAIR

ICON IBEAM

MOVE ORIGINAL

SIZE_NE SIZE_NW

SIZE_SE SIZE_SW

SIZE_NS SIZE_EW

UP_ARROW
Using Window Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 271
First, create the view to be rendered. Use an indexed color model for the window
object, setting the background color to white and the foreground color of the plot
object to black.

mywindow = OBJ_NEW('IDLgrWindow', COLOR_MODEL=1)
myview = OBJ_NEW('IDLgrView', $

VIEWPLANE_RECT=[0,-4,10,8], COLOR=255)
mymodel = OBJ_NEW('IDLgrModel')
myplot = OBJ_NEW('IDLgrPlot', RANDOMN(seed, 10), COLOR=0, $

THICK=3)
; Organize the object hierarchy:
myview->Add, mymodel
mymodel->Add, myplot
; Draw to the window:
mywindow->Draw, myview
; Next, use the window object’s Read method to create
; an image object with the rendered scene as its image data:
myimage = mywindow->Read()
; Retrieve the image data using the GetProperty method
; of the image object:
myimage->GetProperty, DATA=image
; Display the image data using Direct Graphics:
TV, image
; Write the image to a TIFF file named myfile.tif:
WRITE_TIFF, 'myfile.tif', image
Object Programming Using Window Objects

272 Chapter 12: Displaying, Copying and Printing Objects
Improving Window Drawing Performance

The following sections describe how to optimize drawing performance in your object
graphics programs. See “Performance Tuning Object Graphics” in Chapter 2 for
general notes on rendering performance.

Retained Graphics and Expose Events

During the course of an IDL session, it is possible that an IDL window will be
obscured by another window. When the hidden window is brought to the front, its
contents need to be regenerated. The user interface toolkit portions of the window are
repaired automatically. However, the drawable portion of the window (in which
graphics are rendered) requires special attention. The user can choose between two
methods to handle this situation. The first option is to set the RETAIN property on the
IDLgrWindow object to 2, which suggests that IDL is required to retain a backing
store of the entire contents of the window. When the window is exposed, the backing
store will be copied to the screen. The second option is to set the RETAIN property to
0 (no retention), and to request that expose events are to be reported for draw
widgets. Whenever a portion of the window becomes exposed, an event is generated.
The event handler for the drawable can then re-issue a draw of the appropriate
contents for that window.

While the second option may seem a bit more complicated, it is to the users
advantage to take this approach for performance reasons. When RETAIN is 0, the
window device drivers are able to utilize a double-buffered rendering scheme that can
capitalize on hardware acceleration. For interactive applications, this hardware
acceleration can have a crucial impact on the perceived manipulation capabilities of
the interface. When RETAIN is 2, on the other hand, IDL will render to an off screen
pixmap, which often relies on a software implementation. If several drawing calls are
issued in a row, the performance may be noticeably slower.

Instancing to Improve Redraw Performance

Within interactive graphics applications, it is often necessary to redraw a given view
over and over again (for example, as the user clicks and drags within the view to
manipulate one or more objects). During those redraws, it may be that only a small
subset of the objects within the view is changing, while the remaining objects are
static. In such a case, it may be more efficient to take a snapshot of the unchanged
portion of the view. This snapshot can be reused for each draw, and only the
changing portion of the view needs to be re-rendered. This process is called
instancing.
Improving Window Drawing Performance Object Programming

Chapter 12: Displaying, Copying and Printing Objects 273
It is to your advantage to use instancing only in cases where displaying the snapshot
image is faster than rendering each of the objects that remain unchanged.

The following example shows how a typical instancing loop would be set up. First,
hide the objects in the view that will be changing. In this example, we assume that the
objects that change continuously are contained by a single model object, with the
object reference myChangingModel. We set the HIDE property for this model to
remove it from the rendered view.

myChangingModel->SetProperty, HIDE=1

;Next, create an instance of the remaining portion
;of the view by setting the CREATE_INSTANCE keyword to
;the window’s Draw method:
myWindow->Draw, myView, /CREATE_INSTANCE

;Next, hide the unchanging objects.
;Assume that the unchanging portion of the
;scene is contained in a single model object.
myUnchangingModel->SetProperty, HIDE=1

;Set the HIDE property for the changing model
;object equal to zero, revealing the object:
myChangingModel->SetProperty, HIDE=0

;Set the view object’s TRANSPARENT property.
;This ensures that we will not erase the
;instance data (the unchanging part of the scene)
;when drawing the changing model.
myView->SetProperty, /TRANSPARENT

;Next, we set up a drawing loop that will render
;the changing model. For example, this loop might
;rotate the changing model in 1 degree increments.
ROT = 0
FOR i=0,359 DO BEGIN

ROT=ROT+1
myChangingModel->Rotate, [0,1,0], ROT
myWindow->Draw, myView, /DRAW_INSTANCE

ENDFOR

;After the drawing loop is done, ensure nothing is hidden,
;and that the view erases as it did before:
myUnchangingModel->SetProperty, HIDE=0
myView->SetProperty, TRANSPARENT=0
Object Programming Improving Window Drawing Performance

274 Chapter 12: Displaying, Copying and Printing Objects
Buffer Objects

Objects of the IDLgrBuffer class represent a memory buffer into which graphics
hierarchies can be rendered. Object trees can be drawn to instances of the
IDLgrBuffer object and the resulting image can be retrieved from the buffer using the
Read() method. The off-screen representation avoids dithering artifacts by providing
a full-resolution buffer for objects using either the RGB or Color Index color models.

Creating Buffer Objects

The IDLgrBuffer::Init method takes no arguments. Use the following statement to
create a buffer object:

myBuffer = OBJ_NEW('IDLgrBuffer')

This creates an object that is available as a destination device to be rendered into or
copied from.

See “IDLgrBuffer” (IDL Reference Guide) for details on creating and using buffer
objects.
Buffer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 275
Clipboard Objects

Objects of the IDLgrClipboard class send Object Graphics output to the operating
system native clipboard or to a file in bitmap or vector format. The file type and
destination is dependent upon the platform and the values of Draw method keywords.

Note
What appears when producing bitmap or vector output is dependent upon several
factors. See “Bitmap and Vector Graphic Output” on page 284 for details.

Writing to a File from IDLgrClipboard

The file type produced when the IDLgrClipboard::Draw method is passed an
IDLgrView, IDLgrViewgroup, or IDLgrScene object varies depending upon keyword
settings and the platform on which the call is issued. If the FILENAME keyword is
set to a non-empty string, the name of the file IDL creates is specified by the string. If
the FILENAME keyword is a non-zero, numeric value, IDL creates a file named
idl.ext where ext is replaced with the appropriate extension shown in
parentheses in the following table.

Note
PostScript clipboard output can be generated using the CMYK color model. See the
IDLgrClipboard::Draw method in the IDL Reference Guide for details.

Keyword Settings Windows File Type UNIX File Type

VECTOR = 1,
POSTSCRIPT = 1

Encapsulated
PostScript (EPS)

Encapsulated PostScript
(EPS)

VECTOR = 1,
POSTSCRIPT = 0

Enhanced MetaFile
(EMF)

Encapsulated PostScript
(EPS)

VECTOR = 0,
POSTSCRIPT = 1

Encapsulated
PostScript (EPS)

Encapsulated PostScript
(EPS)

VECTOR = 0,
POSTSCRIPT = 0

Bitmap (BMP) Encapsulated PostScript
(EPS)

Table 12-1: File Types Produced by IDLgrClipboard Draw Method
Object Programming Clipboard Objects

276 Chapter 12: Displaying, Copying and Printing Objects
Writing to the Clipboard from IDLgrClipboard

Objects can be written to the operating system clipboard using
IDLgrClipboard::Draw. When the FILENAME keyword equals an empty string (" "),
equals 0 (zero), or is not specified, the output is written to the clipboard.

Note
The IDLgrClipboard object empties the Windows clipboard before writing to it.

Creating Clipboard Objects

The IDLgrClipboard::Init method takes no arguments. Use the following statement to
create a clipboard object that represents the system-native clipboard buffer:

myClipboard = OBJ_NEW('IDLgrClipboard')

The following code creates an IDLgrClipboard object and outputs the contents of an
IDLgrView, IDLgrViewgroup, or IDLgrScene to various files based on the platform.
This is useful to determine exactly how the contents of the window are translated into
bitmap or vector graphics. In the following code, myview denotes the name of the
object (view, viewgroup, or scene) to be output. Vector postscript output is also
generated using the CMYK color model.

oClip = OBJ_NEW('IDLgrClipboard')

; Create Windows-only output file types.
if !VERSION.OS_FAMILY eq 'Windows' then begin

oClip->Draw, myview, VECTOR=0, POSTSCRIPT=0, $
FILENAME="clipboard.bmp"

oClip->Draw, myview, VECTOR=1, POSTSCRIPT=0, $
FILENAME="clipboard.emf"

endif

; Create bitmap and vector PostScript files.
oClip->Draw, myview, VECTOR=0, POSTSCRIPT=1, $

FILENAME="clipboard_bitmap.eps"
oClip->Draw, myview, VECTOR=1, POSTSCRIPT=1, $

FILENAME="clipboard_vector.eps"

oClip->Draw, myview, VECTOR=1, POSTSCRIPT=1, $
/CMYK, FILENAME="clipboard_cmyk.eps"

obj_destroy, oClip

See “IDLgrClipboard” (IDL Reference Guide) for details.
Clipboard Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 277
Printer Objects

Objects of the IDLgrPrinter class represent a physical printer onto which graphics
hierarchies can be rendered in either bitmap or vector mode. What appears when
producing bitmap or vector output depends upon several factors. See “Bitmap and
Vector Graphic Output” on page 284 for details.

Creating Printer Objects

The IDLgrPrinter::Init method takes no arguments. Use the following statement to
create a printer object:

myPrinter = OBJ_NEW('IDLgrPrinter')

This creates an object that maintains information about the printer. By default, this
information pertains to the default printer installed for your system. To select a
different printer or setup attributes of the printer, use the printer dialogs described in
the next section.

See “IDLgrPrinter” (IDL Reference Guide) for details on creating printer objects.

Color Model

By default, printer objects use the RGB color model. To create a printer that uses the
Indexed color model, set the COLOR_MODEL property of the printer object equal to
1 (one) when creating the printer:

myWindow = OBJ_NEW('IDLgrPrinter', COLOR_MODEL=1)

You cannot change the color model used by a printer after it has been created.

See “Color in Object Graphics” on page 46 for a discussion of the two color models.

Printer Dialogs

IDL includes two functions useful for controlling printers and print jobs.

DIALOG_PRINTERSETUP

Call the DIALOG_PRINTERSETUP function with the object reference of a printer
object as its argument to open an operating system native dialog for setting the
applicable properties of a particular printer. DIALOG_PRINTERSETUP returns a
nonzero value if you pressed the OK button in the dialog, or zero otherwise.

result = DIALOG_PRINTERSETUP(myPrinter)
Object Programming Printer Objects

278 Chapter 12: Displaying, Copying and Printing Objects
See DIALOG_PRINTERSETUP in the IDL Reference Guide for details.

DIALOG_PRINTJOB

Call the DIALOG_PRINTJOB function with the object reference of a printer object
as its argument to open an operating system native dialog to initiate a printing job.
DIALOG_PRINTJOB returns a nonzero value if you pressed the OK button in the
dialog, or zero otherwise.

result = DIALOG_PRINTJOB(myPrinter)

See DIALOG_PRINTJOB in the IDL Reference Guide for details.

Drawing to a Printer

To draw a graphics tree to a printer, call the IDLgrPrinter::Draw method. The
argument must be either an IDLgrView object, an IDLgrViewGroup object, or an
IDLgrScene object.

myPrinter->Draw, myView

or

myPrinter->Draw, myScene

All objects contained within the scene, viewgroup, or view will be drawn to the
printer.

Note
The scene or view to be drawn may be the same as the scene or view being
displayed in one or more windows.
Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 279
Printing in Bitmap or Vector Graphic Mode

The IDLgrPrinter::Draw method VECTOR keyword specifies whether the output is
in bitmap or vector format. The following table shows the keyword options and
results for each platform.

VECTOR=0 is the default. Because Windows printer output is usually sent directly to
the printer, EMF and BMP files are not viewable. On UNIX, the printer output is
directed to a file named xprinter.eps by default. For more information on printing
views, scenes, or viewgroups, see “IDLgrPrinter::Draw” (IDL Reference Guide).

Positioning Objects Within a Page

Objects can be positioned in a printed page by first determining the size of the page.
Use the IDLgrPrinter object DIMENSIONS property to return the size of the
“drawable” area of the page. You can then use these dimensions to draw a view of
specified dimensions in the center of the printed page. The following two examples
show positioning objects within the printed page:

• The first example scales an orb object based on the page size and draws the
view containing the orb to the center of the hardcopy page. See “Example:
Centering an Orb” on page 280.

• The second example creates two IDLgrAxis objects and an orb object, each
with a UNITS property value set to centimeters. The view is positioned in the
center of the page, but the other object locations are specified in centimeters
and drawn to the view in precise positions. See “Example: Precisely
Positioning Vector and Bitmap Output” on page 281.

Keyword
Settings Windows Printer Output UNIX File Type

VECTOR = 0 Bitmap (BMP) Encapsulated PostScript (EPS)
file (e.g. xprinter.eps)

VECTOR = 1 Enhanced MetaFile (EMF) Encapsulated PostScript (EPS)
file (e.g. xprinter.eps)

Table 12-2: File Types Produced by IDLgrPrinter Draw Method
Object Programming Printer Objects

280 Chapter 12: Displaying, Copying and Printing Objects
Example: Centering an Orb

The following example positions a view containing an orb object in the center of a
page when it is printed. Centering the view is a common task. Using this example as
a guideline, you can easily adapt it to meet your own needs.

PRO center_doc

; Define dimensions in centimeters (cm).
dims = [5.0, 5.0]

; Create a view with centimeters as units. Add the view to a model.
oView = OBJ_NEW('IDLgrView', $

UNITS=2, $
VIEWPLANE_RECT=[-dims[0]/2, -dims[1]/2, dims[0], dims[1]], $
ZCLIP=[MAX(dims), -MAX(dims)], EYE=MAX(dims)+1, $
COLOR=[200,200,200])

oModel = OBJ_NEW('IDLgrModel')
oView->Add, oModel

; Create an orb object and add it to the model.
oOrb1 = OBJ_NEW('orb', COLOR=[0,255,0], SHADING=1, $

STYLE=2, HIDDEN=0)
oModel->Add, oOrb1

; Make radius 40% of window width.
oModel->Scale, dims[0]*0.4, dims[0]*0.4, dims[0]*0.4
oModel->Rotate, [1,1,0], 10

; Create a light and add it to the model.
oLight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[1.5,1.5,2])
oModel->Add, oLight

; Create a printer object, setting centimeters as the units.
oPrinter=OBJ_NEW('IDLgrPrinter', UNITS=2)

; Retrieve the drawable area of the page in the pagesize
; variable and use this to position the view.
oPrinter->GetProperty, DIMENSIONS=pageSize
centering = ((pageSize - dims)/2.)
oView->SetProperty, LOCATION=centering, DIMENSIONS=dims

; Print the view.
oPrinter->Draw, oView, VECTOR=1

OBJ_DESTROY,[oPrinter]
OBJ_DESTROY,[oView]

END
Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 281
The following figure shows a subset of the output. The orb is positioned in the center
of a printed page when you run this example.

Example: Precisely Positioning Vector and Bitmap Output

The following example creates a model and draws some IDLgrAxis objects to the
printer in vector mode. It then creates a second model for an orb object and plots the
orb, drawing it to the printer in bitmap mode. The entire view is centered in the page,
as shown in the previous example. However, this example precisely positions the orb
and axes within the view using data units (defined as centimeters).

PRO center2_doc

; Set the view dimensions in units of centimeters (cm).
viewDims = [10.0, 10.0]

; Set the orb origin in cm, relative to the lower left
; corner of the view.
orbLoc = [3.0, 4.0]

; Set the Orb radius in cm.
orbRadius = 2.2

; Create the Orb object.
; The Orb object creates a unit orb with a default radius of 1.
oOrbModel = OBJ_NEW('IDLgrModel')
oOrb = OBJ_NEW('orb', COLOR=[0,255,0], SHADING=1, STYLE=2)
oOrbModel->Add, oOrb

; Create axes model. Create and position the axis objects.
oAxesModel = OBJ_NEW('IDLgrModel')
oX = OBJ_NEW('IDLgrAxis', 0, RANGE=[1,viewDims[0]-1], $

/EXACT, LOCATION=[orbLoc[0]-orbRadius, 1])

Figure 12-1: Output Centered in Printed Page
Object Programming Printer Objects

282 Chapter 12: Displaying, Copying and Printing Objects
oAxesModel->Add, oX
oY = OBJ_NEW('IDLgrAxis', 1, RANGE=[1, viewDims[1]-1], $

/EXACT, LOCATION=[1, orbLoc[1]-orbRadius])
oAxesModel->Add, oY

; Add a box to show view extent.
oAxesModel->Add, OBJ_NEW('IDLgrPolygon', $

[0, viewDims[0], viewDims[0], 0], $
[0, 0, viewDims[1], viewDims[1]], STYLE=1)

; Create the view using the previously defined dimensions.
oView = OBJ_NEW('IDLgrView', $

UNITS=2, VIEWPLANE_RECT=[0, 0, viewDims[0], viewDims[1]], $
ZCLIP=[MAX(viewDims), -MAX(viewDims)], EYE=MAX(viewDims)+1, $
COLOR=[255,255,255])

oTopModel = OBJ_NEW('IDLgrModel')
oView->Add, oTopModel

; Add a light.
oLight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[1.5,1.5,2])
oTopModel->Add, oLight

; Set up printer to print user-requested view. Center
; entire printer output in the page.
oPrinter=OBJ_NEW('IDLgrPrinter', UNITS=2)
oPrinter->GetProperty, DIMENSIONS=pageSize
centering = ((pageSize - viewDims)/2.)
oView->SetProperty, LOCATION=centering, DIMENSIONS=viewDims

; Print view containing axes in vector mode then remove model.
oTopModel->Add, oAxesModel
oPrinter->Draw, oView, VECTOR=1
oTopModel->Remove, oAxesModel

; Now float the orb into the view and print it in bitmap mode.
oTopModel->Add, oOrbModel
oView->SetProperty, VIEWPLANE_RECT = $

[-orbRadius, -orbRadius, 2 * orbRadius, 2 * orbRadius], $
LOCATION=[orbLoc[0]-orbRadius,orbLoc[1]-orbRadius]+centering, $
DIMENSIONS=[2*orbRadius, 2*orbRadius]
oPrinter->Draw, oView, VECTOR=0

; oPrinter->NewDocument
OBJ_DESTROY,[oPrinter]
OBJ_DESTROY,[oView]

END
Printer Objects Object Programming

Chapter 12: Displaying, Copying and Printing Objects 283
The following figure shows a subset of the output. The entire plot area is positioned
in the center of a printed page when you run this example.

Starting a New Page on a Printer

To ensure that any subsequent calls to the IDLgrPrinter::Draw method occur on a
new page, call the IDLgrPrinter::NewPage method:

myPrinter->NewPage

Submitting a Printer Job

To submit a printer job, call the IDLgrPrinter::NewDocument method. This method
submits the printing job (consisting of all previous calls to IDgrPrinter::Draw and
IDLgrPrinter::NewPage) to the printer.

After this method has been called, the printer is prepared to accept a new batch of
graphics calls (via IDLgrPrinter::Draw).

myPrinter->NewDocument

Figure 12-2: Positioning Objects Within a Printed Page
Object Programming Printer Objects

284 Chapter 12: Displaying, Copying and Printing Objects
Bitmap and Vector Graphic Output

The IDLgrClipboard and IDLgrPrinter destination objects allow objects in a scene,
viewgroup, or view to be output as vector or bitmap graphics. Which output is
suitable depends upon the contents of the scene being sent to the output destination
object. Understanding the difference between bitmap and vector graphics will help
clarify why there is a difference in how the final output is displayed, and how the
output can be edited.

Bitmap Graphics

Bitmaps are a collection of bits that describe the individual pixels within an image.
Each pixel is a specific color, and the matrix of these pixels compose the image. In
bitmap graphics, the contents of a view, viewgroup. or scene are captured as an image
and are drawn with pixels in the bitmap. They can be edited only by altering
individual pixels. The following figure shows the individual pixels that are visible
when a small segment of an image is greatly enlarged.

IDLgrClipboard bitmap graphic output can be edited by any pixel-based paint
program. In IDL, bitmap graphics can be stored as Bitmap (BMP) or PostScript
(EPS) files under Windows, and as PostScript files under UNIX. Characteristically,
bitmaps are large files, and image quality degrades when the image is substantially
enlarged or reduced.

Figure 12-3: Sample Bitmap Image
Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 285
Vector Graphics

Vector graphics are described by simple graphic primitives. In the following figure,
the vector output of the plot, shown on the left, is composed of multiple individual
line segments that are defined mathematically. The IDLgrText objects are rendered as
text primitives. All these primitives can be edited in vector graphic files. For
example, in the following figure the final line segments in the plot have been
repositioned in the right-hand image.

IDLgrClipboard vector graphic output can be edited by an object-based graphical
editor. In IDL, vector graphics can be stored as Enhanced MetaFile (EMF) or
Encapsulated PostScript (EPS) files under Windows, and as Encapsulated PostScript
(EPS) files under UNIX.

The main advantages of vector graphics are excellent scalability, and the ability to
easily edit text and graphic features of the objects in the display. The graphic quality
is maintained regardless of whether the graphic size is increased or decreased. The
capabilities of the graphic editor determines what can be successfully edited. Simple
lines and horizontal text can be easily edited in an EMF file inserted into a Microsoft
Word document. However, more sophisticated graphic editors provide support for
editing intricate graphic features and non-horizontal text. See “Text Rendering in
Vector Graphics” on page 287 for more information. Vector graphics file sizes are
generally smaller compared to bitmap graphics.

Figure 12-4: Sample Vector Image
Object Programming Bitmap and Vector Graphic Output

286 Chapter 12: Displaying, Copying and Printing Objects
Guidelines for Choosing Bitmap or Vector Graphics

Advanced 3-D graphics rendering system output does not always map perfectly to a
2-D vector graphics system. The vector output is an approximation of what is
displayed on the screen. How closely the vector output matches what is displayed
depends upon the scene contents. Vector output may differ dramatically from bitmap
output, and may also differ between the vector file formats (Encapsulated PostScript,
Xprinter, and Enhanced MetaFile).

In general, scenes containing multiple, intersecting surfaces with various shading,
transparency and lighting definitions are displayed with greater accuracy in a bitmap
format than a vector format. However, simple 2-D plots are perfectly suited to vector
output. Views containing the following items should not be output to vector graphic
files:

• Transparent or semi-transparent objects — transparent objects in a view are
not rendered in vector graphic files. Semi-transparent objects are rendered
fully opaque.

• Textured or patterned objects — surfaces and polygons with textures or
patterns are rendered without their textures or patterns.

• Hidden lines – polygon and surface objects drawn with the HIDDEN_LINES
property set may experience missing lines.

• Volumes — volumes, other than those drawn in low quality wire frame mode
(where the destination device QUALITY=0), are not rendered.

• Clipped objects — text strings and image objects do not appear clipped by
clipping planes in vector graphic files. These objects only appear clipped by
view boundaries.

• Smoothly shaded polygons and surfaces — Gouraud (smooth) shaded
IDLgrPolygon and IDLgrSurface objects are displayed with smooth shading
only in vector PostScript files generated by IDLgrClipboard, not in Enhanced
MetaFile (EMF) vector format files, or in IDLgrPrinter vector EPS files.
Polygons and surfaces appear with flat shading in EMF files and when printed.

• Lines and text in Xprinter — line style dash length is limited, and line style
patterns cannot start and end with a ‘1’ bit when vector output is generated by
Xprinter under UNIX. Also, text is always drawn as a set of triangles in
Xprinter vector output, and cannot be edited.

• Objects dependent on depth buffering — depth buffering controls are not
respected in vector graphic files. See “Primitive Object Sorting in Vector
Graphics” on page 289 for more information.
Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 287
Controlling What is Displayed in Vector Graphics

Several factors beyond the differences between bitmap and vector graphics
(described in the previous section) affect a vector graphics file in terms of content and
the ability to edit text. Keywords provide control over factors such as object sorting,
polygon shading, and text rendering when using the Draw method of the
IDLgrClipboard or IDLgrPrinter destination objects. See the following sections for
more information:

• “Smooth Shading in Vector Graphics” in the following section

• “Text Rendering in Vector Graphics” on page 287

• “Primitive Object Sorting in Vector Graphics” on page 289

Smooth Shading in Vector Graphics

The IDLgrClipboard Draw method supports the VECT_SHADING keyword, which
affects the appearance of the surfaces and polygons when the VECTOR and
POSTSCRIPT keywords have also been set. When SHADING=1 (Gouraud shading)
for IDLgrSurface or IDLgrPolygon, use this keyword to control the rendering quality.
Set the VECT_SHADING keyword to one of the following:

• 0 = disable smooth shading. Setting this keyword causes all polygons and
surfaces to be rendered with flat shading. This will override the SHADING
value assigned to a surface or polygon object. This may be valuable when
using slower PostScript interpreters.

• 1 = enable smooth shading. Setting this keyword renders smoothly shaded
polygons in the Encapsulated PostScript file. This is the default.

Note
Polygons and surfaces in Enhanced MetaFiles (EMF) will be rendered using flat
shading. Only the output in Encapsulated PostScript (EPS) files is affected by this
keyword, and only when the VECTOR keyword has been set.

Text Rendering in Vector Graphics

Text can be easily edited in vector graphic files when the text is output as text
primitives. In bitmap files, text glyphs cannot be edited except by modifying
individual pixels. In a vector graphic file, IDLgrText objects are rendered as graphic
primitives that can be edited. The IDLgrClipboard or IDLgrPrinter
VECT_TEXT_RENDER_METHOD keyword controls whether text appears as filled
Object Programming Bitmap and Vector Graphic Output

288 Chapter 12: Displaying, Copying and Printing Objects
triangles or text primitives when the VECTOR keyword is also set. Set the
VECT_TEXT_RENDER_METHOD keyword to one of the following:

• 0 = render text as text primitives. This uses the output device’s text primitives
when rendering text. This allows the text to be edited by object-based graphics
programs. This is the default.

• 1 = render text as triangles. This produces text glyphs that closely match the
text on the display device. The output file size is larger and contains filled
triangles to represent text. This can preserve backward compatibility with the
display of text objects prior to IDL 6.1, which introduced text primitives.

Note
When using the IDLgrPrinter object under UNIX, the Xprinter output is regarded as
write-only. As there is no support for 3-D text, IDL always generates filled triangles
when rendering text in the Xprinter output.

Setting VECT_TEXT_RENDER_METHOD=0 creates a vector graphics file with
text rendered as primitives. The text associated with the graphic can be scaled,
transformed or repositioned when edited in an object-oriented graphics application.

An Enhanced MetaFile (EMF) inserted into a Microsoft Word document can be
edited. However, not all versions of Microsoft Word support advanced 3-D graphic
primitives such as those associated with obliquely or vertically aligned text.
Choosing to edit a file with non-horizontally aligned text may result in the text being
flattened into two dimensions. Typically, each letter becomes its own string and
alignment is altered. To edit non-horizontal text and preserve the original quality,

Figure 12-5: Editing Text Objects Output as Vector Graphics

Original Text Adding Text Scaling Text
Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 289
create an Encapsulated PostScript (EPS) file that can be modified in a more
sophisticated object-oriented image editing program.

Setting VECT_TEXT_RENDER_METHOD=1 creates text that is rendered as filled
triangles. Elements of the plot in the following figure are composed of line segments
that can be edited, but the text characters cannot be individually edited. The triangles
composing the letters of the text object are visible in the right-hand image.

Primitive Object Sorting in Vector Graphics

The IDLgrPrinter and IDLgrClipboard Draw methods support the VECT_SORTING
keyword, which affects the appearance of the output when the VECTOR keyword
has also been set. Use this keyword to simulate the depth buffer in Object Graphics in
the output vector graphics file. Set the VECT_SORTING keyword to one of the
following:

• 0 = disable sorting. The object primitives appear in the vector output file in the
same order they are drawn on the display device. This is the order in which
they appear in the graphics tree.

• 1 = enable sorting. Objects are ordered from back to front based on each
primitive object’s average depth value. This is the default.

The following figure shows the results of changing the VECT_SORTING keyword.
When sorting is disabled (VECT_SORTING=0) as in the left image, the first object
added to the model is drawn first in the display and in the destination device. In the
code used to create the left image, the text is added to the model before the surface.
Therefore it appears behind the surface in the vector graphics file. When the order is

Figure 12-6: Text Objects Output as Triangles

Original Text Composed of Triangles Detail of Text Triangles
Object Programming Bitmap and Vector Graphic Output

290 Chapter 12: Displaying, Copying and Printing Objects
reversed, the text is drawn on top of the surface. When sorting is enabled
(VECT_SORTING=1) as in the right image, primitive objects are sorted according to
their depth in the view. Most distant objects are drawn first. When two objects have
the same average depth, the object added to the model first is drawn first and will
appear behind subsequent objects.

Note
Vector output does not support depth test functions. Vector output resolves Z
(depth) ties by using the DEPTH_TEST_FUNCTION default LESS depth test.

There are two instances in which the above sorting model is not applicable:

• In a window containing overlapping, transparent views

• In a window containing IDLgrImage objects

See the following sections for details.

Sorting Issues with Transparent Views

When a window contains multiple views, the objects in each view are sorted as a
separate group. This simulates the default clear operation that IDL performs when
drawing each view to a destination, clearing the depth buffer and repainting the view
with the view color. Depending upon the ordering and transparency of the views, the
vector output might not match what is displayed, regardless of the value of
VECT_SORTING. Consider objects in a transparent view that are positioned behind
an object in a non-transparent view. In the display, objects in the transparent view are
occluded by the object that appears closer to the viewer. However, in the vector
output, the objects in the transparent view interact with and are visible in the output.
This occurs because IDL does not clear the depth buffer or repaint the view when it is
transparent.

Figure 12-7: Controlling the Sorting of Object Primitives

VECT_SORTING = 0 VECT_SORTING = 1

Original View in Window
Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 291
In the simple example shown in the following figure, the IDLgrText object is added
to a transparent view and is positioned behind the surface. The view associated with
the IDLgrSurface is not transparent. The view containing the surface and the
transparent view containing the text are added to an IDLgrViewgroup and displayed
in the window. The left image shows the vector file output, and the right image shows
the bitmap file output. In the vector output, all of the text is visible because the views
are sorted independently. This behavior occurs because the transparent view
containing the text is added to the viewgroup after the view containing the surface. If
the view containing the text is added first, then only the surface (whose view is not
transparent) is drawn.

Transparent Images

When IDL draws a semi-transparent image with vector output, it must draw it
completely opaque, as it does with other primitives. Therefore, if you use image
layers, where one image is semi-transparent in order to let you see another image
drawn before it, the output will not be correct with vector output since the semi-
transparent image will be drawn opaquely, completely hiding the image drawn before
it. You should use bitmap output to get the desired results because semi-transparent
rendering is not available with vector output.

Note
As described in “Guidelines for Choosing Bitmap or Vector Graphics” on page 286,
all transparent objects (not just image objects) are rendered opaque in vector output.

Figure 12-8: Interaction of Object Primitives with Transparent Views

Original View in Window

Vector Output Bitmap Output
Object Programming Bitmap and Vector Graphic Output

292 Chapter 12: Displaying, Copying and Printing Objects
Sorting Issues Among Image and Non-Image Objects

On a display device, IDLgrImage objects are drawn as “pixel primitives,” which
means that they do not update the depth buffer when they are written to the screen
and also are not tested against the depth buffer to determine if they should be drawn
or not by default. In such a case, images are rendered at Z=0 in viewing coordinates.
This means:

• Images always overwrite any graphical data on the screen in the area in which
they are drawn, regardless of their relative depth in the scene. Even objects that
are rendered closer to the viewer than the image are overwritten.

• Objects that are drawn after an image is on the screen are drawn as if the image
was not there. Since rendering the image did not update the depth buffer in the
region where the image was rendered, the objects drawn after the image are not
depth-tested against the image. This means that if you render an object, after
rendering an image, so that it appears deeper than the image (Z < 0 in viewing
coordinates), the object will render “on top” of the image, even though it is
physically behind it in the scene.

Note
This is true unless you specifically enable depth testing (see
“DEPTH_TEST_DISABLE” (IDL Reference Guide) for details). When depth
testing is enabled, images behave just like any other 3-D object that supports depth
buffer controls.

For these reasons, IDL applications often place image objects in the graphics tree so
that they render first, unless the application wishes to make use of the behaviors
described in the above two points. IDL emulates this behavior with vector graphics
when VECT_SORTING is on as follows:

• Image objects are drawn in the order that they are positioned in the graphics
tree.

• Non-image objects positioned before, after, or between image objects in the
graphics tree are sorted amongst themselves. That is, non-image objects that
are positioned in the tree before the first image are sorted and drawn first. Then
the image is drawn. Then the next group of non-image objects are sorted and
drawn, etc.

These steps assure consistency between bitmap and vector output for overlapping
image and non-image primitives. However, some sorting differences may occur
between non-image primitives that overlap each other but do not overlap images. For
example, consider two non-image primitives drawn on the screen so that they do not
Bitmap and Vector Graphic Output Object Programming

Chapter 12: Displaying, Copying and Printing Objects 293
overlap an image, and one of these primitives is positioned in the graphics tree before
(drawn before) the image, and the other is positioned in the graphics tree after (drawn
after) the image. These two primitives are not sorted with respect to each other and
are always drawn so that the second primitive is drawn after the first, regardless of
their relative depth in the scene. If these primitives overlap, the result may not be
correct if the first primitive is closer to the viewer than the second. Again, in this
case, consider using bitmap output for more accurate output.
Object Programming Bitmap and Vector Graphic Output

294 Chapter 12: Displaying, Copying and Printing Objects
Bitmap and Vector Graphic Output Object Programming

Chapter 13

Creating Custom
Objects in IDL
The following topics are covered in this chapter:
Creating Custom Objects 296
IDL Object Overview 297
Undocumented Object Classes 299
Creating an Object Class Structure 300
Object Heap Variables 304

The Object Lifecycle 307
Creating Custom Object Method Routines 310
Method Overriding 314
Object Examples 317
Object Programming 295

296 Chapter 13: Creating Custom Objects in IDL
Creating Custom Objects

This chapter describes the underlying structure of IDL objects and provides the
information needed to create a custom object in IDL. This includes information on
the object lifecycle, object methods (defining, using, and overriding methods) and
custom object examples.

If you are creating objects in iTools, the concepts covered in this chapter are
applicable, but you should use the iTool Programming as your reference when
creating custom iTools, or iTool components. The iTool Programming provides
information and examples of each of the major iTool elements (such as file readers
and writers, manipulators, operations, and visualizations), and contains valuable
discussions on data and property management within the iTool system.
Creating Custom Objects Object Programming

Chapter 13: Creating Custom Objects in IDL 297
IDL Object Overview

IDL objects are actually special heap variables, which means that they are global in
scope and provide explicit user control over their lifetimes. Object heap variables can
only be accessed via object references. Object references are discussed in this
chapter. Heap variables in general are discussed in detail in “Heap Variables”
(Application Programming).

Briefly, IDL provides support for the object concepts and mechanisms discussed in
the following sections.

Classes and Instances

IDL objects are created as instances of a class, which is defined in the form of an IDL
structure. The name of the structure is also the class name for the object. The instance
data of an object is an IDL structure contained in the object heap variable, and can
only be accessed by special functions and procedures, called methods, which are
associated with the class. Class structures are discussed in “Creating an Object Class
Structure” on page 300.

Encapsulation

Encapsulation is the ability to combine data and the routines that affect the data into a
single object. IDL accomplishes this by only allowing access to an object’s instance
data via that object’s methods. Data contained in an object is hidden from all but the
object’s own methods.

Methods

IDL allows you to define method procedures and functions using all of the
programming tools available in IDL. Method routines are identified as belonging to
an object class via a routine naming convention. Methods are discussed in detail in
“Creating Custom Object Method Routines” on page 310.

Polymorphism

Polymorphism is the ability to create multiple object types that support the same
operations. For example, many of IDL’s graphics objects support an operation called
“Draw,” which sends graphics output to a specified place. The “Draw” operation is
different in different contexts; sending a graphic to a printer is different from writing
Object Programming IDL Object Overview

298 Chapter 13: Creating Custom Objects in IDL
it to a file. Polymorphism allows the details of the differences to remain hidden—all
you need to know is that a given object supports the “Draw” operation.

Inheritance

Inheritance is the ability of an object class to inherit the behavior of other object
classes. This means that when writing a new object class that is very much like an
existing object class, you need only program the functions that are different from
those in the inherited class. IDL supports multiple inheritance—that is, an object can
inherit qualities from any number of other existing object classes. Inheritance is
discussed in detail in “Inheritance” on page 302.

Persistence

Persistence is the ability of objects to remain in existence in memory after they have
been created, allowing you to alter their behavior or appearance after their creation.
IDL objects persist until you explicitly destroy them, or until the end of the IDL
session. In practice, object persistence removes the need (in traditional IDL
programs) to re-execute IDL commands that create an item (a plot, for example) in
order to change a detail of the item. For example, once you have created a graphic
object containing a plot, you can alter any aspect of the plot “on the fly,” without re-
creating it. Similarly, having created an object containing a plot, you need not
recreate the plot in order to print, save to an image file, or re-display it.

IDL objects also persist in the sense that you can use the SAVE and RESTORE
routines to save and recreate objects between IDL sessions.
IDL Object Overview Object Programming

Chapter 13: Creating Custom Objects in IDL 299
Undocumented Object Classes

Several of IDL’s graphics objects are subclassed from more generic IDL objects. You
may see references to the generic IDL objects when using IDL’s HELP procedure to
get information on an object, or when you use the OBJ_ISA or OBJ_CLASS
functions. You may also notice that the generic objects are not documented in the
“Object Class and Method Reference” (IDL Reference Guide). This is not an
oversight.

We have chosen not to document the workings of the more generic objects from
which the IDL graphics objects are subclassed because we reserve the right to make
changes to their operation. We strongly recommend that you do not use the
undocumented object classes directly, or subclass your own object classes from them.
ITT Visual Information Solutions does not guarantee that user-written code that uses
undocumented features will continue to function in future releases of IDL.
Object Programming Undocumented Object Classes

300 Chapter 13: Creating Custom Objects in IDL
Creating an Object Class Structure

Object instance data is contained in named IDL structures. We will use the term class
structure to refer to IDL structures containing object instance data.

Beyond the restriction that class structures must be named structures, there are no
limits on what a class structure contains. Class structures can include data of any type
or organization, including pointers and object references. When an object is created,
the name of the class structure becomes the name of the class itself, and thus serves to
define the names of all methods associated with the class. For example, if we create
the following class structure:

struct = { Class1, data1:0L, data2:FLTARR(10) }

any objects created from the class structure Class1 would have the same two fields
(data1, a long integer, and data2, a ten-element floating-point array) and any methods
associated with the class would have the name Class1::method, where method is the
actual name of the method routine. Methods are discussed in detail in “Creating
Custom Object Method Routines” on page 310.

Note
When a new instance of a structure is created from an existing named structure, all
of the fields in the newly-created structure are zeroed. This means that fields
containing numeric values will contain zeros, fields containing string values will
contain null strings, and fields containing pointers or objects will contain null
pointers or null objects. In other words, no matter what data the original structure
contained, the new structure will contain only a template for that type of data. This
is true of objects as well; a newly created object will contain a zeroed copy of the
class structure as its instance data.

It is important to realize that creating a class structure does not create an object.
Objects can only be created by calling the OBJ_NEW or OBJARR function with the
name of the class structure as the argument, and can only be accessed via the returned
object reference. In addition, object methods can only be called on objects, and not on
class structures themselves.

Once defined, a given class structure type cannot be changed. If a structure definition
is executed and the structure already exists, each tag name and the structure of each
tag field must agree with the original definition. To redefine a structure, you must
either reset or exit the current IDL session.
Creating an Object Class Structure Object Programming

Chapter 13: Creating Custom Objects in IDL 301
Automatic Class Structure Definition

If IDL finds a reference to a structure that has not been defined, it will search for a
structure definition procedure to define it. (This is true of all structure references, not
just class structures.) Automatic structure definition is discussed in “Automatic
Structure Definition” on page 354. Briefly, if IDL encounters a structure reference for
a structure type that has not been defined, it searches for a routine with a name of the
form

STRUCT__DEFINE

where STRUCT is the name of the structure type. Note that there are two underscores
in the name of the structure definition routine.

The following is an example of a structure definition procedure that defines a
structure that will be used for the class CNAME.

PRO CNAME__DEFINE
struct = { CNAME, data1:0L, data2:FLTARR(10) }

END

This defines a structure named CNAME with 2 data fields (data1, a long integer, and
data2, a ten-element floating-point array). If you tell IDL to create an object of type
CNAME before this structure has been defined, IDL will search for the procedure
CNAME__DEFINE to define the class structure before attempting to create the
object. If the CNAME__DEFINE procedure has not yet been compiled, IDL will use
its normal routine searching algorithm to attempt to find a file named
CNAME__DEFINE.PRO. If IDL cannot find a defined structure or structure
definition routine, the object-creation operation will fail.

Note
If you are creating structure definitions on the fly, the possibility exists that you will
run into namespace conflicts — that is, a structure with the same name as the
structure you are attempting to create may already exist. This can be a problem if
you are developing object-oriented applications for others, since you probably do
not have much control over the IDL environment on your clients’ systems. You can
avoid most problems by creating a unique namespace for your routines; ITT Visual
Information Solutions does this by prefixing the names of objects with the letters
“IDL”. To help avoid namespace conflict, consider using a custom prefix (not
“IDL”). To be completely sure that the objects created by your programs are what
you expect, however, you should have the program inspect the created structures
and handle errors appropriately.
Object Programming Creating an Object Class Structure

302 Chapter 13: Creating Custom Objects in IDL
Inheritance

When defining a class structure, use the INHERITS specifier to indicate that this
structure inherits instance data and methods from another class structure. For
example, if we defined a class structure called “circle,” as follows:

struct = { circle, x:0, y:0, radius:0 }

we can define a subclass of the “circle” class like this:

struct = { filled_circle, color:0, INHERITS circle }

You can use the INHERITS specifier in any structure definition. However, when the
structure being defined is a class structure (that is, an object will be created from the
structure), inheritance affects both the structure definition and the object methods
available to the object that inherits. The INHERITS specifier is discussed in
“Structure Inheritance” on page 340.

When a class structure inherits from another class structure, it is said to be a subclass
of the class it inherits from. Similarly, the class that is inherited from is called a
superclass of the new class. Defining a subclass of an existing class in this manner
has two consequences. First, the class structure for the subclass is constructed as if
the elements of the inherited class structure were included in-line in the structure
definition. In our example, the command defining the “filled_circle” class above
would create the followings structure definition:

{ filled_circle, color:0, x:0, y:0, radius:0 }

Note that the data fields from the inherited structure definition appear in-line at the
point where the INHERITS specifier appears.

The second consequence of defining a subclass structure that inherits from another
class structure is that when an object is created from the subclass structure, that object
inherits the methods of the superclass as well as its data fields. That is, if an object of
the superclass type has a method, that method is available to objects created from the
subclass as well. In our example above, say we create an object of type circle and
define a Print method for it. Any objects of type filled_circle will also have access to
the Print method defined for circle.

IDL allows multiple inheritance. This means that you can include the INHERITS
specifier as many times as you desire in a structure definition, as long as all of the
resulting data fields have unique names. Data fields must have unique names because
when the class structure definition is built, the tag names are included in-line at the
point where the INHERITS specifier appears. Duplicate tag names will cause the
structure definition to fail; it is your responsibility as a programmer to ensure that tag
names are not used more than once in a structure definition.
Creating an Object Class Structure Object Programming

Chapter 13: Creating Custom Objects in IDL 303
Note
The requirement that names be unique applies only to data fields. It is perfectly
legitimate (and often necessary) for subclasses to have methods with the same
names as methods belonging to the superclass. See “Method Overriding” on
page 314 for details.

If a structure referred to by an INHERITS specifier has not been defined in the
current IDL session, IDL will attempt to define it in the manner described in
“Automatic Class Structure Definition” on page 301.

Null Objects

The Null Object is a special object reference that is guaranteed to never point at a
valid object heap variable. It is used by IDL to initialize object reference variables
when no other initializing value is present. It is also a convenient value to use when
defining structure definitions for fields that are object references, since it avoids the
need to have a pre-existing valid object reference.

Null objects are created when you call an object-creation routine but do not specify a
class structure to be used as the new object’s template. The following statement
creates a null object:

nullobj = OBJ_NEW()
Object Programming Creating an Object Class Structure

304 Chapter 13: Creating Custom Objects in IDL
Object Heap Variables

Object heap variables are IDL heap variables that are accessible only via object
references. While there are many similarities between object references and pointers,
it is important to understand that they are not the same type, and cannot be used
interchangeably. Object heap variables are created using the OBJ_NEW and
OBJARR functions. For more information on heap variables and pointers, see “IDL
Pointers” on page 366.

Heap variables are a special class of IDL variables that have global scope and explicit
user control over their lifetime. They can be basic IDL variables, accessible via
pointers, or objects, accessible via object references. In IDL documentation of
pointers and objects, heap variables accessible via pointers are called pointer heap
variables, and heap variables accessible via object references are called object heap
variables.

Note
Pointers and object references have many similarities, the strongest of which is that
both point at heap variables. It is important to understand that they are not the same
type, and cannot be used interchangeably. Pointers and object references are used to
solve different sorts of problems. Pointers are useful for building dynamic data
structures, and for passing large data around using a lightweight token (the pointer
itself) instead of copying data. Objects are used to apply object oriented design
techniques and organization to a system. It is, of course, often useful to use both in
a given program.

Heap variables are global in scope, but do not suffer from the limitations of
COMMON blocks. That is, heap variables are available to all program units at all
times. (Remember, however, that IDL variables containing pointers to heap variables
are not global in scope and must be declared in a COMMON block if you want to
share them between program units.)

Heap variables:

• Facilitate object oriented programming.

• Provide full support for Save and Restore. Saving a pointer or object reference
automatically causes the associated heap variable to be saved as well. This
means that if the heap variable contains a pointer or object reference, the heap
variables they point to are also saved. Complicated self-referential data
structures can be saved and restored easily.
Object Heap Variables Object Programming

Chapter 13: Creating Custom Objects in IDL 305
• Are manipulated primarily via pointers or object references using built in
language operators rather than special functions and procedures.

• Can be used to construct arbitrary, fully general data structures in conjunction
with pointers.

Dangling References

If a heap variable is destroyed, any remaining pointer variable or object reference that
still refers to it is said to contain a dangling reference. Unlike lower level languages
such as C, dereferencing a dangling reference will not crash or corrupt your IDL
session. It will, however, fail with an error message.

There are several possible approaches to avoiding such errors. The best option is to
structure your code such that dangling references do not occur. You can, however,
verify the validity of pointers or object references before using them (via the
PTR_VALID or OBJ_VALID functions) or use the CATCH mechanism to recover
from the effect of such a dereferencing.

Heap Variable “Leakage”

Heap variables are not reference counted—that is, IDL does not keep track of how
many references to a heap variable exist, or stop the last such reference from being
destroyed—so it is possible to lose access to them and the memory they are using.
See “Heap Variables” on page 361 for additional details.

Freeing Heap Variables

The HEAP_FREE procedure recursively frees all heap variables (pointers or objects)
referenced by its input argument. This routine examines the input variable, including
all array elements and structure fields. When a valid pointer or object reference is
encountered, that heap variable is marked for removal, and then is recursively
examined for additional heap variables to be freed. In this way, all heap variables that
are referenced directly or indirectly by the input argument are located. Once all such
heap variables are identified, HEAP_FREE releases them in a final pass. Pointers are
released as if the PTR_FREE procedure was called. Objects are released as with a call
to OBJ_DESTROY.
Object Programming Object Heap Variables

306 Chapter 13: Creating Custom Objects in IDL
HEAP_FREE is recommended when:

• The data structures involved are highly complex, nested, or variable, and
writing cleanup code is difficult and error prone.

• The data structures are opaque, and the code cleaning up does not have
knowledge of the structure.

See “HEAP_FREE” (IDL Reference Guide) for further details.
Object Heap Variables Object Programming

Chapter 13: Creating Custom Objects in IDL 307
The Object Lifecycle

Objects are persistent, meaning they exist in memory until you destroy them. We can
break the life of an object into three phases: creation and initialization, use, and
destruction. Object lifecycle routines allow the creation and destruction of object
references; lifecycle methods associated with an object allow you to control what
happens when an object is created or destroyed.

This section will discuss the first and last phases of the object lifecycle; the remainder
of this chapter discusses manipulation of existing objects and use of object method
routines. To get information about an object, see “Returning Object Type and
Validity” (Chapter 4, Using IDL).

Creation and Initialization

Object references are created using one of two lifecycle routines: OBJ_NEW or
OBJARR. Newly created objects are initialized upon creation in two ways:

1. The object reference is created based on the class structure specified,

2. The object’s Init method (if it has one) is called to initialize the object’s
instance data (contained in fields defined by the class structure). If the object
does not have an Init method, the object’s superclasses (if any) are searched for
an Init method.

The Init Method

An object’s lifecycle method Init is a function named Class::Init (where Class is the
actual name of the class). The purpose of the Init method is to populate a newly-
created object with instance data. Init should return a scalar TRUE value (such as 1) if
the initialization is successful, and FALSE (such as 0) if the initialization fails.

The Init method is unusual in that it cannot be called outside an object-creation
operation. This means that—unlike most object methods—you cannot call the Init
method on an object directly. You can, however, call an object’s Init method from
within the Init method of a subclass of that object. This allows you to specify
parameters used by the superclass’ Init method along with those used by the Init
method of the object being created. In practice, this is often done using the _EXTRA
keyword. See“Keyword Inheritance” on page 91 for details.
Object Programming The Object Lifecycle

308 Chapter 13: Creating Custom Objects in IDL
The OBJ_NEW Function

Use the OBJ_NEW function to create an object reference to a new object heap
variable. If you supply the name of a class structure as its argument, OBJ_NEW
creates a new object containing an instance of that class structure. Note that the fields
of the newly-created object’s instance data structure will all be empty. For example,
the command:

obj1 = OBJ_NEW('ClassName')

creates a new object heap variable that contains an instance of the class structure
ClassName, and places an object reference to this heap variable in obj1. If you do not
supply an argument, the newly-created object will be a null object.

When creating an object from a class structure, OBJ_NEW goes through the
following steps:

1. If the class structure has not been defined, IDL will attempt to find and call a
procedure to define it automatically. See “Automatic Class Structure
Definition” on page 301 for details. If the structure is still not defined,
OBJ_NEW fails and issues an error.

2. If the class structure has been defined, OBJ_NEW creates an object heap
variable containing a zeroed instance of the class structure.

3. Once the new object heap variable has been created, OBJ_NEW looks for a
method function named Class::Init (where Class is the actual name of the
class). If an Init method exists, it is called with the new object as its implicit
SELF argument, as well as any arguments and keywords specified in the call to
OBJ_NEW. If the class has no Init method, the usual method-searching rules
are applied to find one from a superclass. For more information on methods
and method-searching rules, see “Creating Custom Object Method Routines”
on page 310.

Note
OBJ_NEW does not call all the Init methods in an object’s class hierarchy. Instead,
it simply calls the first one it finds. Therefore, the Init method for a class should call
the Init methods of its direct superclasses as necessary.

4. If the Init method returns true, or if no Init method exists, OBJ_NEW returns
an object reference to the heap variable. If Init returns false, OBJ_NEW
destroys the new object and returns the NULL object reference, indicating that
the operation failed. Note that in this case the Cleanup method is not called.

See “OBJ_NEW” (IDL Reference Guide) for further details.
The Object Lifecycle Object Programming

Chapter 13: Creating Custom Objects in IDL 309
The OBJARR Function

Use the OBJARR function to create an array of objects of up to eight dimensions.
Every element of the array created by OBJARR is set to the null object. For example,
the following command creates a 3 by 3 element object reference array with each
element contain the null object reference:

obj2 = OBJARR(3, 3)

See “OBJARR” (IDL Reference Guide) for further details.

Destruction

Use the OBJ_DESTROY procedure to destroy an object. If the object’s class, or one
of its superclasses, supplies a procedure method named Cleanup, that method is
called, and all arguments and keywords passed by the user are passed to it. The
Cleanup method should perform any required cleanup on the object and return.
Whether a Cleanup method actually exists or not, IDL will destroy the heap variable
representing the object and return.

The Cleanup method is unusual in that it cannot be called outside an object-
destruction operation. This means that—unlike most object methods—you cannot
call the Cleanup method on an object directly. You can, however, call an object’s
Cleanup method from within the Cleanup method of a subclass of that object.

Note that the object references themselves are not destroyed. Object references that
refer to nonexistent object heap variables are known as dangling references, and are
discussed in more detail in “Dangling References” on page 373.

See “OBJ_DESTROY” (IDL Reference Guide) for further details.

Implicit Calling of Superclass Cleanup Methods

If you create an object class and do not implement a Cleanup method for it, when you
destroy an object of your class IDL will call the Cleanup method of the class’
superclass, if it has one.

If your class has multiple superclasses, on destruction IDL will attempt to call the
Cleanup method of the first superclass. If that superclass has a Cleanup method, IDL
will execute it and then destroy the object. If the first superclass does not have a
Cleanup method, IDL will proceed through the list of superclasses in the order they
are specified in the class structure definition statement until it either finds a Cleanup
method to execute or reaches the end of the list.

To ensure that Cleanup methods from multiple superclasses are called, create a
Cleanup method for your class and call the superclass’ Cleanup methods explicitly.
Object Programming The Object Lifecycle

310 Chapter 13: Creating Custom Objects in IDL
Creating Custom Object Method Routines

IDL objects can have associated procedures and functions called methods. Methods
are called on objects via their object references using the method invocation operator.

While object methods are constructed in the same way as any other IDL procedure or
function, they are different from other routines in the following ways:

• Object methods are defined using a special naming convention that
incorporates the name of the class to which the method belongs. See “Defining
Method Routines” below.

• All method routines automatically pass an implicit argument named self,
which contains the object reference of the object on which the method is
called. See “The Implicit Self Argument” on page 311.

• Object methods cannot be called on their own. You must use the method
invocation operator and supply a valid object reference, either of the class the
method belongs to or of one of that class’ subclasses. See “Calling Method
Routines” on page 312.

Note
Keyword inheritance is an extremely important concept to understand when
working with object methods. See “Keyword Inheritance” on page 91 for details.

Defining Method Routines

Method routines are defined in the same way as other IDL procedures and functions,
with the exception that the name of the class to which they belong, along with two
colons, is prepended to the method name:

PRO ClassName::Method
IDL statements

END

or

FUNCTION ClassName::Method, Argument1
IDL statements

RETURN, value
END

For example, suppose we create two objects, each with its own “print” method.
Creating Custom Object Method Routines Object Programming

Chapter 13: Creating Custom Objects in IDL 311
First, define two class structures:

struct = { class1, data1:0.0 }
struct = { class2, data2a:0, data2b:0L, INHERITS class1 }

Now we define two “print” methods to print the contents of any objects of either of
these two classes. (If you are typing this at the IDL command line, enter the .RUN
command before each of the following procedure definitions.)

PRO class1::Print1
PRINT, self.data1

END
PRO class2::Print2

PRINT, self.data1
PRINT, self.data2a, self.data2b

END

Once these procedures are defined, any objects of class1 have access to the method
Print1, and any objects of class2 have access to both Print1 and Print2 (because
class2 is a subclass of—it inherits from—class1). Note that the Print2 method prints
the data1 field inherited from class1.

Note
It is not necessary to give different method names to methods from different classes,
as we have done here with Print1 and Print2. In fact, in most cases both methods
would have simply been called Print, with each object class knowing only about its
own version of the method. We have given the two procedures different names here
for instructional reasons; see “Method Overriding” on page 314 for a more
complete discussion of method naming.

The Implicit Self Argument

Every method routine has an implicit argument parameter named self. The self
parameter always contains the object reference of the object on which the method is
called. In the method routines created above, self is used to specify which object the
data fields should be printed from using the structure dot operator:

PRINT, self.data1

You do not need to explicitly pass the self argument; in fact, if you try to specify an
argument called self when defining a method routine, IDL will issue an error.
Object Programming Creating Custom Object Method Routines

312 Chapter 13: Creating Custom Objects in IDL
Calling Method Routines

You must use the method invocation operator (->) to call a method on an object. The
syntax is:

ObjRef->Method

where ObjRef is an object reference and Method is a method belonging either to the
object’s class or to one of its superclasses. Method may be specified either partially
(using only the method name) or completely using both the class name and method
name, connected with two colons:

ObjRef->Class::Method

See “Specifying Class Names in Method Calls” on page 315 for more information.

The exact method syntax is slightly different from other routine invocations:

; For a procedure method.
ObjRef->Method

; For a function method.
Result = ObjRef->Method()

Where ObjRef is an object reference belonging to the same class as the Method, or to
one of that class’ subclasses. We can illustrate this behavior using the Print1 and
Print2 methods defined above.

First, define two new objects:

A = OBJ_NEW('class1')
B = OBJ_NEW('class2')

We can call Print1 on the object A as follows:

A->Print1

IDL prints:

0.00000

Similarly, we can call Print2 on the object B:

B->Print2

IDL prints:

0.00000
0 0
Creating Custom Object Method Routines Object Programming

Chapter 13: Creating Custom Objects in IDL 313
Since the object B inherits its properties from class1, we can also call Print1 on the
object B:

B->Print1

IDL prints:

0.00000

We cannot, however, call Print2 on the object A, since class1 does not inherit the
properties of class2:

A->Print2

IDL prints:

% Attempt to call undefined method: 'CLASS1::PRINT2'.

Searching for Method Routines

When a method is called on an object reference, IDL searches for it as with any
procedure or function, and calls it if it can be found, following the naming convention
established for structure definition routines. (See “Automatic Class Structure
Definition” on page 301.) In other words, IDL discovers methods as it needs them in
the same way as regular procedures and functions, with the exception that it searches
for files named

classname__method.pro

rather than simply

method.pro

Remember that there are two underscores in the file name, and two colons in the
method routine’s name.

Note
If you are working in an environment where the length of filenames is limited, you
may want to consider defining all object methods in the same .pro file you use to
define the class structure. This practice avoids any problems caused by the need to
prepend the classname and the two underscore characters to the method name. If
you must use different .pro files, make sure that all class (and superclass)
definition filenames are unique in the first eight characters.
Object Programming Creating Custom Object Method Routines

314 Chapter 13: Creating Custom Objects in IDL
Method Overriding

Unlike data fields, method names can be duplicated. This is an important feature that
allows method overriding, which in turn facilitates polymorphism in the design of
object-oriented programs. Method overriding allows a subclass to provide its own
implementation of a method already provided by one of its superclasses. When a
method is called on an object, IDL searches for a method of that class with that name.
If found, the method is called. If not, the methods of any inherited object classes are
examined in the order their INHERITS specifiers appear in the structure definition,
and the first method found with the correct name is called. If no method of the
specified name is found, an error occurs.

The method search proceeds depth first, left to right. This means that if an object’s
class does not provide the method called directly, IDL searches through inherited
classes by first searching the left-most included class—and all of its superclasses—
before proceeding to the next inherited class to the right. If a method is defined by
more than a single inherited structure definition, the first one found is used and no
warning is generated. This means that class designers should pick non-generic names
for their methods as well as their data fields. For example, suppose we have defined
the following classes:

struct = { class1, data1}
struct = { class2, data2a:0, data2b:0.0, inherits class1 }
struct = { class3, data3:'', inherits class2, inherits class1 }
struct = { class4, data4:0L, inherits class2, inherits class3 }

Furthermore, suppose that both class1 and class3 have a method called Print defined.

Now suppose that we create an object of class4, and call the Print method:

A = OBJ_NEW('class4')
A->Print

IDL takes the following steps:

1. Searches class4 for a Print method. It does not find one.

2. Searches the left-most inherited class (class2) in the class definition structure
for a Print method. It does not find one.

3. Searches any superclasses of class2 for a Print method. It finds the class1 Print
method and calls it on A.

Notice that IDL stops searching when it finds a method with the proper name. Thus,
IDL doesn’t find the Print method that belongs to class3.
Method Overriding Object Programming

Chapter 13: Creating Custom Objects in IDL 315
When are Methods Associated with Object Classes?

It is important to note that IDL will associate a method with objects of a given class
the first time the method is called on an object of that class. This means that if a new
method definition is compiled after the first time a method with a particular name is
called, the new definition will not be used until a new IDL session begins.

Extending the example above, suppose that after calling the Print method you
compile a new class4::Print method. Subsequent calls to the Print method will still
invoke the class1::Print method even though the object instance A’s “own” Print
method now exists. Once an association has been formed between an object class and
a method, that association is not changed for the duration of the IDL session.

To ensure that the correct method is selected, either ensure that the method is
compiled before the first time it is called or explicitly specify the class name when
calling the method, as described below.

Specifying Class Names in Method Calls

If you specify a class name when calling an object method, like so:

ObjRef->classname::method

Where classname is the name of one of the object’s superclasses, IDL will search
classname and any of classname’s superclasses for the method name. IDL will not
search the object’s own class or any other classes the object inherits from.

This type of method call is especially useful when a class has a method that overrides
a superclass method and does its job by calling the superclass method and then
adding functionality. In our simple example from “Calling Method Routines” on
page 312, above, we could have defined a Print method for each class, as follows:

PRO class1::Print
PRINT, self.data1

END
PRO class2::Print

self->class1::Print
PRINT, self.data2a, self.data2b

END

In this case, to duplicate the behavior of the Print1 and Print2 methods, we make the
following method calls:

A->Print

IDL prints:

0.00000
Object Programming Method Overriding

316 Chapter 13: Creating Custom Objects in IDL
And now the B:

B->Print

IDL prints:

0.00000
0 0

Now we’ll use the second method:

B->class1::Print

IDL prints:

0.00000

And now A:

A->class2::Print

IDL prints:

% CLASS2 is not a superclass of object class CLASS1.
% Execution halted at: $MAIN$
Method Overriding Object Programming

Chapter 13: Creating Custom Objects in IDL 317
Object Examples

We have included a number of examples of object-oriented programming as part of
the IDL distribution. Many of the examples used in this volume are included —
sometimes in expanded form — in the examples/doc/objects subdirectory of the
IDL distribution. By default, this directory is part of IDL’s path; if you have not
changed your path, you will be able to run the examples as described here. See
“!PATH” (IDL Reference Guide) for information on IDL's path.

Also see the iTool Programming for additional examples of creating custom objects
including file reader and writers, manipulators, and operators that can be used within
a custom iTool.

Creating Composite Classes or Subclasses

IDL includes a rich set of basic objects that an be used for creating visualizations.
You may find that you are using a certain combination of these objects again and
again within your applications for a particular purpose. If this is the case, you might
want to consider defining a composite object class that encapsulates the combination
of those subcomponents.

IDL includes several such composite classes, such as the IDLgrColorbar and
IDLgrLegend objects. You will find the IDL code for these objects in the lib
directory of your IDL distribution.

Example Code
Another example can be found in the idlexshow3_ _ define.pro in the
examples/doc/utilities subdirectory. In this case, an image, surface, and
contour representation are combined into a single object called the IDLexShow3
object. To see this object being used in an application, run the show3_track routine,
defined in the file show3_track.pro in the examples/doc/objects directory.
Object Programming Object Examples

318 Chapter 13: Creating Custom Objects in IDL
The program show3_track.pro creates the following visualization:

You may also find that you want to customize one or more of the classes available in
Object Graphics. For instance, you may want to create a specialized image object that
can handle 16-bit palettes.

Example Code
An example that creates a specialized image object that can handle 16-bit palettes is
provided in idlexpalimage_ _define.pro in the examples/doc/utilities
subdirectory of the IDL distribution. Run the example procedure by entering
idlexpalimage__define at the IDL command prompt or view the file in an IDL
Editor window by entering .EDIT idlexpalimage__define.pro.

Figure 13-1: Show3_track example
Object Examples Object Programming

javascript:doIDL("idlexpalimage__define")
javascript:doIDL(".edit idlexpalimage__define.pro")

Chapter 14

Advanced Rendering
Using Shader Objects
The following chapter describes how to use IDLgrShader functionality to take advantage of
graphics card processing and rendering capabilities in IDL object graphics applications.
About Shaders . 320
About Shader Programs 323
How Shaders Enhance Performance 326
Using Shaders in an IDL Application 328
Passing Information to a Shader Program . 330

Library of Pre-built Shader Objects 333
Image Filter Shaders 334
Vertex Shaders . 359
Lighting Shaders 363
Multi-texture Shaders 369
Object Programming 319

320 Chapter 14: Advanced Rendering Using Shader Objects
About Shaders

The shader functionality implemented in IDL object graphics provides access to the
advantages of the hardware-based OpenGL Shading Language (GLSL) features that
are available on modern graphics cards. Using a shader, computationally intensive
image processing operations can be off-loaded to the graphics card, making the time
and processing resources of the host computer available to other application
elements. Additionally, the OpenGL Shading Language greatly expands on the
capabilities of the fixed OpenGL rendering pipeline to produce advanced visual
effects. Whereas native IDL object graphics expose OpenGL capabilities through
fixed object properties, GLSL offers the ability to modify virtually any object
characteristic. Using shaders lets you implement realistic material and lighting
effects, create animations by modifying object vertices, and achieve image
processing performance rates that far exceed what is possible using the system CPU.

Note
It is important to realize that this functionality only exposes the ability to use
OpenGL Shading Language within an IDL application. It does not implement the
shading language nor does this document explain how to write shader language
code. However, numerous GLSL publications and internet resources are available.

Why Use Shaders

Shaders are often used to produce elaborate scenes including realistic materials and
lighting, especially in 3-D gaming environments. However, shaders also offer
incredible performance and enhanced interactivity when used in image processing
applications. Consider an application the applies the following operations to an
image:

• Convolution filter

• Scale and offset bias

• Tonal compensation (LUT)

• Display compensation (LUT or BYTSCL)

Using the system CPU as the primary processor in a software-based solution, it is
only possible to achieve a display rate of a few frames per second. However, if a
shader program is implemented, the processing is shifted to the graphics card GPU
and display rates of over 100 frames per second are possible. The shader program
applies these operations on every draw so there is no performance penalty for altering
parameters during rapid drawing sequence. This means that a user can change a
About Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 321
parameter of the operation and see the results nearly instantaneously, which makes
the image processing application highly responsive to interactive changes. See “How
Shaders Enhance Performance” on page 326 for details.

Shaders also provide a means of solving a wider range of image processing problems
than what is possible using only the fixed functionality of the OpenGL pipeline
exposed by IDL procedures and functions. There are no limits to the image
processing problems that you can solve using shaders other than those imposed by
the shader itself and the boundaries of your imagination.

Hardware Requirements for Shaders

In general, shader programs will work on graphics cards and drivers that support the
OpenGL 2.0 interface. However, it is important to note that performance varies
greatly between low-end and high-end graphics cards, and also varies depending on
the implementation and content of the shader program. Also, always use the most up-
to-date drivers available for your graphics card when developing IDL applications
that use shader programs.

Use the SHADING_LANGUAGE_VERSION keyword to
IDLgrWindow::GetDeviceInfo to determine whether or not a card supports shader
functionality. Executing the following code in IDL will briefly create an
IDLgrWindow object and report on whether hardware shaders are available on your
system:

oWin = OBJ_NEW('IDLgrWindow')
oWin->GetDeviceInfo, SHADING_LANGUAGE_VERSION=v
OBJ_DESTROY, oWin
PRINT, 'Shading language version: ', v
IF FLOAT(v) GE 1 THEN PRINT, 'Hardware shaders are available' $

ELSE PRINT, 'Hardware shaders are not available'

A shader-equipped graphics card will not utilize the shader hardware if IDL is using
software rendering. To make sure you are using the shading hardware, be sure to
specify the hardware renderer (for example, set the IDLgrWindow RENDERER
property to 0).

Image processing applications can provide a software-based alternative in case the
system graphics card does not support OpenGL 2.0. See “Providing a Software
Alternative to Shaders” on page 335 for details.

Note
If there is insufficient support for the shader program, IDL draws the scene as if
there was no shader object present unless a software fallback exists.
Object Programming About Shaders

322 Chapter 14: Advanced Rendering Using Shader Objects
Note
Setting the IDLgrWindow property RETAIN to 2 disables hardware shaders.
Software shaders are used if available.
About Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 323
About Shader Programs

A shader program is a user-defined program written in OpenGL Shading Language
(GLSL) that is executed by the graphics processing unit (GPU) of the graphics card.
This chapter provides an overview of the process of using shader programs with IDL.
It is not meant as a tutorial on writing shader programs.

Note
Your graphics card must support OpenGL 2.0 functionality and you will need to
have the latest drivers installed to take advantage of shader programs in IDL.

Shader programs can produce results that are not possible using the fixed-function
rendering pipeline exposed through IDL object properties. For example, if you create
an IDLgrPolygon and set the COLOR property to green and the SHADING property
to flat, OpenGL takes over rendering of a green polygon with flat shading; more
precise control is not possible. However, a shader program provides far more control
and lets you configure lighting and texture effects on a per-pixel basis.
Object Programming About Shader Programs

324 Chapter 14: Advanced Rendering Using Shader Objects
The interaction of a shader program within the graphics system is shown in the
following figure. The graphics card GPU switches between executing fixed-function
and shader program code.

Note
Shader program attributes override all fixed-function attributes (those defined using
object properties). If you define a blue sphere in IDL object graphics, but define a
shader program to draw a green sphere, the displayed sphere will be green if there is
suitable hardware support for the shader program.

Vertex and Fragment Shaders

Shader programs are highly configurable because each shader program consists of
two required parts: a vertex shader and a fragment shader. (A fragment is the same
thing as a pixel, but with extra information such as depth.) The shader program
compiler built into OpenGL compiles each of them separately and then links them to
form a complete shader program.

Figure 14-1: Shader Program Interaction with Application and Graphics Card
About Shader Programs Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 325
When a shader program is active, OpenGL calls the vertex shader program once for
every vertex in the primitive it is currently drawing. Along with the expected position
information (x, y, z, w) for the vertex, there is also color, normal, texture coordinate,
lighting, and other information associated with the vertex that is available to the
vertex shader program. Here, the vertices, connectivity and transformation
information are used to construct the primitive. The primitive undergoes
rasterization, which converts the vertex representation to pixel representation. This
defines the fragments.

OpenGL calls the fragment shader for every pixel that OpenGL intends to modify on
the graphics device. The fragment shader determines the color of the pixel according
to information it may obtain from the vertex program and from its own calculations.
The shader program may also include computing normals to apply per-fragment
lighting effects. It then tells OpenGL what color to use for drawing the pixel.

For the primitive shown in the previous figure, OpenGL calls the vertex shader three
times, once for each corner of the triangle, and calls the fragment shader program
once for every pixel covered by the triangle. Vertex attributes are interpolated across
the fragments based on the vertex connectivity and the resulting distance of a
fragment from a vertex.

Figure 14-2: Interaction of Vertex and Fragment Shaders on a Primitive
Object Programming About Shader Programs

326 Chapter 14: Advanced Rendering Using Shader Objects
How Shaders Enhance Performance

Using a shader lets you take advantage of the processing power of the graphics card
processing unit (GPU) instead of relying solely on the system CPU. The ability to
offload computationally intensive tasks means applications run faster and operate
more interactively. Also, the GPU can operate on multiple data streams
simultaneously. For example, some GPUs can execute a fragment shader on up to 24
fragments (pixels) simultaneously, which provides a significant performance
advantage over a CPU which can only process one pixel at a time.

Consider a typical image processing application that applies several transforms or
operations to a set of image data, stores the result in an IDLgrImage object and then
displays the image. In the following figure, the application applies several image
operations and creates intermediate images (that may be reused). This process
requires a significant amount of computation and data movement before the final
image is copied into the image object and the graphic device’s texture memory.
Additionally, all or most of this process must be repeated any time the parameters of
an operation change, reducing interactive performance.

Figure 14-3: Image Processing Pipeline without Shader Program
How Shaders Enhance Performance Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 327
Consider the same image processing application that uses a shader program to apply
the operations. In the following figure, the entire processing cycle is accomplished on
the graphics card with the exception of passing in a small amount of data containing
operation parameters.

Without a shader program and suitable hardware, updating an image may require
several tenths of a second when the image is large and complex operations are
applied. Noticeable display updates may occur with CPU processing. With a shader
program, the display rate with the same amount of processing can be hundreds of
frames per second. Display updates will be smooth with GPU processing. Display
rates of hundreds of frames per second are not always useful, but when lower rates
are used, more CPU resources are available for other operations.

Figure 14-4: Image Processing Pipeline with Shader Program
Object Programming How Shaders Enhance Performance

328 Chapter 14: Advanced Rendering Using Shader Objects
Using Shaders in an IDL Application

The IDLgrShader object class exposes OpenGL Shader Language (GLSL) code
within an IDL application. Using shader object properties, you can define the
required vertex shader and fragment shader components (described in “Vertex and
Fragment Shaders” on page 324) by either passing in a string containing the GLSL
program or by passing in a filename. Always associate a shader object with an atomic
graphic object using the SHADER property. SHADER is a property of the following
objects:

Although a shader object can be associated with any number of the listed graphic
objects, a shader program is typically written with a specific object in mind since the
IDL application will likely pass object-specific parameters to the shader program. For
example, a byte-scale image processing shader would have little applicability to a
text object. Additional shader-related properties exist on IDLgrImage, IDLgrLight,
IDLgrPlot, IDLgrPolygon, IDLgrPolyline, and IDLgrSurface. These are described in
the example sections.

Warning
Setting IDLgrImage RENDER_METHOD=1 (do not render image as texture-
mapped polygon) disables all shader functionality including the software-based
alternative.

Note
In an image processing application, more than a single shader can be associated
with an IDLgrImage object through the use of an IDLgrFilterChain object. See
“Filter Chain Shaders” on page 355 for details.

Note
Shaders are a hardware-based feature. Be sure to specify the hardware renderer (for
example, set the IDLgrWindow RENDERER property to 0).

IDLgrAxis IDLgrPlot IDLgrROIGroup

IDLgrContour IDLgrPolygon IDLgrSurface

IDLgrImage IDLgrPolyline IDLgrText

IDLgrLight IDLgrROI IDLgrVolume
Using Shaders in an IDL Application Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 329
Display-Only Effects of Shaders

Unless a shader program is associated with an IDLgrImage object, processing results
are visible only on the display. The non-display objects (IDLgrBuffer,
IDLgrClipboard, IDLgrPrinter and IDLgrVRML) do not support shader functionality.

If the shader is associated with an IDLgrImage object, there are two exceptions to this
display-only limitation. You can capture image data after the application of a shader
using the IDLgrImage::ReadFilteredData method. See “Capturing Image Data
During Shader Execution” on page 335. You can also access full resolution image
data if you have implemented a software-based alternative to an image processing
shader application. See “Providing a Software Alternative to Shaders” on page 335
for details.

Note
As long as there is hardware support for a shader program, shader program
parameters take precedence over any OpenGL fixed pipeline parameters defined
using object properties.
Object Programming Using Shaders in an IDL Application

330 Chapter 14: Advanced Rendering Using Shader Objects
Passing Information to a Shader Program

The increased processing power provided by shaders allows the display to be quickly
updated when object parameters change. This one-way communication lets you pass
in object parameters, such as color updates, but also other variables such as time, for
which there is no OpenGL equivalent. The parameter updates cause changes in the
color or depth buffers, but no output is returned to the calling application, hence the
one-way communication.

Exactly how data is passed to a shader program depends on the target for the
parameter data. The two main ways to communicate with a shader program include
using “Uniform Variables” described below and “Attribute Variables” on page 332.
IDL activates the shader program when the application draws the scene containing
the graphic object with the associated IDLgrShader object. IDL passes the uniform
variable and/or vertex attribute data that you set with the SetUniformVariable and
SetVertexAttributeData methods to the shader program.

Warning
Uniform and attribute variable names are case-sensitive, unlike most variable
names in IDL.

Note
If there is insufficient support for the shader program, IDL draws the scene as if
there was no shader object present.

Uniform Variables

Uniform variables contain small amounts of data that change infrequently (not more
often than when the associated object is drawn). Use the GetUniformVariable and
SetUniformVariable methods of the IDLgrShader object to retrieve or pass a named
uniform variable to a shader program.

Reserved Uniform Variables

If an IDLgrShader or object subclassing from IDLgrShader is associated with an
image, surface or polygon object, IDL sets a number of reserved uniform variables.
All reserved uniform variable names begin with "_IDL_".

• _IDL_ImageStep — this uniform variable is of GLSL type vec2. It contains
the values [1/width, 1/height]. These values are useful for convolution
filters that must locate adjacent texels for convolution kernel computations,
Passing Information to a Shader Program Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 331
and are used with IDLgrShaderConvol3. This uniform variable is set only
when a shader is associated with an IDLgrImage.

• _IDL_ImageTexture — this uniform variable is of GLSL type sampler2D.
When you associate a shader with an IDLgrImage, this variable contains the
texture map data associated with the IDLgrImage object. For a shader
associated with an IDLgrPolygon or IDLgrSurface, this is the image data that
was set using the TEXTURE_MAP property. In the shader program, use the
GLSL texture2D function to access the texture data.

Note
IDL always uses OpenGL’s texture unit 0 to store the texture used to draw an
IDLgrImage object. IDL also uses texture unit 0 for textures associated with
the TEXTURE_MAP property of IDLgrPolygon and IDLgrSurface. If you
define a sampler2D uniform variable in your shader program and do not
initialize it with the SetUniformVariable method in your IDL application,
OpenGL associates your sampler2D uniform variable with texture unit 0.
This automatic association ensures correct operation because your GLSL
sampler is referencing the correct texture. This feature may be useful when
using shader programs from outside sources. For example if you obtain a
shader program from the Internet that performs a type of image filtering, it
probably defines a sampler2D uniform variable, perhaps named image. You
can use the shader program without modification and not bother setting the
uniform variable called image in your IDL code since IDL and OpenGL will
correctly associate your IDLgrImage data with the sampler2D uniform
variable.

However, it may be good form and improve self-documentation to use the
IDL reserved uniform variable, _IDL_ImageTexture, to explicitly indicate
that the shader program is using the IDL texture as described above.

While the data is automatically associated with these uniform variables and made
available to the shader program, you still must define them in the shader program to
access the data from within the shader program.

Note
If you are layering multiple textures on a surface or polygon, see “Uniform
Variables and Multi-Texture Shaders” on page 370 for information on how to
manage reserved and custom uniform variables.
Object Programming Passing Information to a Shader Program

332 Chapter 14: Advanced Rendering Using Shader Objects
Attribute Variables

Attribute variables contain per-vertex data that is passed to the vertex shader
program. This type of data changes frequently (often for each vertex). Modifying
object vertices can display movement within a scene. For example, an attribute
variable that contains per-vertex velocity vectors multiplied by a uniform variable
that contains a time value generates an offset location for each vertex. When this
vertex program runs repeatedly with increasing time values, it simulates the motion
of a set of vertices where each vertex has its own velocity vector representing its own
movement direction. Such a vertex program can be used to visualize the path of
moving particles.

Use the GetVertexAttributeData and SetVertexAttributeData methods of the graphic
object (not the shader object since vertex data is intimately related to the object
vertices) to retrieve or pass a named attribute variable to a shader program. See
“Vertex Shaders” on page 359 for an example.

Note
Within a GLSL program, a varying variable passes data from the vertex shader to
the fragment shader. These variables are defined at each vertex and interpolated
across a graphic object to produce a perspective-corrected value at each fragment.
This type of variable cannot be directly accessed from IDL.
Passing Information to a Shader Program Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 333
Library of Pre-built Shader Objects

The IDL distribution includes two shader objects that subclass from IDLgrShader.
These pre-built shader objects let you quickly add the functionality of a shader to an
image processing application without having to write any GLSL code. These
subclasses also provide a software fallback mechanism to apply the image processing
step to the image data in the absence of shader hardware. The shader code and the
corresponding equivalent IDL code (software fallback) are contained within a single
object, which lets you easily add this functionality to an application without worrying
about whether or not your user has graphics hardware that supports shaders.

The two pre-built shader objects are:

• IDLgrShaderBytscl — highlights features by modifying the input and output
levels of the associated IDLgrImage object. See “IDLgrShaderBytscl” (IDL
Reference Guide) for details and an example.

• IDLgrShaderConvol3 — defines a convolution filter to smooth, sharpen,
perform edge detection, or perform a custom convolution operation when
associated with an IDLgrImage object. See “IDLgrShaderConvol3” (IDL
Reference Guide) for details. See “Filter Chain Shaders” on page 355 for an
example.
Object Programming Library of Pre-built Shader Objects

334 Chapter 14: Advanced Rendering Using Shader Objects
Image Filter Shaders

Image shader programs are particularly easy to create, for a couple of reasons:

• The IDLgrImage object uses a texture-mapped polygon to draw the image.
Most image filters do not change the size or the shape of the image, making it
unnecessary to modify the vertices of the polygon. Therefore, a very trivial
vertex shader component is all that is required.

• Each image pixel color is going to be completely determined by the image
filter calculation, with no lighting or shading effects. Therefore, there is no
need to worry about applying lighting and shading calculations in a shader
program. This further simplifies the shader program.

There are several ways to incorporate shader functionality into an image processing
application. You can either use one of the pre-built shader objects
(IDLgrShaderBytscl or IDLgrShaderConvol3) or create a custom shader program. If
you design your own shader, you have additional options that include using a
IDLgrFilterChain object to link a number of shaders together and apply them
successively to the image data. See the following topics for sample applications:

• “Library of Pre-built Shader Objects” on page 333 — provides information on
the pre-defined IDLgrShaderBytscl and IDLgrShaderConvol3 objects. These
are excellent options if you need byte scaling or convolution filtering
functionality, and do not want to write custom GLSL shader programs.

• “Altering RGB Levels Using a Shader” on page 336 — creates a simple shader
program that allows you to interactively alter the red, green or blue levels in an
RGB image.

• “Applying Lookup Tables Using Shaders” on page 342 — loads a LUT into a
one-dimensional image object so that the shader program can efficiently
accesses it as a texture map.

• “High Precision Images” on page 349 — shows how to display 16-bit and
11-bit images using the full precision of the data and how to display an 11-bit
image with a contrast adjustment LUT.

• “Filter Chain Shaders” on page 355 — lets you apply a sequence of shaders to
a single image object.
Image Filter Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 335
Providing a Software Alternative to Shaders

When the appropriate graphics hardware support is missing, a software-based
alternative can be provided for image processing applications (when the shader
program is associated with an IDLgrImage).

When IDL renders the image and hardware shader support is missing, the
IDLgrShader::Filter method is automatically called when the image is drawn. (You
never call this method directly.) In this method, add code that provides a software-
based equivalent to the shader program functionality that will be used when there is
insufficient hardware support for the shader program. See “Hardware Requirements
for Shaders” on page 321 for graphics card requirements.

Note
When developing a software fallback, use the FORCE_FILTER property during
shader object initialization to force the system to test the software-based alternative
even when sufficient hardware support is available.

If there is no software fallback specified, application execution simply continues as if
there were no shader program. Also, no software fallback is available when a shader
is associated with a non-image object.

Caching Shader Results

If a shader object is associated with an IDLgrImage object, you may set the
IDLgrShader CACHE_RESULT property to determine whether a shader program is
executed every time Draw is called. If this property is set to 1, the image is cached
after running the shader program and the cached image is used in subsequent draws
until shader program parameters are changed. If this property is set to 0 (the default),
the result of running the shader program is not cached. See the property description
for details on when each CACHE_RESULT setting may prove more useful. If a
software fallback is used, the result is always cached.

Capturing Image Data During Shader Execution

When you apply one or more shader programs to image data, you can capture the
results of the image filtering shader operation using the IDLgrImage
ReadFilteredData method. Using this method, you can capture a portion of a tiled
image, capture the image after applying a single shader, or capture the image after
applying any number of shaders in a filter chain sequence. See
“IDLgrImage::ReadFilteredData” (IDL Reference Guide) for details. After reading
the data, you can place it in a new image object and print or display the result.
Object Programming Image Filter Shaders

336 Chapter 14: Advanced Rendering Using Shader Objects
Altering RGB Levels Using a Shader

This shader program example lets you interactively apply color level correction to an
image when you view it. This does not modify the image data itself. This example
places the original image data in an IDLgrImage object and attaches the custom
shader object using the SHADER property. It then creates a simple user interface that
lets you alter the color levels and passes these values to the shader program in a
named uniform variable. The Filter method implements the software fallback. When
the correct graphics hardware is unavailable, IDL automatically calls the Filter
method.

Example Code
See shader_rgb_doc__define.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example by creating an instance of the object at the IDL command prompt using
orgbshader=OBJ_NEW('shader_rgb_doc') or view the file in an IDL Editor
window by entering .EDIT shader_rgb_doc__define.pro.

The example code differs slightly from that presented here for the sake of clarity.
Whereas the working example includes code needed to support user interface
interaction, the following sections leave out such modifications to highlight the
shader program components.

Basic RGB Shader Object Class

First, create a basic object class that inherits from IDLgrShader:

; Initialize object.
FUNCTION shader_rgb_doc::Init, _EXTRA=_extra
 IF NOT self->IDLgrShader::Init(_EXTRA=_extra) THEN $
 RETURN, 0
 RETURN, 1
END

; Clean up.
PRO shader_rgb_doc::Cleanup
 self->IDLgrShader::Cleanup
END

; Filter method for software fallback option.
FUNCTION shader_rgb_doc::Filter, Image

RETURN, Image
END
Altering RGB Levels Using a Shader Object Programming

javascript:doIDL(".edit shader_rgb_doc__define.pro")

Chapter 14: Advanced Rendering Using Shader Objects 337
; Class definition.
PRO shader_rgb_doc__define
COMPILE_OPT hidden
 struct = { shader_rgb_doc, $
 INHERITS IDLgrShader $
 }
END

Uniform Variable for RGB Values

In this example, a uniform variable contains the values of the red, green and blue
levels. You can set or change uniform variables anytime before you draw the scene
and their values will remain in effect until you change them again. These types of
variables are perfect for making minor adjustments to the image filter and then
viewing the image to see if the result is satisfactory.

First set the uniform variable to a reasonable default value such as [1,1,1] before you
start, otherwise the shader program defaults of [0,0,0] will make the image look dim.
Add the following line to your Init function:

self->SetUniformVariable, 'scl', [1.0, 1.0, 1.0]

Warning
The uniform variable name is case-sensitive, unlike most variable names in IDL.

This example lets you change color levels using sliders. You can read the slider
values from your GUI, and modify the uniform variable at any time. Assuming that
the instance of your shader_rgb_doc object is called oShaderRGB and red, green
and blue are floating point values, update the value of the uniform variable as
follows:

oShaderRGB->SetUniformVariable, 'scl', [red, green, blue]

Once the needed elements are defined, associate your shader object with oImage, an
image object (that has been previously defined).

oImage->SetProperty, SHADER=self

Once the shader object is associated with the image, shader program display updates
are activated any time the SetUniformVariable method is called.

Software Fallback for RGB Shader

IDL calls the Filter method when shader functionality is not supported by the
graphics hardware. Providing a software-based fallback is never a requirement and
you may choose not to if you know sufficient hardware will always be available.
Object Programming Altering RGB Levels Using a Shader

338 Chapter 14: Advanced Rendering Using Shader Objects
However, it is good practice to write this method just in case the application is ever
executed on a machine without suitable hardware.

In the Filter method, retrieve the uniform variable values using GetUniformVariable,
and then return a modified copy of the image data.

Function shader_rgb_doc::Filter, Image

newImage=Image
self->GetUniformVariable, 'scl', s
newImage[0,*,*] *= s[0]
newImage[1,*,*] *= s[1]
newImage[2,*,*] *= s[2]

RETURN, newImage

END

IDL always passes the image to the Filter method in RGBA floating-point pixel-
interleaved format, so you don't have to worry about a lot of input data combinations.
IDL also clamps the data this function returns to the [0.0, 1.0] range and scales it to
the correct pixel range, usually [0, 255], for your display device.

Note
Uniform variables are, in a sense, free-form properties in the IDLgrShader
superclass. Within the Filter method, accessing the scale vector from the uniform
variable maintains consistency since this is same place the hardware shader obtains
it. This reduces the chance for confusion.

At this point, you can test your work by writing a simple display program that loads
your data into an IDLgrImage object, creates an instance of your shader_rgb_doc
object, and attaches the filter to your image object by setting the object reference of
the shader in the SHADER property of IDLgrImage. You also need to set the
FORCE_FILTER property on class initialization so that the filter fallback runs, even
if you have shader hardware. You can force use of the fallback either when creating
the shader object:

oShaderRGB = OBJ_NEW('shader_rgb_doc', /FORCE_FILTER)

or explicitly in the shader object’s Init method:

FUNCTION shader_rgb_doc::Init, _EXTRA=_extra

IF NOT self->IDLgrShader::Init(_EXTRA=_extra, /FORCE_FILTER) $
 THEN $
 RETURN, 0
...
Altering RGB Levels Using a Shader Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 339
Hardware Shader Program for RGB Shader

The OpenGL Shading Language (GLSL) is a vast subject that requires extensive
study to develop an expert level of programming, a subject that is impossible to cover
here. However, this example is relatively simple and you can likely easily follow
along with the code required for the vertex and fragment shader portions of the shader
program. All shader programs need a vertex program and a fragment program.

RGB Vertex Shader Program

The following vertex shader is fairly common among image filtering shader
programs. Add the following code to the bottom of your Init function:

vertexProgram = $
[$
'void main (void) {', $

' gl_TexCoord[0] = gl_MultiTexCoord0;', $
' gl_Position = ftransform();', $

'}']

The first line after main() transfers the texture coordinate from OpenGL's Texture
Unit 0 into the current texture coordinate predefined variable. Remember that IDL
draws its images with texture maps applied to rectangles, so you need to pass along
the texture coordinate. IDL always uses Texture Unit 0 when drawing images. The
gl_TexCoord[0] is a varying variable that transmits data from the vertex program
to the fragment shader program.

The next line in the program simply applies the current OpenGL
ModelViewProjection transform to the vertex, so that it ends up in the right
place on the screen.

RGB Fragment Shader Program

The fragment program of an image filtering shader program is where all the work
happens. Add the following to the Init function as well:

fragmentProgram = $
[$
'uniform sampler2D _IDL_ImageTexture;', $
'uniform vec3 scl;', $
'void main(void) {', $

'vec4 c = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy);', $
' c.rgb *= scl;', $
' gl_FragColor = c;', $

'}']
Object Programming Altering RGB Levels Using a Shader

340 Chapter 14: Advanced Rendering Using Shader Objects
This GLSL code can be translated relatively easily. IDLgrImage uses textures to
draw image data. Access the texture map associated with the base image's data in the
IDL reserved uniform variable, _IDL_ImageTexture, which is automatically
created for the base image. The sixth line in the program above fetches the image
pixel (a texture texel) from the image texture and stores it in c, which is a 4-element
vector that represents the RGBA channel data. Modify the color of the texel in the
next tile using the uniform variable, scl, declared on line four. Finally, tell OpenGL
about the new color for this particular pixel on the screen by setting gl_FragColor.
OpenGL clamps the pixel color values to the appropriate range for your display.

This fragment program runs once for every pixel (fragment) on your screen that is
covered by the image.

Assign RGB Shader Program to Shader Object

You need to supply the program code to the shader object so that it is available to the
graphics card when it is needed. To accomplish this, you can use shader object
properties VERTEX_PROGRAM_STRING and
FRAGMENT_PROGRAM_STRING to associate inline shader program components
with the shader object.

Note
With more complicated (longer) shader programs, it may be easier to keep the
shader program components in separate files. In such a case, associate the shader
program elements with a shader object using the VERTEX_PROGRAM_FILE and
FRAGMENT_PROGRAM_FILE properties.

Add the following code to the bottom of your Init function.

self->IDLgrShader::SetProperty, $
 VERTEX_PROGRAM_STRING=STRJOIN(vertexProgram, STRING(10B)), $
 FRAGMENT_PROGRAM_STRING=STRJOIN(fragmentProgram, STRING(10B))

Add newlines (STRING(10B)) so that the shader program compiler sees your
program as a single long string containing many source code lines, instead of one
long line. If you ever get a compile-time error, the shader compiler can tell you on
what line the error occurred when you insert the newlines.

Tip
Remove the FORCE_FILTER keyword from the initialization function if you have
been testing your software fallback.
Altering RGB Levels Using a Shader Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 341
The following image shows the result of modifying the RGB levels of an image of a
rose.
Object Programming Altering RGB Levels Using a Shader

342 Chapter 14: Advanced Rendering Using Shader Objects
Applying Lookup Tables Using Shaders

The IMAGE_1D property on the IDLgrImage object lets you load color lookup table
(LUT) values into a texture map and pass the LUT to a shader program. LUTs are
useful for a number of tasks including:

• Displaying palletized images.

• Adding color to greyscale images.

• Optimizing the evaluation of expensive functions. For example, if your image
is 8-bit greyscale and you need to apply an expensive function to each pixel it
is normally more efficient to pass each of the 256 greyscale values to the
function and store the result in a 256 entry LUT used for drawing.

• Adjusting image brightness, gamma, contrast, color balance and other settings.

• Adjusting data ranges such as converting an 11-bit image to 8-bits for display
(see “High Precision Images” on page 349 for more information).

Example Code
See shader_lut_doc__define.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example by creating an instance of the object at the IDL command prompt using
oLUTshader=OBJ_NEW('shader_lut_doc') or view the file in an IDL Editor
window by entering .EDIT shader_lut_doc__define.pro.

The example code differs slightly from that presented here for the sake of clarity.
Whereas the working example includes code needed to support user interface
interaction, the following sections leave out such modifications to highlight the
shader program components.

Basic LUT Shader Object Class

The shader_lut_doc object class inherits from IDLgrShader and contains the
Filter method, just like the “Basic RGB Shader Object Class” on page 336. See that
section for the base code or the example for the complete code. The one difference is
this example uses the shader object VERTEX_PROGRAM_FILENAME and
FRAGMENT_PROGRAM_FILENAME properties, which reference external shader
program files for the vertex and fragment shader components.
Applying Lookup Tables Using Shaders Object Programming

javascript:doIDL(".edit shader_lut_doc__define.pro")

Chapter 14: Advanced Rendering Using Shader Objects 343
Uniform Variable for LUT Example

In this example, a uniform variable named lut contains the values of the 256-element
array of color table values. This can either be a custom LUT such as an enhanced
greyscale color table, or one of the predefined IDL LUTs.

The following code creates a greyscale LUT defined by a curve rather than a linear
ramp, making the dark areas darker and the light areas lighter. Notice that the 256-
entry LUT is loaded into a one-dimensional image (an IDLgrImage object with
IMAGE_1D property set). This IDLgrImage is automatically converted into a texture
map for use by the shader. SetUniformVariable is called with the name of the
uniform variable and the value (the image object) so the shader can access the texture
map containing the LUT.

; Create enhanced grayscale LUT and store in 1-D IDLgrImage.
x = 2*!PI/256 * FINDGEN(256) ;; 0 to 2 pi
lut = BYTE(BINDGEN(256) - sin(x)*30) ;; Create 256 entry

oLUT = OBJ_NEW('IDLgrImage', lut, /IMAGE_1D)

; Store LUT in uniform variable named lut.
self->SetUniformVariable, 'lut', oLUT

Warning
The uniform variable name is case-sensitive, unlike most variable names in IDL.

The LUT is loaded into a texture map instead of a uniform variable array because it is
more efficient to load and index the LUT when it is in a texture. In addition, under
certain circumstances you can use bilinear filtering to interpolate between values in
the LUT if it is in a texture map.

A side effect of using a texture map is it is limited by the maximum texture size
(MAX_TEXTURE_DIMENSIONS in IDLgrWindow::GetDeviceInfo). On most
hardware today this is 4096 by 4096 pixels, so if your LUT is larger than this you will
need to work around this limitation (using a 2-D texture map is one possible
solution). Also, as texture maps must be a power of 2 in size (128, 256, 512, 1024,
etc.), ensure the size of your LUT is a power of 2 to keep it from being scaled to the
next higher power of 2.

To display palletized images or to add color to greyscale images, simply load an RGB
LUT into the 1D IDLgrImage rather than a greyscale LUT. The shader code remains
exactly the same. (The shader_lut_doc__define.pro program lets you apply
either the enhanced greyscale or one of IDL’s pre-defined colortables.)
Object Programming Applying Lookup Tables Using Shaders

344 Chapter 14: Advanced Rendering Using Shader Objects
Hardware Shader Program for LUT Shader

This example reads the shader source from text files. The vertex shader
(LUTShaderVert.txt located in examples/doc/shaders) contains the
following code:

void main (void)
{
 gl_TexCoord[0] = gl_MultiTexCoord0;
 gl_Position = ftransform();
}

This basic vertex program passes along the texture coordinate and then applies a
transform to the vertex to correctly position it on the screen. The gl_TexCoord[0]
is a varying variable that transmits data from the vertex program to the fragment
shader program.

The fragment shader (LUTShaderFrag.txt located in examples/doc/shaders)
contains the following code:

uniform sampler2D _IDL_ImageTexture;
uniform sampler1D lut;

void main(void)
{
 float i = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy).r;
 gl_FragColor = texture1D(lut, i);
}

The fragment shader is where the lookup happens. The uniform variable, lut, which
was defined in the IDL application using SetUniformVariable, contains the lookup
table in a 1-D texture (of GLSL type sampler1D). As previously explained, the LUT
is loaded into a texture map for efficiency.

The _IDL_ImageTexture variable is a reserved uniform variable that provides
access to the 2-D base image (of GLSL type sampler2D). When a shader object is
associated with an IDLgrImage object, and the uniform variable is not defined using
SetUniformVariable in the IDL application, the base image object (a texture mapped
onto a rectangle) is stored in a reserved uniform variable named
_IDL_ImageTexture. The base image is the IDLgrImage to which the shader is
attached. If it is attached to more than one image, the base image is the one currently
being shaded. Non-base images are those passed to the shader program using
SetUniformVariable.

Since more than one texture is used in the rendering of the image (the
_IDL_ImageTexture base image texture and the lut texture), this is referred to as
multi-texturing.
Applying Lookup Tables Using Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 345
The GLSL texture2D procedure call reads the texel at the current texture
coordinate. This procedure typically returns a floating point, four-element vector
(containing red, green, blue and alpha values). But with a greyscale image, the red,
green, and blue values are the same, so the appending .r keeps only the red channel
and assigns it to the float i.

The GLSL texture1D procedure takes two parameters, the lut and i (the texture
coordinate that instructs it which texel to sample). This value normally ranges from
0.0 to 1.0 (0.0 being the first texel, 1.0 the last). Since the value read from the image
into i also normally ranges between 0.0 and 1.0, it is possible to use it directly as a
texture coordinate to do the lookup.

When performing a lookup on the CPU, you directly access the LUT array using the
pixel value as the index. A pixel value of 0 corresponds to the first entry in the LUT
and a pixel value of 255 corresponds to the last entry.

However, in a shader program the texture coordinate lookup is possible because
before a pixel reaches the fragment shader it is converted to floating point by
OpenGL. In the case of an 8-bit greyscale image, the range is 0.0 to 1.0. That means a
pixel with value 0 becomes 0.0 and 255 becomes 1.0. When doing the coordinate
texture lookup on the GPU, the texture1D procedure does the lookup by using the
converted pixel values where pixel value of 0 corresponds to the first LUT entry and
a pixel value of 1.0 (converted from 255) corresponds to the last entry.

Assign LUT Shader Program to Shader Object

You need to supply the program code to the shader object so that it is available to the
graphics card when it is needed. To accomplish this, you can use shader object
properties VERTEX_PROGRAM_FILE and FRAGMENT_PROGRAM_FILE to
associate external shader program components with the shader object.

Add the following code to the bottom of your Init function:

vertexFile=filepath('LUTShaderVert.txt', $
 SUBDIRECTORY=['examples','doc', 'shaders'])
fragmentFile=filepath('LUTShaderFrag.txt', $
 SUBDIRECTORY=['examples','doc', 'shaders'])

self->IDLgrShader::SetProperty, $
 VERTEX_PROGRAM_FILENAME=vertexFile, $
 FRAGMENT_PROGRAM_FILENAME=fragmentFile
Object Programming Applying Lookup Tables Using Shaders

346 Chapter 14: Advanced Rendering Using Shader Objects
At this point, you can easily add image display code to your program and test your
LUT shader. The result of applying one of IDL’s pre-defined colortables appears in
the following figure.

Software Fallback for the LUT Shader

The following code performs the LUT lookup. When there is not sufficient hardware
support for shaders or when the FORCE_FILTER keyword is set on initialization, the
colortables changes result from the following code instead of a shader program. You
will likely find that performance slows significantly.

Function shader_lut_doc::Filter, Image

; Allocate return array of same dimension and type.
sz = SIZE(Image)
newImage = FLTARR(sz[1:3], /NOZERO)

; Get the LUT uniform variable.
self->GetUniformVariable, 'lut', oLUT

Figure 14-5: LUT Shader Example
Applying Lookup Tables Using Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 347
; Read the LUT data from the 1-D image.
oLUT->GetProperty, DATA=lut
FOR y=0, sz[3]-1 DO BEGIN
 FOR x=0, sz[2]-1 DO BEGIN
 ; Read from the image.
 idr = Image[0,x,y]
 ; Convert from 0.0-1.0 back to 0-255.
 idr *= 255

 ; Get the number of image channels.
 szlut = SIZE(lut)
 IF szlut[0] EQ 1 THEN BEGIN
 ; Greyscale LUT, only 1 channel.
 grey = lut[idr]
 fgrey = FLOAT(grey) / 255.0
 newImage[0,x,y] = fgrey
 newImage[1,x,y] = fgrey
 newImage[2,x,y] = fgrey
 newImage[3,x,y] = 1.0
 ENDIF ELSE BEGIN
 ;; RGB LUT.
 rgb = lut[*, idr]
 frgb = FLOAT(rgb) / 255.0
 newImage[0:2,x,y] = frgb
 newImage[3,x,y] = 1.0
 ENDELSE
 ENDFOR
ENDFOR
RETURN, newImage
END

IDL always passes the image to the Filter method in RGBA floating-point pixel-
interleaved format, so you don't have to worry about a lot of input data combinations.
IDL also clamps the data this function returns to the [0.0, 1.0] range and scales it to
the correct pixel range, usually [0, 255], for your display device.

Note
Uniform variables are, in a sense, free-form properties in the IDLgrShader
superclass. Within the Filter method, accessing the lut texture map from the
uniform variable maintains consistency since this is same place the hardware shader
obtains it. This reduces the chance for confusion.

At this point, you can test your work by writing a simple display program that loads
your data into an IDLgrImage object, creates an instance of your shader_lut_doc
object and attaches the LUT to your image object by setting the object reference of
the shader in the SHADER property of IDLgrImage. You also need to set the
Object Programming Applying Lookup Tables Using Shaders

348 Chapter 14: Advanced Rendering Using Shader Objects
FORCE_FILTER property on class initialization so that the filter fallback runs, even
if you have shader hardware:

oLUTshader = OBJ_NEW('shader_lut_doc', /FORCE_FILTER)
Applying Lookup Tables Using Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 349
High Precision Images

Traditionally, most computer graphics cards and monitors have been able to display a
maximum color depth of 8-bits per channel. In such cases high-precision images that
exceed 8-bits per channel must be converted to 8-bit for display. This was
traditionally accomplished using the IDL BYTSCL function, which was limited by
the processing capabilities of the CPU. Fortunately, this conversion can now be
accomplished by the GPU. The full precision image is passed to the video card
memory once and is then converted as it is rendered.

OpenGL Conversion of Image Data to Texture Data

It is important to understand how OpenGL converts a high precision image to a
texture map before writing a shader program. The graphics card vendor ultimately
decides what formats are supported. Using the IDLgrImage
INTERNAL_DATA_TYPE property, you tell OpenGL in what format you would like
the texture stored. The following table describes the relationship between OpenGL
types and the INTERNAL_DATA_TYPE property value.

An IDLgrImage will accept data of type BYTE, UINT, INT and FLOAT. When the
texture map is created the data from IDLgrImage is converted to the type specified in
INTERNAL_DATA_TYPE.

Note
If your image data is floating point, your fragment shader must scale it to the range
0.0 to 1.0 before writing it to gl_FragColor or you need to scale it to the range of
0.0 to 1.0 before setting it on the IDlgrImage.

OpenGL INTERNAL_DATA_TYPE
Setting Description

RGBA8 1 8-bit unsigned bytes per channel,
widely supported

RGBA16F 2 16-bit floating point with 1 sign bit,
5 exponent bits and 10 mantissa
bits

RGBA32F 3 32-bit floating point, which is
standard IEEE float format

Table 14-1: Texture Data Types and Settings
Object Programming High Precision Images

350 Chapter 14: Advanced Rendering Using Shader Objects
If INTERNAL_DATA_TYPE is set to floating point (INTERNAL_DATA_TYPE
equals 2 or 3), image data conversion is performed by OpenGL as follows where c is
the color component being converted:

If INTERNAL_DATA_TYPE is 1 (8-bit unsigned byte), then the image data is scaled
to unsigned byte. This is equivalent to a linear BYTSCL from the entire type range
(e.g. 0-65535) to unsigned byte (0-255).

Note
INTERNAL_DATA_TYPE of 0, the default, maintains backwards compatibility by
converting the image data to byte without scaling.

To avoid data loss during conversion, you should choose an internal data type with
sufficient precision to hold your image data. For example, with a 16-bit UINT image
that uses the full range of 0-65535, if you set INTERNAL_DATA_TYPE to 2 (16-bit
floating point), your image will still be converted to the range of 0.0 to 1.0, but some
precision will be lost (due to the mantissa of a 16-bit float being only 10 bits). If you
need a higher level of precision, set INTERNAL_DATA_TYPE to 3 (32-bit floating
point). However, on some cards there may be a performance penalty associated with
the higher level of precision, and requesting 32-bit floating point will certainly
require more memory.

Once the image has been converted to a texture map it can be sampled by the shader.
The GLSL procedure, texture2D, returns the sampled texel in floating point (0.0 to
1.0). Therefore, if the INTERNAL_DATA_TYPE is 1 (unsigned byte) the texel is
converted to floating point, using c/(28 - 1), before being returned.

Image Data Type Floating Point
Conversion

BYTE c/(28-1)

UINT c/(216-1)

INT (2c+1)/(216-1)

FLOAT c

Table 14-2: OpenGL Conversion of Image Data to Floating Point
High Precision Images Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 351
Examples of Handling High-Precision Images

The following examples provide guidelines for reading in various types of image data
including how to set the IDLgrImage INTERNAL_DATA_TYPE property and
supporting fragment shader code. However, due to the size limitations of the IDL
distribution, high-precision images are not included, so you will need to use your
own data to create working examples. See the following sections:

• “Displaying a 16-bit UINT Image” below

• “Displaying an 11-bit UINT Image” on page 352

• “Displaying an 11-bit UINT Image with Contrast Adjustment” on page 353

Displaying a 16-bit UINT Image

In this example, the input image (uiImageData) is 16-bit unsigned integer greyscale
image that uses the full range of 0 to 65535. The goal is to display the entire range
using a linear byte scale. Traditionally we'd use the BYTSCL function in IDL prior to
loading data into the IDLgrImage object:

ScaledImData = BYTSCL(uiImageData, MIN=0, MAX=65535)
oImage = OBJ_NEW('IDLgrImage', ScaledImData, /GREYSCALE)

To have the GPU do the scaling, load the unscaled image data into the IDLgrImage
and set INTERNAL_DATA_TYPE to 3 (32-bit floating point):

oImage = OBJ_NEW('IDLgrImage', uiImageData, $
 INTERNAL_DATA_TYPE=3, /GREYSCALE, SHADER=oShader)

The fragment shader is extremely simple. Here, the reserved uniform variable,
_IDL_ImageTexture, represents the base image in IDL:

uniform sampler2D _IDL_ImageTexture;

void main(void)
{
gl_FragColor = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy);
}

All we are doing is reading the texel with texture2D and setting it in
gl_FragColor. You will notice that there is no explicit conversion to byte because
this is handled by OpenGL. The value written into gl_FragColor is a GLSL type
vec4 (4 floating point values, RGBA). OpenGL clamps each floating point value to
the range 0.0 to 1.0 and converts it to unsigned byte where 0.0 maps to 0 and 1.0
maps to 255. So all we have to do is read the texel value from _IDL_ImageTexture
and set it into gl_FragColor.
Object Programming High Precision Images

352 Chapter 14: Advanced Rendering Using Shader Objects
Displaying an 11-bit UINT Image

An 11-bit unsigned integer image is usually stored in a 16-bit UINT array, but with
only 2048 (211) values used. For this example, let's say the minimum value is 0 and
the max is 2047. Traditionally this would be converted to byte as follows:

ScaledImData = BYTSCL(uiImageData, MIN=0, MAX=2047)
oImage = OBJ_NEW('IDLgrImage', ScaledImData, /GREYSCALE)

To scale on the GPU we again load the image with the original data. This time
INTERNAL_DATA_TYPE can be set to 2 (16-bit float) as this can hold 11-bit
unsigned integer data without loss of precision:

oImage = OBJ_NEW('IDLgrImage', uiImageData, $
INTERNAL_DATA_TYPE=2, /GREYSCALE, SHADER=oShader)

The fragment shader looks like the following where _IDL_ImageTexture
represents the base image in IDL:

uniform sampler2D _IDL_ImageTexture;

void main(void)
{
gl_FragColor = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy) *

(65535.0 / 2047.0);
}

The only difference between this 11-bit example and the previous 16-bit example is
the scaling of each texel. When the 16-bit UINT image is converted to floating point,
the equation c/(216 - 1) is used (see Table 14-2) so 65535 maps to 1.0. However, the
maximum value in the 11-bit image is 2047, which is 0.031235 when converted to
floating point. This needs scaled to 1.0 before being assigned to gl_FragColor if
we want 2047 (image maximum) to map to 255 (maximum intensity) when the byte
conversion is done. (Remember a value of 1.0 in gl_FragColor is mapped to 255.)

It's possible to implement the full byte scale functionality on the GPU, and let the
user interactively specify the input min/max range by passing them as uniform
variables. There is a performance advantage to doing this on the GPU as the image
data only needs to be loaded once and the byte scale parameters are changed simply
by modifying uniform variables. See “IDLgrShaderBytscl” (IDL Reference Guide)
and the associated example to see how this can be achieved.
High Precision Images Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 353
Displaying an 11-bit UINT Image with Contrast Adjustment

The previous example applied a linear scaling to the 11-bit data to convert it to 8-bit
for display purposes. Sometimes it's useful to apply a non-linear function when
converting to 8-bit to perform contrast adjustments to compensate for the non-linear
response of the display device (monitor, LCD, projector. etc.).

For an 11-bit image this can be achieved using a LUT with 2048 entries where each
entry contains an 8-bit value. This is sometimes referred to as an 11-bit in, 8-bit out
LUT, which uses an 11-bit value to index the LUT and returns an 8-bit value.

This is relatively simple to implement on the GPU. First create the 2048 entry
contrast enhancement LUT and load it into an IDLgrImage which will be passed to
the shader as a texture map (see “Applying Lookup Tables Using Shaders” on
page 342 for more information).

x = 2*!PI/256 * FINDGEN(256) ;; 0 to 2 pi
lut = BYTE(BINDGEN(256) - sin(x)*30)
; Stretch to 2048 entry LUT.
lut = CONGRID(lut, 2048)
oLUT = OBJ_NEW('IDLgrImage', lut, /IMAGE_1D, /GREYSCALE)
oShader->SetUniformVariable, 'lut', oLUT

The image is created as before:

oImage = OBJ_NEW('IDLgrImage', uiImageData, $
INTERNAL_DATA_TYPE=2, /GREYSCALE, SHADER=oShader)

The fragment shader looks like the following where _IDL_ImageTexture
represents the base image in IDL and lut is the lookup table.:

uniform sampler2D _IDL_ImageTexture;
uniform sampler1D lut;

void main(void)
{
 float i = texture2D(_IDL_ImageTexture, gl_TexCoord[0].xy).r *
 (65535.0/2048.0);
 gl_FragColor = texture1D(lut, i);
}

As you can see the texel value is scaled before being used as an index into the LUT.

The following figure shows how the 11-bit to 8-bit LUT is indexed. Only a fraction of
the input data range is used (0-2047 out of a possible 0-65535). As 2047 (0.0312
when converted to float) is the maximum value, this should index to the top entry in
the LUT. So we need to scale it to 1.0 by multiplying by 32.015. Now the range of
values in the image (0-2047) index the entire range of entries in the LUT.
Object Programming High Precision Images

354 Chapter 14: Advanced Rendering Using Shader Objects
Although this could be done on the CPU, it is much more efficient to do it on the
GPU since the image data only needs to be loaded once and the display compensation
curve can be modified simply by changing data in the IDLgrImage holding the LUT.

Figure 14-6: Conversion to BYTE Using 11-bit to 8-bit LUT
High Precision Images Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 355
Filter Chain Shaders

A series of image filtering shaders can be grouped and applied sequentially to an
image. To do so, add each shader to an IDLgrFilterChain object, which is a
specialized type of container designed to hold IDLgrShader objects or objects that
subclass from IDLgrShader. Then associate the IDLgrFilterChain object with the
IDLgrImage object using the SHADER property.

When the scene is drawn, the image data is modified by each shader program
according to container order. The output from the first shader is processed by each
subsequent shader until all shader programs have been applied. IDL then draws the
result to the window.

Note
This functionality requires support for GLSL frame buffer object extension in
addition to the standard hardware support required by IDLgrShader. See the
IDLgrWindow::GetDeviceInfo methods’s
FRAMEBUFFER_OBJECT_EXTENSION keyword for details).

The following example creates an IDLgrFilterChain object and lets you add and
remove individual IDLgrShaderConvol3 objects, which provide the ability to apply
sharpening, smoothing, and edge detection convolution filters to an image. Like the
IDLgrShaderBytscl object, the pre-defined IDLgrShaderConvol3 object includes a
software fallback that is automatically used when there is not sufficient hardware
support for shader operations.

Example Code
See shader_filterchain_doc__define.pro, located in the
examples/doc/shaders subdirectory of the IDL distribution, for the complete,
working example. Run the example by entering
obj=OBJ_NEW('shader_filterchain_doc') at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
shader_filterchain_doc__define.pro.

Basic Filter Chain Shader Object Class

The shader_filterchain_doc object class inherits from IDLgrFilterChain,
which inherits container manipulation methods from IDL_Container, but also
includes the FORCE_FILTER method common to IDLgrShader. This means that you
can test any software based alternative code provided in a shader’s Filter method as
described in “Providing a Software Alternative to Shaders” on page 335. Since this
Object Programming Filter Chain Shaders

javascript:doIDL(".edit shader_filterchain_doc__define.pro")
javascript:doIDL(".edit shader_filterchain_doc__define.pro")

356 Chapter 14: Advanced Rendering Using Shader Objects
example uses the pre-defined IDLgrShaderConvol3 object, there is no need to specify
vertex or fragment programs since these are inherent to the object definition.

In addition to the typical object definition code, this example creates instances of the
four types of pre-defined convolution filters and stores them in an object array:

oIdentity = OBJ_NEW("IDLgrShaderConvol3", KERNEL=0)
oSmooth = OBJ_NEW("IDLgrShaderConvol3", KERNEL=1)
oSharpen = OBJ_NEW("IDLgrShaderConvol3", KERNEL=2)
oEdge = OBJ_NEW("IDLgrShaderConvol3", KERNEL=3)
objarray = [oIdentity, oSmooth, oSharpen, oEdge]

Since an unmodified image is loaded first, make sure the identity convolution filter is
the only item in the filter chain object (self in the following lines). Then associate the
IDLgrFilterChain object with the image using the SHADER property.

self->Add, oIdentity
oImage->SetProperty, SHADER=self

In this program, you can select among four check boxes to apply varying
combinations of convolution filters to a grayscale image. Each time you select a
different check box, the list of shaders are removed from the IDLgrFilterChain
container and then the selected items are re-added.

; Remove all items from the collection and add back
; selected shaders.
self->Remove, /ALL
selected = WHERE (value EQ 1)
IF N_ELEMENTS(selected) GT 1 || selected NE -1 THEN BEGIN

self->Add, (*pstate).objarray[where (value EQ 1)]
ENDIF

; Update base and covolution factors for all
; selected shaders.
shaderObjs=self->Get(/ALL, COUNT=count)
FOR i =0, count-1 DO BEGIN

shaderObjs[i]->SetProperty,
BASE_BLEND_FACTOR=(*pState).basefactor, $
CONVOL_BLEND_FACTOR=(*pState).convolfactor

ENDFOR

; Draw.
(*pState).oWindow->Draw, (*pState).oView

Note
Shaders are applied in container order. You could use different user interface
controls to provide a way to apply shaders in a specific order instead of using check
boxes.
Filter Chain Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 357
Uniform Variables for Filter Chain Example

There are no exposed uniform variables since the IDLgrShaderConvol3 object
exposes its uniform variables as properties. When you call SetProperty for one of the
convolution shader’s properties, it calls SetUniformVariable internally. See
“IDLgrShaderConvol3 Properties” (IDL Reference Guide) for information on the
BASE_BLEND_FACTOR, CONVOL_BLEND_FACTOR, and KERNEL properties.
If you look in idlgrshaderconvol3__define.pro located in the lib
subdirectory of the IDL distribution, you will see the following uniform variables in
the fragment shader program:

uniform sampler2D _IDL_ImageTexture
uniform float BaseBlend
uniform float ConvolBlend
uniform vec2 _IDL_ImageStep
uniform vec4 kernel[9]

The BaseBlend, ConvolBlend and kernel variables relate to object properties.
The _IDL_ImageTexture refers to the base IDLgrImage object and
_IDL_ImageStep is used by the convolution filtering operation. Both are reserved
uniform variables (see “Reserved Uniform Variables” on page 330 for details).

Hardware Shader Program for Filter Chain Example

The fragment and vertex shader programs are incorporated into the
IDLgrShaderConvol3 object definition file,
idlgrshaderconvol3__define.pro, located in the lib subdirectory of the IDL
distribution.

Software Fallback for the Filter Chain Shader

The IDLgrShaderConvol3 object definition file includes a software fallback option
that can be exercised using the IDLgrFilterChain FORCE_FILTER property. Set the
property either on object creation or in the FilterChain object’s Init method. For
example, to use the shader_filterchain_doc example with the software
fallback, create the object as follows:

obj=OBJ_NEW('shader_filterchain_doc', /FORCE_FILTER)

Switching the value of the FORCE_FILTER property between 0 and 1 in this
example allows you to see the execution speed differences between the hardware and
software versions of the filter chain.
Object Programming Filter Chain Shaders

358 Chapter 14: Advanced Rendering Using Shader Objects
When you create a shader_filterchain_doc object and select mineral.png,
you can apply one or more convolution shaders and modify shader parameters as
shown in the following figure.

Figure 14-7: Applying a Combination of Shaders Using IDLgrFilterChain
Filter Chain Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 359
Vertex Shaders

Vertex attribute data may be associated with IDLgrPlot, IDLgrPolygon,
IDLgrPolyline, and IDLgrSurface objects using the GetVertexAttributeData and
SetVertexAttributeData. While uniform variables are useful for passing concise
control parameters to a shader program, they are not suited for passing large amounts
of data where the data might contain values that are associated with each vertex. The
ability to pass frequently changing per-vertex attribute data to a shader program in an
attribute variable lets you show movement within a display (as described in “Attribute
Variables” on page 332).

The following example uses an attribute variable to replicate the effect of wind on a
set of particles. Each particle has an initial position and a velocity assigned to it. The
initial position of the particle can be easily represented by the already-familiar vertex
[x, y, z] information.

Example Code
See shader_vertexwinds_doc.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_vertexwinds_doc at the IDL command
prompt or view the file in an IDL Editor window by entering .EDIT
shader_vertexwinds_doc.pro.

Attribute and Uniform Variables for Vertex Shader

This example uses the global wind data (globalwinds.dat) that is shipped as part
of the IDL distribution. There is also a [2,n] vector of (u,v) pairs, representing the
wind velocity at each point.

; Get initial positions and wind velocity data.
RESTORE, FILE=FILEPATH('globalwinds.dat', $

SUBDIRECTORY=['examples', 'data'])

; Set up point grid.
pts = FLTARR(2, 128*64)
FOR i=0, 63 DO BEGIN

pts[0, i*128:(i+1)*128-1] = x
pts[1, i*128:(i+1)*128-1] = y[i]

ENDFOR

; Set up per-sample velocity information.
u = REFORM(u, 128*64)
v = REFORM(v, 128*64)
Object Programming Vertex Shaders

javascript:doIDL("shader_vertexwinds_doc")
javascript:doIDL(".edit shader_vertexwinds_doc.pro")
javascript:doIDL(".edit shader_vertexwinds_doc.pro")

360 Chapter 14: Advanced Rendering Using Shader Objects
uv = TRANSPOSE([[u],[v]])

This code fragment creates an IDLgrPolygon object with the initial sample (particle)
locations and uses STYLE=0, which simply draws a dot at each vertex. Instead of
placing the velocity data in the shader object, you store it in the graphic object, the
polygon, using the SetVertexAttributeData method:

; Create graphical object and associate the wind data.
oPoints = OBJ_NEW('IDLgrPolygon', pts, STYLE=0, THICK=3)
oPoints->SetVertexAttributeData, 'uv', uv

A time uniform variable is used to determine the amount of displacement of a particle
from its original location since time will be multiplied by velocity in the vertex
shader program.

; Animate and track time.
t0 = SYSTIME(1)
frames = 0L
FOR i=0, 2 DO BEGIN

FOR time=0.0, 2, 0.01 DO BEGIN
oShader->SetUniformVariable, 'Time', time
oWin->Draw
frames++

ENDFOR
ENDFOR

Warning
Attribute and uniform variable names are case-sensitive, unlike most variable
names in IDL.

Hardware Shader Program for Vertex Shader

The vertex program does the majority of the work. The wind velocity data contained
in the attribute variable, uv, is passed to the vertex program by calling
SetVertexAttributeData. The vertex program runs once for every vertex in the
primitive. In this case, OpenGL finds the attribute data associated with each vertex as
it calls this shader program, and places that attribute data in uv. As uv is a frequently
changing attribute variable, the value will likely be different each time the vertex
shader is called.

The uniform variable, Time, specifies how long the particle has been moving with the
velocity uv. Therefore the actual displacement is simply the velocity multiplied by
time. The IDL application sets the value of Time for each frame in the animation.

vertexProgram = [$
'attribute vec2 uv;', $
Vertex Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 361
'uniform float Time;', $
'void main() {', $

'vec4 vert;', $
'vert = gl_Vertex + vec4(uv * Time, 0.0, 0.0);', $
'gl_Position = gl_ModelViewProjectionMatrix * vert;', $

'}']

OpenGL sets the special, pre-defined GLSL uniform variable, gl_Vertex, to the
current vertex position [x, y, z, w] for each vertex. The expression uv*Time
multiplies the 2-element velocity vector by the scalar time value, resulting in another
2-element vector. This result is expanded to a 4-element vector and then added to the
vertex location. Finally, the new vertex location is transformed from world to screen
space and passed back to OpenGL via the special GLSL variable gl_Position.

The fragment program is rather trivial. The only thing this program does is set the
color of the point.

fragmentProgram = [$
'void main() {', $
'gl_FragColor = vec4(1.0, 0.44, 0.122, 0.8);', $
'}']

Note
Any color set using the COLOR property of the IDLgrPolygon object is ignored
since the fragment shader rendering takes precedence over the fixed-function
OpenGL pipeline rendering. If the fragment portion of the shader program does not
set a fragment color, the fragment (pixel) is drawn with color set to black.

Assign Vertex Shader Program to Shader Object

Since the fragment and vertex shader programs were defined inline, associate them
with a newly created shader object using the VERTEX_PROGRAM_STRING and
FRAGMENT_PROGRAM_STRING properties. Then assign the shader to the
polygon object (oPoints).

; Set up shader object
oShader = OBJ_NEW('IDLgrShader')
oShader->SetProperty, $

VERTEX_PROGRAM_STRING=STRJOIN(vertexProgram, STRING(10b)), $
FRAGMENT_PROGRAM_STRING=STRJOIN(fragmentProgram, STRING(10b))

oPoints->SetProperty, SHADER=oShader

The only remaining task is to create the display objects. See
shader_vertexwinds_doc.pro in the examples/doc/shaders directory if
needed.
Object Programming Vertex Shaders

362 Chapter 14: Advanced Rendering Using Shader Objects
When you run the program, the time loop cycles through the animation three times.
The frame rate is printed to the output window when the program finishes. An IDL
application could duplicate this example without using shaders by applying the
velocity-multiplied-by-time factor repeatedly to all the vertex data and repeatedly
updating the vertex data stored in the polygon object. However, this would be a much
slower process than the average 200 frames per second achieved by the shader
program. The following figure shows a subset of the world map and the final
positions of wind vector points.

Figure 14-8: Vertex Shader Example Mapping Wind Velocity Data
Vertex Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 363
Lighting Shaders

Shader programs that do not involve computing fragment color based on lighting or
shading calculations are typically straightforward and relatively simple. For image
filters, the fragment color is determined by the image data, modified by the filter.
And drawing simple points requires setting a simple color to tell OpenGL what color
to use when drawing the points.

However, when a shader is performing lighting calculations rather than drawing an
image, the shader program replaces the fixed, OpenGL lighting calculations. Your
shader program code will need to define lighting and shading effects. In general, this
is a fairly complex task, but there are tools available to make it a bit easier.

Note
The code in the following example was created with a tool called ShaderGen, by
3Dlabs (http://www.3dlabs.com). It is beyond the scope of this documentation to
describe such third party tools. However, an internet search will likely provide
several options that allow you to define and adjust lighting parameters and produce
usable shader code output.

Beyond defining the characteristics of lights in GLSL code, you need to understand
how lights defined in IDL relate to the OpenGL light table.

IDL Lights and the OpenGL Light Table

In IDL there is a limit of 8 active IDLgrLight objects, which you define by their
position, direction, color, and other parameters. OpenGL passes these light
definitions to the shader program via a pre-defined GLSL array variable called
gl_LightSource. The shader program then looks up the light definitions in the
table and performs the required lighting calculations. The key is determining which
IDL light corresponds to a light entry in the gl_LightSource table.

The IDLgrLight object LIGHT_INDEX property provides a means of tying a
particular IDLgrLight object to an element of the gl_LightSource table. When
you define a light, you also set the LIGHT_INDEX property to a value between 0 and
7, inclusive, without duplicating a value in any of the lights. You can then pass these
indices to the shader program in uniform variables, or simply hard-code it in the
shader program.
Object Programming Lighting Shaders

364 Chapter 14: Advanced Rendering Using Shader Objects
For example the following code creates a light and tells OpenGL to put the definition
for this light in entry 4 of the light source table:

oLight = OBJ_NEW('IDLgrLight', TYPE=1, LOCATION=[200,200,500], $
COLOR=[255,255,255], INTENSITY=0.8, LIGHT_INDEX=4)

The shader program then expects to see the definition for this light in entry 4 of the
table. Here some shader program code fetches the light characteristics:

 Ambient += gl_LightSource[4].ambient * attenuation;
 Diffuse += gl_LightSource[4].diffuse * nDotVP * attenuation;
 Specular += gl_LightSource[4].specular * pf * attenuation;

Note
In some shader programs, the light needs to be identified by a single integer value
(such as 4) instead of by a light table entry (gl_LightSource[4]). In such a case,
you can define a uniform variable that contains the light index value and pass this to
the shader program. The following example uses this method, defining a uniform
variable named DirectionalLightIndex with a value of 4 and passing it to the shader
program.

Ambient Lights

An ambient light is a bit different from the other lights. IDL does not use a light
source to define an ambient light, and an ambient light does not count toward the
limit of 8 active lights. Instead, IDL sets the ambient portion of the OpenGL light
model state to the desired ambient light color and intensity. (If a light is not defined
with a TYPE setting of positional, directional, or spotlight, the light will be
considered to be an ambient light by default.) In a shader program, you would add in
the ambient light contribution as follows:

Ambient = gl_LightModel.ambient; // Use IDL's ambient light

Note
See “IDLgrLight” (IDL Reference Guide) for additional information about ambient
lights.
Lighting Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 365
Adding Lighting and Shading to a Surface

This example displays an IDLgrSurface, and uses the vertex shader to displace part of
it up and down in an animation sequence. It also changes the color of the displaced
part slightly for additional emphasis. An ambient light and a positional light
illuminate the surface.

Example Code
See shader_lightsurf_doc.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_lightsurf_doc at the IDL command
prompt or view the file in an IDL Editor window by entering .EDIT
shader_lightsurf_doc.pro.

First create the surface:

; Generate surface data and create surface object.
surfdata = BESELJ(SHIFT(dist(100), 50, 50) / 2,0) * 40
oSurface = OBJ_NEW('IDLgrSurface', surfdata, STYLE=2,
COLOR=[200,200,40])

; Create model for the visibile surface and rotate angle
; for good viewing.
oModel = OBJ_NEW('IDLgrModel')
oModel->Add, oSurface
oModel->Translate, -50, -50, 0
oModel->Rotate, [0,0,1], -30
oModel->Rotate, [1,0,0], -60
oModel->Translate, 50, 50, 0

Then define the ambient and positional lights. The directional light has an arbitrary
light index value (4 in this example) in order to identify it in the shader program.

oLightModel = OBJ_NEW('IDLgrModel')
oLightModel->Add, OBJ_NEW('IDLgrLight', TYPE=0, $

COLOR=[100, 50, 40])
oLightModel->Add, OBJ_NEW('IDLgrLight', TYPE=1,

LOCATION=[200,200,500], $
COLOR=[255,255,255], INTENSITY=0.8, LIGHT_INDEX=4)
Object Programming Adding Lighting and Shading to a Surface

javascript:doIDL("shader_lightsurf_doc")
javascript:doIDL(".edit shader_lightsurf_doc.pro")
javascript:doIDL(".edit shader_lightsurf_doc.pro")

366 Chapter 14: Advanced Rendering Using Shader Objects
Uniform and Attribute Variables for Lighting Shader

The IDL application (shader_lightsurf_doc.pro) creates and passes two
uniform variables and an attribute variable containing per-vertex information to the
shader program.

• Displacement — this attribute variable contains a “displacement mask”,
which describes the part of the surface to displace. There is a value for each
vertex, where a zero means no displacement will be applied at that point, and a
non-zero value describes the magnitude of the relative displacement.

disp = FLTARR(100,100)
disp[50:99, 50:99] = MAX(surface)
oSurface->SetVertexAttributeData,'Displacement', $

REFORM(disp, 100*100)

• DirectionalLightIndex — this uniform variable identifies the one non-
ambient light’s index value that is being passed to the shader program. The
value for this uniform variable matches the LIGHT_INDEX value.

oShader->SetUniformVariable, 'DirectionalLightIndex', 4

Note
The generated shader program requires an integer (4) rather than a table entry
(gl_LightSource[4]) to identify the light. While defining a uniform
variable is not a requirement, using DirectionalLightIndex in the shader
program code makes it easier to understand than hard-coding the number 4.

• Time - this uniform variable is incremented during IDL application execution
and the updated value is used within the shader program to vary the amount of
displacement with respect to time.

Hardware Shader Program for Lighting Shader

The vertex shader program for this example was largely generated by 3Dlabs’
ShaderGen program. Only a small amount of code needed to be added or modified to
make the generated code work with the example IDL application. See the code
comments for details.

Example Code
See lightSurfVert.txt, located in the examples/doc/shaders subdirectory
of the IDL distribution, for the complete, working example.
Adding Lighting and Shading to a Surface Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 367
The fragment shader program (lightsurf.frag) is very simple:

void main() {
gl_FragColor = gl_Color;
}

Assign Lighting Shader Program to Shader Object

The vertex shader program is rather long and complex, so it is stored in an external
file, as is the fragment shader program. Associate the shader program components
with the IDLgrShader object using the VERTEX_PROGRAM_FILE and
FRAGMENT_PROGRAM_FILE properties.

; Access shader program files.
vertexFile=FILEPATH('lightSurfVert.txt', $
 SUBDIRECTORY=['examples','doc', 'shaders'])
fragmentFile=FILEPATH('lightSurfFrag.txt', $
 SUBDIRECTORY=['examples','doc', 'shaders'])

; Create shader and associate vertex and fragment programs.
oShader = OBJ_NEW('IDLgrShader')
oShader->SetProperty, VERTEX_PROGRAM_FILENAME=vertexFile, $
 FRAGMENT_PROGRAM_FILENAME=fragmentFile

; Associate shader with the surface. You can comment out
; this line to run without the shader program.
oSurface->SetProperty, SHADER=oShader
Object Programming Adding Lighting and Shading to a Surface

368 Chapter 14: Advanced Rendering Using Shader Objects
With the appropriate display objects and a FOR loop to increment the uniform
variable Time, you can visualize the results of applying the shader program lighting
calculations to the surface. A detail of the surface during program execution appears
in the following figure.

Figure 14-9: Lighting Calculations Applied to Surface Displacement
Adding Lighting and Shading to a Surface Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 369
Multi-texture Shaders

Some applications display multiple 2-D datasets that overlay each other and are
layered on an object such as a polygon. When you want to blend the overlying
textures in a specific manner, using a shader program provides precise control over
how the blending occurs. With a shader multi-texture application, you can specify
multiple textures and control how they are displayed relative to each other. Two areas
of control are:

1. Texture blending — the shader program controls how the textures are blended
with each other and applies simple blending factors that result in an immediate
update of the display. The same update in IDL would require re-blending the
image and sending the result to the graphics device. This would be required for
each modification.

2. Texture coordinate mapping — the application can specify a unique set of
texture coordinates for each texture, allowing independent control of the
positioning of each texture on the object.

However, if you want to uniformly blend images, it may be easier to use traditional
IDL methods to create a single image, which can then be used as a texture map. You
can combine or “burn” the overlay data into the base image to produce a single image
that IDL then displays in the usual, static manner. Suppose your multi-texture
example features a map with an overlay of weather data. If the map is an IDL BYTE
array with dimensions [3,256, 256] and the cloud data in an IDL BYTE array with
dimensions [256, 256], then code to “burn” the clouds into the map might look like:

fmap = FLOAT(map) / 255.0
fclouds = FLOAT(clouds) / 255.0
fclouds = TRANSPOSE([[[fclouds]], [[fclouds]], [[fclouds]]])
map = BYTE((fmap * (1.0-fclouds) + fclouds) * 255)

This code simply increases the amount of white in the image, proportional to the
values of the cloud data, and reduces the map color by the same amount. However, to
change the blending the IDL application must re-blend the image and send the results
to the graphics device each time a blending factor changes. A shader program can
handle such multi-texturing tasks with greater flexibility and performance.

Note
Often data for multiple textures will be correctly sized and positioned to map onto a
surface in the same way. However, if you need change the position of one texture in
relation to others, see “Repositioning Textures” on page 374.
Object Programming Multi-texture Shaders

370 Chapter 14: Advanced Rendering Using Shader Objects
Uniform Variables and Multi-Texture Shaders

When more than one texture is being layered on a surface or polygon, you do not
need to use SetUniformVariable to pass the texture data associated with the primary
image object to the shader program. (The primary image is the one to which the
shader object is attached). The texture map associated with the primary image object
data is automatically contained in the reserved uniform variable
_IDL_ImageTexture. However, you do need to use SetUniformVariable to pass
any additional textures to the shader program.

Note
If SetUniformVariable references an IDLgrImage object with dimensions that are
not a power of 2, the image will be padded to the next largest power of 2. If the
dimensions of the IDLgrImage are larger than MAX_TEXTURE_DIMENSIONS
(returned by IDLgrWindow::GetDeviceInfo) then the image will be scaled down to
MAX_TEXTURE_DIMENSIONS. Keep this in mind when generating texture
coordinates to access the texture map.
Multi-texture Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 371
Manipulating Multiple Textures Using Shaders

The following multi-texturing shader program example provides the ability to
interactively scrape away the section of clouds under the mouse cursor to see the
earth below. Because this requires blending only a section of the image, using a
shader program in this case is far easier than duplicating the outcome using only IDL.

Example Code
See shader_multitexture_doc.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_multitexture_doc at the IDL
command prompt or view the file in an IDL Editor window by entering .EDIT
shader_multitexture_doc.pro.

Uniform Variables for Multi-texture Shader

This example uses three uniform variables that define the map of the earth, the
clouds, and the position of the mouse cursor on the map where you want to reveal the
earth below the clouds. These are:

• Day — the base image of the map of the earth that is added to the
IDLgrModel. This base image object is stored in the reserved uniform variable
_IDL_ImageTexture by default and need not be explicitly passed to the shader
program using SetUniformVariable.

READ_JPEG, 'Day.jpg', day
oDay = OBJ_NEW('IDLgrImage', day)

• Clouds — this image of the cloud cover is explicitly passed to the shader
program using SetUniformVariable in the main IDL application,
shader_multitexture_doc.pro.

READ_JPEG, 'Clouds.jpg', clouds
oClouds = OBJ_NEW('IDLgrImage', clouds)
oShader->SetUniformVariable, 'Clouds', oClouds

• Scrape — this provides the position of the mouse cursor, which scrapes away
a circle of clouds when the scraper has been activated. This information is
passed using SetUniformVariable in the OnMouseUp and OnMouseMotion
methods of the window observer.

Example Code
The window observer object file is located in winobserver__define.pro in the
examples/doc/shaders subdirectory of the IDL distribution. Run the example
Object Programming Manipulating Multiple Textures Using Shaders

javascript:doIDL("shader_multitexture_doc")
javascript:doIDL(".edit shader_multitexture_doc.pro")
javascript:doIDL(".edit shader_multitexture_doc.pro")

372 Chapter 14: Advanced Rendering Using Shader Objects
procedure by entering winobserver__define at the IDL command prompt or
view the file in an IDL Editor window by entering .EDIT
winobserver__define.pro.

Hardware Shader Program for Multi-texture Shader

The vertex shader program (multitextureVert.txt located in
examples/doc/shaders) is very simple since the example requires only display-
related transformation of the vertices.

void main()
{

gl_TexCoord[0] = gl_MultiTexCoord0;
gl_Position = ftransform();

}

This basic vertex program passes along the texture coordinate and then applies a
transform to the vertex to correctly position it on the screen. The gl_TexCoord[0]
is a varying variable that transmits data from the vertex program to the fragment
shader program.

Note
If you need to align or change the position of a texture in relation to other textures
you can use the SetMultitextureCoord method. See “Repositioning Textures” on
page 374 for details.

The fragment shader program (multitextureFrag.txt located in
examples/doc/shaders) uses the three uniform variables to determine which
portion of the clouds needs to be removed.

uniform sampler2D Clouds;
uniform sampler2D _IDL_ImageTexture;
uniform vec2 Scrape;

void main()
{
vec3 clouds = vec3(texture2D(Clouds, gl_TexCoord[0].st).r);
vec3 daytime = texture2D(_IDL_ImageTexture,

gl_TexCoord[0].st).rgb;

vec3 color = daytime;
vec2 f = Scrape - gl_TexCoord[0].st;
f.s *= 2.0; // aspect ratio correction

if (length(f) > 0.02)
Manipulating Multiple Textures Using Shaders Object Programming

javascript:doIDL("winobserver__define")
javascript:doIDL(".edit winobserver__define.pro")
javascript:doIDL(".edit winobserver__define.pro")

Chapter 14: Advanced Rendering Using Shader Objects 373
color = mix(daytime, clouds, clouds.r);

gl_FragColor = vec4(color, 1.0);
}

The shader program mixes the map and cloud data according to the cloud intensity,
but only when greater than a certain distance away from the specified position (the
Scrape location). If close enough to the specified position, the program just draws the
map color. The shader program is fast enough to let you interactively change the
Scrape location to reflex the position of the mouse cursor. Attempting the same
operation in IDL would likely be too slow to be useful.

Assign Multi-texture Shader Program to Shader Object

You need to supply the program code to the shader object so that it is available to the
graphics card when it is needed. To accomplish this, you can use shader object
properties VERTEX_PROGRAM_FILE and FRAGMENT_PROGRAM_FILE to
associate external shader program components with the shader object.

vertexFile=filepath('multitextureVert.txt', $
 SUBDIRECTORY=['examples','doc', 'shaders'])
fragmentFile=filepath('multitextureFrag.txt', $
 SUBDIRECTORY=['examples','doc', 'shaders'])

; Create the shader object, link the shader programs, and
; associate the shader with the base image object, the daytime
; map of the earth (oDay).
oShader = OBJ_NEW('IDLgrShader')
oShader->SetProperty, $

VERTEX_PROGRAM_FILENAME='multitexture.vert'
oShader->SetProperty,$

FRAGMENT_PROGRAM_FILENAME='multitexture.frag'
oDay->SetProperty, SHADER=oShader

At this point, you can easily add image display code and a window observer to your
program and test your multi-texture shader.

When you run shader_multitexture_doc.pro, click in the window to turn on
the cloud “scraper” and move your mouse cursor to reveal the ground beneath. The
Object Programming Manipulating Multiple Textures Using Shaders

374 Chapter 14: Advanced Rendering Using Shader Objects
following figure shows the upper Baja peninsula with clouds (left) and without (right)
as the shader interactively blends the two textures under the mouse cursor.

Repositioning Textures

When working with multiple textures, the textures may all map the same way onto
the object. However, if one texture needs to be repositioned or if you want to animate
a texture, you can assign individual texture coordinates to each texture. Using the
map and cloud example, you could either shift the position of the clouds or animate
the clouds to move across the map.

To achieve such results, you need to supply a different set of texture coordinates for
each texture using the IDLgrPolygon::SetMultiTextureCoord or the
IDLgrSurface::SetMultiTextureCoord method. This method has the signature of:

obj->SetMultiTextureCoord, Unit, TexCoord

where Unit specifies a texture coordinate unit and TexCoord contains the texture
coordinates. This effort begins in your IDL application:

tcMap = < code that generates the texture coords >
tcClouds = tcMap
tcClouds[0,*,*] += 0.2 ;; shift the clouds to the west
oPolygon->SetMultiTextureCoord, 0, tcMap
oPolygon->SetMultiTextureCoord, 1, tcClouds

The last two lines associate two sets of texture coordinates with the polygon object.
Access these texture coordinates in the vertex program where texture coordinate 0
(zero) relates to the map texture and texture coordinate 1 is the cloud texture. Your
vertex shader program must collect these and pass them to the fragment shader:

gl_TexCoord[0] = gl_MultiTexCoord0;
gl_TexCoord[1] = gl_MultiTexCoord1;

Figure 14-10: Multi-texture Blending Example
Manipulating Multiple Textures Using Shaders Object Programming

Chapter 14: Advanced Rendering Using Shader Objects 375
The fragment shader then uses the appropriate texture coordinate to lookup the color
from each texture. That is, it uses gl_TexCoord[1] to lookup the cloud texture,
and gl_TexCoord[0] to lookup the map texture.

vec3 clouds = vec3(texture2D(Clouds,
gl_TexCoord[1].st).r);

vec3 map = texture2D(Map, gl_TexCoord[0].st).rgb;

vec3 color = mix(map, clouds, clouds.r);
gl_FragColor = vec4(color, 1.0);

Thus, you can use two sets of texture coordinates to control the display of two
different textures.

Rotating Earth with Multiple Textures

This example loads three images, a base day image of the earth, a night image and an
image of clouds, into textures. It then draws the rotating earth showing a day scene on
one side and night scene (lights of big cities) on the other.

In the IDL code:

Figure 14-11: Sample Image from Multi-texture Shader Application
Object Programming Manipulating Multiple Textures Using Shaders

376 Chapter 14: Advanced Rendering Using Shader Objects
• Create three IDLgrImage objects to hold the daytime, nighttime and cloud
textures. Assign the object references for these image objects to uniform
variables, using the IDLgrShader::SetUniformVariable method.

; Tell the shader program about our textures.
oShader->SetUniformVariable, 'EarthDay', oDay
oShader->SetUniformVariable, 'EarthNight', oNight
oShader->SetUniformVariable, 'EarthCloudGloss', oClouds

• Use the SetMultiTextureCoord method for IDLgrPolygon to set texture
coordinates (tc) for the textures.

oEarth->SetMultiTextureCoord, 0, tc

Note
If the textures did not share the same coordinates, you could call
SetMultiTextureCoord multiple times. See “Repositioning Textures” on
page 374 for additional information.

In the Shader Program:

• In the vertex program (earthVert.txt), fetch the texture coordinates for
both the daytime and nighttime textures from the predefined GLSL uniform
variable gl_MultiTexCoord[n], where n corresponds to the numbers used
in the IDLgrPolygon::SetMultiTextureCoord method calls. These texture
coordinates are passed to the fragment shader with varying variables.

• The fragment shader (earthFrag.txt) then decides on what side of the earth
the fragment is on, and chooses the appropriate texture and texture coordinates
to use to look up the texel value to use as the fragment color.

This shader program was taken directly from Chapter 10 of the “Orange Book”
(“OpenGL Shading Language”, Second Edition, by Randi J. Rost) and required no
modifications to work with the IDL application, shader_earthmulti.pro.

Example Code
See shader_earthmulti.pro, located in the examples/doc/shaders
subdirectory of the IDL distribution, for the complete, working example. Run the
example procedure by entering shader_earthmulti at the IDL command prompt
or view the file in an IDL Editor window by entering .EDIT
shader_earthmulti.pro. The associated shader program files
earthVert.txt and earthFrag.txt are located in the same directory.
Manipulating Multiple Textures Using Shaders Object Programming

javascript:doIDL("shader_earthmulti")
javascript:doIDL(".edit shader_earthmulti.pro")
javascript:doIDL(".edit shader_earthmulti.pro")

Index
Object Programming 377

Numerics
3D

text objects, 220

A
aligning text

text objects, 219
alpha blending, 115, 198
alpha channel

image object data, 98
image object transparency, 115
objects supporting, 60

alphacomposit_image_doc, 118
alphaimage_obj_doc, 116
animation

animating objects
about, 246

behavior object, 251
display object hierarchy, 246
model object, 248
object example, 255

controlling rate, 250
performance, 253

animation_doc.pro, 255
animation_image_doc.pro, 252
animation_surface_doc.pro, 252
annotating

object graphics display
about, 218
annotated image examples, 236
colorbar object, 231
font object, 223
indexed images, 236
legend object, 228
light object, 233
RGB images, 240

378
ROI object, 227
text object, 219
text objects, 219

applycolorbar_indexed_object.pro, 236
applycolorbar_rgb_object.pro, 240
arguments

described, 20
assignment

using, 27
attribute objects, 40
attribute variables, 330
automatic

class structure definition, 301
axes

adding to
objects, 161

axis object
tick labels, 174
title, 174
visualization object, 41
working with, 161

B
back-face culling, 212
baseline changes to text objects, 221
behavior object, 247, 251
binary images

displaying
Object Graphics, 100

bitmap graphics
defined, 284
IDLgrClipboard, 275
IDLgrPrinter, 277
text rendering, 284
versus vector, 284
when to use, 286

buffer objects
creating, 274
destination object, 37
overview, 274

C
calling sequence

function methods, 19
procedure methods, 19

channels
alpha, 98
image objects, 98

Cine, 255
class

object, 297
structure, 300
structures

zeroed, 300
Cleanup method

implicit calling, 309
of superclasses, 309

clipboard objects
creating, 276
destination object, 37

clipping planes, 77
color

mapping voxel values, 197
Object Graphics, 46

color model
destination objects, 48
indexed, 48
printers, 277
RGB, 46, 49
window objects, 267

color property of objects, 51
colorbar objects

creating, 231
overview, 231
using, 231
visualization object, 41

coloring vertices, 214
combining transformations, 94
common methods in object classes, 19
composite classes, 317
concave polygons, 206
contour object
Index Object Programming

379
about, 154
visualization object, 41

control points, 122
convex polygons, 206
coordinate conversion, 80, 83
coordinate systems

scaling coordinates, 70
transformation, 70

coordinate transformations, 80
copying

tiled image, 146
copyrights, 2
creating

objects
axis, 161
buffer, 274
clipboard, 276
colorbar, 231
contour, 154
image, 100
legend, 228
light, 233
plot, 157
polygon, 204
polyline, 214
printer, 277
surface, 184
text, 219
tiled image, 140
volume, 194
window, 267

culling to improve performance, 212

D
dangling references, 305
data

coordinate conversion, 81
data picking, 258, 262
date/time data

displaying

on axis objects, 165
default font, 222, 223
defining

method routines, 310
depth buffering objects

about, 58
test functions, 58

destination device, 266
destination objects, 37, 37, 37, 37, 37

color models, 48
drawing, 266

destroying
objects, 26, 309

dialogs
printer, 277

DICOM object
file format object, 44

display support objects, 38
displaybinaryimage_objectt.pro, 101
displaygrayscaleimage_object.pro, 103
displaying

Object Graphics
binary images, 100
grayscale images, 102
multiple images, 106

displaymultiples_object.pro, 106
dot operator, 311
draw widgets

object graphics window
color mode, 48
setting, 267

drawing
destination device, 266
object graphics displays, 55
to a printer object, 278

E
EMF file, 285
encapsulation, 297
EQ operator
Object Programming Index

380
comparing object references, 28
erasing

window objects, 269
ex_reverse_plot.pro, 174
examples

objects
alphacomposite_image_doc, 118
alphaimage_obj_doc, 116
animation_doc.pro, 255
animation_image_doc.pro, 252
animation_surface_doc.pro, 252
applycolorbar_indexed_object.pro, 236
applycolorbar_rgb_object.pro, 240
displaybinaryimage_object.pro, 101
displaygrayscaleimage_object.pro, 103
displaymultiples_object.pro, 106
ex_reverse_plot.pro, 174
maponsphere_object.pro, 132
obj_axis.pro, 162
obj_plot.pro, 180
obj_tess.pro, 206
obj_vol.pro, 194, 196
panning_object.pro, 111
penta.pro, 178
rot_text.pro, 222
sel_obj.pro, 261
surf_track.pro, 189, 263
test_surface.pro, 86
tilingjp2_doc.pro, 150
transparentwarping_object.pro, 121
zooming_object.pro, 88

shaders
lightSurfVert.txt, 366
shader_earthmulti.pro, 376
shader_filterchain_doc__define.pro, 355
shader_lightsurf_doc.pro, 365
shader_lut_doc__define.pro, 342
shader_multitexture_doc.pro, 371
shader_rgb_doc__define.pro, 336
shader_vertexwinds_doc.pro, 359

utilities

get_bounds.pro, 79
idlexpalimage__define.pro, 318
idlexshow3__define.pro, 317
norm_coord.pro, 82
set_view.pro, 79

export restrictions, 2
expose events, 272
exposing window objects, 269
eye position, 75

F
far clipping plane, 77
filling

polygons
with pattern, 205

filter chain shaders, 355
font object

about, 223
setting text object font, 222
visualization object, 43

fonts
default

object graphics, 223
Hershey, 224
TrueType, 223
type size, 222
type style, 222

fragment shader, 325
freeing

heap variables
objects, 305

objects
about, 305

function methods
calling sequence for, 19

G
get_bounds.pro, 79
Index Object Programming

381
GetProperty method
about, 22

GLSL. See OpenGL Shading Language
graphic objects, 40
graphics

bitmap versus vector, 284
visualization objects, 40

graphics object tree, 35
graphs, 153
grayscale images

displaying
Object Graphics, 102

zooming, 88

H
heap variables

freeing
variables, 305

leakage, 305
objects, 304

Hershey fonts, 224
hidden line removal, 187
hidden object classes, 299
hiding

window objects, 269
hierarchy

graphic objects, 35

I
iconifying

windows, 269
idlexpalimage__define.pro, 318
idlexshow3__define.pro, 317
IDLffDXF object

file format object, 44
IDLffJPEG2000

file format object, 44
IDLgrFilterChain

using, 355

IDLgrImage
See also image objects.

IDLgrShader
hardware requirements, 321

IDLgrShaderBytscl
hardware requirements, 321

IDLgrShaderConvol3
hardware requirements, 321

IDLgrText
rendering

bitmap graphics, 284
vector graphics, 285

image display
multiple images, 106
object graphics

binary, 100
grayscale, 102
multiple images, 106

image objects
about, 100
alpha blending, 115
array configurations, 98
channels, 98
creating, 100
displaying

binary, 100
grayscale, 102

palette, 98
saving to a file, 270
tiling. See image tiling.
transparency, 115
visualization object, 42
warping, 121

image pyramid, 137
image tiling

about, 136
about tiles, 139
application, 140
copying, 146
example, 150
panning, 142
preloading tiles, 147
Object Programming Index

382
printing, 146
pyramid, 137
querying required tiles, 141
zooming, 143

images
manipulating in Object Graphics

panning, 111
ROI objects, 227
tiling application, 140
warping a transparency, 115

implicit self argument, 311
indexed color model, 46, 48
indexed images

color annotations, 236
inheritance

defined, 302
object, 298

initializing
objects, 23

instance, object, 297
instancing

back-face culling, 212
lighting, 235
redraw performance, 272
window objects, 272

interpolation
voxel values, 199

K
keywords

definition, 20
setting, 21

L
language catalog object

file format object, 44
legalities, 2
legend object

about, 228
visualization object, 41

lifecycle
methods, 19
routines, 307

light objects
adding to a volume, 197
creating, 233
overview, 233
types of lights, 233
using, 234
visualization object, 42

lights
performance, 235

lightSurf vertex shader, 366
location

object graphics to view area, 70
text object, 219

logarithmic
plots, 163

M
manipulating images

panning
Object Graphics, 111

zooming
Object Graphics, 88

maponsphere_object.pro, 132
mapping

images onto a sphere
creating display objects, 132
Object Graphics, 132

transparent images, 121
transparent overlays, 121

maximum intensity projection, 198
maximum value

in a plot, 158
maximum window size, 268
method overriding, 314
methods
Index Object Programming

383
about, 310
defining routines, 310
invocation, 19
object, 297

minimum value
in a plot, 158

MIP. See maximum intensity projection
model class

methods, 91
model object

display object, 39
rotation, 92
scaling, 93
selecting models, 260
translation, 92

Motion JPEG2000
file format object, 44

mouse
cursor, 270

MPEG object
file format object, 45

MrSID image files
file format object, 44

multiple images
displaying in Object Graphics, 106

N
named

variables, 20
NE operator

comparing object references, 28
near and far clipping planes, 77
new page, 283
NORM_COORD function, 81
norm_coord.pro, 82
normal

computations, 213
null object, 303

O
obj_axis.pro, 162
OBJ_DESTROY procedure

using, 26, 309
OBJ_NEW function

using, 308
obj_plot.pro, 180
obj_tess.pro, 206
obj_vol.pro, 194, 196
OBJARR function

using, 309
object classes

attribute objects, 40
attributes, 223
axis, 41, 161
buffer, 37, 274
clipboard, 37
colorbar, 41
common methods

Cleanup, 19
GetProperty, 19
Init, 19
SetProperty, 19

contour, 41, 154
destination objects, 37
DICOM, 44
display support, 38
DXF, 44
file format objects, 44
font, 43, 223
IDLffJPEG2000, 44
IDLffMJPEG2000, 44
image, 42
LangCat, 44
legend, 41, 228
light, 42, 233
model, 39
MPEG, 45
MrSID, 44
naming conventions, 32
palette, 42, 50
Object Programming Index

384
pattern, 41, 207
plot, 41, 157
polygon, 43, 204
polyline, 43, 214
printer, 37
ROI, 42
ROIGroup, 42
scene, 38
ShapeFile, 45
surface, 42, 184
symbol, 41, 176
tessellator, 43, 206
text, 43, 219
TrackBall, 43
view, 39
viewgroup, 38
visualization object, 40
volume, 42
VRML, 45
window, 37
XMLDOM, 45
XMLSAX, 45

object concepts
class, 297
class structures, 300
clean up, 309
encapsulation, 297
heap variables, 304
inheritance, 298
inheritance, specifying, 302
instances, 297
lifecycle, 307
method routines, 310
null object, 303
persistence, 298
polymorphism, 297
properties, 22
self, 311

object graphics
animating objects, 246
animation example, 255

color annotations
indexed images, 236
RGB images, 240

composite classes, 317
displaying

binary images, 100
grayscale images, 102
multiple images, 106
transparent images, 115

expose events, 272
hierarchy, 38
indexed color model, 46
instancing, 272
manipulating images

panning, 111
zooming, 88

polygon optimization, 209
typographical conventions used, 32

object heap variables, 304
object hierarchy, 35
object properties

setting, 22
object reference

about heap variables, 304
object tree

display objects, 38
graphic objects, 35

object-oriented programming, 16
objects

about, 297
animating, 245
color of, 51
controlling depth, 58
data picking, 258
depth buffering, 58
destroying

custom, 309
how to, 26

graphics hierarchy, 35
null, 303
selecting, 258
Index Object Programming

385
self argument, 311
undocumented classes, 299

on-the-glass text, 220
opacity table, 196
OpenGL Shading Language (GLSL)

about, 320
operations

on objects, 27
orientation

text objects, 222

P
palette object

indexed color data, 98
using, 50
visualization object, 42

panning images
Object Graphics, 111

panning_object.pro, 111
parallel projection, 73
pattern filling of polygon objects, 205
pattern object

about, 207
visualization object, 41

penta.pro, 178
performance

lighting optimization, 235
object graphics, 66
polygon optimization, 209
window drawing, 272

persistence
about, 298

perspective projection, 74
pixmap objects, using, 269
plot objects

averaging points, 159
minimum and maximum values, 158
plotting symbols, 159
using, 157
visualization object, 41

plotting
logarithmic axes, 163
object graphics, 153
object graphics example, 180
reverse axis, Object Graphics, 174

pointer heap variables, 304
pointers

freeing all, 305
polygon mesh optimization, 209
polygon objects

back-face culling, 212
normal computations, 213
optimization, 209
using, 204
visualization object, 43

polygons
converting to convex, 206

polyline object
using, 214
visualization object, 43

polymorphism, objects, 297
position of graphics, 70
positioning

objects in a view, 70
text objects, 219

printer object
about, 277
color model, 277
creating, 277
destination object, 37
drawing, 278
print dialogs, 277
starting new page, 283
submitting job, 283

printing
object graphics, 277, 277
tiled image, 146

procedure methods
calling sequence for, 19

projections
overview, 73
Object Programming Index

386
parallel, 73
perspective, 74

properties
objects, setting, 22, 22
retrieving, 24
setting, 23

R
rendering

graphics objects, 55
hardware versus software, 66
performance, 66
polygon objects, 204
polyline objects, 214
speed of volumes, 199
surface objects, 185

reserved uniform variables, 330
restoring

windows, 270
retained graphics, 272
retrieving object properties, 24
revealing window objects, 269
reverse axis, Object Graphics, 174
RGB color system

in object graphics, 46, 49
RGB images

color annotations, 240
ROI

visualization object, 42
ROIGroup object, 42
rot_text.pro, 222
Rotate method, 92
rotating

model objects, 92
objects in a view, 91

S
saving

windows, 270
Scale method, 93
scaling

about, 93
coordinate systems, 70
visualization objects, 91

scanlines, 147
scene objects

display object, 38
sel_obj.pro, 261
selecting

in window objects, 259
model objects, 260
objects in a view, 260
views in a window object, 259

self argument (objects), 311
set_view.pro, 79
SetProperty method

about, 22
setting

keywords, 21
properties of objects, 22
window object cursor, 270

setting properties
existing objects, 23
initialization, 23
objects, 22

shader_earthmulti.pro, 376
shader_filterchain_doc__define, 355
shader_lightsurf_doc, 365
shader_lut_doc__define, 342
shader_multitexture_doc, 371
shader_rgb_doc__define, 336
shader_vertexwinds_doc, 359
shaders

about shader functionality, 320
about shader programs, 323
applications, use in, 328
attribute variables

about, 330
using, 359
Index Object Programming

387
display-only, 329
fragment and vertex components, 324
fragment program, 325
hardware rendering requirement, 321
hardware requirements, 321
image filtering

about, 334
cache, 335
data capture, 335
examples

filter chaining, 355
high precision images, 349
LUT shader, 342
RGB shader, 336

software alternative, 335
lighting, 363
multi-texture

about, 369
repositioning textures, 374

OpenGL data conversion, 349
passing information, 330
performance enhancement, 326
pre-built, 333
shading language (GLSL), 320
support for, 321
uniform variables

about, 330
reserved, 330

varying variable, 332
vertex program, 325
vertex shaders, 359

shading
polygon objects, 205
polylines, 214

Shapefile
file format object, 45

simple polygons, 206
skirts, 187
software rendering

about, 272
structures

automatic definition, 301
dot operator, 311
zeroed, 300

submitting print job, 283
surf_track.pro, 189, 263
surface objects

creating, 184
hidden line removal, 187
interactive example, 189
overview, 184
rendering style, 185
shading, 186
skirts, 187
texture mapping, 188
using, 185
visualization object, 42

symbol object
about, 176
visualization object, 41

symbol use for polylines, 214
symbols

pre-defined, 176

T
tessellator object, 43, 206
test_surface.pro, 86
text object

creating and using, 219
editing output, 287
setting font, 222
visualization object, 43

texture maps
polygon objects, 205
surfaces, 188

tick labels, 174
tiling images

about, 136
about tiles, 139
creating tiling application, 140
example, 150
Object Programming Index

388
image pyramids, 137
panning, 142
preloading tiles, 147
querying required tiles, 141
zooming, 143

tilingjp2_doc.pro, 150
timers

IDLitWindow, 250
TrackBall

about, 43
trademarks, 2
transformations

combining, 94
coordinate, 80
model class example, 83, 86
model objects, 91
rotation, 91, 92
scaling, 91, 93
translation, 91, 92

Translate method, 92
translation, 91
transparency

adding an alpha channel, 115
alpha channel, 98
image objects, 115
in vector graphics, 286
of voxels, 196

transparentwarping_object.pro, 121
TrueType fonts

about, 223
typographical conventions, 32

U
undocumented object classes, 299
uniform variables, 330
upward direction of text objects, 222
using

colorbar objects, 231
pixmap objects, 269
volume objects, 195

window objects, 267, 269

V
variables

named, 20
varying variable, 332
vector graphics

defined, 285
display results, 287
IDLgrClipboard, 275
IDLgrPrinter, 277
inserting EMF file, 285
object sorting, 289
object sorting issues

IDLgrImage objects, 292
transparent views, 290

smooth shading, 287
text rendering, 285, 287
transparency, 286
versus bitmap, 284
when to use, 286

vertex shader, 325
view area, 70
view object

display object, 39
view volume

finding, 78
overview, 77
viewplane rectangle, 77

viewgroup object
display object, 38

viewplane rectangle, 77, 83
viewport, 70, 71
volume objects

attributes, 196
color values, 197
compositing, 198
creating, 194
interpolating values, 199
lighting, 197
Index Object Programming

389
opacity table, 196
overview, 194
rendering speed, 199
using, 195
visualization object, 42
zbuffering, 198

voxel
transparency, 196
values, 194

VRML objects
file format object, 45

W
warping images

Object Graphics display, 121
window object

destination object, 37
window objects

color model, 267
creating, 267
draw widgets, 267
erasing, 269
exposing, 269
hiding, 269
iconifying, 269
instancing, 272

maximum size, 268
restoring, 270
saving, 270
selection, 259
setting the cursor, 270
using, 267, 269

winobserver__define.pro, 371

X
XMLDOM object

file format object, 45
XMLSAX object

file format object, 45
Xprinter

vector graphics, 286

Z
Z-buffer

volume objects, 198
zeroed structures, 300
zooming images

Object Graphics, 88
zooming_object.pro, 88
Object Programming Index

390
Index Object Programming

	Online Manuals
	IDL Documentation
	What's New in IDL 7.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Advanced Math and Stats
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	Object Programming
	Contents
	The Basics of Using Objects in IDL
	Object-Oriented Programming Concepts
	Using IDL Objects
	Creating Objects
	Acting on Objects Using Methods
	Modifying Object Properties
	Destroying Objects
	Using Operations with Objects
	Object Examples

	Creating an Object Graphics Display
	Overview of Object Graphics Classes
	Creating an Object Graphics Display
	Object Graphics Display Hierarchy
	Destination Objects
	Display Objects
	Visualization Objects
	File Format Objects
	Color in Object Graphics
	Color and Destination Objects
	Palette Objects
	Specifying Object Color
	How IDL Interprets Color Values
	Rendering Objects
	Controlling the Depth of Objects in a View
	Controlling Object Transparency
	Performance Tuning Object Graphics

	Positioning Objects in a View
	Positioning Visualizations in a View
	Viewport
	Projection
	Eye Position
	View Volume
	Converting Data to Normal Coordinates
	Example: Centering an Image
	Example: Transforming a Surface
	Zooming within an Object Display
	Translating, Rotating and Scaling Objects
	Interactive 3D Transformations

	Working with Image Objects
	Overview of Image Objects
	Creating Image Objects
	Positioning Image Objects in a View
	Panning in Object Graphics
	Defining Transparency in Image Objects
	Warping Image Objects
	Mapping an Image Object onto a Sphere
	Image Tiling
	Adding Tiling to Your Application
	Example: JPEG2000 Files for Tiling

	Working with Plots and Graphs
	Contour Objects
	Plot Objects
	Axis Objects
	Displaying Date/Time Data on Axis Objects
	Axis Titles and Tickmark Text
	Symbol Objects
	A Plotting Routine

	Working with Surface Objects
	Surface Objects
	An Interactive Surface Example

	Creating Volume Objects
	Creating a Volume Object
	Setting Volume Object Attributes

	Polygon and Polyline Objects
	About Polygon and Polyline Objects
	Polygon Objects
	Tessellator Objects
	Pattern Objects
	Polygon Optimization
	Polyline Objects
	Polygon and Polyline Object Examples

	Annotating an Object Display
	Annotating Object Graphic Displays
	Text Objects
	Font Objects
	ROI Objects
	Legend Objects
	Colorbar Objects
	Light Objects
	Custom Image Object Annotations

	Animating Objects
	Overview of Object Animation
	Configuring an Animation Model Object
	Controlling the Animation Rate
	Designing a Behavior Object
	Factors Affecting Animation Performance
	Example: Interactive Cine Animation

	Selecting Objects
	Selection and Data Picking
	Object Selection
	A Selection Example
	Data Picking
	A Data Picking Example

	Displaying, Copying and Printing Objects
	Overview of Object Graphic Destinations
	Window Objects
	Using Window Objects
	Improving Window Drawing Performance
	Buffer Objects
	Clipboard Objects
	Printer Objects
	Bitmap and Vector Graphic Output

	Creating Custom Objects in IDL
	Creating Custom Objects
	IDL Object Overview
	Undocumented Object Classes
	Creating an Object Class Structure
	Object Heap Variables
	The Object Lifecycle
	Creating Custom Object Method Routines
	Method Overriding
	Object Examples

	Advanced Rendering Using Shader Objects
	About Shaders
	About Shader Programs
	How Shaders Enhance Performance
	Using Shaders in an IDL Application
	Passing Information to a Shader Program
	Library of Pre-built Shader Objects
	Image Filter Shaders
	Altering RGB Levels Using a Shader
	Applying Lookup Tables Using Shaders
	High Precision Images
	Filter Chain Shaders

	Vertex Shaders
	Lighting Shaders
	Adding Lighting and Shading to a Surface

	Multi-texture Shaders
	Manipulating Multiple Textures Using Shaders

	Index

