External
Development
Guide

IDL Version 7.1

opyright © ITT Visual Information Solutions

Restricted Rights Notice

The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to
therestrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document
at any time and without notice.

Limitation of Warranty

ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose.

ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any
others resulting from use of the software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to
reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such
copies must contain the title page and this notice page in their entirety.

Export Control Information

The software and associated documentation are subject to U.S. export controls including the United States Export Administration
Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These
laws include restrictions on destinations, end users, and end use.

Acknowledgments

ENVI® and IDL® are registered trademarks of ITT Corporation, registered in the United States Patent and Trademark Office. ION™, ION Script™,
ION Java™, and ENVI Zoom™ are trademarks of I TT Visual Information Solutions.

ESRI®, ArcGIS®, ArcView®, and Arcinfo® are registered trademarks of ESRI.

Portions of thiswork are Copyright © 2008 ESRI. All rights reserved.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.

GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities. Copyright © 1988-2001, The Board of Trustees of the University of Illinois. All
rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities. Copyright © 1998-2002, by the Board of Trustees of the University of
Illinois. All rights reserved.

CDF Library. Copyright © 2002, National Space Science Data Center, NASA/Goddard Space Flight Center.
NetCDF Library. Copyright © 1993-1999, University Corporation for Atmospheric Research/Unidata.

HDF EOS Library. Copyright © 1996, Hughes and Applied Research Corporation.

SMACC. Copyright © 2000-2004, Spectral Sciences, Inc. and ITT Visual Information Solutions. All rights reserved.
This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyrighted by DataDirect Technologies, © 1991-2003.

BandMax®. Copyright © 2003, The Galileo Group Inc.

Portions of this computer program are copyright © 1995-1999, LizardTech, Inc. All rights reserved. MrSID is protected by U.S. Patent No. 5,710,835.
Foreign Patents Pending.

Portions of this software were developed using Unisearch’s Kakadu software, for which ITT has acommercial license. Kakadu Software. Copyright ©
2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd, Australia.

This product includes software developed by the Apache Software Foundation (www.apache.org/).

MODTRAN islicensed from the United States of Americaunder U.S. Patent No. 5,315,513 and U.S. Patent No. 5,884,226.
QUAC and FLAASH are licensed from Spectral Sciences, Inc. under U.S. Patent No. 6,909,815 and U.S. Patent No. 7,046,859 B2.
Portions of this software are copyrighted by Merge Technologies I ncorporated.

Support Vector Machine (SVM) is based on the LIBSVM library written by Chih-Chung Chang and Chih-Jen Lin (www.csie.ntu.edu.tw/~cjlin/libsvm),
adapted by ITT Visual Information Solutions for remote sensing image supervised classification purposes.

IDL Wavelet Toolkit Copyright © 2002, Christopher Torrence.
IMSL isatrademark of Visual Numerics, Inc. Copyright © 1970-2006 by Visua Numerics, Inc. All Rights Reserved.
Other trademarks and registered trademarks are the property of the respective trademark holders.

http://www.apache.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Contents

Chapter 1

External Development OVEIVIEWcccuviiiiiiiiiiiiiiie e 11
ADOUE TRISM@NUAEL ...t seeeaeeneeee e 12
Supported Inter-Language Communication TechniquesSin IDLccccocvvieviievieenennnnns 13
Dynamic Linking Terms and CONCEPLScceecveerieeieerieesieenieesieeseeesteseeessessessnsessessssesneens 20
When Is It Appropriate to Combine External Code With IDL?coceoieienincneeienne 22
Skills Required to Combine External Code With IDLcccccoeveicinien e 23
IDL OrganiZBHIONcccueeiieeieeeieesieiieeiessessesssesssasseessessseesseesseeseessessseessessseensesssenssesssennes 27
External DEfiNItIONSc.cooiiiiieec ettt 29
Interpreting Logical BOOIEAN VAIUEScceeeiiiieeiie et 30
Compilation and Linking DELAIlSccoceiiiiieiie sttt sae et s 31
Recommended REAMINGc.voceeiiii ettt s nreesreens 32

External Development Guide 3

4

Part I: Techniques That Do Not Use IDL’s Internal API

Chapter 2

UsSIiNg SPAWN and PiPES ..coiiiiiiiiiieeiiii ettt 37
Chapter 3

Using CALL _EXTERNAL ...oooiiii et 43
The CALL_EXTERNAL FUNCHON ...ocveiiiiiiiesee ettt sne e 44
PasSiNG ParaMELEr'Sc.cciieeiiie ettt st sttt st st e ae e e e besreeneeneesrenre e 54
(0L oo [N 1 (o 1] 11 = S 56
BaSiC C EXAMPIES ..ottt sttt sttt ettt s ne et neene e e e renne e 58
WIaPPEr ROULINESoiiiiceie e eiee et es st e et s e st e s te e be e te e teenteenbeenaesneeeneesanesnsennnnns 62
[S ale RS] gTe [- - S 64
eSS 00 AN A = YA D L - U 68
PaSSING SLIUCLUIESoeiviceiceeeieie sttt s e sttt st et te s be s aeeae e e e besneeneeneessenseens 70
o = I] o] =S 72
Chapter 4

Remote Procedure CallSoouuiiiiiiiiiiiiii e 77
IDL and Remote Procedure Calls ... s 78
USING IDL @S aN RPC SEIVEDviiieiee et stee s es e e st st ste s s ee e s re e teeteesneenneeseesnnas 79
ClIENt VaraDIES ..ottt s sr e 80
Linking to the CHENt LIbrary ...ttt er e 81
Compatibility with Older IDL COUEccoevieeiiieiieieeere st 83
THEIDL RPC LIDIAIY .eoeicieiie ettt et te et et e et e e s s sne s s e e neesneesre e e 85
L O T 1 o] =R 110

Part Il: IDL's Internal API

Chapter 5

IDL Internals:

B Y 015 TP UPPPTP 113
LN L0 o =SSR 114
MapPiNg Of BASIC TYPES ...ecuveiiieiteeieee sttt e ste st teeseesae e st eaeseestesreeneeaesrennas 116
IDL_MEMINT and IDL_FILEINT TYPES .veoererererriririeerienesieesiesesessesessseseesessesessesenes 119

Contents External Development Guide

Chapter 6

IDL Internals:

KeYWOrd PrOCESSING ..uoiiiiiieeeiieeee ettt a e e e 121
IDL and KeyWord PrOCESSINGccceeveieiieeieiesteseeeestese e esaesee e sseessessessesseesessessesneens 122
Creating Routines that AcCept KEYWOITScoeeieeiirieieiesese e 123
Overview Of IDL Keyword PrOCESSINGccccveeeveeriiiietecieesesiesreesie e steseeae e sresreennas 124
The IDL_KW _PAR SITUCIUIEocueeciecee e ee et seete e te ettt et st ennesnee s 126
The IDL_KW_ARR_DESC R SITUCIUIEccoecveceeeeeece sttt 129
Keyword Processing OPLIONScc.cceieieeiieieesieesieesieeseseessessessessreessesssesssesssesssesssens 130
The KW_RESULT SHTUCLUIEocveeiecieciecieite ettt ste s e et ene e snesae e nes 132
Processing KEYWOITScocveiieieeiec ettt e s e ste e e e e e be e st e e te e tesnneenns 133
(@11 o oo o PSSP 136
N A0 (o l T T o] =SSR 137
The Pre-IDL 5.5 KeYWOrd APlcoo ittt 144
Chapter 7

IDL Internals:

VaArTADIES ..o ——————— 151
IDL and Internal VariableS ... e 152
The IDL_VARIABLE SHUCLUIEceeeceee et ettt et 153
SCAlAr VATADIES ...t e 156
YN G VA= = o == RSSO 157
SUUCTUIE VarBDIESo.viiiiieeieee e e 159
[(5= VA= A= o] 1= 164
TeMPOrary VariableSc.ccveiiiiiieee ettt s se et re e sresnesne s 165
Creating an Array from EXIiSting Datalccccveeveeieesiee st eieses e 172
Getting DYNAMIC MEMOIY ...c.ooiviceiecie ettt st st be b sreennas 174
ACCESSING Variabl€ DELAcccveecieiiiiieiie et es e e e e re e et e e e neereas 176
(001 0)V/ 110 IV =0 =TSPTSRO 177
StOrNG SCAlAr VAIUES ..ottt ettt e sttt e s eae e s ae e sre e nre e e 178
Obtaining the Name of aVariablecccceiiiiiiceeeec e 180
Looking Up Main Program Variablesccceceeiieiienie s st see e stee e e e 181
Looking Up Variablesin CUrrent SCOPEcceieereriesieeeeiesieseseesese st sesee e se e 182

External Development Guide Contents

Chapter 8

IDL Internals:

StrHNG PrOCESSING ivviiiiiiiiiiiiiit i e e e e eeee e et ss s e s e e e e e e e eeeeeeeeaeerannne 183
String Processing @and DLcccovieeieeie et 184
ACCESSING IDL_STRING VAIUESccueiiecierie et see e st ste s ste e ste e sre et 185
(00 o)/ 110 RS (] 10 T T 186
(D1 g0 110 T 187
Setting an IDL_STRING VAIUEcovouiiiiieicieceeeeee et 188
Obtaining aString of aGIVEN LENGLNoooviiiiie e 189
Chapter 9

IDL Internals:

Error HANAIING oooveei e 191
=SS 0T = o & 192
[SSUING EFTOr MESSAGESvevevieeeeiiesiesieete st ste et e st e stesreereeste e steesae s e s tesre e e ensesresseenneseeneas 195
Looking Up A Message Code by NaMEccooiiiieeeeeeeeeees e 201
(O 1o T o AN 0 8] 0101= £ TP 202
Chapter 10

IDL Internals:

Y2 LS 10 4 12T] Lo o R 205
Converting ArgumentSto C SCAlArSccovviveeiiirieii e 206
General TYPE CONVEISION ...c.oiuiiieeiereesieeieeeeete et e e seeseeeseeseeseeseeese e eessesaesseessensessesnens 207
Converting t0 SPECITIC TYPEScouvieeeee ettt r e 208
Chapter 11

IDL Internals:

UNIX SIGN@AIS it e e e e e e enaes 209
T T I a0 o = 210
ST = o0 | 1= T 213
Establishing a Signal HandIerccceieeieeiiecececec et 214
Removing a Signal Handlercoceieiiieieese et 215
UNIX SIgNal MASKScciieieciecie ettt e st te e st e sttt ete e e snaeenesneesnee e 216
Chapter 12

IDL Internals:

B L L= =TT 221
1] =Y o I I 0 01= TR 222
MaKing TIMEr REQUESESeeiviiiieieiee sttt sttt se et sneeneenesrenas 223

Contents External Development Guide

Canceling Asynchronous Timer REQUESEScceeevevieiieeeeieesesiesieesiese e e sre e 225
BIOCKING UNIX TIMELS ..eoiciieiie e see e eseereesie e saeste et nee s s re s saeesaeesneesneestessreenseenens 226
Chapter 13

IDL Internals: Files and Input/OUtputcccooveeeiiiieiiiiiieeee e, 229
IDL and INPUE/OULPUL FITES ...o.vieiceeee et 230
File INFOrMEBLIONeeieeieeeeee ettt e e e seeeneeneeneenneas 232
OPENING FIES .ottt ettt s re e e ra e besresreeneas 236
(O3 01 110 1 =S 239
Preventing File ClOSINGcocuiiieeiee et 240
CheCKING FlE SEAIUSvecveiieiie et te e e see s ste et s s st e sreesnaesne e sreeenes 241
Allocating and Freeing FIl@ UNILSccccveiiiiieciee et 243
(D (o (T To = To o) T 245
Flushing BUFfEred Datalcccveveeiieieieiciee et 246
Reading a Single CharaCler ...ttt s 247
Output Of IDL VariableSccveieeeeeeee ettt st sresre e 248
Adding tothe JOUrNal FlEcoci e 249
Chapter 14

IDL Internals: MiSCellan@OouUSccouuiiiiiiiiiiiiiieee e 251
DYNAMIC MEMOIYviiieiciecie et s e ee e s e e e te e saeste e besneesaeesressaeesaeesseesaeesteesresnsennsens 252
EXITHANAIELS ..ottt e 255
USEE INEEITUPDES ettt ettt et sttt st ae e st e sheesbe e saeesbe e sbeenbeereas 256
Functions for Returning System Variablescccocvveeiecevie e, 257
Terminal INFOrMELIONcoiieiieeee et se e e e e e enes 258
ENSUriNg UNIX TTY SEAE ...voceeeeie ettt 260
BN Y7 L= 1o .= 1o o S 261
USEr INFOMMELION ...ttt 263
(O0 101 = | ST PP 264
= o {01 TSP PU PR PRR PR PRPN 265

Part lll: Techniques That Use IDL’s Internal API

Chapter 15

Adding System ROULINESccoooiiiiiieeeeir e 269
IDL and SysStem ROULINESccoeiieiiiiieeiecieeceeseeseesaesteesaeesressressteesseesseesesseesnsesnsens 270
The System ROULINE INLEITACEceccviiiiiceece e 272
ez T o F= A o 1= 1 Lo YA o o T 273

External Development Guide Contents

Example: Doing aLittle More (MULT2) ...oceccviecececece e 274
Example: A Complete Numerical Routine Example (FZ_ROOTS2)ccccveeeeervreenee. 277
Example: An Example Using Routine Design Iteration (RSUM)cccovvvvieceevieceenee. 286
REQISLENTNG ROULINESoiiiiiiie ettt te e te s e st e et e e e sreesneesaeenteenreenes 296
Enabling and Disabling System ROULINEScccvveeieiese et 299
I N S YN] 307
Dynamically Loadable MOAUIEScccccvieiueeiicececeee et 309
Chapter 16

Callable IDL ..cevieiieeee e aaae 323
Calling IDL aS @ SUDIOULINEccuiiieeeeiesie ettt ee e 324
When is Callable IDL APPropriate?cccoeeveieieeieeseeseseeteeseesesieseessessesresesaessesnens 325
Licensing Issues and Callable DLccooeevieviciecie ettt 328
USING CaAllADIE IDL ...ttt st 329
F QTR A= T2 o) o S 331
DIVerting IDL OULPULcueiieiieiesieeieie et e ste st eseesae e sre e et esaesaesresneeneennesrenas 337
Executing DL StALEMENESccoeieeieeiee et ie e ses et et ee s e s sae e sre e s re e s ae e re e nre s 339
Runtime IDL and Embedded IDLccoooiiiiinnenineieeeese s 340
LO11== 0 T o S SS 341
Issues and EXampPles: UNIXooiieciese et 342
Issues and Examples: Microsoft WindOWSccceveicrier e s 358
Chapter 17

Adding External Widgets t0 IDLciiiiiiiiiieiiiiieeeeeeei e 369
IDL and EXternal WIQELSccooe et 370
WIDGET _STUB ..ottt sttt st bbbt snenene s 371
WIDGET_CONTROL/WIDGET _STUB ...coeioiicieiiecee e stee et 372
Functions for Use with StUD WIAQELSoovveveiiicecece e s 374
Internal Callback FUNCLIONSooiiiiieeere e 377
UNIX WIDGET_STUB Example: WIDGET_ARROWSABcccooeoviniriienesesienee 379
Appendix A

Obsolete Internal INterfaces ... 385
Interfaces ODSOlEted iN IDL 6.3ccooiiieieeereee e eee e enens 386
Interfaces Obsoleted IN IDL 5.5 ..o 388
Interfaces Obsoleted iN IDL 5.2.1ccooiiiiieeieeere e 401
Simplified ROULINE INVOCALIONccceeiecieiiceetete e s 404

Contents External Development Guide

External Development Guide Contents

10

Contents External Development Guide

Chapter 1

External Development

Overview

This chapter discusses the following topics:

About ThisManual 12
Supported I nter-Language Communication
TechniquesinIDL 13

Dynamic Linking Terms and Concepts 20

When Is It Appropriate to Combine External
CodewithIDL? ...t 22

External Development Guide

Skills Required to Combine External Code

withIDL ... 23
IDL Organization 27
External Definitions 29
Interpreting Logical Boolean Values 30
Compilation and Linking Details 31
Recommended Reading 32

11

12 Chapter 1: External Development Overview

About This Manual

The External Development Guide describes options for using code not written in the
IDL language adongside IDL itself. It is divided into three parts:

Part I: Techniques That Do Not Use IDL’s Internal API

This section discusses techniques that allow IDL to work together with programs
written in other programming languages, using IDL’s “public” interfaces. Little or no
familiarity with IDL’'sinternal interfacesisrequired. For many users, the techniques
in this section will solve most problems that require IDL to use — or be used by —
other programs. Topics covered in Part | include:

e Letting IDL programsinteract with other programs via pipes.

» Incorporating COM objects and ActiveX controlsinto IDL programs.
» Incorporating Java objects into IDL programes.

e Using IDL as a Remote Procedure Call server on a UNIX system.

e Cadlling routines written in other programming languages from within IDL
using the CALL_EXTERNAL function.

Part II: IDL's Internal API

This section describes IDL’s internal implementation in enough detail to allow you to
write an IDL system routine in another compiled programming language (usually C)
and link it with IDL.

Part 1ll: Techniques That Use IDL’s Internal API

This section describes the process of combining DL with code written in another
programming language. Topics covered in Part 111 include:

» Creating a system routine using the interface described in Part 11 and linking
that routineinto IDL at runtime.

e Cadlling IDL as asubroutine from another program (“Callable IDL").
* Adding user-defined widgets to IDL widget applications.

About This Manual External Development Guide

Chapter 1: External Development Overview 13

Supported Inter-Language Communication
Techniques in IDL

IDL supports a number of different techniques for communicating with the operating
system and programs written in other languages. These methods are described, in
brief, below.

Options are presented in approximate order of increasing complexity. We
recommend that you favor the simpler options at the head of thislist over the more
complex ones that follow if they are capable of solving your problem.

It can be difficult to choose the best option — thereis a certain amount of overlap
between their abilities. We highlight the advantages and disadvantages of each
method aswell as make recommendations to help you decide which approach to take.
By comparing thislist with the requirements of the prablem you are trying to solve,
you should be able to quickly determine the best solution.

Translate into IDL

Advantages

All the benefits of using a high level, interpreted, array oriented environment
with high levels of platform independence.

Disadvantages
Not always possible.
Recommendation

Writing in IDL isthe easiest path. If you have existing code in another language that
is simple enough to trandate to IDL, thisis the best way to go. You should
investigate the other optionsif the existing code is sufficiently complex, has desirable
performance advantages, or is the reference implementation of some standardized
package. Another good reason for considering the techniques described in this book
isif you wish to access IDL ahilities from alarge program written in some other
language.

External Development Guide Supported Inter-Language Communication Techniques in IDL

14 Chapter 1: External Development Overview

SPAWN

The simplest (but most limited) way to access programs external to IDL isto use the
SPAWN procedure. Calling SPAWN spawns a child process that executes a specified
command. The output from SPAWN can be captured in an IDL string variable. In
addition, IDL can communicate with a child process through a bi-directional pipe
using SPAWN. More information about SPAWN can be found in Chapter 2, “Using
SPAWN and Pipes’ or in the documentation for “SPAWN” (IDL Reference Guide).

Advantages
e Simplicity
* Allows use of existing standalone programs.
» Datacan be sent to and returned by the program via a pipe, making
sophisticated inter-program communication possible quickly and easily.
Disadvantages

e Can beaslow when transferring large datasets.

e Programs may not have a useful user interface.
Recommendation

SPAWN isthe easiest form of interprocess communication supported by IDL and
allows accessing operating system commands directly.

Microsoft COM and ActiveX

IDL supports the inclusion of COM objects and ActiveX controls within IDL
applications running on Microsoft Windows systems by encapsulating the object or
control in an IDL object. Full access to the COM object or ActiveX control’s
methods is available in this manner, allowing you to incorporate features not
availablein IDL into IDL programs. For more information, see Chapter 2,
“Overview: COM and ActiveX in IDL” (IDL Connectivity Bridges).

Advantages

* Integrates easily with an important interprocess communication mechanism
under Microsoft Windows.

* May support ahigher level interface than the function call interfaces supported
by the remaining options.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 15

Disadvantages
e Only supported under Microsoft Windows.
Recommendation

Incorporate COM objects or ActiveX controls into your Windows-only IDL
application if doing so provides functionality you cannot easily duplicatein IDL.

Usethe IDL ActiveX control if you are writing a Windows-only application in a
language that supports ActiveX and you wish to use IDL to perform computation or
graphics within aframework established by this other application.

Sun Java

IDL also supports the inclusion of Java objects within IDL applications by
encapsulating the object or control in an IDL object. Full access to the Java object is
available in this manner, allowing you to incorporate features not available in IDL
into IDL programs. For more information, see Chapter 5, “Using Java Objectsin
IDL” (IDL Connectivity Bridges).

Advantages

» Integrates easily with all types of Java code.

» Caneasily leverage existing Java objectsinto IDL.
Disadvantages

e Only supported under Microsoft Windows, Linux, Solaris, and Macintosh
platforms supported in IDL.

Recommendation

Incorporate Java objects into your IDL application if doing so provides functionality
you cannot easily duplicatein IDL.

UNIX Remote Procedure Calls (RPCs)

UNIX platforms can use Remote Procedure Calls (RPCs) to facilitate communication
between IDL and other programs. IDL isrun asan RPC server and your own program
isrun asaclient. IDL's RPC functionality is documented in Chapter 4, “Remote
Procedure Calls’.

External Development Guide Supported Inter-Language Communication Techniques in IDL

16

Chapter 1: External Development Overview

Advantages

» Code executesin a process other than the one running IDL, possibly on
another machine, providing robustness and protection in a distributed
framework.

e APl issimilar to that employed by Callable IDL, making it reasonable to
switch from one to the other.

» Possihility of overlapped execution on a multi-processor system.

Disadvantages

e Complexity of managing RPC servers.
< Bandwidth limitations of network for moving large amounts of data.

e Only supported under UNIX.

Recommendation

Use RPC if you are coding in adistributed UNIX-only environment and the amount
of databeing moved is reasonable on your network. CALL _EXTERNAL might be
more appropriate for especially simpletasks, or if the external codeis not easily
converted into an RPC server, or you lack RPC experience and knowledge.

CALL_EXTERNAL

IDL's CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. IDL and the called routine share the same memory and data space.
CALL_EXTERNAL ismuch easier to use than either system routines
(LINKIMAGE, DLMs) or Calable IDL and is often the best (and simplest) way to
communicate with other programs. CALL_EXTERNAL isalso supported on al IDL
platforms.

While many of the topics in this book can enhance your understanding of
CALL_EXTERNAL, specific documentation and examples can be found in Chapter
3,“Using CALL_EXTERNAL” and the documentation for “CALL_EXTERNAL”
(IDL Reference Guide).

Advantages

e Allowscaling arbitrary code written in other languages.

* Requireslittle or no understanding of IDL internals.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 17

Disadvantages

e Errorsin coding can easily corrupt the IDL program.
» Requires understanding of system programming, compiler, and linker.

« Datamust be passed to and from IDL in precisely the correct type and size or
memory corruption and program errors will result.

e System and hardware dependent, requiring different binaries for each target
system.

Recommendation

Use CALL_EXTERNAL to call code written for general use in another language
(that is, without knowledge of IDL internals). For safety, you should call your
CALL_EXTERNAL functionswithin special IDL procedures or functions that do
error checking of the inputs and return values. In thisway, you can reduce the risks of
corruption and give your callers an appropriate IDL-like interface to the new
functionality. If you use this method to incorporate external codeinto IDL, We
highly recommend that you also use the MAKE_DLL procedure and the
AUTO_GLUE keyword to CALL_EXTERNAL.

If you lack knowledge of IDL internals, CALL_EXTERNAL isthe best way to add
external code quickly. Programmers who do understand IDL internals will often
write a system routine instead to gain flexibility and full integration into IDL.

IDL System Routine (LINKIMAGE, DLMSs)

It is possible to write system routines for IDL using a compiled language such as C.
Such routines are written to have the standard IDL calling interface, and are
dynamically linked, aswith CALL_EXTERNAL. They are more difficult to write,
but more flexible and powerful. System routines provide access to variables and other
objectsinside of IDL.

This book contains the information necessary to successfully add your own code to
IDL asasystem routine. Especially important is Chapter 15, “Adding System
Routines’. Additional information about system routines can be found in Chapter 3,
“Using CALL_EXTERNAL" and in the documentation for “LINKIMAGE” (IDL
Reference Guide).

External Development Guide Supported Inter-Language Communication Techniques in IDL

18 Chapter 1: External Development Overview

Advantages

e Thisisthe most fully integrated option. It allows you to write IDL system
routines that are indistinguishable from those written by ITT Visual
Information Solutions.

* Inuse, system routines are very robust and fault tolerant.

* Allowsdirect accessto IDL user variables and other important data structures.
Disadvantages

« All the disadvantages of CALL_EXTERNAL.

* Requiresin-depth understanding of IDL internals, discussed in Part 11 of this
manual.

Recommendation

Use system routines if you require the highest level of integration of your code into
the IDL system. UNIX users with RPC experience should consider using RPCsto get
the benefits of distributed processing. If your task is sufficiently simple or you do not
have the desire or timeto learn IDL internals, CALL_EXTERNAL is an efficient
way to get the job done.

Callable IDL

IDL is packaged in a shareable form that allows other programsto call IDL asa
subroutine. This shareable portion of IDL can be linked into your own programs. This
use of IDL isreferred to as“Callable IDL” to distinguish it from the more usual case
of calling your code from IDL viaCALL_EXTERNAL or as a system routine
(LINKIMAGE, DLM).

Thisbook contains the information necessary to successfully call IDL from your own
code.

Advantages

e Supported on al systems.

« Allows extremely low level accessto IDL.
Disadvantages

e All the disadvantages of CALL_EXTERNAL or IDL system routines.

Supported Inter-Language Communication Techniques in IDL External Development Guide

Chapter 1: External Development Overview 19
» IDL imposes some limitations on programming techniques that your program
can use.

Recommendation

Most platforms offer a specialized method to call other programs that might be more
appropriate. Windows users should consider the ActiveX control or COM

component. UNIX users should consider using the IDL RPC server. If these options
are not appropriate for your task and you wish to call IDL from another program, then

use Cdlable IDL.

External Development Guide Supported Inter-Language Communication Techniques in IDL

20 Chapter 1: External Development Overview

Dynamic Linking Terms and Concepts

All systems on which IDL runs support the concept of dynamic linking. Dynamic
linking consists of compiling and linking code into aform which is loadable by
programs at run time aswell aslink time. The ability to load them at run time is what
distinguishes them from ordinary object files. Various operating systems have
different names for such loadable code:

* UNIX: Sharable Libraries
e Windows: Dynamic Link Libraries (DLL)

In this manual, we will call such files sharable librariesin order to have a consistent
and uniform way to refer to them. It should be understood that thisis a generic usage
that applies equally to all of these systems. Sharable libraries contain functions that
can be called by any program that loads them. Often, you must specify special
compiler and linker options to build a sharable library. On many systems, the linker
gives you control over which functions and data (often referred to as symbols) are
visible from the outside (public symbols) and which are hidden (private symbals).
Such control over the interface presented by a sharable library can be very useful.
Your system documentation discusses these options and explains how to build a
sharable library.

Dynamic linking is the enabling technology for many of the techniques discussed in
thismanual. If you intend to use any of these techniques, you should first be sureto
study your system documentation on this topic.

CALL_EXTERNAL

CALL_EXTERNAL uses dynamic linking to call functions written in other
languages from IDL.

LINKIMAGE and Dynamically Loadable Modules (DLMs)

These mechanisms use dynamic linking to add external code that supports the
standard IDL system routine interface to IDL as system routines.

Callable IDL

Most of IDL isbuilt as asharable library. The actua IDL program that implements
the standard interactive IDL program links to thislibrary and usesit to do its work.
Since IDL isasharable library, it can be called by other programs.

Dynamic Linking Terms and Concepts External Development Guide

Chapter 1: External Development Overview 21

Remote Procedure Calls (RPCs)

The IDL RPC server is aprogram that links to the IDL sharable library. The IDL
RPC client sidelibrary isaso asharable library. Your RPC client program links
against it to obtain access to the IDL RPC system.

External Development Guide Dynamic Linking Terms and Concepts

22 Chapter 1: External Development Overview

When Is It Appropriate to Combine External
Code with IDL?

IDL isan interactive program that runs across numerous operating systems and
hardware platforms. The IDL user enjoys alarge amount of portability across these
platforms because IDL provides access to system abilities at arelatively high level of
abstraction. The large majority of IDL users have no need to understand its inner
workings or to link their own code into it.

There are, however, reasons to combine external code with IDL:

* Many sites have an existing investment in other code that they would prefer to
use from IDL rather than incurring the cost of rewriting it in the IDL language.

« Itisoften best to use the reference implementation of a software package
rather than re-implement it in another language, risk adding incorrect
behaviorsto it, and incur the ongoing maintenance costs of supporting it.

« IDL may belargdy suitable for agiven task, requiring only the addition of an
operation that cannot be performed efficiently in the IDL language.

A programmer who is considering adding compiled code to IDL should understand
the following caveats.

* We attempt to keep the interfaces described in this document stable, and we
endeavor to minimize gratuitous change. However, we reserve the right to
make any changes required by the future evolution of the system. Code linked
with IDL is more likely to require updates and changes to work with new
releases of IDL than programs written in the IDL language.

e Theact of linking compiled codeto IDL isinherently less portabl e than use of
IDL at the user level.

» Troubleshooting and debugging such applications can be very difficult. With
standard IDL, malfunctionsin the program are clearly the fault of ITT Visua
Information Solutions, and given areproducible bug report, we attempt to fix
them promptly. A program that combines IDL with other code makes it
difficult to unambiguously determine where the problem lies. The level of
support ITT Visua Information Solutions can provide in such troubleshooting
isminimal. The programmer is responsible for locating the source of the
difficulty. If the problemisin IDL, a simple program demonstrating the
problem must be provided before we can address the issue.

When lIs It Appropriate to Combine External Code with IDL? External Development Guide

Chapter 1: External Development Overview 23

Skills Required to Combine External Code
with IDL

There is alarge difference between the level at which atypical user sees IDL
compared to that of the internals programmer. To the user, IDL is an easy-to-use,
array-oriented language that combines numerical and graphical abilities, and runs on
many platforms. Internally, IDL isalarge C language program that includes a
compiler, an interpreter, graphics, mathematical computation, user interface, and a
large amount of operating system-dependent code.

The amount of knowledge required to effectively write internals code for IDL can
come as a surprise to the user who is only familiar with IDL’s external face. To be
successful, the programmer must have experience and proficiency in many of the

following areas:

Microsoft COM

To incorporate a COM object into your IDL program, you should be familiar with
COM interfacesin genera and the interface of the object you are using in particular.

Microsoft ActiveX

To incorporate an ActiveX control into your IDL widget application, you should be
familiar with COM interfacesin genera and the interface of the control you are using
in particular.

Sun Java

To incorporate a Java object into your IDL program, you should be familiar with Java
object classes in general and the methods and data members of the object you are
using in particular.

UNIX RPC

To use IDL as an RPC server, a knowledge of Sun RPC (Also known as ONC RPC)
isrequired. Sun RPC is the fundamental enabling technology that underlies the
popular NFS (Network File System) software available on all UNIX systems, and as
such, is universally available on UNIX. The system documentation on this subject
should be sufficient.

External Development Guide Skills Required to Combine External Code with IDL

24 Chapter 1: External Development Overview

ANSI C

IDL iswrittenin ANSI C. To understand the data structures and routines described in
this document, you must have a complete understanding of this language.

System C Compiler, Linker, and Libraries

In order to successfully integrate IDL with your code, you must fully understand the
compilation tools being used as well as those used to build IDL and how they might
interact. IDL is built with the standard C compiler used (and usually supplied) by the
vendor of each platform to ensure full compatibility with all system components.

Inter-language Calling Conventions (C++, Fortran, ...)

Itispossibleto link IDL directly with code written in compiled languages other than
C although the details differ depending on the machine, language, and compiler used.
It is the programmer’s responsibility to understand the inter-language calling
conventions and rules for the target environment—there are too many possibilities
for ITT Visual Information Solutions to actively document them all. ANSI Cisa
standard system programming language on all systems supported by IDL, soiit is
usually straightforward to combine it with code written in other compiled languages.
You need to understand:

» The conventions used to pass parameters to functions in both languages. For
example, C uses call-by-value while Fortran uses call-by-reference. It is easy
to compensate for such conventions, but they must be taken into account.

* Any systematic name changes applied by the compilers. For example, some
compilers add underscores at the beginning or end of names of functions and
globa data.

e Any run-timeinitialization that must be performed. On many systems, the real
initial entry point for the program is not main(), but a different function that
performs some initialization work and then calls your main() function. Usually
these issues have been addressed by the system vendor, who has alarge
interest in allowing such inter-language usage:

« If you call IDL from aprogram written in alanguage other than C, hasthe
necessary initialization occurred?

e IfyouuselDL to cal codewritten in alanguage other than C, do you need
to take steps to initialize the runtime system for that language?

« Arethetwo runtime systems compatible?

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 25

Alternatives to direct linking (Microsoft COM or Active X) exist on some systems
that simplify the details of inter-language linking.

C++

We are often asked if IDL can call C++ code. Compatibility with C has always been
astrong design goal for C++, and C++ islargely a superset of the C language. It
certainly is possible to combine IDL with C++ code. Callable IDL is especialy
simple, as all you need to do isto include the idl_export.h header file in your C++
code and then call the necessary IDL functions directly. Calling C++ code from IDL
(CALL_EXTERNAL, System Routines) is also possible, but there are some issues
you should be aware of:

e AsacC program, IDL is not able to directly call C++ methods, or use other
object-oriented features of the C++ language. To use these C++ features, you
must supply afunction with C linkage (using an extern “C" specification) for
IDL to call. That routine, which iswritten in C++ is then able to use the C++
features.

« IDL doesnot initialize any necessary C++ runtime code. Your system may
require such code to be executed before your C++ code can run. Consult your
system documentation for details. (Please be aware that thisinformation can be
difficult to find; locating it may require some detective work on your part.)

Fortran
Issues to be aware of when combining IDL with Fortran:

e The primary issue surrounding the calling of Fortran code from IDL is one of
understanding the calling conventions of the two languages. C passes
everything by value, and supplies an operator that lets you explicitly take the
address of a memory object. Fortran passes everything by reference (by
address). Difficultiesin calling FORTRAN from C usually come down to
handling this issue correctly. Some people find it helpful to write a C wrapper
function to call their Fortran code, and then have IDL call the wrapper. Thisis
generaly not necessary, but may be convenient.

e IDL isaC program, and as such, does not initialize any necessary Fortran
runtime code. Your system may require such code to be executed before your
Fortran code can run. In particular, Fortran code that does its own input output
often requires such startup code to be executed. Consult your system
documentation for details. One common strategy that can minimize this sort of
problemisto use IDL’s I/O facilities to do 1/O, and have your Fortran code
limit itself to computation.

External Development Guide Skills Required to Combine External Code with IDL

26 Chapter 1: External Development Overview

Operating System Features and Conventions

With the exception of purely numerical code, the programmer must usually fully
understand the target operating system environment in which IDL isrunning in order
to write code to link with it.

Microsoft Windows

You must be an experienced Windows programmer with an understanding of
Windows APIsand DLLs.

UNIX

You should understand system calls, signals, processes, standard C libraries, and
possibly even X Windows depending on the scope of the code being linked.

Skills Required to Combine External Code with IDL External Development Guide

Chapter 1: External Development Overview 27

IDL Organization

In order to properly write code to be linked with IDL, it is necessary to understand a
little about itsinternal operation. This section isintended to give just enough
background to understand the material that follows. Traditional interpreted languages
work according to the following algorithm:

while (statements remaining) {
Get next statement.
Perform lexical analysis and parse statement.
Execute statement.

}

Thisdescription is accurate at a conceptual level, and most early interpretersdid their
work in exactly thisway due to its simplicity. However, this schemeis inefficient
because:

* Themeaning of each statement is determined by the relatively expensive
operations of lexical analysis, parsing, and semantic analysis each and every
time the statement is encountered.

e Since each statement is considered in isolation, any statement that requires
jumping to a different location in the program will require an expensive search
for the target location. Usually, this search starts at the top of the file and
moves forward until the target is found.

To avoid these problems, the IDL system uses a two-step process in which
compilation and interpretation are separate. The core of the system is the interpreter.
The interpreter implements a simple, stack-based postfix language, in which each
instruction corresponds to a primitive of the IDL language. Thisinternal formisa
compact binary version of the IDL language routine. Routines written in the IDL
language are compiled into thisinternal form by the IDL compiler when the .RUN
executive command isissued, or when any other command requires a new routine to
be executed. Oncethe IDL routineis compiled, the origina versionisignored, and all
references to the routine are to the compiled version. Some of the advantages of this
organization are;

« The expensive compilation processis only performed once, no matter how
often the resulting code is executed.

» Statements are not considered in isolation, so the compiler keeps track of the
information required to make jumping to a new location in the program fast.

e Thebinary internal form is much faster to interpret than the original form.

External Development Guide IDL Organization

28

Chapter 1: External Development Overview

e Theinterna form is compact, leading to better use of main memory, and
alowing more code to fit in any memory cache the computer might be using.

The Interpreter Stack

The primary data structure in the interpreter is the stack. The stack contains pointers
to variables, which are implemented by IDL_VARIABLE structures (see “The
IDL_VARIABLE Structure” on page 153). Pointersto IDL_VARIABLEsare
referred to asIDL_VPTRs. Most interpreter instructions work by removing a
predefined number of elements from the stack, performing their function, and then
pushing the IDL_VPTR to theresulting IDL_VARIABLE back onto the stack. The
removed items are the arguments to the instruction, and the new element represents
the result. In this sense, the IDL interpreter is no different from any other postfix
language interpreter. When an IDL routine is compiled, the compiler checks the
number of arguments passed to each system routine against the minimum and
maximum number specified in an internal table of routines, and signals an error if an
invalid number of argumentsiis specified.

At execution time, the interpreter instructions that execute system procedures and
functions operate as follows:

1. Look up the requested routine in the internal table of routines.
2. Execute the routine that implements the desired routine.

3. Remove the arguments from the stack.

4. If theroutine was a function, push its result onto the stack.

Thus, the compiler checks for the proper number of arguments, and the interpreter
does all thework related to pushing and popping elements from the stack. The called
function need only worry about executing its operation and providing aresult.

IDL Organization External Development Guide

Chapter 1: External Development Overview 29

External Definitions

Thefileidl_export.h, foundinthe external/include subdirectory of the IDL
distribution, supplies all the DL -specific definitions required to write code for
inclusion with IDL. Assuch, thisfile defines the interface between IDL and your
code. It will be worth your while to examine this file, reading the comments and
getting a general idea of what is available. If you are not writing in C, you will have
to tranglate the definitions in this file to suit the language you are using.

Warning
idl_export . h contains some declarations which are necessary to the compilation
process, but which are still considered privateto ITT Visua Information Solutions.
Such declarations are likely to be changed in the future and should not be depended
on. In particular, many of the structure data types discussed in this document have
more fields than are discussed here—such fields should not be used. For thisreason,
you should alwaysinclude id1_export . h rather than entering the type definitions
from this document. Thiswill also protect you from changes to these data structures
in future releases of IDL. Anything in 1d1_export.h that is not explicitly
discussed in this document should not be relied upon.

The following two lines should be included near the top of every C program file that
isto become part of IDL:

#include <stdio.h>
#include "idl_export.h"

External Development Guide External Definitions

30

Chapter 1: External Development Overview

Interpreting Logical Boolean Values

IDL iswritten in the C programming language, and this manual therefore discusses C
language functions and data structures from the IDL program. In this documentation,
you will see referencesto logical (boolean) arguments and results referred to in any
of the following forms: True, False, TRUE, FALSE, IDL_TRUE, IDL_FALSE, and
possibly other permutations on these. In all cases, the meaning of true and falsein
this manual correspond to those of the C programming language: A zero (0) valueis
interpreted as “false”, and anon-zero value is “true’.

When reading this manual, please be aware of the following points:

Unless otherwise specified, the actual word used when discussing logical
valuesis not important (i.e. true, True, TRUE, and IDL_TRUE) all mean the
same thing.

Internally, IDL usesthe IDL_TRUE and IDL_FAL SE macros described in
“Macros’ on page 265, for hard-wired logical constants. These macros have
the values 1, and O respectively. This convention is nothing more than
reflection of the need for a consistent standard within our code, and a desire to
keep IDL names within a standard namespace to avoid collisions with user
selected names. Otherwise, any of those other alternative names might have
been used with equally good results.

We don't usethe IDL_TRUE and IDL_FAL SE convention in the text of this
book because it would be unnecessarily awkward, preferring the more natural
True/TRUE and False/FAL SE.

The convention for truth valuesin the IDL Language differ from those used in
the C language. It isimportant to keep the language being used in mind when
reading code to avoid drawing incorrect conclusions about its meaning.

Interpreting Logical Boolean Values External Development Guide

Chapter 1: External Development Overview 31

Compilation and Linking Details

Once you've written your code, you need to compileit and link it into IDL before it
can be run. Information on how to do thisis available in the various subdirectories of
the external subdirectory of the IDL distribution. Referencesto files that are useful
in specific situations are contained in this book.

In addition:

TheIDL MAKE_DLL procedure, documented in the IDL Reference Manual,
provides a portable high level mechanism for building sharable libraries from
code written in the C programming language.

ThelIDL 'MAKE_DLL system variableisused by the MAKE_DLL procedure
to construct C compiler and linker commands appropriate for the target
platform. If you do not use MAKE_DLL to compile and link your code, you
may find the value of IMAKE_DLL.CC and 'MAKE_DLL.LD helpful in
determining which options to specify to your compiler and linker, in
conjunction with your system and compiler documentation. For the C
language, the optionsin 'MAKE_DLL should be very close to what you need.
For other languages, the IMAKE_DLL options should still be helpful in
determining which options to use, as on most systems, all the language
compilers accept similar options.

The UNIX IDL distribution has abin subdirectory that contains platform
specific directories that in turn hold the actual IDL binary and related files.
Included with thesefilesisaMakefile that showshow to build IDL from
the shareable libraries present in the directory. The link linein this makefile
should be used as a starting point when linking your code with Callable IDL—
simply omit main . o and include your own object files, containing your own
main program.

A more detailed description of the issuesinvolved in compiling and linking
your code can be found in this book under “Compiling Programs That Call
IDL” on page 342.

External Development Guide Compilation and Linking Details

32 Chapter 1: External Development Overview

Recommended Reading

There are many books written on the topics discussed in the previous section. The
following list includes books we have found to be the most useful over the yearsin
the development and maintenance of IDL. There are thousands of books not
mentioned here. Some of them are also excellent. The absence of abook from thislist
should not be taken as a negative recommendation.

The C Language

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
Edition. Englewood Cliffs, New Jersey: Prentice Hall, 1988. ISBN 0-13-110370-9.
Thisistheoriginal C language reference, and is essential reading for this subject.

In addition, you should study the vendor supplied documentation for your compiler.
Microsoft Windows

The following books will be useful to anyone building IDL system routines or
applicationsthat call IDL in the Microsoft Windows environment.

Petzold, Charles. Programming Windows, The Definitive Guide to the Win32 API,
Microsoft Press, 1998. ISBN 157231995X (Supersedes: Programming Windows 95).

Richter, Jeffrey. Programming Applications for Microsoft Windows. Microsoft Press,
1999. ISBN 1572319968 (Supersedes: Advanced Windows, Third Edition).

The Microsoft Developer Network (M SDN) supplies essential documentation for
programming in the Windows environment. This documentation is part of the Visual
C++ environment. More information on the MSDN is available at
http://msdn.microsoft.com.

Sun Java

Flanagan, David. Java in a Nutshell, Fourth Edition, O’ Reilly & Associates, March
2002. ISBN 0596002831. This book provides an accelerated introduction to the Java
language and key APIs.

In addition, you should study the Java tutorials and documentation provided on the
Sun’s Java website (http://www.java.sun.com).

UNIX

Stevens, W. Richard. Advanced Programming in the UNIX Environment. Reading,
Massachusetts: Addison Wesley, 1992. ISBN 0-201-56317-7. Thisis the definitive

Recommended Reading External Development Guide

http://www.java.sun.com

Chapter 1: External Development Overview 33

reference for UNIX system programmers. It covers all the important UNIX concepts
and covers the major UNIX variantsin complete detail.

Rochkind, Marc J. Advanced UNIX Programming (Second Edition). Boston:
Addison-Wesley Professional, 2004. ISBN 0-13-141154-3. This volumeis also
extremely well written and does an excellent job of explaining and motivating the
fundamental UNIX concepts that underlie the UNIX system calls.

The vendor-supplied documentation and manual pages should be used in
combination with the books listed above.

X Windows

The X Windows series by O’ Reilly & Associates contains all the information needed
to program for the X Window system. There are several volumes—the ones you will
need depend on the type of programming you are doing.

Scheifler, Robert W. and James Gettys. X Window System. Digital Press. Thisis
purely areference manual, as opposed to the O’ Reilly books which contain alarge
amount of tutorial aswell as reference information. This book is primarily useful for
those using XLIB to draw graphicsinto Motif Draw Widgets and for those who need
to understand the base layers of X Windows. Motif programmers may not require this
information since Motif hides many of these details.

There are many other X Windows books on the market with varying levels of quality
and usefulness. Note that most X Windows books are updated with each version of
the system. (X Version 11, Release 6 is the current version at this printing.)

External Development Guide Recommended Reading

34

Recommended Reading

Chapter 1: External Development Overview

External Development Guide

Part I: Techniques
That Do Not Use IDL’s
Internal API

Chapter 2

Using SPAWN and
Pipes

IDL’s SPAWN procedure spawns a child process to execute a command or series of
commands. General use of SPAWN isdescribed in detail in the IDL Reference Guide.
This section describes how to use SPAWN to communicate with the spawned child
process using operating system pipes.

By default, callsto the SPAWN procedure cause the IDL process to wait until the
child process has finished before continuing, with output sent to the standard output
or captured in an IDL variable. Alternatively, IDL can attach a bidirectional pipeto
the standard input and output of the child process, and then continue without waiting
for the child process to finish. The pipe created in this manner appearsin the IDL
process as a normal logical file unit.

Once a process has been started in this way, the normal IDL input/output facilities
can be used to communicate with it. The ability to use a child process in this manner
alowsyou to solve specialized problems using other languages and to take advantage
of existing programs.

External Development Guide 37

Chapter 2: Using SPAWN and Pipes

In order to start such a process, use the UNIT keyword to SPAWN to specify anamed
variable in which the logical file unit number will be stored. Once the child process
has done its work, use the FREE_L UN procedure to close the pipe and del ete the
process.

When using a child processin this manner, it isimportant to understand the following
points:

e Closing the file unit causes the child process to be killed. Therefore, do not
close the unit until the child process completes its work.

* A pipeissimply abuffer maintained by the operating system with an interface
that makes it appear as afile to the programs using it. It has afixed length and
can therefore become completely filled. When this happens, the operating
system puts the process that is filling the pipe to sleep until the process at the
other end consumes the buffered data. The use of a bidirectional pipe can lead
to deadlock situations in which both processes are waiting for the other. This
can happen if the parent and child processes do not synchronize their reading
and writing activities.

* Most C programs use the input/output facilities provided by the Standard C
Library (stdio). In situationswhere IDL and the child process are carrying on a
running dialog (as opposed to a single transaction), the normal buffering
performed by stdio on the output file can cause communications to hang. We
recommend calling the stdio setbuf() function as the first statement of the child
program to eliminate such buffering.

(void) setbuf (stdout, (char *) 0);

It isimportant that this statement occur before any output operation is
executed; otherwise, it may not have any effect.

Example: Communicating with a Child Process via
an Operating System Pipe

The C program shown in the following example (test_pipe. c) accepts floating-
point values from its standard input and returns their average on the standard output.
In actual practice, such atrivia program would never be used from IDL, sinceitis
simpler and more efficient to perform the calculation within IDL itself. The example
does, however, serveto illustrate a method by which significant programs can be
called from IDL.

In the interest of brevity, some error checking that would normally beincluded in
such a program has been omitted. For example, areal program would need to check

External Development Guide

Chapter 2: Using SPAWN and Pipes

39

the non-zero return valuesfrom fread (3) and fwrite (3) to ensurethat the desired

amount of data was actually transferred.

The code for this example can be found in the spawn subdirectory of the external

directory of the IDL distribution. Instructions for building it can be found in the
README file located in that directory.

0 J o Ul WN R

W W wWwwwwwwDDNDNNDNNNMNNMNNMMNMNMNNRRRPRRERERERERER
N o WD EPE OWOoLo JoUWNERE O WO T U WD RE o v

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

int main(int argc, char **argv)
{
float *data, total = 0.0;
char *err_str;
int 1, n;

/* Make sure the output is not buffered */
setbuf (stdout, (char *) 0);

/* Find out how many points */
if (!fread(&n, sizeof(n), 1, stdin)) goto error;

/* Get memory for the array */
if (!(data = (float *) malloc(n * sizeof(*data)))) goto error;

/* Read the data */
if (!fread(data, sizeof(*data), n, stdin)) goto error;

/* Calculate the average */
for (i=0; 1 < n; i++) total += datalil;

total /= (float) n;

/* Return the answer */

if (!fwrite(&total, sizeof(*data), 1, stdout)) goto error;
return 0; /* Success */
error:
err_str = strerror (errno) ;
if (l!err_str) err_str = "<unknown error>";
fprintf (stderr, "test_pipe: %$s\n", err_str);
return 1; /* Failure */

Table 2-1: test_pipe.c

External Development Guide

40 Chapter 2: Using SPAWN and Pipes
This program performs the following steps:
1. Readsalong integer that tells how many data points to expect, becauseit is
desirable to be able to average an arbitrary number of points.
2. Obtains dynamic memory viathe malloc() function, and reads the datainto it.
3. Cadlculates the average of the points.
4. Returnsthe answer as asingle floating-point value.
Since the amount of input and output for this program is explicitly known and
because it reads all of itsinput at the beginning and writes all of itsresults at the end,
adeadlock situation cannot occur.
Thefollowing IDL statements use test_pipe to determine the average of the values 0
to 9:
1] PRO test_pipe
2
3 ; Start test_pipe. The use of the NOSHELL keyword is not
4 ; necessary, but serves to speed up the start-up process.
5 SPAWN, ’‘test_pipe’, UNIT=UNIT, /NOSHELL
6
7 ; Send the number of points followed by the actual data.
8 WRITEU, UNIT, 10L, FINDGEN(10)
9
IDL 10 ; Read the answer.
11 READU, UNIT, ANSWER
12
13 ; Announce the result.
14 PRINT, ’'Average = ', ANSWER
15
16 ; Close the pipe, delete the child process, and deallocate the
17 ; logical file unit.
18 FREE_LUN, UNIT
198 END

Table 2-2: pro test_pipe

Executing the IDL TEST_PIPE procedure gives the result:
Average = 4.50000

This mechanism providesthe IDL user asimple and efficient way to augment IDL
with code written in other languages such as C or Fortran. It is, however, not as
efficient as writing the required operation entirely in IDL. The actual cost depends
primarily on the amount of data being transferred.

External Development Guide

Chapter 2: Using SPAWN and Pipes

For example, the above example can be performed entirely in IDL using asimple
statement such as the following:

PRINT, 'Average = ', TOTAL(FINDGEN(10))/10.0

External Development Guide

41

42

Chapter 2: Using SPAWN and Pipes

External Development Guide

Chapter 3

Using

CALL_EXTERNAL

This chapter discusses the following topics:

The CALL_EXTERNAL Function 44
Passing Parameters 54
UsngAutoGlue 56
BasicCExamples 58
Wrapper Routines 62

External Development Guide

Passing StringData 64
PassingArrayData................... 68
Passing Structures 70
FortranExamples 72

43

44 Chapter 3: Using CALL_EXTERNAL

The CALL_EXTERNAL Function

IDL allows you to integrate programs written in other languages with your IDL code,
either by calling a compiled function from an IDL program or by linking a compiled
function into IDL'sinternal system routine table:

e TheCALL_EXTERNAL function allows you to call external functions
(written in C/C++ or Fortran, for example) from your IDL programs. You
should be comfortable writing and building programs in the external language
being used, but significant knowledge of IDL’s internals beyond basic type
mapping between the languages is generally not necessary.

e Anadternativeto CALL_EXTERNAL isto write an IDL system routine and
merge it with IDL at runtime. Routines merged in this fashion are added to
IDL'sinternal system routine table and are available in the same manner as
IDL built-in routines. This technique is discussed in Chapter 15, “Adding
System Routines’. To write a system routine, you will need to understand the
IDL internals discussed in later sections of this book.

This chapter covers the basics of using CALL_EXTERNAL from IDL, then
discusses platform-specific options for the UNIX and Windows versions of IDL. It
can be helpful to refer to the documentation for “CALL_EXTERNAL” (IDL
Reference Guide) when reading this material.

The CALL_EXTERNAL function loads and calls routines contained in shareable
object libraries. Arguments passed to IDL are passed to this external code, and
returned data from the external code is automatically presented as the result from
CALL_EXTERNAL asan IDL variable. IDL and the called routine share the same
process address space. Because of this, CALL_EXTERNAL avoids the overhead of
process creation of the SPAWN routine. In addition, the shareable object library is
only loaded the first timeit is referenced, saving overhead on subsequent calls.

CALL_EXTERNAL ismuch easier to use than writing a system routine. Unlike a
system routine, however, CALL_EXTERNAL does not check the type or number of
parameters. Programming errorsin the external routine are likely to result in
corrupted data (either in the routine or in IDL) or to cause IDL to crash. See
“Common CALL_EXTERNAL Pitfalls’ on page 51 for help in avoiding some of the
more common mistakes.

Example Code in the IDL Distribution

This chapter contains examples of CALL_EXTERNAL use. All of the code for these
examples, along with additional examples, can be foundinthe call_external

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 45

subdirectory of the external directory of the IDL distribution. The C language
examples usethe MAKE_DLL procedure, and can therefore be easily run on any
platform supported by IDL. To build the sharable library containing the external C
code and then run al of the provided examples, execute the following IDL

statements:
PUSHD, FILEPATH('’,SUBDIRECTORY=['external’, 'call_external’,’C’])
ALL_CALLEXT_ EXAMPLES
POPD

Additional information on these examples, including details on running the
individual examples, can be found in the README file located in that directory.

CALL_EXTERNAL Compared to UNIX Child Process

In many situations, a UNIX IDL user has a choice of using the SPAWN procedure to
start a child process that executes external code and communicates with IDL viaa
pipe connecting the two processes. The advantages of this approach are:

o Simplicity.

e The processes do not share address space, and are therefore protected from
each other’s mistakes.

The advantages of CALL_EXTERNAL are:

* IDL and the called routine share the same memory and data space. Although
this can be a disadvantage (as noted above) there are times where sharing
address space is advantageous. For example, large data can be easily and
cheaply shared in this manner.

e« CALL_EXTERNAL avoids the overhead of process creation and parameter
passing.
* The shareable object library containing the called routine is only loaded the

first timeit is referenced, whereas a SPAWNed process must be created for
each use of the external code.

Compilation and Linking of External Code

Each operating system requires different compilation and link statements for
producing a shareable object suitable for usage with CALL_EXTERNAL. Thisis
even true between different implementations of a common operating system family.
For example, most UNIX systems require unique options despite their shared
heritage. You must consult your system and compiler documentation to find the
appropriate options for your system.

External Development Guide The CALL_EXTERNAL Function

46

Chapter 3: Using CALL_EXTERNAL

ThelDL MAKE_DLL procedure, documented in the IDL Reference Guide, provides
aportable high level mechanism for building sharable libraries from code written in
the C programming language. In many situations, this procedure can completely
handle the task of building sharable libraries to be used with CALL_EXTERNAL.
MAKE_DLL requiresthat you have a C compiler installed on your system that is
compatible with the compiler described by the IDL MAKE_DLL system variable.

TheIDL IMAKE_DLL system variableis used by the MAKE_DLL procedure to
construct C compiler and linker commands appropriate for the target platform. If you
do not use MAKE_DLL to compile and link your code, you may find the contents of
IMAKE_DLL.CC and 'MAKE_DLL.LD helpful in determining which optionsto
specify to your compiler and linker, in conjunction with your system and compiler
documentation. For the C language, the optionsin IMAKE_DLL should be very
close to what you need. For other languages, the 'MAKE_DLL options should be
helpful in determining which options to use, as on most systems, all the language
compilers accept similar options.

AUTO_GLUE

Asdescribed in “Passing Parameters’ on page 54, CALL_EXTERNAL usesthe IDL
Portable Calling Convention to call external code. This convention uses an (argc,
argv) styleinterface to allow CALL_EXTERNAL to call routines with arbitrary
numbers and types of arguments. Such an interface is necessary, because IDL, like
any compiled program, cannot generate arbitrary function calls at runtime.

Of course, most C functions are not written to the IDL portable convention. Rather,
they are written using the natural form of argument passing used in compiled
programs. It is therefore common for IDL programmers to write so-called glue
functions to match the IDL calling interface to that of the target function. On systems
that have a C compiler installed that is compatible with the one described by the IDL
IMAKE_DLL system variable, the AUTO_GLUE keyword to CALL_EXTERNAL
can be used to instruct IDL to automatically write, compile, and load this glue code
on demand, and using a cache to preserve this glue code for future invocations of
functions with the same interface.

AUTO_GLUE thusalows CALL_EXTERNAL to call functions with a natural
interface, without requiring the user to write or compile additional code.
AUTO_GLUE isdescribed in the documentation for “CALL_EXTERNAL” (IDL
Reference Guide), aswell asin “Using Auto Glue” on page 56. The examples given
in“Basic C Examples’ on page 58 show CALL_EXTERNAL used with and without
AUTO GLUE.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 47

Input and Output

Input and output actions should be performed within IDL code, using IDL’s built-in
input/output facilities, or by using IDL_M essage(). Performing input/output from
code external to IDL, especialy to the user console or tty (e.g. stdin Of stdout),
may generate unexpected results.

Memory Cleanup

IDL hasadtrict internal policy that it never performs memory cleanup on memory
that it did not allocate. This policy is necessary so that external code which allocates
memory can use any memory alocation package it desires, and so that there is no
confusion about which code is responsible for releasing allocated memory.

Note
The code that allocates memory is always responsible for freeing it. IDL allocates
and frees memory for its internal needs, and external code is not allowed to release
such memory except through a proper IDL function documented for that purpose.
Similarly, IDL will never intentionally free memory that it did not allocate.

Assuch, IDL does not perform any memory cleanup calls on the values returned
from external code called viathe CALL_EXTERNAL routine. Because of this, any
dynamic memory returned to IDL will not be returned to the system, which will result
in amemory leak. Users should be aware of this behavior and design their
CALL_EXTERNAL routinesin such amanner as not to return dynamically allocated
memory to IDL. The discussion in “Passing String Data’ on page 64 contains an
example of doing this with strings.

Memory Access

IDL and your external code share the same address space within the same running
program. This means that mistakes common in compiled languages, such as awild
pointer altering memory that it does not own, can cause problems elsewhere. In
particular, external code can easily corrupt IDL’s data structures and otherwise cause
IDL to fail. Authors of such code must be especialy careful to guard against such
errors.

Argument Data Types

When using CALL_EXTERNAL to call external code, IDL passes its argumentsto
the called code using the data types that were passed to it. It has no way to verify

External Development Guide The CALL_EXTERNAL Function

48 Chapter 3: Using CALL_EXTERNAL

independently that these types are the actual types expected by the external routine. If
the data types passed are not of the types expected by the external code, the results
are undefined, and can easily include memory corruption or even crashing of the IDL
program.

Warning
You must ensure that the arguments passed to external code are of the exact type
expected by that routine. Failure to do so will result in undefined behavior.

Mapping IDL Data Types to External Language Types

When writing external code for use with CALL_EXTERNAL, your code must use
datatypes that are compatible with the C data types used internally by IDL to
represent the IDL data types. This mapping is the topic of Chapter 5, “IDL Internals:
Types'.

By-Value and By-Reference Arguments

There are two basic forms in which arguments can be passed between functionsin
compiled languages such as C/C++ and Fortran. To use CALL_EXTERNAL
successfully, you should be comfortable with these terms and their meanings. In
particular, Fortran programmers are often unaware that Fortran code passes
everything by reference, and that C code defaults to passing everything by value. By
default, CALL_EXTERNAL passes arguments by reference (unless this behavior is
explicitly altered by the use of the ALL_VALUE or VALUE keywords), so no special
action istypically required to call Fortran code via CALL_EXTERNAL.

Warning
You must ensure that the arguments passed to external code are passed using the
correct method — by value, or by reference. Failure to do so will result in undefined
behavior.

Arguments Passed by Value

A copy of the value of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are local to that routine, and do not change
the original value of the variable in the calling routine. C/C++ pass everything by
value, but have an explicit address-of operator (&) that is used to pass addresses of
variables and get by-reference behavior.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 49

Arguments Passed by Reference

The machine address of the argument is passed to the called routine. Any changes
made to such avalue by the called routine are immediately visible to the caler,
because both routines are actually modifying the same memory addresses. Fortran
passes everything by reference, but most Fortran implementations support intrinsic
operators that allow the programmer control over this (sometimes called %L OC and
%VAL, or just LOC and VAL). Consult your compiler documentation for details.

Microsoft Windows Calling Conventions

All operating system/hardware combinations define an inter-routine calling
convention. A calling convention defines the rules used for passing arguments
between routines, and specifies such details as how arguments of different types are
passed (i.e. in registers or on the system stack) and how and when such arguments are
cleaned up.

A stable and efficient calling convention is critical to the stability of an operating
system, and can affect most aspects of the system:

* Theefficiency of the entire system depends on the efficiency of the core
calling convention.

» Backwards compatibility, and thus the longevity of binary software written for
the platform depends on the stability of the calling convention.

» Cadlling routines from different languages within a single program depends on
all the language compilers adhering to the same calling convention. Even
within the same language, the ability to mix code compiled by different
compilers requires those compilers to adhere to the same conventions. For
example, at the time of thiswriting, the C++ language standard lacks an
Application Binary Interface (ABI) that can be targeted by all C++ compilers.
This can lead to situationsin which the same compiler must be used to build all
of the code within a given program.

Microsoft Windows is unique among the platforms supported by IDL in that it has
two distinct calling conventionsin common use, whereas other systems define a
single convention. On single-convention systems, the calling convention is
unimportant to application programmers, and of concern only to hardware designers
and the authors of compilers, and operating systems. On a multiple convention
system, application programmers sometimes need to be aware of the issue, and
ensure that their code is compiled to use the proper convention and that calls to that
code use the same convention. The Microsoft Calling Conventions are:

External Development Guide The CALL_EXTERNAL Function

50 Chapter 3: Using CALL_EXTERNAL

STDCALL

STDCALL isthe calling convention used by the magjority of the Windows
operating system API. InaSTDCALL call, the calling routine places the
argumentsin the proper registers and/or stack locations, and the called routine
isresponsible for cleaning them up and unwinding the stack.

CDECL

CDECL isthe caling convention used by C/C++ code by default. This default
can be changed via compiler switches, declspec declarations, or #pragmas.
With CDECL, the caller is responsible for both setup and cleanup of the
arguments. CDECL is able to call functions with variable numbers of
arguments (varargs functions) because the caller knows the actual number of
arguments passed at runtime, whereas STDCALL cannot call such functions.
Thisisbecause the STDARGS routine cannot know efficiently at compiletime
how many arguments it will be passed at runtime in these situations.

The inconvenience of having two distinct and incompatible calling conventionsis
usually minor, because the header files that define functions for C/C++ programs
include the necessary definitions such that the compiler knows to generate the proper
code to call them and the programmer is not required to be aware of the issue.
However, CALL_EXTERNAL does have a problem: Unlike a C/C++ program, IDL
determines how to call afunction solely by the arguments passed to
CALL_EXTERNAL, and not from a header file.

IDL therefore has no way to know how your external code was compiled. It uses the
STDARG convention by default, and the CDECL keyword can be used to change the
default. CALL_EXTERNAL therefore relies on the IDL user to tell it which
convention to use. If IDL calls your code using the correct convention, it will work
correctly. If it calls using the wrong convention, the results are undefined, including
memory corruption and possible crashing of the IDL program.

Warning
The default calling convention for CALL_EXTERNAL is STDCALL, whereas the
default convention for the Microsoft C compiler is CDECL. Hence, Windows users
must usually specify the CDECL keyword when calling such code from IDL. Non-
Windows versions of IDL ignore the CDECL keyword, so it is safe to always
includeit in cross platform code.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 51

Here is what happens when external code is called via the wrong calling convention:

If aSTDARG call is made to a CDECL function, the caller placesthe
argumentsin the proper registers/stack locations, and relies on the called
routine to cleanup and unwind the stack. The called routine, however, does not
do these things because it isa CDECL routine. Hence, cleanup does not

happen.
If aCDECL call ismadeto a STDARG function, the caller placesthe

argumentsin the proper register/stack locations. The called routine cleans up
on exit, and then the caller cleans up again.

Either combination is bad, and can corrupt or kill the program. Sometimes this
happens, and sometimes it doesn’t, so the results can be random and mysterious to
programmers who are not aware of the issue.

Note

When the wrong calling convention is used, it is common for the process stack to
become confused. A “smashed stack” visible from the C debugger following a
CALL_EXTERNAL isusually indicative of having used the wrong calling
convention.

Common CALL_EXTERNAL Pitfalls

Following are alist of common errors and mistakes commonly seen when using
CALL_EXTERNAL.

The number of arguments and their types, as passed to CALL_EXTERNAL,
must be the exact types expected by the external routine. In particular, it is
common for programmers to forget that the default IDL integer is a 16-bit
value and that most C compilers define the int type as being a 32-bit value.
You should be careful to use IDL LONG integers, which are 32-bit, in such
cases. See “Argument Data Types' on page 47 for additional details.

Passing data using the wrong form: Using by-value to pass an argument to a
function expecting it by-reference, or the reverse. See* By-Value and By-
Reference Arguments’ on page 48 for additional details.

Under Microsoft Windows, using the incorrect calling convention for agiven
external function. See “Microsoft Windows Calling Conventions’ on page 49
for additional details.

External Development Guide The CALL_EXTERNAL Function

52

Chapter 3: Using CALL_EXTERNAL

Failure to understand that IDL uses IDL_STRING descriptors to represent

strings, and not just a C style NULL terminated string. Passing a string value
by reference passes the address of the IDL_STRING descriptor to the external
code. See Chapter 8, “IDL Internas. String Processing” for additional details.

Attempting to make IDL data structures use memory allocated by external
code rather than using the proper IDL API for creating such data structures.
For instance, attempting to give an IDL_STRING descriptor a different value
by using C malloc() to alocate memory for the string and then storing the
address of that memory inthe IDL_STRING descriptor is not supported, and
can easily crash or corrupt IDL. Although IDL uses malloc()/free() internally
on most platforms, you should be aware that thisis not part of IDL’s public
interface, and that we can change this at any time and without notice. Even on
platforms where IDL does use these functions, its use of them is not directly
compatible with similar calls made by external code because IDL alocates
additional memory for bookkeeping that is generally not present in memory
alocations from other sources. See Chapter 8, “IDL Internals. String
Processing” for information on changing the value of an IDL_STRING
descriptor using supported IDL interfaces. See Chapter 3, “Memory Cleanup”
for more on memory allocation and cleanup.

IDL iswritten in the C language, and when IDL starts, any necessary runtime
initialization code required by C programs is automatically executed by the
system before the IDL main() function is called. Hence, calling C code from
IDL usually does not require additiona runtime initialization. However, when
calling external code written in languages other than C, you may find that your
code does not run properly unless you arrange for the necessary runtime
support for that language to run first. Such details are highly system specific,
and you must refer to your system and compiler documentation for details.
Code that islargely computational rarely encountersthisissue. It ismore
common for code that performs Input/Output directly.

Programming errorsin the external code. It is easy to make mistakesin
compiled languages that have bad global consequences for unrelated code
within the same program. For example, awild memory pointer can lead to the
corruption of unrelated data. If you are lucky, such an error will immediately
Kill your program, making it easy to locate and fix. Less fortunate is the
situation in which the program dies much later in aseemingly unrelated part of
the program. Finding such problems can be difficult and time consuming.
When IDL crashes following a call to external code, an error in the external
code or inthe call to CALL_EXTERNAL isthe cause in the vast majority of
cases.

The CALL_EXTERNAL Function External Development Guide

Chapter 3: Using CALL_EXTERNAL 53

» Some compilers and operating systems have a convention of adding leading or
trailing underscore characters to the names of functions they compile. These
conventions are platform specific, and as they are of interest only to system
linker and compiler authors, not generally well documented. Thisisusually
transparent to the user, but can sometimes be an issue with inter language
function calls. If you find that a function you expect to call from alibrary isnot
being found by CALL_EXTERNAL, and the obvious checks do not uncover
the error (usually a simple misspelling), this might be the cause. Under UNIX,
the nm command can be helpful in diagnosing such problems.

e C++ compilers use atechnique commonly called nhame munging to encode the
types of method arguments and return values into the name of the routine as
written to their binary object files. Such names often have only a passing
resemblance to the name seen by the C++ programmer in their source code.
IDL can only call C++ code that has C linkage, as discussed in “ C++" on
page 25. C linkage code does not use nhame munging.

* When calling external code written in other languages, there are sometimes
platform and language specific hidden arguments that must be explicitly
supplied. Such arguments are usually provided by the compiler when you work
strictly within the target language, but become visible in inter-language calls.
An example of this can be found in “Hidden Arguments” on page 73. In this
example, the Fortran compiler provides an extra hidden length argument when
aNULL terminated string is passed to afunction.

External Development Guide The CALL_EXTERNAL Function

54 Chapter 3: Using CALL_EXTERNAL

Passing Parameters

IDL calls routines within a shareable library using the IDL portable calling
convention, in which the routine is passed two arguments:

argc
A count of the number of arguments being passed to the routine
argv

An array of argc memory pointers, which are the addresses of the arguments
(by reference) or the actual value of the argument (by value) depending on the
types of arguments passed to CALL_EXTERNAL and the setting of the
VALUE keyword to that function. You should note that while all types of data
can be passed by reference, there are limitations on data types that can be
passed by value, as described in the documentation for “CALL_EXTERNAL”
(IDL Reference Guide).

The CALL_EXTERNAL portable convention is necessary because IDL, like any
program written in a compiled language, cannot generate arbitrary function cals at
runtime. Only calls to interfaces that were known to it when it was compiled are
possible. Naturally, most existing C functions are not written to use thisinterface.
Calling such functions typically requires IDL usersto write glue functions, the sole
purpose of whichisto be called by CALL_EXTERNAL with the portable
convention, and then to take the arguments and pass them to the real target function
using the natural interface for that function. The AUTO_GLUE keyword to
CALL_EXTERNAL can be used to generate, compile, and load such glue routines
automatically and on demand, without requiring user intervention. Auto Glueis
described in “Using Auto Glue” on page 56. AUTO_GLUE does not eliminate the
need for, or use of, the portable convention, but it can relieve the IDL user of the
requirement to handle it explicitly. The end result is that calling existing function
interfacesis easier to do, and less error prone.

Routines called by CALL_EXTERNAL with the portable convention are defined
with a prototype similar to the following:

return_ type example (int argc; void *argv(])

where return_typeisone of the datatypeswhich CALL_EXTERNAL can return. If
this return_typeisnot IDL_LONG, akeyword must be used in the
CALL_EXTERNAL call to indicate the actual type of the resuilt.

Passing Parameters External Development Guide

Chapter 3: Using CALL_EXTERNAL 55

The parameter argc gives the number of arguments passed to the external routine by
CALL_EXTERNAL inthe argv array, while argv isan array containing the
arguments. Arguments are passed either by value or by reference. Those passed by
value are copied directly into the argv array, with the exception of scalar strings,
which place apointer to a null-terminated string in argv[i]. All arrays are passed
by reference. Scalar items passed by reference (the default) place a pointer to the
datuminargv[i]. Stringsand string arrays passed by reference place a pointer to an
IDL_STRING structurein argv[i]. Thisstructureis defined as follows:

typedef struct {

IDL_STRING_SLEN_T slen; /* Length of string */
short stype; /* type of string: (0) static, (!0) dynamic */
char *s; /* Addr of string, invalid if slen == 0. */

} IDL_STRING;

See“CALL_EXTERNAL” (IDL Reference Guide) for additional details about
passing parameters by value.

It isimportant to note that IDL integer variables correspond to a 16-bit integer (aC
signed short integer). For example, an integer variable could be defined in an IDL
routine as follows:

IDL> A =5 ;default type of integer, not LONG

The variable could then be passed by referencein a CALL_EXTERNAL call. The
declaration and cast statement in the called C routine should be:

short *a;
a = (short *) argv[0];

or

IDL_INT *a;
a = (IDL_INT *) argv[O0];

IDL_INT corresponds to a C short (16-bit integer), so either formis correct. The
corresponding type in Fortran would be INTEGER* 2.

External Development Guide Passing Parameters

56 Chapter 3: Using CALL_EXTERNAL

Using Auto Glue

Usersof CALL_EXTERNAL frequently write small functions with the sole purpose
of matching the CALL_EXTERNAL portable calling convention with its (argc,
argv) interface to the actual interface presented by some existing function that they
wish to call. Such functions are often called glue functions.

It quickly becomes obvious to anyone who has written afew glue functions that there
isn't much to them, and that producing such functionsis a purely mechanical
operation. As you read the examples in this chapter, you will see many such
functions, and will notice that they are al essentially the same. Further examination
should serve to convince you that IDL already has al of the information, in the form
of the arguments and keywords specified to the CALL_EXTERNAL function, to
generate such functions without requiring human intervention. Examining the
CALL_EXTERNAL routine'sinterface, we see that:

e the number and types of argumentsto the CALL_EXTERNAL function
provide the same information about the arguments for the target external
function;

e the VALUE keyword, and CALL_EXTERNAL'sbuilt in rules for deciding
whether or not to pass arguments by value or by reference determine how the
arguments should be passed;

e inthe case of Microsoft Windows, the CDECL keyword tells it which system
calling convention to employ;

e keywordsto CALL_EXTERNAL determine the result type.

Furthermore, other than the actual name of the user function being called, these glue
functions are generic in the sense that they could be used to call any function that
accepted arguments of the same types and produce a result of the same type.

The AUTO_GLUE keyword to CALL_EXTERNAL exploitsthese factsto alow you
to cal functions with natural interfaces, without the need to write, compile, and load
aglue function to do the job. The sole requirement is that your system must have aC
compiler installed that is compatible with the compiler described by the IDL
IMAKE_DLL system variable. Thisisamost awaysthe caseif you areinterested in
calling external code, since a compiler is necessary to compile such code.

Using Auto Glue External Development Guide

Chapter 3: Using CALL_EXTERNAL 57

AUTO_GLUE automatically writes the C code for the glue function, usesthe
MAKE_DLL procedure to build a sharable library containing it, loads that library,
and then callsthe glue function, passing it a pointer to the target function and all of its
arguments. It maintains a cache of glue functions that have been built previously, and
never builds the same glue function more than once. From the user perspective, there
isasdlight pause the first time a given glue function is used. In that brief moment,
AUTO_GLUE performs the steps described above, and then makes the call to the
user function. All of this happens transparently to the IDL user — no user interaction
is required, and no output is produced by the process. Subsequent callsto the same
glue function happen instantaneously, as IDL loads the existing glue function from
the MAKE_DLL cachewithout rebuilding it. In principle, it issimilar to the way IDL
automatically compiles DL language programs on demand, only with C code instead
of IDL code.

See“CALL_EXTERNAL" (IDL Reference Guide) for additional details about how
AUTO_GLUE works, and the options for controlling its use.

Generating Glue Without Executing It

AUTO_GLUE isthe preferred option for most calls to functions with natural
interfaces, dueto it's simplicity and ease of use. However, you might find yourself in
asituation where you would like your glue functions to be automatically generated,
but wish to simply get the resulting C code so that you can modify it or incorporate it
into alarger library. For example, you might have alarge library of IDL specific
code, and wishto giveit al IDL callableinterfaces without requiring the overhead of
AUTO_GLUE for al of them.

The WRITE_WRAPPER keyword to CALL_EXTERNAL can be used to produce
such code without compiling or using the results. See“CALL_EXTERNAL” (IDL
Reference Guide) for additional information on this keyword.

External Development Guide Using Auto Glue

58 Chapter 3: Using CALL_EXTERNAL

Basic C Examples

All of the code for the examplesin this section can be found in the
/external/call_external/C subdirectory of the IDL distribution. Please read
the README file in that directory for details on how to run the examples. In many
cases, the filesin that directory go into more detail, and are more fully commented
than the versions shown here. Also, the examples provide IDL wrapper routines that
perform the necessary CALL_EXTERNAL calls, while the examples shown here use
CALL_EXTERNAL directly in order to explain how it isused. It isworth reading the
contents of the . c and IDL . pro filesin that directory in addition to reading the code
shown here.

Example: Passing Parameters by Reference to IDL

The following routing, found in simple_vars.c, accepts severa of IDL's basic
datatypes as arguments. The parameters are passed in by reference and the new
squared values of the numbers are passed back to IDL. Thisisimplemented as a
function with anatural C interface, and a second glue routine that implements the

Basic C Examples External Development Guide

Chapter 3: Using CALL_EXTERNAL 59

IDL portable convention, using the one with the natural interface to do the actua
work.

0 J oUW

\e]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <stdio.h>
#include "idl_export.h" /* IDL external definitions */

int simple_vars_natural (char *byte_var, short *short_var,
IDL_LONG *long var, float *float_var,

double *double_var)

/* Square each variable. */

*byte_var *= *byte_var;
*short_var *= *ghort_var;
*long_var *= *long_var;
*float_var *= *float_var;
*double_var *= *double_var;
return 1;

}

int simple_vars(int argc, void* argvl[])

{
/* Insure that the correct number of arguments were passed in */
if (arge != 5) return 0;

return simple_vars_natural ((char *) argv([0], (short *) argv[1l],
(IDL_LONG *) argv([2], (float *) argv[3],
(double *) argvl[4]);
}

Table 3-1: Passing Parameters by Reference to IDL — simple_vars.c

TheIDL statements necessary to call the simple_vars () function from IDL can be
written:

B=2B & I=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL (GET CALLEXT EXLIB(), ’‘simple vars’, $
b,i,1,£f,d, /CDECL)

Note
GET_CALLEXT_EXLIB () isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

External Development Guide Basic C Examples

60 Chapter 3: Using CALL_EXTERNAL
Using the AUTO_GLUE keyword to CALL_EXTERNAL, you can call the function
with the natural C interface directly:

B=2B & I=3 & L=3L & F=0.0 & D=0.0D
R = CALL_EXTERNAL (GET_CALLEXT_EXLIB(), ’‘simple_vars_natural’, $
b,1,1,£f,d, /CDECL, /AUTO_GLUE)
Example: Calling a C Routine to Perform
Computation
The following example demonstrates an external function that returns the sum of a
floating point array. It is similar in function to the TOTAL function in IDL. The code
for thisexampleisfound in thefile sum_array.c inthe DL distribution. Aswith
the previous example, this function isimplemented by a function that has anatural C
interface, and a second glue function is provided that matchesthe IDL portable
calling convention to the natural interface:
10 #include <stdio.h>
20 #include "idl_export.h"
3
4f float sum_array natural (float *fp, IDL_LONG n)
50 ¢
6 float s = 0.0;
;
C 38 while (n--) s += *fp++;
9 return(s) ;
104 3
11
12 float sum_array(int argc, void *argv([])
13f ¢
14 return sum_array_natural((float *) argv([0], (IDL_LONG) argv[l]);
15§ 3

Basic C Examples

Table 3-2: Calling a C routine — example.c

The IDL statements necessary to call the sum_array () function from IDL can be

written:
X = FINDGEN(10)
S = CALL_EXTERNAL (GET_CALLEXT EXLIB(),

X, N_ELEMENTS (X),VALUE=[0,1],

‘sum_array’$

/F_VALUE, /CDECL)

External Development Guide

Chapter 3: Using CALL_EXTERNAL 61

Note
GET_CALLEXT_EXLIB () isafunction provided with the CALL_EXTERNAL

examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

Using the AUTO_GLUE keyword, you can call the function with the natural C
interface directly:

X = FINDGEN(10)

S = CALL_EXTERNAL (GET_CALLEXT EXLIB(), ‘sum_array natural’$
X, N_ELEMENTS (X),VALUE=[0,1], /F_VALUE, /CDECL,$
/AUTO_GLUE)

Inthis example, sum_array and sum_array natural are the names of the entry
points for the external functions, and x and N_ELEMENTS (x) are passed to the called
routine as parameters. The F_vaLUE keyword specifies that the returned valueis a
floating-point number rather than an IDL_LONG.

External Development Guide Basic C Examples

62

Chapter 3: Using CALL_EXTERNAL

Wrapper Routines

CALL_EXTERNAL routines are very sensitive to the number and type of the
argumentsthey receive. Calling a CALL_EXTERNAL routine with the wrong
number of arguments or with arguments of the wrong type can cause IDL to crash.
For thisreason, it isagood practice to provide an IDL wrapper routine that is used to
make the actual CALL_EXTERNAL call. The job of this wrapper, which iswritten
in the IDL language, isto ensure that the arguments that are passed to the external
code are always of the correct number and type. The following IDL procedure isthe
wrapper used in the simple_var () example of the previous section (“ Example:
Passing Parameters by Referenceto IDL” on page 58).

Example Code
Thisfile, simple_vars.pro, islocated inthe external/call_external/C
subdirectory of the IDL installation directory.

0 o Ui W

B e e
W NP oW

IDL

N N N e e
A WNDE O WVWWIo U e

25

N
[e))

PRO SIMPLE_VARS, b, i, 1, f, d, AUTO_GLUE=auto_glue, DEBUG=debug, $
VERBOSE=verbose
if ~ (KEYWORD_SET (debug)) THEN ON_ERROR, 2

; Type checking: Any missing (undefined) arguments will be set

; to a default value. All arguments will be forced to a scalar

; of the appropriate type, which may cause errors to be thrown

; 1f structures are passed in. Local variables are used so that
the values and types of the user supplied arguments don’t change.

1 = (SIZE(b,/TYPE) EQ 0) ? 2b : byte(b[0])
i 1 = (SIZE(i,/TYPE) EQ 0) ? 3 : fix(1[0])
1.1 = (SIZE(l,/TYPE) EQ 0) ? 4L : long(1[0])
f 1 = (SIZE(f,/TYPE) EQ 0) ? 5.0 : float (£[01])
d_1l = (SIZE(d,/TYPE) EQ 0) ? 6.0D : double(d[0])

PRINT, ’‘Calling simple_vars with the following arguments:’
HELP, b_1, i_1, 1.1, f£_1, 4.1
func = keyword_set (auto_glue) ? ’'simple_vars_natural’ : ’'simple_vars’
IF (CALL_EXTERNAL (GET_CALLEXT_ EXLIB(VERBOSE=verbose), func, $
b1, i 1, 1.1, f.1, 4.1, /CDECL, $
AUTO_GLUE=auto_glue, VERBOSE=verbose, $
SHOW_ALL_OUTPUT=verbose) EQ 1) then BEGIN
PRINT, 'After calling simple_vars:’
HELP, b_1, i1, 1.1, f£_1, 4.1
ENDIF ELSE MESSAGE, 'External call to simple_vars failed’
END

Table 3-3: Wrapper Routine — simple_vars.pro

Wrapper Routines External Development Guide

Chapter 3: Using CALL_EXTERNAL 63

Theroutine simple_vars.pro Usesthe system routine SIZE() to examine the
argumentsthat are passed in by the user to the simple_vars routine. If one of the
arguments is undefined, a default value will be used in the call to the external routine.
Otherwise, the argument will be converted to a scalar of the appropriate type.

Note

GET_CALLEXT_EXLIB () isafunction provided with the CALL_EXTERNAL
examples; it builds the necessary sharable library of external C code and returnsthe
path to the library asits result.

External Development Guide Wrapper Routines

64 Chapter 3: Using CALL_EXTERNAL

Passing String Data

IDL represents strings internally as IDL_STRING descriptors. For more information
about IDL_STRING, see Chapter 7, “IDL Internals: Variables’ and Chapter 8, “IDL
Internals: String Processing”. These descriptors are defined in the C language as:

typedef struct {
IDL_STRING_SLEN_T slen;
unsigned short stype;
char *s;

} IDL_STRING;

To pass astring by reference, IDL passes the address of its IDL_STRING descriptor.
To pass astring by value the string pointer (the s field of the descriptor) is passed.
Programmers should be aware of the following when manipulating IDL strings:

e Called code should treat the information in the passed IDL_STRING
descriptor and the string itself as read-only, and should not modify these
values.

* Theslen field contains the length of the string without including the NULL
termination that is required at the end of all C strings.

* Thestype fieldisusedinternaly by IDL to keep track of how the memory for
the string was obtained, and should be ignored by CALL_EXTERNAL users.

* sisthepointer to the actual C string represented by the descriptor. If the string
iSNULL, IDL representsit asaNULL (0O) pointer, not as a pointer to an empty
null terminated string. Hence, called code that expects a string pointer should
check for aNULL pointer before dereferencing it.

e You must use the functions discussed in Chapter 8, “IDL Internals: String
Processing” to allocate the memory for an IDL_STRING. Attempting to do
this directly by allocating dynamic memory and assigning it to the
IDL_STRING descriptor is acommon pitfall, as discussed in “ Common
CALL_EXTERNAL Pitfalls’ on page 51.

Returning a String Value

When returning a string value, a function must all ocate the memory used to hold it.
Onreturn, IDL will copy this string. You can use a static buffer or dynamic memory,
but do not return the address of an automatic (stack-based) variable.

Note
IDL will not free dynamically-allocated memory for this use.

Passing String Data External Development Guide

Chapter 3: Using CALL_EXTERNAL 65

Example

Thefollowing routing, found in string_array.c, demonstrates how to handle
string variablesin external code. Thisroutinetakesastring or array of strings asinput
and returns a copy of the longest string that it received. It isimportant to note that this
routine uses a static char array asits return value, which avoids the possibility of a
memory leak, but which must be long enough to handle the longest string required by
the application. Thisisimplemented as a function with a natural C interface, and a
second glue routine that implements the IDL portable convention, using the one with
the natural interface to do the actual work:

External Development Guide Passing String Data

66 Chapter 3: Using CALL_EXTERNAL
1 #include <stdio.h>
2f #include <string.h>
38 #include "idl_export.h"
a8 /*
5 * IDL_STRING is declared in idl_export.h like this:
6 * typedef struct {
7 * IDL_STRING_SLEN_T slen; Length of string, 0 for null
8 * short stype; Type of string, static or dynamic
9 * char *s; Address of string
10 * } IDL_STRING;
11 * However, you should rely on the definition in idl_export.h instead
12 * of declaring your own string structure.
134 */
14
15§ char* string_array_natural (IDL_STRING *str_descr, IDL_LONG n)
16Q {
17 /*
18 * IDL will make a copy of the string that is returned (if it is
19 * not NULL). One way to avoid a memory leak is therefore to return
20 * a pointer to a static buffer containing a null terminated string.
C 21 * IDL will copy the contents of the buffer and drop the reference
22 * to our buffer immediately on return.
23 *x/
24 #define MAX_OUT_LEN 511 /* truncate any string
25 longer than this */
26 static char result[MAX_ OUT LEN+1]; /* leave a space for a ’\0’
27 on the longest string */
28 int max_index; /* index of longest string */
29 int max_sofar; /* length of longest string*/
30 int 1i;
31
32 /* Check the size of the array passed in. n should be > 0.*/
33 if (n < 1) return (char *) 0;
34 max_index = 0;
35 max_sofar = 0;
36 for(i=0; 1 < n; i++) {
37 if (str_descr[i].slen > max_sofar) {
38 max_index = 1i;
39 max_sofar = str_descr[i].slen;
40 }
41 }

Figure 3-1: Handling String Variables in External Code — string_array.c

Passing String Data External Development Guide

Chapter 3: Using CALL_EXTERNAL 67

42
43
44
45
46
47
48
49
50
51
52
53
54
55
c 56
57
58
59
60
61
62
63
64
65
66
67
68
69

#undef MAX_ OUT_LEN

}

char* string_array(int argc, void* argvl[])

{

}

/*

* If all strings in the array are empty, the longest

* will still be a NULL string.

*/

if (str_descr[max_index].s == NULL) return (char *) 0;

Copy the longest string into the buffer, up to MAX_OUT_LEN
characters.

Explicitly store a NULL byte in the last byte of the buffer,
because strncpy() does not NULL terminate if the string copied
* is truncated.

% X %k

*x/
strncpy (result, str_descr[max_index].s, MAX_ OUT_LEN) ;
result[sizeof (result)-1]1 = "\0’;

return (result) ;

/*

* Make sure there are the correct # of arguments.

* IDL will convert the NULL into an empty string (’'’).

*x/

if (argc != 2) return (char *) NULL;

return string_array. natural ((IDL_STRING *) argv[0], (IDL_LONG) argv[1l]);

Figure 3-1: Handling String Variables in External Code — string_array.c (Continued)

External Development Guide Passing String Data

68 Chapter 3: Using CALL_EXTERNAL

Passing Array Data

When you passan IDL array into aCALL_EXTERNAL routine, that routine gets a
pointer to the first memory location in the array. In order to perform any processing
on the array, an external routine needs more information—such as the array’s size
and number of dimensions. With CALL_EXTERNAL, you will need to pass this
information explicitly as additional arguments to the routine.

In order to handle multi-dimensional arrays, C needs to know the size of the array at
compiletime. In most cases, this means that you will need to treat multi-dimensional
arrays passed in from IDL as one dimensiona arrays. However, you can still build
your own indices to access an array asif it had more than one dimension in C. For
example, the IDL array index:

array[x,vy]
could berepresented in a CALL_EXTERNAL routine as:
array_ptr[x + x_size*vy];

Thefollowing routine, found in sum_2d_array. c, caculates the sum of a
subsection of atwo dimensional array. Thisisimplemented as afunction with a
natural C interface, and a second glue routine that implementsthe IDL portable
convention, using the one with the natural interface to do the actual work:

Passing Array Data External Development Guide

Chapter 3: Using CALL_EXTERNAL 69

1§ #include <stdio.h>
2 #include "idl_export.h"
3 double sum_2d_array_natural (double *arr, IDL_LONG x_start, IDL_LONG x_end,
4 IDL_LONG x_size, IDL_LONG y_start,
5 IDL_LONG y_end, IDL_LONG y_size)
6 /* Since we didn’t know the dimensions of the array at compile time, we
7 * must treat the input array as if it were a one dimensional vector. */
8 IDL_LONG x,Vy;
9 double result = 0.0;
10
11 /* Make sure that we don’'t go outside the array.strictly speaking, this
12 *is redundant since identical checks are performed in the IDL wrapper
13 * routine.IDL_MIN() and IDL_MAX() are macros from idl_export.h */
14 x_start = IDL_MAX(x_start,0);
15 y_start = IDL_MAX(y_start,0);
16 x_end = IDL_MIN(x_end,x_size-1);
C 17 yv_end = IDL_MIN(y_end,y_size-1);
18
19 /* loop through the subsection */
20 for (y = y_start;y <= y_end;y++)
21 for (x = x_start;x <= x_end;x++)
22 result += arr[x + y*x_sizel; /* build the 2d index: arr[x,y] */
23 return result;
240 }
25
26} double sum_2d_array(int argc,void* argv([])
270 {
28 if (argc != 7) return 0.0;
29 return sum_2d_array_natural ((double *) argv[0], (IDL_LONG) argv[l],
30 (IDL_LONG) argv[2], (IDL_LONG) argv[3],
31 (IDL_LONG) argv[4], (IDL_LONG) argvI[5],
32 (IDL_LONG) argvl[6]);
330}

Table 3-4: Adding the Elements of a 2D IDL Array — sum_2d_array.c
The IDL system routine interface provides much more support for the manipulation

of IDL array variables. See Chapter 15, “Adding System Routines’ for more
information.

External Development Guide Passing Array Data

70 Chapter 3: Using CALL_EXTERNAL

Passing Structures

IDL structure variables are stored in memory in the same layout that C uses. This
makes it possible to pass IDL structure variablesinto CALL_EXTERNAL routines,
as long as the layout of the IDL structure is known. To access an IDL structure from
an external routine, you must create a C structure definition that has the exact same
layout asthe IDL structure you want to process.

For example, for an IDL structure defined as follows:
s = {ASTRUCTURE, zero:0B,one:0L,two:0.0, three:0D, four: intarr(2)}
the corresponding C structure would look like the following:

typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short four([2];

} ASTRUCTURE;

Then, cast the pointer from argv to the structure type, as follows:

ASTRUCTURE* mystructure;
mystructure = (ASTRUCTURE*) argv[0];

The following routine, found in incr_struct . c, increments each field of an IDL
structure of type ASTRUCTURE. Thisisimplemented as a function with anatural C
interface, and a second glue routine that implements the IDL portable convention,
using the one with the natural interface to do the actual work:

Passing Structures External Development Guide

Chapter 3: Using CALL_EXTERNAL

71

0 J o Ul WN

=R e
N - O W

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <stdio.h>
#include "idl_export.h"

/*

* C definition for the structure that this routine accepts.The

* corresponding IDL structure definition would look like this:
* s = {zero:0B,one:0L,two:0.,three:0D, four: intarr(2)}
*/
typedef struct {
unsigned char zero;
IDL_LONG one;
float two;
double three;
short fourl[2];
} ASTRUCTURE;

int incr_struct_natural (ASTRUCTURE *mystructure, IDL_LONG n)
{
/* for each structure in the array, increment every field */
for (; n--; mystructure++) {
mystructure->zero++;
mystructure->one++;
mystructure->two++;
mystructure->three++;
mystructure->four [0]++;
mystructure->four[1l]++;

return 1;
}
int incr_struct(int argc, void *argvl[])

{

if (argc != 2) return 0;
return incr_struct_natural ((ASTRUCTURE*) argv([0], (IDL_LONG)
argv[1l]);

}

Table 3-5: Accessing an IDL Structure from a C Routine — incr_struct.c

External Development Guide

It is not possible to access structures with arbitrary definitions using the

CALL_EXTERNAL interface. The system routineinterface, discussed in Chapter 15,

“Adding System Routines’, does provide support for determining the layout of a

structure at runtime.

Passing Structures

72

Chapter 3: Using CALL_EXTERNAL

Fortran Examples

Example: Calling a Fortran Routine Using a C
Interface Routine

Calling Fortranis similar to calling C, with the significant difference that Fortran
code expects all argumentsto be passed by reference and not by value (the C default).
This means that the address of the argument is passed rather than the argument
itself. Thisissueisdiscussed in “By-Value and By-Reference Arguments’ on

page 48.

A Cinterface routine can easily extract the addresses of the arguments from the argv
array and pass them to the actual routine which will compute the sum. The arguments
f, n, and s are pointers that are being passed by value. Fortran expects al argumentsto
be passed by reference — that is, it expects all argumentsto be addresses. If C passes
apointer (an address) by value, Fortran will interpret it correctly as the address of an
argument. The following code segmentsillustrate this. The example_c2f.c file
contains the C interface routine, which would be compiled asillustrated above. The
example. f file contains the Fortran routine that actually sumsthe array.

In these examples, we assume that the routines are being compiled under Sun Solaris.
The object name of the Fortran subroutine will be sum_arrayl_ to match the output
of the Solaris Fortran compiler. The following are the contents of example c2f.c
and example. f:

0 J o Ul WN R

B e e e
s WP oW

#include <stdio.h>
void sum_array (int argc, void *argv[])
{
extern void sum_arrayl_();/* Fortran routine */
int *n;
float *s, *f;
f = (float *) argvI[0]; /* Array pntr */
n = (int *) argv[1l]; /* Get # of elements */
s = (float *) argv(2]; /* Pass back result a parameter */
sum_arrayl_ (f, n, s); /* Compute sum */

}

Table 3-6: C Wrapper Used to Call Fortran Code (example_c2f.c)

Fortran Examples External Development Guide

Chapter 3: Using CALL_EXTERNAL 73

f77

0 J o Ul WN

e e
S W e oW

¢ This subroutine is called by SUM_ARRAY and has no IDL-specific code.
c

SUBROUTINE sumarrayl (array, n, sum)

INTEGER*4 n

REAL*4 array(n), sum

sum=0.0

DO i=1,n

sum = sum + array (i)
PRINT *, sum, array (i)
ENDDO

RETURN
END

Table 3-7: Fortran Code Called from IDL via C Wrapper (example.f)

This example is compiled and linked in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in the external/call external/Fortran
subdirectory of the IDL distribution. This directory also contains a makefile, which
builds this example on UNIX platforms. To call the example program from within
IDL:

;Make an array.

X = FINDGEN(10)

;A floating result

SUM = 0.0

S = CALL_EXTERNAL ('example.so', $
'sum_array', X, N_ELEMENTS (X), sum)

In this example, example. so isthe name of the sharableimagefile, sum_array is
the name of the entry point, and x and n_rr.evENTS (x) are passed to the called routine
as parameters. The returned value is contained in the variable sum.

Hidden Arguments

When passing C null-terminated character strings into a Fortran routine, the C
function should a so passin the string length. This extra parameter is added to the end
of the Fortran routine call in the C function, but does not explicitly appear in the
Fortran routine.

For example, in C:

char * strl= 'IDL';
char * str2= 'ITT';

External Development Guide Fortran Examples

74

Chapter 3: Using CALL_EXTERNAL

int lenl=3;

int len2=3;

double data, info;

/* Call a Fortran sub-routine named examplel */
examplel_(strl, data, str2, info, lenl, len2)

In Fortran:

SUBROUTINE EXAMPLEL (STR1, DATA, STR2, INFO)
CHARACTER* (*) STR1, STR2
DOUBLE PRECISIONDATA, INFO

Example: Calling a Fortran Routine Using a Fortran
Interface Routine

Cdling Fortran is similar to calling C, with the significant difference that Fortran
expects all arguments to be passed by reference. This means that the address of the
argument is passed rather than the argument itself. See “By-Value and By-Reference
Arguments’ on page 48 for more on this subject.

A Fortran interface routine can be written to extract the addresses of the arguments
from the argv array and pass them to the actual routine which will compute the sum.
Passing the contents of each argv element by value has the same effect as converting
the parameter to a normal Fortran parameter.

This method uses the OpenVMS Extensions to Fortran, %L OC and %VAL.

Some Fortran compilers may not support these extensions. If your compiler does not,
use the method discussed in the previous section for calling Fortran with a C interface
routine.

The contents of the file example1 . f are shown in the following figure. This
example is compiled, linked, and called in a manner similar to that used in the C
example above. For more information on compiling and linking on your platform, see
the README file contained in the external/ fortran subdirectory of the IDL
distribution. This directory also contains a makefile, which builds this example on
UNIX platforms.

Note
This example is written to run under a 32-bit operating system. To run the example
under a 64-bit operating system would require modifications; most notably, to
declare argv as INTEGER* 8 rather than INTEGER* 4.

Fortran Examples External Development Guide

Chapter 3: Using CALL_EXTERNAL

75

f77

0 J o Ul WN

MY DDDDDNYNMNNRE R RPRPRERRPRPRPRPRRRPRRE
Ul WNE OWOoWLwNJOo Uk WwNDE OV

SUBROUTINE SUM_ARRAY (argc, argv) !Called by IDL
INTEGER*4 argc, argv(*) IArgc and Argv are integers

j = LOC (argc) 10btains the number of arguments (argc)
!Because argc is passed by VALUE.

c Call subroutine SUM_ARRAY1, converting the IDL parameters
c to standard Fortran, passed by reference arguments:

CALL SUM_ARRAY1 (%VAL(argv(1l)), %VAL(argv(2)), %VAL(argv(3)))
RETURN
END

¢ This subroutine is called by SUM_ARRAY and has no
c IDL specific code.

c

SUBROUTINE SUM_ARRAYI1 (array, n, sum)

INTEGER*4 n

REAL*4 array(n), sum

sum=0.0

DO i=1,n

sum = sum + array (i)
ENDDO

RETURN

END

External Development Guide

Table 3-8: Fortran Code Called Directly From IDL

To call the example program from within IDL:

X = FINDGEN(10) ; Make an array.

sum = 0.0

S = CALL_EXTERNAL ('examplel.so', $
'sum_array_', X, N_ELEMENTS(X), sum)

In this example, examplel. so isthe name of the sharable imagefile, sum_array._

is the name of the entry point, and X and N_ELEMENTS (X) are passed to the called

routine as parameters. The returned value is contained in the variable sum.

Note

The entry point name generated by the Fortran compiler may be different than that

produced by the C compiler. One of the best waysto find out what name was
generated isto use the UNIX nm utility on the object file. See your system’s man

page for nm for details.

Fortran Examples

76 Chapter 3: Using CALL_EXTERNAL

Fortran Examples External Development Guide

Chapter 4

Remote Procedure

Calls

This chapter discusses the following topics:

IDL and Remote Procedure Calls 78
Using IDL asanRPC Server 79
Client Variables 80
Linking tothe Client Library 81

External Development Guide

Compatibility with Older IDL Code 83
ThelDL RPCLibrary 85
RPCExamples 110

77

78 Chapter 4: Remote Procedure Calls

IDL and Remote Procedure Calls

Remote Procedure Calls (RPCs) allow one process (the client process) to have
another process (the server process) execute a procedure call just asif the caller
process had executed the procedure call in its own address space. Since the client and
server are separate processes, they can reside on the same machine or on different
machines. RPC libraries allow the creation of network applications without having to
worry about underlying networking mechanisms.

IDL supports RPCs so that other applications can communicate with IDL. A library
of Clanguage routinesisincluded to handle communication between client programs
and the IDL server.

A startup file is executed only when a command lineis present. Running an
application using an IDL Remote Procedure Call server does not execute the startup
file. See “Understanding When Startup Files are Not Executed” (Chapter 1, Using
IDL) for details.

Note
Remote procedure calls are supported only on UNIX platforms.

The current implementation allows IDL to be run as an RPC server and your own
program to be run asaclient. IDL commands can be sent from your application to the
IDL server, where they are executed. Variable structures can be defined in the client
program and then sent to the IDL server for creation as IDL variables. Similarly, the
values of variablesin the IDL server session can be retrieved into the client process.

With the release of IDL version 5.0, IDL’s RPC functionality has been completely
revised and an new API created. The new RPC interface mirrors the APl used by
callable IDL. See “Compatibility with Older IDL Code” on page 83 for details.

IDL and Remote Procedure Calls External Development Guide

Chapter 4: Remote Procedure Calls 79

Using IDL as an RPC Server
The IDL RPC Directory

All of thefilesrelated to using IDL’s RPC capabilities are found in the rpc
subdirectory of the external subdirectory of the main IDL directory. The main IDL
directory isreferred to here asidldir.

Running IDL in Server Mode

To use IDL asan RPC server, run IDL in server mode by using the idlrpc
command. The RPC server can be invoked one of two ways:

idlrpc
or
idlrpc -server=server_number

where server_number is the hexadecimal server ID number (between 0x20000000
and Ox3FFFFFFF) for IDL to use. For example, to run IDL with the server ID
number 0x20500000, use the command:

idlrpc -server=20500000

If aserver ID number isnot supplied, IDL uses the default,
IDL_RPC_DEFAULT_ID, defined in thefileidldir/external /rpc/idl_rpc.h.
Thisvalueisoriginally set to 0x2010CAFE.

External Development Guide Using IDL as an RPC Server

80 Chapter 4: Remote Procedure Calls

Client Variables

The IDL RPC client API uses the same data structure as IDL to represent a variable,
namely an IDL_VARIABLE structure. By not using a unique data structure to
represent avariable, the IDL RPC client API can follow aformat that is similar to the
API of Callable IDL.

When avariableis created by the IDL RPC client API (when avariableisreturned
from the IDL_RPCGetMainVariable function, for example) dynamic memory is
alocated for the variable and for its value. These dynamic variables are similar to
temporary variableswhich areused in IDL.

The IDL RPC client API provides routines to create, manipulate and delete dynamic
or IDL RPC client temporary variables. These API routinesfollow the same format as
the Callable IDL APl and most have the same calling sequence.

When a client dynamic or temporary variable is no longer needed by the IDL RPC
client program, use the IDL_RPCDeltmp() function to delete or free up the memory
associated with the variable. Failure to delete a client temporary variable could result
amemory “leak” in the client program.

Client Variables External Development Guide

Chapter 4: Remote Procedure Calls 81

Linking to the Client Library

To make use of the IDL RPC functionality, you will need to do the following:
e Includethefile idl_rpc.h in your application.

* Haveacopy of idl_export.h intheinclude path when you compile the
client application.

e Link your client application to the IDL client shared object library
(1ibidl_rpc).

« If theclient library islinked as a shared abject, you must set the
LD _LIBRARY_PATH environment variable so that it includes the
directory that containsthe IDL client library. If this variable is not set
correctly, an error message will be issued by the system loader when the
client program is started.

The command used to compile and link a client program to the IDL RPC client
library follows the following format:

% cc -o example $(PRE_FLAGS) example.o -1idl_rpc
$ (POST_FLAGS)

where PRE_FLAGS and POST_FLAGS are platform dependent. The proper flags for
each UNIX operating system supported by IDL are contained in the file Makefile,
located in thein the rpc subdirectory of the external subdirectory of the main IDL
directory.

Example of IDL RPC Client API

To usethe IDL client side API, execute the following sequence of steps:
1. Cadl IDL_RPCInit() to connect to the server
2. Perform actions on the server—get and set variables, run IDL commands, etc.

3. Cdl IDL_RPCCleanup() to disconnect from the server.

External Development Guide Linking to the Client Library

82

Chapter 4: Remote Procedure Calls

The code shown in the following figure is an example that can be used to set up a
remote session of IDL using the RPC features. Note that this C program will need to
be linked against the supplied shared library 1ibidl_rpc. Thiscodeisincluded in
theidldir/external/rpc directory as example.c.

0 o Ui W

I O R R R R N R N R e e N ol e
O J O WNRE OWOOW--LOoOU s WN R oW

#include "idl_rpc.h"

int main()

{
CLIENT *pClient;
char cmdBuffer[512];
int result;

/* Connect to the server */

if((pClient = IDL_RPCInit (0, (char*)NULL)) == (CLIENT*)NULL) {
fprintf (stderr, "Can't register with IDL server\n");
exit (1) ;

}

/* Start a loop that will read commands and then send them to idl */
for(;;){
printf ("RMTIDL> ") ;
cmdBuffer[0]="\0";
gets (cmdBuffer) ;
if(cmdBuffer[0] == '\n' || cmdBuffer[0] == '\0')
break;
result = IDL_RPCExecuteStr (pClient, cmdBuffer);
}

/* Now disconnect from the server and kill it. */
if (!IDL_RPCCleanup (pClient, 1))
fprintf (stderr, "IDL_RPCCleanup: failed\n");
exit (0);

Table 4-1: Remote Execution of IDL via RPC

Compile example.c with the appropriate flags for your platform, as described in
“Linking tothe Client Library” on page 81. Once this exampleis compiled, executeit
using the following commands:

% idlrpc
Then, in another process:

% example

Linking to the Client Library External Development Guide

Chapter 4: Remote Procedure Calls 83

Compatibility with Older IDL Code

With the release of IDL 5.0, IDL’'s Remote Procedure Call functionality has been
completely reworked. While RPC code built for older versions of IDL can still be
used with IDL 5.0 and later, the new RPC functionality has the following advantages:

« Thenew API mirrorsthe Callable IDL API.

* TheRPC client-sidelibrary is provided as a pre-built sharable library,
eliminating the need to build the library on your system.

* TheRPC server-side executable, idlrpc, ishbuilt using Callable IDL,
providing an example of how Callable IDL can be used.

» Source codeis provided for both the Server and Client side programs, allowing
you to enhance IDL’'s RPC functionality.

RPC code built for versions of IDL prior to version 5.0 can be linked with IDL
version 5 and later using a compatibility layer. This layer is contained in thefiles
idl_rpc_obsolete.c and idl_rpc_obsolete.h.

To use the compatibility routines, include thefile 1ib_rpc_obsolete.h inyour
application and use the following link statement as atemplate:

% cc -0 old_example $(PRE_FLAGS) old_example.o \
idl_rpc_obsolete.o -1idl_rpc $(POST_FLAGS)

where the macros PRE_FLAGS and POST_FLAGS are the same as those described
in “Linking to the Client Library” on page 81.

External Development Guide Compatibility with Older IDL Code

84

Chapter 4: Remote Procedure Calls

While the compatibility layer covers most of the old IDL RPC functionality, some of
the more obscure operations have either been modified or are no longer supported.
The features which have changed are as follows:

e idl_server_interactive: Thisfunction isno longer supported.

e get_idl_variable: Thefollowing return values are no longer supported:

Value Description
-2 Illegal variable name (for example, “213xyz", “#d’,
“IDEVICE")
-3 Variable not transportable (for example, the variable
isastructure or associated variable)

Table 4-2: get_idl_variable Unsupported Values

e sat idl_timeout: thetv_usec field of the timeval struct isignored.
e idl_set_verbosity(): Thisfunction isno longer supported.

All other functionality is supported.

Compatibility with Older IDL Code External Development Guide

Chapter 4: Remote Procedure Calls 85

The IDL RPC Library

The IDL RPC library contains several C language interface functions that facilitate
communication between your application and IDL. There are functions to register
and unregister clients, set timeouts, get and set the value of IDL variables, send
commandsto the IDL server, and cause the server to exit. These functions are;

* IDL_RPCCleanup * IDL_RPCSetMainVariable
+ IDL_RPCDeltmp IDL_RPCSetVariable

e |DL_RPCExecuteStr e |DL_RPCStoreScalar
 IDL_RPCGetMainVariable IDL_RPCStrDelete

* IDL_RPCGettmp * IDL_RPCStrDup

» IDL_RPCGetVariable » IDL_RPCStrEnsurel ength
e |DL_RPCImportArray * |DL_RPCStrStore

« IDL_RPCInit « IDL_RPCTimeout
 IDL_RPCMakeArray « IDL_RPCVarCopy

¢ |DL_RPCOutputCapture ¢ IDL_RPCVarGetData

» IDL_RPCOutputGetStr » Variable Accessor Macros

External Development Guide The IDL RPC Library

86 Chapter 4: Remote Procedure Calls

IDL_RPCCleanup

Calling Sequence

int IDL_RPCCleanup(CLIENT *pClient, int 1iKill)

Description

Use this function to rel ease the resources associated with the given CLIENT structure
or to kill the IDL RPC server.

Parameters

pClient

A pointer to the CLIENT structure for the client/server connection to be
disconnected.

iKill
Set iKill to anon-zero value to kill the server when the connection is broken.
Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCCleanup External Development Guide

Chapter 4: Remote Procedure Calls 87

IDL_RPCDeltmp

Calling Sequence

void IDL_RPCDeltmp(IDL_VPTR vTmp)

Description

Use this function to de-all ocate all dynamic memory associated withthe IDL_VPTR
that is passed into the function. Once this function returns, any dynamic portion of
vTmp is deallocated and should not be referenced.

Parameters

vimp
The variable that will be de-allocated.
Return Value

None.

External Development Guide IDL_RPCDeltmp

88 Chapter 4: Remote Procedure Calls

IDL_RPCEXxecuteStr

Calling Sequence

int IDL_RPCExecuteStr (CLIENT *pClient, char * pCommand)

Description

Use this function to send IDL commands to the IDL RPC server. The command is
executed just asif it had been entered from the IDL command line.

This function cannot be used to send multiple line commands and will return an error
if a“$" isdetected at the end of the command string. It will also return an error if “$"
isthefirst character, since this would spawn an interactive process and hang the IDL
RPC server.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
pCommand

A null-terminated IDL command string.
Return Value

This function returns the following values:
1 — Success.
0 — Invalid command string.

For all other errors, the value of 'lERROR_STATE.CODE isreturned. This number
could be passed as an argument to the IDL function STRM ESSAGE() to determine
the exact cause of the error.

IDL_RPCEXxecuteStr External Development Guide

Chapter 4: Remote Procedure Calls 89

IDL_RPCGetMainVariable

Calling Sequence
IDL_VPTR IDL_RPCGetMainVariable (CLIENT *pClient, char *Name)
Description

Call this function to get the value of an IDL RPC server main level variable
referenced by the name contained in Name. IDL_RPCGetMainVariable will then
return a pointer to an IDL_VARIABLE structure that contains the value of the
variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC main level variable. On failure this
function returns NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 80.

External Development Guide IDL_RPCGetMainVariable

90 Chapter 4: Remote Procedure Calls

IDL_RPCGettmp

Calling Sequence

IDL_VPTR IDL_RPCGettmp (void)

Description
Use thisfunction to create an IDL_VPTR to adynamically allocated
IDL_VARIABLE structure. When you are finished with this variable, passit to
IDL_RPCDetmp() to free any memory allocated by the variable.
Parameters
None.

Return Value

On success, thisfunction returnsan IDL_VPTR. On failure, it returns NULL.

IDL_RPCGettmp External Development Guide

Chapter 4: Remote Procedure Calls 91

IDL_RPCGetVariable

Calling Sequence

IDL_VPTR IDL_RPCGetVariable (CLIENT *pClient, char *Name)

Description

Use thisfunction to get a pointer to an IDL_VARIABLE structure that contains the
value of an IDL RPC server variable referenced by Name. The current scope of the
IDL program is used to get the value of the variable.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

The name of the variable to find.
Return Value

On success, this function returns a pointer to an IDL_VARIABLE structure that
contains the value of the desired IDL RPC variable. On failure this function returns
NULL.

Note that the returned variable is marked as temporary and should be deleted when
the variable is no longer needed. For more information on IDL RPC variables, see
“Client Variables’ on page 80.

External Development Guide IDL_RPCGetVariable

Chapter 4: Remote Procedure Calls

IDL_RPCImportArray

Calling Sequence

IDL_VPTR IDL_RPCImportArray(int n_dim, IDL_MEMINT diml[],
int type, UCHAR *data, IDL_ARRAY_ FREE_CB free_cb)

Description

Use thisfunction to create an IDL array variable whose data the server supplies,
rather than having the client API allocate the data space.

Parameters

n_dim
The number of dimensionsin the array.

dim
Anarray of IDL_MAX_ARRAY_DIM elements, containing the size of each
dimension.

type

The IDL type code describing the data. IDL type codes are discussed in “ Type
Codes’ on page 114.

data
A pointer to your array data.

free_cb

If non-NULL, free_cb isapointer to afunction that will be called when the IDL RPC
client routines frees the array. This feature gives the caller a sure way to know when
the datais no longer referenced. Use the called function to perform any required
cleanup, such as freeing dynamic memory or releasing shared or mapped memory.

Return Value

AnIDL_VPTR that pointsto an IDL_VARIABLE structure containing a reference
to the imported array. This function returns NULL if the operation was unsuccessful.

IDL_RPCImportArray External Development Guide

Chapter 4: Remote Procedure Calls 93

IDL_RPCInit

Calling Sequence

Client *IDL_RPCInit(long ServerId, char* pHostname)

Description

Usethis function to initialize an IDL RPC client session.

Theclient program isregistered asaclient of the IDL RPC server. The server that the
client isregistered with depends on the values of the parameters passed to the
function.

Parameters

Serverld

The ID number of the IDL server that the program is to be registered with. If this
value is 0, the default server ID (0x2010CAFE) is used.

pHostname

Thisisthe name of the machine where the IDL server isrunning. If thisvalueis
NULL or “”, the default, “localhost”, is used.

Return Value

A pointer to the new CLIENT structure is returned upon successful completion. This
opaque data structure is then later used by the client program to perform operations
with the server. This function returns NULL if the operation was unsuccessful.

External Development Guide IDL_RPClInit

94

Chapter 4: Remote Procedure Calls

IDL_RPCMakeArray

Calling Sequence

char * IDL_RPCMakeArray(int type, int n_dim, IDL_MEMINT dim[],
int init, IDL_VPTR *var)

Description

Thisfunction creates an IDL RPC client temporary array variable with a data area of
the specified size.

Parameters

type

The IDL type code for the resulting array. IDL type codes are discussed in “ Type
Codes’ on page 114.

n_dim

The number of array dimensions. The constant IDL_ MAX_ARRAY_DIM defines
the upper limit of thisvalue.

dim
A Carray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by the n_dim argument.

init
This parameter specifies the sort of initialization that should be applied to the
resulting array. init must be one of the following:

 IDL_ARR_INI_NOP— Noinitialization is done. The data area of the array
will contain whatever garbage was left behind from its previous use.

 |IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

Theaddressof anIDL_VPTR containing the address of the resulting IDL RPC client
temporary variable.

IDL_RPCMakeArray External Development Guide

Chapter 4: Remote Procedure Calls 95

Return Value

On success, this function returns a pointer to the data area of the allocated array. The
value returned is the same as is contained in the var->value.arr->data field of the
variable. On failure, it returns NULL.

Aswith variables returned from IDL_RPCGettmp(), the variable allocated via this
function must be de-allocated using IDL_RPCDetmp() when the variable is no
longer needed.

External Development Guide IDL_RPCMakeArray

96 Chapter 4: Remote Procedure Calls

IDL_RPCOutputCapture

Calling Sequence

int IDL_RPCOutputCapture(CLIENT *pClient, int n_Ilines)

Description

Use this routine to enable and disable capture of lines output from the IDL RPC
server. Normally, IDL will write any output to the terminal on which the server was
started. This function can be used to save this information so that the client program
can request the lines sent to the output buffer.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
n_lines

If thisvalueisless than or equal to zero, no output lineswill be buffered in the IDL
RPC server and output will be sent to the normal output device on the IDL RPC
server. If the value of this parameter is greater than zero, the specified number of
lines will be stored by the IDL RPC server.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCOutputCapture External Development Guide

Chapter 4: Remote Procedure Calls 97

IDL_RPCOutputGetStr

Calling Sequence

int IDL_RPCOutputGetStr (CLIENT *pClient, IDL_RPC_LINE_S *pLine,
int first)

Description

Use this function to get an output line from the line queue being maintained on the
RPC server. The routine IDL_RPCOutputCapture() must have been called to
initialize the output queue on the RPC server before this routineis called.

Parameters

pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.
pLine

A pointer toavalid IDL_RPC_LINE_Sstructure. The buf field of this structure will
contain the output string returned from the IDL RPC server and the flags field will be
set to one of the following (from id1_export.h):

e IDL_TOUT_F STDERR — Send thetext to stderr rather than stdout, if that
distinction means anything to your output device.

e IDL_TOUT_F NLPOST — After outputting the text, start a new output line.
On atty, thisis equivalent to sending a new line (‘ \n) character.

first

If first is set equal to anon-zero value, thefirst line is popped from the output buffer
onthe IDL RPC server (the output buffer istreated like astack). If first is set equal to
zero, thelast lineis de-queued from the output buffer (the output buffer istreated like
aqueue).

Return value

A true value (1) isreturned upon success. A false value (0) isreturned when there are
no more lines available in the output buffer or when an RPC error is detected.

External Development Guide IDL_RPCOutputGetStr

98 Chapter 4: Remote Procedure Calls

IDL_RPCSetMainVariable

Calling Sequence

int IDL_RPCSetMainVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Use thisroutineto assign avalueto amain level IDL variablein the IDL RPC server
session referred to by pClient. If the variable does not already exist, a new variable
will be created.

Parameters

pClient

A pointer to the CLIENT structure that corresponds to the desired IDL session.
Name

A pointer to the null-terminated name of the variable, which must be in upper-case.
pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
main level variable referenced by Name should be set to. For more information on
creating this variable, see “Client Variables’ on page 80.

Return Value

This function returns 1 on success, or 0 on failure.

IDL_RPCSetMainVariable External Development Guide

Chapter 4: Remote Procedure Calls 99

IDL_RPCSetVariable

Calling Sequence

int IDL_RPCSetVariable(CLIENT *pClient, char *Name,
IDL_VPTR pVar)

Description

Usethisroutine to assign avalueto an IDL variable in the IDL RPC server session
referred to by pClient. If the variable does not already exist, a new variable will be
created. Unlike IDL_RPCSetMainVariable(), this routine sets the variable in the

current IDL program scope.

Parameters
pClient
A pointer to the CLIENT structure that corresponds to the desired IDL session.

Name

A pointer to the null-terminated name of the variable, which must be in upper-case.

pVar

A pointer to an IDL_VARIABLE structure that contains the value that the IDL RPC
variable referenced by Name should be set to. For more information on creating this
variable, see“Client Variables’ on page 80.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide IDL_RPCSetVariable

100 Chapter 4: Remote Procedure Calls

IDL_RPCStoreScalar

Calling Sequence

void IDL_RPCStoreScalar (IDL_VPTR dest, int type,
IDL_ALLTYPES *value)

Description

Use thisfunction to store ascalar valueinto an IDL_VARIABLE structure. Before
the scalar is stored, any dynamic part of the existing IDL_VARIABLE isde-
allocated.

Parameters

dest
AnIDL_VPTR tothelDL_VARIABLE in which the scalar should be stored.

type

The type code for the scalar value. IDL type codes are discussed in “ Type Codes’ on
page 114.

value

The address of an IDL_ALLTY PES union that contains the value to store.
Return Value

None.

IDL_RPCStoreScalar External Development Guide

Chapter 4: Remote Procedure Calls 101

IDL_RPCStrDelete

Calling Sequence

void IDL_RPCStrDelete (IDL_STRING *str, IDL_MEMINT n)

Description

Use this function to delete a string. See the description of IDL_StrDelete() in
“Deleting Strings’ on page 187.

External Development Guide IDL_RPCStrDelete

102 Chapter 4: Remote Procedure Calls

IDL_RPCStrDup

Calling Sequence

void IDL_RPCStrDup (IDL_STRING *str, IDL_MEMINT n)
Description

Use this function to duplicate a string. See the description of IDL_StrDup() in
“Copying Strings’ on page 186.

IDL_RPCStrDup External Development Guide

Chapter 4: Remote Procedure Calls 103

IDL_RPCStrEnsureLength

Calling Sequence

void IDL_RPCStrEnsureLength (IDL_STRING *s, int n)
Description

Use this function to check the length of a string. See the description of
IDL_StrEnsurel ength() in “Obtaining a String of a Given Length” on page 189.

External Development Guide IDL_RPCStrEnsureLength

104 Chapter 4: Remote Procedure Calls

IDL_RPCStrStore

Calling Sequence

void IDL_RPCStrStore(IDL_STRING *s, char *fs)
Description

Use this function to store a string. See description of IDL_StrStorein “ Setting an
IDL_STRING Vaue” on page 188.

IDL_RPCStrStore External Development Guide

Chapter 4: Remote Procedure Calls 105

IDL_RPCTimeout

Calling Sequence
int IDL_RPCTimeout (long ITimeOut)
Description

Usethis function to set the timeout val ue used when the RPC client makes requests of
the server.

Parameters

I TimeOut

A integer value, in seconds, specifying the timeout value that will be used in RPC
operations.

Return Value

This function returns 1 on success, or 0 on failure.

External Development Guide IDL_RPCTimeout

106 Chapter 4: Remote Procedure Calls

IDL_RPCVarCopy

Calling Sequence

void IDL_RPCVarCopy (IDL_VPTR src, IDL_VPTR dst)

Description

Use this function to copy the contents of the src variable to the dst variable. Any
dynamic memory associated with dst is de-allocated before the source dataiis copied.
This function emulates the callable IDL function IDL_Var Copy().

Parameters

Src

The source variable to be copied. If this variable is marked as temporary (returned
from IDL_RPCGettmp(), for example) the dynamic datawill be moved rather than
copied to the destination variable.

dst

The destination variable that srcis copied to.
Return Value

None.

IDL_RPCVarCopy External Development Guide

Chapter 4: Remote Procedure Calls 107

IDL_RPCVarGetData

Calling Sequence

void IDL_RPCVarGetData (IDL_VPTR v, IDL_MEMINT *n, char **pd,
int ensure_simple)

Description

Use this function to obtain a pointer to a variable's data, and to determine how many
data elements the variable contains.

Parameters

Y

The variable for which datais desired.

The address of a variable that will contain the number of elementsin v.
pd

The address of a variable that will contain a pointer to v’'s data, cast to be a pointer to
pointer to char (e.g. (char **) & myptr).

ensure_simple

If TRUE, thisroutine callsthe ENSURE_SIM PL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, EXCLUDE_FILE iscalled,
because file variables have no data area to return.

Return Value

On exit, IDL_RPCVar GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

External Development Guide IDL_RPCVarGetData

108 Chapter 4: Remote Procedure Calls

Variable Accessor Macros

The following macros can be used to get information on IDL RPC variables. These
macros are defined in 1d1_rpc.h.

All of these macros accept asingle argument, v, of type IDL_VPTR.
IDL_RPCGetArrayData(v)

This macro returns a pointer (char*) to the data area of an array block.
IDL_RPCGetArrayDimensions(v)

This macro returns a C array which contains the array dimensions.
IDL_RPCGetArrayNumDims(v)

This macro returns the number of dimensions of the array.
IDL_RPCGetVarByte(v)

This macro returns the value of a 1-byte, unsigned char variable.
IDL_RPCGetVarComplex(v)

This macro returns the value (as a struct, ot a pointer) of a complex variable.
IDL_RPCGetVarComplexR(v)

This macro returnsthe real field of a complex variable.
IDL_RPCGetVarComplexl(v)

This macro returns the imaginary field of a complex variable.
IDL_RPCGetVarDComplex(v)

Thismacro returnsthe value (as a struct, not apointer) of adouble precision, complex
variable.

IDL_RPCGetVarDComplexR(v)
This macro returns the real field of a double-precision complex variable.

IDL_RPCGetVarDComplexl(v)

This macro returns the imaginary field of a double-precision complex variable.

Variable Accessor Macros External Development Guide

Chapter 4: Remote Procedure Calls 109

IDL_RPCGetVarDouble(v)

This macro returns the value of a double-precision, floating-point variable.
IDL_RPCGetVarFloat(v)

This macro returns the value of a single-precision, floating-point variable.
IDL_RPCGetVarint(v)

This macro returns the value of a 2-byte integer variable.
IDL_RPCGetVarLong(v)

This macro returns the value of a4-byte integer variable.
IDL_RPCGetVarLong64(v)

This macro returns the value of a 8-byte integer variable.
IDL_RPCVarisArray(v)

This macro returns non-zero if visan array variable.
IDL_RPCGetVarString(v)

This macro returns the value of a string variable (as a char*).
IDL_RPCGetVarType(v)

This macro returns the type code of the variable. IDL type codes are discussed in
“Type Codes’ on page 114.

IDL_RPCGetVarUint(v)

This macro returns the value of an unsigned 2-byte integer variable.
IDLRPCGetVarULong(v)

This macro returns the value of an unsigned 4-byte integer variable.
IDL_RPCGetVarULong64(v)

This macro returns the value of an unsigned 8-byte integer val ue.

External Development Guide Variable Accessor Macros

110 Chapter 4: Remote Procedure Calls
RPC Examples

A number of examplefilesareincluded inthe 7pr,_DIR/external/rpc directory.
A Makefile for these examplesis aso included. These short C programs
demonstrate the use of the IDL RPC library.

Source files for the id1rpc server program are located in the
IDL_DIR/external/rpc directory. Notethat you do not need to build the idlrpc
server; itis pre-built and included in the IDL distribution. The id1rpc server source
files are provided as examples only.

RPC Examples External Development Guide

Part Il: IDL's Internal
API

Chapter 5
IDL Internals:
Types

This chapter describes the following topics:

TypeCodesccovviiiinnnn. 114 IDL_MEMINT and IDL_FILEINT Types 119
Mapping of Basic Types 116

External Development Guide 113

114

Chapter 5: IDL Internals: Types

Type Codes

Type Codes

Every IDL variable has adatatype. The possible type codes and their mapping to C
language types are listed in the following table. The undefined type code
(IDL_TYP_UNDEF) will dways have the value zero.

Although it israre, the number of types could change someday. Therefore, you
should always use the symbolic names when referring to any type except
IDL_TYP_UNDEF. Eveninthecase of IDL_TYP_UNDEF, using the symbolic
name will add clarity to your code. Note that all IDL structures are considered to be
of asingletype (IDL_TYP_STRUCT).

Clearly, distinctions must be made between various structures, but such distinctions
are made at adifferent level. There are afew constants that can be used to make your
code easier to read and less likely to break if/when the id1_export . h file changes.
These are:

e« IDL_MAX_TYPE—The value of the largest type.

e IDL_NUM_TYPES—The number of types. Since the types are numbered
starting at zero, IDL_NUM _TYPESisone greater than IDL_MAX_TYPE.

Name Type C Type
IDL_TYP_UNDEF Undefined <None>
IDL_TYP BYTE Unsigned byte UCHAR
IDL_TYP_INT 16-hit integer IDL_INT
IDL_TYP_LONG 32-bit integer IDL_LONG
IDL_TYP_FLOAT Single precision floating | float
IDL_TYP_DOUBLE Double precision floating | double
IDL_TYP_COMPLEX Single precision complex | IDL_COMPLEX
IDL_TYP_STRING String IDL_STRING
IDL_TYP_STRUCT Structure See “ Structure Variables”

on page 159
IDL_TYP_DCOMPLEX | Double precision IDL_DCOMPLEX
complex

Table 5-1: IDL Types and Mapping to C

External Development Guide

Chapter 5: IDL Internals: Types

115

Name Type C Type
IDL_TYP_PTR 32-hit integer IDL_ULONG
IDL_TYP_OBJREF 32-hit integer IDL_ULONG
IDL_TYP_UINT Unsigned 16-bit integer | IDL_UINT
IDL_TYP_ULONG Unsigned 32-bit integer | IDL_ULONG
IDL_TYP_LONG64 64-bit integer IDL_LONG64
IDL_TYP_ULONG64 Unsigned 64-bit integer | IDL_ULONG64

Table 5-1: IDL Types and Mapping to C (Continued)

Type Masks

There are some situations in which it is necessary to specify typesin the form of abit
mask rather than the usual type codes, for example when a single argument to a
function can represent more than asingle type. For any given type, the bit mask value

can be computed as. Mask =

2TypeCode

ThelDL_TYP_MASK preprocessor macro is provided to calculate these masks.
Given atype code, it returns the bit mask. For example, to specify abit mask for all

the integer types:

IDL_TYP_MASK (IDL_TYP_BYTE) | IDL_TYP_MASK (IDL_TYP_INT) |
IDL_TYP_MASK (IDL_TYP_LONG)

Specifying all the possible types would require along statement similar to the one
above. To avoid having to type so much for this common case, the
IDL_TYP_B_ALL constant is provided.

External Development Guide

Type Codes

116 Chapter 5: IDL Internals: Types
Mapping of Basic Types

Within IDL, the IDL data types are mapped into data types supported by the C
language. Most of the types map directly into C primitives, while
IDL_TYP_COMPLEX, IDL_TYP_DCOMPLEX, and IDL_TYP_STRING are
defined as C structures. The mappings are given in the following table. Structures are
built out of the basic types by laying them out in memory in the specified order using
the same alignment rules used by the C compiler for the target machine.

Unsigned Byte Data

UCHAR isdefined to be unsigned char in 1d1_export .h.
Integer Data

IDL_INT represents the signed 16-bit data type and isdefined in id1_export.h.
Unsigned Integer Data

IDL_UINT represents the unsigned 16-bit data type and is defined in
1dl_export.h.

Long Integer Data
IDL long integers are defined to be 32-bitsin size. The C long datatypeis not correct
on al systems because C compilers for 64-bit architectures usually define long as 64-
bits. Hence, the IDL_L ONG typedef, declared in id1_export.h isused instead.
Unsigned Long Integer Data

IDL_ULONG represents the unsigned 32-bit data type and is defined in
1dl_export.h.

64-bit Integer Data

IDL_L ONG64 represents the 64-bit datatype and is defined in 1d1_export.h.

Mapping of Basic Types External Development Guide

Chapter 5: IDL Internals: Types 117

Unsigned 64-bit Integer Data

IDL_UL ONG64 represents the unsigned 64-bit datatype and is defined in
1dl_export.h.

Complex Data

TheIDL_TYP_COMPLEX and IDL_TYP_DCOMPLEX data types are defined
by the following C declarations:

typedef struct { float r, i; } IDL_COMPLEX;
typedef struct { double r, i; } IDL_DCOMPLEX;

Thisisthe same mapping used by Fortran compilers to implement their complex data
types, which allows sharing binary data with such programs.

String Data

ThelDL_TYP_STRING datatypeisimplemented by a string descriptor:

typedef struct {
IDL._STRING_SLEN_ T slen; /* Length of string */
short stype; /* Type of string */
char *s; /* Pointer to string */

} IDL_STRING;

Thefields of the IDL_STRING struct are defined as follows:
slen

The length of the string, not counting the null termination. For example, the
string “Hello” has 5 characters.

stype

If stypeis zero, the string pointed at by s (if any) was not allocated from
dynamic memory, and should not be freed. If non-zero, s points at a string
alocated from dynamic memory, and should be freed before being replaced.
For information on dynamic memory, see “Dynamic Memory” on page 252
and “ Getting Dynamic Memory” on page 174.

External Development Guide Mapping of Basic Types

118 Chapter 5: IDL Internals: Types

If den isnon-zero, sisapointer to a null-terminated string of slen characters.
If den iszero, sshould not be used. The use of a string pointer to memory
located outside the IDL_STRING structure itself allows IDL stringsto have
dynamically-variable lengths.

Note
Strings are the most complicated basic data type, and as such, are at the root of

more coding errors than the other types. See “IDL Internals. String Processing” on
page 183.

Mapping of Basic Types External Development Guide

Chapter 5: IDL Internals: Types 119

IDL_MEMINT and IDL_FILEINT Types

Some of the IDL-supported operating systems limit memory and file lengthsto a
signed 32-bit integer (approximately 2.3 GB). Some systems have 64-bit memory
capabilities and others allow files longer than 231-1 bytes despite being 32-bit
memory limited. To gracefully handle these differences without using conditional
code, IDL internals use two special types, IDL_TYP_MEMINT (datatype
IDL_MEMINT) and IDL_TYP_FILEINT (datatype IDL_FILEINT) to represent
memory and file length limits.

IDL_MEMINT and IDL_FILEINT are not separate and distinct types; they are
actually mappingsto the IDL types discussed in “Mapping of Basic Types’ on
page 116. Specifically, they will be IDL_L ONG for 32-bit quantities, and
IDL_L ONGS64 for 64-bit quantities.

Asan IDL internals programmer, you should not write code that depends on the
actual machine type represented by these abstract types. To ensure that your code
runs properly on all systems, use IDL_MEMINT and IDL_FILEINT in place of more
specific types. These types can be used anywhere that anormal DL type can be used,
such as in keyword processing. Their systematic use for these purposes will ensure
that your codeis correct on any IDL platform.

Programmers should be aware of the IDL_MEMINTScal ar() and
IDL_FILEINTScalar() functions, described in “ Converting Arguments to C Scalars’
on page 206.

External Development Guide IDL_MEMINT and IDL_FILEINT Types

120 Chapter 5: IDL Internals: Types

IDL_MEMINT and IDL_FILEINT Types External Development Guide

Chapter 6

IDL Internals:
Keyword Processing

This chapter discusses the following topics:

IDL and Keyword Processing 122
Creating Routines that Accept Keywords . 123
Overview Of IDL Keyword Processing . . . 124
ThelDL_KW_ARR _DESC R Structure . 129

External Development Guide

Keyword Processing Options 130
The KW_RESULT Structure 132
CleaningUpo 136
Keyword Examples 137

121

122 Chapter 6: IDL Internals: Keyword Processing

IDL and Keyword Processing

Keyword arguments are an important IDL language feature. They alow a multitude
of options to be specified to aroutine in a straightforward, easily understood way.
The price of this added power isthat it is somewhat more complicated to write a
routine that accepts keywords than one that doesn’t. However, the additional effort is

well worth it.

IDL and Keyword Processing External Development Guide

Chapter 6: IDL Internals: Keyword Processing 123

Creating Routines that Accept Keywords

Asdescribed in “Adding System Routines’ on page 269, you must register your
system routine before IDL will recognize it. When registering the routine, you
indicate that it accepts keyword arguments in one of the following ways:

* Specifying the KEYWORDS option for the routine in the module definition
file of a Dynamically Loadable Module (DLM)

e Setting the KEYWORDS keyword in acall to LINKIMAGE.

e OR-ingtheconstant IDL_SYSFUN_DEF_F_KEYWORDS into the flags
field of the IDL_SY SFUN_DEF2 struct passed to IDL_SysRtnAdd()

Routines that accept keywords must perform keyword processing. A routine that does
not allow keyword processing knows that its ar gc argument gives the number of
positional arguments, and ar gv contains only those positional arguments. In contrast,
aroutine that accepts keywords receives an ar gc that gives the total number of
positional and keyword arguments, and these arguments are ddlivered in ar gv mixed
together in an undefined order.

The function IDL_K W ProcessByOffset() is used to process keywords and separate
the positional and keyword arguments. It is passed an array of IDL_KW_PAR
structures that give information about the allowed keywords and their attributes. The
keyword data resulting from this processis stored in auser defined KW_RESULT
structure. Finaly, the IDL_KW_FREE macrois used to clean up.

More information about these routines and structures can be found in the following
sections.

External Development Guide Creating Routines that Accept Keywords

124 Chapter 6: IDL Internals: Keyword Processing

Overview Of IDL Keyword Processing

IDL keyword processing can seem confusing at first glance, due to the interrelated
data structures involved. However, as the exampl es that follow in this chapter will

show, the conceptsinvolved are relatively straightforward once you have seen and
understood a concrete example such as “Keyword Examples’ on page 137.

Following is a skeleton of a system routine that accepts keyword arguments. These
elements must be present in any such system routine:

void keyword_sysrtn_skeleton(int argc, IDL_VPTR *argv, char *argk)
{

typedef struct {

IDL_KW_RESULT_FIRST_FIELD; /* Must be first entry in struct */

.. /* Variables specific to your keywords go here */
} KW_RESULT;
static IDL_KW_PAR kw pars[] = {

/*

* Keyword definitions for the keywords you accept go here,

* one definition per keyword. The keyword definitions refer

* to fields within the KW_RESULT type defined above.

*/

{ NULL } /* List must be NULL terminated */
Y
KW_RESULT kw; /* Variable which will hold the keyword wvalues */

(void) IDL_KWProcessByOffset (argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw);

/* The body of your routine */

IDL_KW_FREE;
}

IDL keyword processing is made up of the following data structures and steps.

A NULL terminated array of IDL_KW _PAR structures must be present. Each
entry in this array describes the keyword processing required for asingle
keyword.

« If akeyword represents an input-only, by-value array, the IDL_KW_PAR
structure that describes it points at an auxiliary IDL_KW_ARR_DESC_R
structure that supplies the additional array specific information.

* Thesystem routine must declare alocal type definition named KW_RESULT,
and avariable of thistype named kw. The KW_RESULT type contains al of

Overview Of IDL Keyword Processing External Development Guide

Chapter 6: IDL Internals: Keyword Processing 125

the data fields that will be set as aresult of processing the keywords described
by theIDL_KW_PAR and IDL_KW_ARR_DESC_R structures described
above. TheIDL_KW_PAR and IDL_KW_ARR_DESC R structuresrefer
to the fields of the KW_RESULT structure by their offset from the beginning
of the structure. The IDL_KW_OFFSETOF() macro is used to compute this
offset.

e Thesystem routine callsthe IDL_KWProcessByOffset() function, passing it
the address of the IDL_KW_PAR array, and the KW_RESULT variable
(kw).

e After IDL_KWProcessByOffset() is called, the KW_RESULT structure
(kw) contains the results, which can be accessed freely by the system routine.

» Beforereturning, the system routine must invoke the IDL_KW_FREE macro.
This macro ensures that any dynamic memory used by
IDL_KWProcessByOffset() is properly rel eased.

* System routines are not required to, and generally do not, call
IDL_KW_FREE before throwing errorsusing I DL _M essage() with the
IDL_ MSG_LONGJMPorIDL_MSG 10 LONGJMP action codes. In
these cases, the IDL interpreter automatically knows to release the resources
used by keyword processing on your behalf.

All of these data structures and routines are discussed in detail in the sections that
follow.

External Development Guide Overview Of IDL Keyword Processing

126 Chapter 6: IDL Internals: Keyword Processing

The IDL_KW_PAR Structure

ThelDL_KW_PAR struct provides the basic specification for keyword processing.

The IDL_KWProcessByOffset() function is passed a null-terminated array of these
structures. IDL_KW_PAR structures specify which keywords a routine accepts, the
attributes required of them, and the kinds of processing that should be done to them.

IDL_KW_PAR structures must be defined in lexical order according to the value of
the keyword field.

The definition of IDL_KW _PAR is:

typedef struct {
char *keyword;
UCHAR type;
unsigned short mask;
unsigned short flags;
int *specified;
char *value;

} IDL_KW_PAR;

where:

keyword

A pointer to a null-terminated string. Thisis the name of the keyword, and must be
entirely upper case. The array of IDL_KW _PAR structures passed to
IDL_KWProcessByOffset() must be lexically sorted by the strings pointed to by
thisfield. The final element in the array is signified by setting the keyword field to
NULL ((char *) 0).

type

IDL_KWProcessByOffset() automatically converts the keywords to the IDL type
specified by the type field. Specify O (IDL_TY PE_UNDEF) in cases where
ID_KW_VINor IDL_KW_OUT are specified in the flags field.

mask

The enable mask. This field is ANDed with the mask argument to
IDL_KWProcessByOffset() and if the result is non-zero, the keyword is accepted. If
the result is 0, the keyword isignored. This ability allows you to share an array of
IDL_KW_PAR structures between several routines, and enable or disable the
keywords used by each one.

The IDL_KW_PAR Structure External Development Guide

Chapter 6: IDL Internals: Keyword Processing 127

As an example of this, the IDL graphics and plotting routines have alarge number of
keywordsin common. In addition, each routine has afew keywords that are unique to
it. Keywords are implemented using a single shared array of IDL_KW_PAR with
appropriate values of the mask field. This technique dramatically reduces the amount
of datathat would otherwise be required by graphics keyword processing, and makes
IDL easier to maintain.

flags

Thisfield specifies specia processing instructions. It is a bit mask made by ORing
the following values:

e IDL_KW_ARRAY — Set this bit to specify that the keyword must be an
array. Otherwise, ascalar isrequired. If IDL_KW_ARRAY is specified, the
value field must point at an associated IDL_KW_ARR_DESC_R structure.

e« IDL_KW_OUT — Set thishit to indicate that the keyword specifies an output
parameter, passed by reference. Expressions and constants are excluded. In
other words, the routine is going to change the value of the keyword argument,
as opposed to the more usual case of simply reading it. The address of the
IDL_VARIABLE will be placed in auser supplied field of type IDL_VPTR
inthe KW_RESULT structure (kw). The offset of thisfield in the
KW_RESULT structure is specified by the value field (discussed below).
IDL_KW_OUT implies that no type checking or processing will be
performed on the keyword—it is up to the routine to perform the same sort of
type checking normally carried out for plain positional arguments.

A standard approach to find out if an IDL_KW_OUT parameter ispresentina
call toasystemroutineisto specify IDL_TYP_UNDEF (0) for the type field
and IDL_KW_OUT |IDL_KW_ZERO for flags. TheIDL_VPTR
referenced by the value field will either contain NULL, or a pointer to the
IDL_VARIABLE.

 IDL_KW_VIN — Set thishit to indicate that the keyword parameter is an
input parameter (expressions and/or constants are valid) passed by reference.
Theaddressof the IDL_VARIABLE or expression is stored in auser-supplied
field of the KW_RESULT structure (kw) referenced by the value field, as
with IDL_KW_OUT. IDL_KW_VIN implies that no type checking or
processing will be performed on the keyword—it is up to the routine to
perform the same sort of type checking normally carried out for plain
positional arguments.

e |IDL_KW_ZERO — Set thishit in order to zero the C variable pointed to by
the valuefield before parsing the keywords. This means that the object pointed

External Development Guide The IDL_KW_PAR Structure

128

Chapter 6: IDL Internals: Keyword Processing

to by value will always be zero unless it was specified by the user. Use this
technique to create keywords that have Boolean (on or off) meanings.

e IDL_KW_VALUE — If thishit is set and the specified keyword is present
and non-zero, the low 12 bits of thisfield (flags) will be bitwise ORed with the
IDL_LONG field of the KW_RESULT structure referenced by the value
field. Note that thisimpliesthe IDL_TYP_L ONG type code, and is
incompatible withthe IDL_KW_ARRAY, IDL_KW_VIN, and
IDL_KW_OUT flags.

specified

NULL, or the offset of the user supplied field within the KW_RESULT structure
(kw) of aCint variable that will be set to TRUE (non-zero) or FAL SE (0) based on
whether the routine was called with the keyword present. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset. Setting this
field to NULL (0) indicates that thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield isthe offset of the user supplied field in
the KW_RESULT structure (kw) into which the keyword value will be copied. The
IDL_KW_OFFSETOF() macro should be used to calculate the offset.

In the case of aread-only array, value is the memory address of an
IDL_KW_ARR_DESC R, structure, which isdiscussedin “The
IDL_KW_ARR_DESC_R Structure” on page 129.

In the case of aninput (IDL_KW _VIN) or output (IDL_KW_OUT) variable, this
field should contain the offset to the IDL_VPTR field within the user supplied
KW_RESULT that will befilled by IDL_KW ProcessByOffset() with the address
of the keyword argument. The IDL_KW_OFFSETOF() macro should be used to
calculate the offset.

The IDL_KW_PAR Structure External Development Guide

Chapter 6: IDL Internals: Keyword Processing 129

The IDL_KW_ARR _DESC R Structure

When a keyword is specified to be aread-only array (i.e., theIDL_KW_ARRAY
flag is set), the value field of the IDL_KW _PAR struct should be set to point to an
IDL_KW_ARR_DESC R structure. This structure is defined as:
typedef struct {
char *data;
IDL_MEMINT nmin;
IDL_MEMINT nmax;
IDL_MEMINT* n_offset;
} IDL_KW_ARR_DESC_R;

where;

data

The offset of the field within the user supplied KW_RESULT structure, of the C
array to receive the data. This offset is computed usingthe IDL_KW_OFFSETOF()
macro. Thisarray must be of the C type specified by the type field of the
IDL_KW_PAR struct. For example, IDL_TYP_LONG mapsintoaC
IDL_LONG. There must be nmax elementsin the array.

nmin

The minimum number of elements allowed.
nmax

The maximum number of elements allowed.

n_offset

The offset of the field within the user defined KW_RESULT structure into which
IDL_KWProcessByOffset() will store the number of elements actually stored into
the array field. This offset is computed using the IDL_KW_OFFSETOF() macro.

External Development Guide The IDL_KW_ARR_DESC_R Structure

130 Chapter 6: IDL Internals: Keyword Processing

Keyword Processing Options

The following cases occur in keyword processing:
Scalar Input-Only

For scalar, input-only keywords, the user never seesthe IDL_VARIABLE passed as
the keyword argument. Instead, the value of the IDL _VARIABLE is converted to the
type specified by the typefield of the IDL_KW _PAR struct and is placed into the
field of the user specified KW_RESULT structure, the offset of which is given by
the valuefield. This offset is calculated using the IDL_KW_OFFSETOF() macro.

Array Input-Only

Array input-only keywords work similarly to the scalar case, except that the value
field contains the address of an IDL_KW_ARR_DESC_R struct that suppliesthe
added information required to convert the passed array elements to the specified type
and place them into a C array for easy access. The array datais copied into aarray
within the user supplied KW_RESULT structure. The data field of the
IDL_KW_ARR_DESC_R struct suppliesthe offset of the array field within the
KW_RESULT structure. This offset is calculated using the
IDL_KW_OFFSETOF() macro.

As part of this process, the number of array elements passed is checked to be within
the range specifiedinthe IDL_KW_ARR_DESC_R struct, and if no error results,
the number is stored into afield of the user supplied KW_RESULT struct. The
n_offset field of the IDL_KW_ARR_DESC_R struct supplies the offset of this
“number of elements’ field within the KW_RESULT structure. This offset is
calculated using the IDL_KW_OFFSETOF() macro.

It is worth noting that input-only array keywords don't pass information about the
number of dimensions or their sizes, only the total number of elements. Therefore,
they are treated as 1-dimensional vectors. For more flexibility, use an Input/Output
keyword instead.

Input/Output

Thiscase occursif theIDL_KW_VINor IDL_KW_OUT flag issetinthe
IDL_KW_PAR struct. In this case, the value field contains the offset of the
IDL_VPTR field (computed with the IDL_KW_OFFSETOF() macro) in the user
defined KW_RESULT struct into which the actual keyword argument is copied. In
this case, you must do all error checking and type conversion yourself, just like with

Keyword Processing Options External Development Guide

Chapter 6: IDL Internals: Keyword Processing 131

positional arguments. Thisis certainly the most flexible method. However, the other
two cases are much easier to use, and are suitable for the vast majority of keywords.

External Development Guide Keyword Processing Options

132 Chapter 6: IDL Internals: Keyword Processing

The KW_RESULT Structure

Each system routine that processes keywords isrequired to define a structure variable
into which IDL_KWProcessByOffset() will store all the results of keyword
processing. This variable must follow the following rules:

e The name of the structure type must be defined as KW_RESULT. This
requirement exists so that the IDL_KW_OFFSETOF() macro can properly
do its work.

e Thefirst field withinany KW _RESULT structure must be defined using the
IDL_KW_RESULT_FIRST_FIELD macro. The contents of thisfirst field
are private, and should not be examined. It contains the information required
by IDL to properly track its resource use.

e Thename of the KW_RESULT variable must be kw. This requirement exists
so that the IDL_KW_FREE macro can properly do its work.

Hence, all system routines that process keywords will contain statements similar to
the following:
typedef struct {
IDL_KW_RESULT_FIRST FIELD;/* Must be first entry in struct */

- /* Additional user specified fields */
} KW_RESULT;

KW_RESULT kw;

All fields within the KW_RESULT structure after the required first field can have
arbitrary user selected names. The types of these fields are dictated by the
IDL_KW_PAR and IDL_KW_ARR_DESC_R structures that refer to them.

The KW_RESULT Structure External Development Guide

Chapter 6: IDL Internals: Keyword Processing 133

Processing Keywords

TheIDL_KWProcessByOffset() function is used to process keywords.

IDL_KWProcessByOffset() performs the following actions on behalf of the calling
system routine;

* Verify that the keywords passed to the routine are all allowed by the routine.
e Carry out the type checking and conversions required for each keyword.

« Find the positional (non-keyword) arguments that are scattered among the
keyword arguments in ar gv and copy them in order into the plain_args array.

e Return the number of plain arguments copied into plain_args.
IDL_KWProcessByOffset() has the form:

int IDL_KWProcessByOffset (int argc, IDL_VPTR *argv, char *argk,
IDL_KW_PAR *kw_list,
IDL_VPTR plain_args[], int mask,
void * base)

where:
argc

The number of arguments passed to the caller. Thisisthe first parameter to all system
routines.

argv

Thearray of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisisthe third
parameter to al system routines that accept keyword arguments.

kw_list

Anarray of IDL_KW _PAR structures (see “Overview Of IDL Keyword Processing”
on page 124) that specifies the acceptable keywords for thisroutine. Thisarray is
terminated by setting the keyword field of the final struct to NULL ((char *) 0).

External Development Guide Processing Keywords

134 Chapter 6: IDL Internals: Keyword Processing

plain_args

NULL, or an array of IDL_VPTR into which the IDL_VPTRs of the positional
arguments will be copied. This array must have enough el ements to hold the
maximum possible number of positional arguments, as defined in
IDL_SYSFUN_DEF2. See “Registering Routines’ on page 296.

Note
IDL_KWProcessByOffset() sorts the plain argumentsinto the front of the input
argv argument. Hence, plain_args is often not necessary, and can be set to NULL.

mask

Mask enable. This variable is ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

base

Address of the user supplied KW_RESULT structure, which must be named kw.
Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_ KWProcessByOffset() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and valuefields
with IDL_KW_ZERO set), can become significant, especially when more than a
few keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN as the first keyword array
eement. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL KW ProcessByOffset() into a more efficient form the first
timeitisused. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL_KW_PAR kw_pars[] = {
{ "DOUBLE", IDL_TYP_ DOUBLE, 1, O,
IDL_KW_OFFSETOF (d_there), IDL_KW_OFFSET_OF(d) 1},
{ "FLOAT", IDL_TYP_FLOAT, 1,IDL_KW_ZERO,O,IDL_KW_OFFSET OF(f) },
{ NULL }
Y

Processing Keywords External Development Guide

Chapter 6: IDL Internals: Keyword Processing 135

To use fast scanning, it would be written as:

static IDL_KW_PAR kw _pars([] = {
IDL_KW_FAST_SCAN,
{ "DOUBLE", IDL_TYP DOUBLE, 1, O,
IDL_KW_OFFSET_OF (d_there), IDL_KW_OFFSETOF(d) 1},

{"FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0,IDL_KW_OFFSETOF (f) 1},
{ NULL }

External Development Guide Processing Keywords

136 Chapter 6: IDL Internals: Keyword Processing

Cleaning Up

All normal exit paths from your system routine are required to call the
IDL_KW_FREE macro prior to returning. This macro must be called exactly once
for every cal to IDL_KWProcessByOffset(). You must therefore structure your
code so that IDL_KW_FREE executes before any return statement. Many functions
to not use an explicit return statement, relying on the implicit return that occurs when
execution comes to the end of the function. Insuch acase, IDL_KW_FREE must be
the last statement in the function.

Cleaning Up External Development Guide

Chapter 6: IDL Internals: Keyword Processing 137

Keyword Examples

The following C function implements KEYWORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for aroutine. It
prints the values of its keywords, changes the value of READWRITE to 42 if it is
present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

Note

The following code is designed to demonstrate keyword processing in asimple,

uncluttered example. In actual code, you would not use the printf mechanism used
on lines 42-53.

External Development Guide Keyword Examples

138 Chapter 6: IDL Internals: Keyword Processing
1§ void keyword_demo (int argc, IDL_VPTR *argv, char *argk)
24 {
3 typedef struct {
4 IDL_KW_RESULT_FIRST FIELD; /* Must be first entry in structure */
5 IDL_LONG 1;
6 float £f;
7 double d;
8 int d_there;
9 IDL_STRING s;
10 int s_there;
11 IDL_LONG arr_datal[l0];
12 int arr_there;
13 IDL_MEMINT arr_n;
14 IDL_VPTR var;
15 } KW_RESULT;
16 static IDL_KW_ARR_DESC_R arr_d = { IDL_KW_OFFSETOF (arr_data), 3, 10,
C 17 IDL_KW_OFFSETOF (arr_n) };
18
19 static IDL_KW_PAR kw_pars[] = {
20 IDL_KW_FAST SCAN,
21 { "ARRAY", IDL_TYP LONG, 1, IDL_KW_ARRAY,
22 IDL_KW_OFFSETOF (arr_there), CHARA(arr_d) 1},
23 { "DOUBLE", IDL_TYP_DOUBLE, 1, O,
24 IDL_KW_OFFSETOF (d_there), IDL_KW_OFFSETOF (d) 1},
25 { "FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, IDL_KW_OFFSETOF(f) 1},
26 { "LONG", IDL_TYP_LONG, 1, IDL_KW_ZERO|IDL_KW_VALUE|15, 0,
27 IDL_KW_OFFSETOF (1) },
28 { "READWRITE", IDL_TYP_UNDEF, 1, IDL_KW_OUT|IDL_KW_ZERO,
29 0, IDL_KW_OFFSETOF (var) 1},
30 { "STRING", TYP_STRING, 1, O,
31 IDL_KW_OFFSETOF (s_there), IDL_KW_OFFSETOF (s) 1},
32 { NULL }
33 Y

Figure 6-1: Keyword processing example.

Keyword Examples

External Development Guide

Chapter 6: IDL Internals: Keyword Processing

139

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

C 50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

KW_RESULT kw;
int 1i;
IDL_ALLTYPES newval;

(void) IDL_KWProcessByOffset (argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw);

printf ("LONG: <%spresent>\n", kw.l ? "": "not ");
printf ("FLOAT: %f\n", kw.f);
printf ("DOUBLE: <%spresent>\n", kw.d_there ? "": "not ");
printf ("STRING: %s\n",
kw.s_there ? IDL_STRING_STR(&kw.s) : "<not present>");

printf ("ARRAY: ");
if (kw.arr_there)

for (i = 0; 1 < kw.arr_n; i++)
printf (" %d", kw.arr_datal[il]);
else

printf ("<not present>");
printf ("\n");

printf ("READWRITE: ");
if (kw.var) {
IDL_Print(l, &kw.var, (char *) 0);

newval.l = 42;
IDL_StoreScalar (kw.var, TYP_LONG, &newval) ;
} else {

printf ("<not present>");
}
printf("\n");

IDL_KW_FREE;

External Development Guide

Figure 6-1: Keyword processing example. (Continued)

Executing this routine from the IDL command line, by entering:
KEYWORD_DEMO
gives the output:

LONG: <not present>
FLOAT: 0.000000

DOUBLE: <not present>
STRING: <not present>
ARRAY: <not present>
READWRITE: <not present>

Keyword Examples

140 Chapter 6: IDL Internals: Keyword Processing

Executing it again with keywords specified:

A = 56

KEYWORD_DEMO, /LONG, FLOAT=2, DOUBLE=34,$
STRING="hello", ARRAY=FINDGEN(10), READWRITE=A

PRINT, 'Final Value of A: ', A

gives the outpuit:

LONG: <present>

FLOAT: 2.000000

DOUBLE: <present>

STRING: hello

ARRAY: 01 2 3456 789
READWRITE: 56

Final Value of A: 42

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

3-15

Every system routine that processes keywords must defineaKW_RESULT
structure type. All output from keyword processing is stored in the fields of this
structure. Thefirst field in the KW_RESULT structure must always be
IDL_KW_RESULT_FIRST_FIELD. Theremaining fields are dictated by the
keywords defined in kw_par s below, starting on line 19. The fields with named
ending in _there are used for the specified field of the IDL_KW _PAR structs, and
must be type int. The types of the other fields must match their definitionsin the
relevant IDL_KW_PAR and IDL_KW_ARR_DESC_R structs.

16-17

The ARRAY keyword, defined on line 21, isaread-only array, and requires this array
description. Note that the data field specifies the location of the arr_data array
within KW_RESULT where the array contents should be copied, and the n_offset
field specifies the location of the arr_n field where the number of elements actually
seen isto be written. Both of these are specified as offsetsinto KW_RESULT, using
the | DL_KW_OFFSET () macro to compute this. The minimum number of elements
allowed is 3, the maximum is 10.

19

The start of the keyword definition array. Notice that all of the keywords are ordered
lexically (ASCII) and that thereisa NULL entry at the end (line 32). Also, all of the
mask fields are set to 1, asis the mask argument to IDL_ KW ProcessByOffset() on

Keyword Examples External Development Guide

Chapter 6: IDL Internals: Keyword Processing 141

line 39. Thismeansthat all of the keywordsin the list are to be considered valid in
this routine.

20

Thisroutine is requesting fast keyword processing. You can learn more about this
option in “Speeding Keyword Processing” on page 134.

21-22

ARRAY isaread-only array. Its value field is therefore the actual address (and not an
offset into KW_RESULT) of theIDL_KW_ARR_DESC_R struct that completes

the array definition. This program wantsto know explicitly if ARRAY was specified,
so the specified field is set to the offset within KW _RESULT of thearr_therefield.

23-24

DOUBLE isascalar keyword of IDL_TYP_DOUBLE. It usesthe variable
kw.d_thereto know if the keyword is present. Both the specified and value fields are
specified as offsetsinto KW_RESULT.

25

FLOAT isan IDL_TYP_FL OAT scalar keyword. It does not use the specified field
of theIDL_KW _PAR struct to get notification of whether the keyword is present, so
that field is set to 0. Instead, it usesthe IDL_KW_ZERO flag to make sure that the
variable kw.f is always zeroed. If the keyword is present, the value will be written
into kw.f, otherwise it will remain 0. The important point is that the routine can't tell
the difference between the keyword being absent, or being present with a user-
supplied value of zero. If this distinction doesn’t matter, such as when the keyword is
to serve as an on/off toggle, use this method. If it does matter, use the specified field
as demonstrated with the DOUBLE keyword, above.

26-27

LONG isascaar keyword of IDL_TYP_LONG. It setstheIDL_KW_ZERO flag
to get the variable kw.| zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 bits of the flags field) will be ORed into the variable kw.l.

28-29

ThelDL_KW_OUT flag indicates that the routine wantsthe IDL_VPTR for
READWRITE if it is present. Since IDL_KW_ZERO is also set, the variable

External Development Guide Keyword Examples

142

Chapter 6: IDL Internals: Keyword Processing

kw.var will be zero unless the keyword is present. The specification of
IDL_TYP_UNDEF hereindicates that there is no type conversion or processing
appliedto IDL_KW_OUT keywords.

30-31

The STRING keyword demonstrates scalar string keywords.
32

All IDL_KW _PAR arrays must be terminated with a NULL entry.
35

Every system routine that processes keywords must declare a variable named kw, of
type KW_RESULT. Thisvariable should be a C stack based local variable (C auto
class).

37

The IDL_StoreScalar () function used on line 59 requires the scalar value to be
providedinan IDL_ALLTYPES struct.

39-40

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_ KW ProcessByOffset() is
discarded. The final argument isthe address of the KW_RESULT variable (kw) into
which the results will be written.

42
The kw.l variable will be 0if LONG isnot present, and 1if it is.
43

The kw.f variable will aways have some usable value, but if it is zero there is no way
to know if the keyword was actually specified or not.

44-46

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Vaues’ on page 185.

Keyword Examples External Development Guide

Chapter 6: IDL Internals: Keyword Processing 143

47-53

Accessing the ARRAY keyword issimple. Thekw.arr_therevariableindicatesif the
keyword is present, and kw.arr_n gives the number of elements.

55-63

Sincethe READWRITE keyword is accessed viatheargument’'sIDL_VPTR, we use
the IDL_Print() function to print its value. This has the same effect as using the user-
level PRINT procedure when running IDL. See “Output of IDL Variables’ on

page 248. Then, we changeits value to 42 using IDL _StoreScalar ().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_Print()) in your own code.

65

Normal exit from any routine that calls IDL_ KW ProcessByOffset() must be
preceded by acall to IDL_KW_FREE. This macro releases any dynamic resources
that were allocated by keyword processing.

External Development Guide Keyword Examples

144 Chapter 6: IDL Internals: Keyword Processing

The Pre-IDL 5.5 Keyword API

Versions of IDL prior to IDL 5.5 used a different, but similar, keyword processing
API to that found in the current versions. The remainder of this chapter provides
information of interest to programmers maintaining older system routines that were
written to that API.

Note
ITT Visual Information Solutions recommends that al new code be written using
the new keyword processing API. The older API continues to be supported for
backwards compatibility, and there is no urgent reason to convert code that usesit.
However, the effort of converting old code to the new API is minimal, and can be
beneficial.

Background

If you have system routines that were written for use with versions of IDL older than
IDL 5.5, your code uses an older keyword processing API, described in “Processing
Keywords With IDL_KWGetParams()” on page 390, that including the following
obsolete elements:

 IDL_KWGetParams()
+ IDL_KW_ARR_DESC
« IDL_KWCleanup(), IDL_KW_MARK, IDL_KW_CLEAN

Thisold APl served for many years, but it had some unfortunate features that made it
hard to use correctly:

e Therulesfor when and how to use IDL_KWCleanup() were difficult to
remember. The programmer had to decide whether or not to call it based on the
types of the keywords being processed. If you didn’t call it when you should,
memory would be leaked.

e Inorder to ensure correctness, many programmers would resort to always
calling IDL_KWCleanup() whether it was is needed or not. Thisis
inefficient, but otherwise fine.

 Theuseof IDL_KWCleanup() is based on aworst case assumption that the
keywords that require cleaning will actually be invoked by the IDL user. This
is often not the case, and is therefore inefficient.

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 6: IDL Internals: Keyword Processing 145

Imagine an existing system routine that does not need to use
IDL_KWCleanup(), and therefore is coded not to useit. If anew keyword
should later be added to that routine, and that new keyword should require the
use of IDL_KWCleanup(), itisvery likely that the programmer adding this
new keyword will fail to recognize that issue. Thisleads to memory leaking
from aformerly correct routine.

If afuture version of IDL should get a new data type that requires cleaning,
that will change the rules for when IDL_KW Cleanup() needs to be called.
Existing code may need to be examined to fix this situation.

The old keyword API is not reentrant, because it requires static variable
addresses to be embedded in the keyword list. This has always been a problem
for recursively callable routines (e.g. WIDGET_CONTROL, which can cause
an IDL procedure callback to execute, which can in turn call
WIDGET_CONTROL again). In the past, we have carefully coded these
complex routines to avoid problems, but the large amount of code required is
difficult to write and verify. The proper solution is areentrant keyword API
that uses offsets to variables within a structure, instead of actual statically
scoped variable addresses. Thisis what the current API provides.

Advantages Of The IDL 5.5 API

In contrast, keyword processing, in IDL 5.5 and later is built around the
IDL_KWProcessByOffset() function, has the following advantages:

The old API remainsin place with full functionality. Hence, you are not
required to update your old code (There are benefits to such updating,
however).

A transitional API, build around the IDL_ KW ProcessByAddr () function,
exists to help ease updating your code. See “ The Transitional API” on

page 147 for details. The transitional API is a halfway measure designed to
solve the worst problems of the old API while requiring the minimum amount
of change.

The new API, and the transitional API both eliminate the confusing
IDL_KWCleanup() routine and its requirement to KW_MARK before, and
KW _CLEAN after keyword processing based on the types of the keywords.
Instead, the keyword processing API keeps track of the need to cleanup itself,
and handles this efficiently. The user is freed from guesswork about how and
when to do the required cleanup.

External Development Guide The Pre-IDL 5.5 Keyword API

146 Chapter 6: IDL Internals: Keyword Processing

» Keyword cleanup will only happen if the keyword module determinesthat it is
necessary as it processes the actual keywords used. Thisis more efficient, and
it can be easily extended within IDL if a new datatypeis added to the IDL
system, without requiring any change to your code.

e Theinternal data structures used to maintaining keyword state are now
dynamically allocated, and do not have the static limits that the old
implementation did.

» Thenew API is able to process keywords using a re-entrant keyword
description. Results are written to stack based (C auto) variables rather than
statically defined variables. This can be used to greatly ssimplify the
implementation of recursive system routines, and has been used extensively
for that purpose within IDL.

Differences And Similarities Between APIs

The current IDL keyword processing APl was desighed to minimize the changes
necessary to convert existing older code. The differences and similarities between
these APIs are summarized below:

e ThebasicIDL_KW_PAR data structure is unchanged between the two.
However, in the old AP, the specified, and value fields are addresses to
statically alocated C variablesor IDL_KW_ARR_DESC structures. In the
new API, specified is always an offset into a user defined KW_RESULT
structure. The value field is an offset into KW_RESULT when it is used to
refer to data. It is an address when used to refer to an
IDL_KW_ARR_DESC_R structure.

e Theold APl usesthe IDL_KW_ARR_DESC structure to define
IDL_KW_ARRAY read-only arrays. The new API usesthe very similar
IDL_KW_ARR_DESC R structure. Thisis necessary because
IDL_KW_ARR_DESC isnot reentrant (the number of array elementsused is
written into the struct), while IDL_KW_ARR_DESC_R causes them to be
written into afield inthe KW_RESULT variable instead.

e Thenew API requires all keyword variablesto be contained in asingle
KW_RESULT structure, while the old API allowed them to be independent
variables. Thisisimportant to the offset-based scheme used in the new API, as
well as having the nice side effect of improving the organization and
readability of most code.

e Theold APl usesIDL_KWGetParams() to process keywords. The new API
uses IDL_KWProcessByOffset().

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 6: IDL Internals: Keyword Processing 147

e Theold APl usesIDL_KWCleanup() to free resources. The rulesfor using it
are complicated and lead to latent coding errors. The new API usesthe
IDL_KW_FREE macro, and has a simple consistent rule for use.

Converting Existing Code To The New API

To convert code that uses the old API to the new version:

» Define atypedef for astruct named KW_RESULT, containing the keyword
variables. Make the first field be the predefined
IDL_KW_RESULT_FIRST FIELD.

* Modify your keyword definition list so that the specified and value fields of
each IDL_KW_PAR dtruct contain offsets instead of addressesin all cases
except when the value field referencesan IDL_KW_ARR_DESC struct. To
do this, usethe IDL_KW_OFFSETOF() macro.

« Anyreferencetoan IDL_KW_ARR_DESC structure for an
IDL_KW_ARRAY keyword must be converted to an
IDL_KW_ARR_DESC_R struct.

* Replacethecall to IDL_KWGetParams() with acall to
IDL_KWProcessByOffset().

e Removeany IDL_KWCleanup(IDL_KW_MARK) calls.

* Replaceany IDL_KWCleanup(IDL_KW_CLEAN) callswith the
IDL_KW_FREE macro. Check to ensure that al exit paths from your
function other than vial DL_M essage() include a call to this macro.

The Transitional API

We recommend that your convert your code to the reentrant keyword API based
around the IDL_ KW ProcessByOffset() and IDL_KWFreg() functions. Thisis
almost always a straightforward operation, and the resulting code has all of the
advantages discussed in “Advantages Of The IDL 5.5 API” on page 145. However,
there is another alternative that may be useful is some situations. A third keyword
AP, built around the IDL_ KW ProcessByAddr () function exists that provides the
benefits of eliminating the confusing IDL_K W Cleanup() function, while not
requiring the use of static non-reentrant separate variables to change.

External Development Guide The Pre-IDL 5.5 Keyword API

148 Chapter 6: IDL Internals: Keyword Processing

Thetransitional API isahalfway measure designed to solve theworst problems of the
old API while requiring the minimum amount of change to your code:
int IDL_KWProcessByAddr (int argc, IDL_VPTR *argv, char *argk,

IDL_KW_PAR *kw_list, IDL_VPTR *plain_args,
int mask, int *free_required)

void IDL_KWFree (void)

where:
argc, argv, argk, plain_args, mask

These arguments are the same as those required by IDL_KWProcessByOffset()
kw_list

Anarray of IDL_KW_PAR structures, in the absolute address form required by the
old IDL_KWGetParams() keyword API (the specified and value fields use address
to static C variables).

free_required

The address of an integer to befilled in by IDL_KWProcessByAddr (). If set to
TRUE, the caller must call IDL_KWFreeg() prior to exit from the routine.

Example: Converting From The Old Keyword API

To illustrate the use of the old keyword AP, the transitional API, and the new
reentrant AP, this section provides an extremely simple exampl e, written three times,
once with each API.

Another useful comparison isto compare the example “Keyword Examples” on
page 137 with its origina version written with the old API which can be found in
“Keyword Examples’ on page 394.

Old API

IDL_VPTR IDL_someroutine(int argc, IDL_VPTR *argv, char *argk)
{
static IDL_VPTR count_var;
static IDL_LONG debug;
static IDL_STRING name;
static IDL_KW_PAR kw_pars[] = {
{ "counNT", 0,1, IDL_KW_OUT| IDL_KW_ZERO, 0, IDL_CHARA (count_var) },
{ "DEBUG", IDL_TYP_LONG, 1, IDL_KW_ZERO, O0,IDL_CHARA (debug) 1},
{ "NAME", IDL_TYP_STRING, 1, IDL_KW_ZERO, O0,IDL_CHARA (name) 1},

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 6: IDL Internals: Keyword Processing 149

}

{ NULL }
Y
IDL_VPTR result;

IDL_KWCleanup (IDL_KW_MARK) ;
argc = IDL_KWGetParams (argc,argv,argk, kw _pars, (IDL_VPTR *)0,1);

/* Your code goes here. Keyword values are available in the
* static variables.*/

/* Cleanup keywords before leaving */
IDL_KWCleanup (IDL_KW_CLEAN) ;
return(result) ;

Transitional API

Thetransitional API provides the benefits of simplified and straightforward cleanup,
but does not require you to alter your IDL_KW_PAR array or gather the keyword
variables into a common structure. The resulting code is very similar to the old API.

IDL_VPTR IDL_someroutine(int argc, IDL_VPTR *argv, char *argk)

{

static IDL_VPTR count_var;

static IDL_LONG debug;

static IDL_STRING name;

static IDL_KW_PAR kw_pars[] = {
{"counT", 0, 1, IDL_KW_OUT|IDL_KW_ZERO,
0, IDL_KW_ADDROF (count_var) 1},
{ "DEBUG", IDL_TYP_LONG,1,IDL_KW_ZERO, 0, IDL_KW_ADDROF (debug) },
{ "NAME", IDL_TYP_ STRING,1,IDL_KW_ZERO, 0, IDL_KW_ADDROF (name)},
{ NULL }

Y

int kw_free;
IDL_VPTR result;

argc = IDL_KWProcessByAddr (argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw_free);

/* Your code goes here. Keyword values are available in the
* gtatic variables.*/

/* Cleanup keywords before leaving */
if (kw_free) IDL_KWFree();

return(result) ;

External Development Guide The Pre-IDL 5.5 Keyword API

150 Chapter 6: IDL Internals: Keyword Processing

New Reentrant API

IDL_VPTR IDL_someroutine (int argc, IDL_VPTR *argv, char *argk)
{
typedef struct {
IDL_KW_RESULT FIRST_FIELD; /* Must be first entry in struct */
IDL_VPTR count_var;
IDL_LONG debug;
IDL_STRING name;
} KW_RESULT;
static IDL_KW_PAR kw_pars[] = {
{ "COUNT", 0, 1, IDL_KW_OUT | IDL_KW_ZERO,
0, IDL_KW_ OFFSETOF (count_var) 1},
{ "DEBUG", IDL_TYP_LONG, 1, IDL_KW_ZERO,
0, IDL_KW_OFFSETOF (debug) 1},
{ "NAME", IDL_TYP_STRING, 1, IDL_KW_ZERO,
0, IDL_KW_OFFSETOF (name) 1},
{ NULL }
Y

KW_RESULT kw;
IDL_VPTR result;

argc = IDL_KWProcessByOffset (argc, argv, argk, kw_pars,
(IDL_VPTR *) 0, 1, &kw);

/* Your code goes here. Keyword values are available in the
* kw struct.*/

/* Cleanup keywords before leaving if necessary */
IDL_KW_FREE;

return (result) ;

The Pre-IDL 5.5 Keyword API External Development Guide

Chapter 7

IDL Internals:

Variables

This chapter discusses the following topics:

IDL and Internal Variables 152
TheDL_VARIABLE Structure 153
Scalar Variables 156
Array Variables 157
StructureVariables................... 159
Heap Variables 164
Temporary Variables 165

Creating an Array from Existing Data.. ... 172

External Development Guide

Getting DynamicMemory 174
Accessing VariableData. 176
Copying Variables 177
Storing Scalar Values 178
Obtaining the Name of aVariable 180
Looking Up Main Program Variables ... 181
Looking Up Variablesin Current Scope . 182

151

152 Chapter 7: IDL Internals: Variables

IDL and Internal Variables

This chapter describes how variables are created and managed within IDL. While
reading this chapter, you should refer to the following figure to see how each part fits
into the overall structure of an IDL variable.

32-bit Assoc offset

IDL_MEMINT elt_len
IDL_MEMINT ar_len
IDL_MEMINT n_elts
Imported Data g UCHAR *data
Normal UCHAR n dim
UCHAR type orm UCHAR flags
UCHAR flags case short file_unit
IDL_ARRAY_DIM dim
IDL_ALLTYPESvaug <union> IDL_ARRAY_FREE CB free cb
IDL_FILEINT offset
UCHAR c IDL_LONG data_guard
IDL_INT i L>
UINT ui Usually, datafollowed by a
IDL_LONG | trailing data guard.
IDL_ULONG ul
IDL_LONG64 164 A
IDL_ULONG ul64
float f
double d
IDL_COMPLEX <struct>
cmp float r
float i
IDL_DCOMPLEX <struct>
dcmp double r
double i
IDL_STRING <struct>
str IDL_STRING_SLEN|T den
short stypel
char *s
IDL_ARRAY *ar |
IDL_HVID hvid
IDL_SREF S <struct>
IDL_ARRAY *ar —p
IDL_STRUCTURE *sdef —
Structures and object

definitions (opague)

Figure 7-1: Structure of an IDL variable

IDL and Internal Variables External Development Guide

Chapter 7: IDL Internals: Variables 153

The IDL_VARIABLE Structure

IDL variables are represented by IDL_VARIABLE structures. The definition of
IDL_VARIABLE isasfollows:

typedef struct {
UCHAR type;
UCHAR flags;
IDL_ALLTYPES value;
} IDL_VARIABLE;

AnIDL_VPTR isapointer to an IDL_VARIABLE structure:
typedef IDL_VARIABLE *IDL_VPTR;

ThelDL_ALLTYPESunion is defined as:

typedef union {

UCHAR c; /* Scalar IDL_TYP_BYTE */

IDL_INT i; /* Scalar IDL_TYP_INT */

IDL_UINT ui; /* Unsigned short integer value */
IDL_LONG 1; /* Scalar IDL_TYP_LONG */
IDL_ULONG ul; /* Unsigned long value */
IDL._LONG64 164; /* 64-bit integer value */
IDL_ULONG64 ulé64; /* Unsigned 64-bit integer value */
float f; /* Scalar IDL_TYP FLOAT */

double d; /* Scalar IDL_TYP_DOUBLE */
IDL_COMPLEX cmp; /* Scalar IDL_TYP_COMPLEX */
IDL_DCOMPLEX dcmp; /* Scalar IDL_TYP_DCOMPLEX */
IDL_STRING str; /* Scalar IDL_TYP_STRING */
IDL_ARRAY *arr; /* Pointer to array descriptor */
IDL._SREF s; /* Structure descriptor */
IDL_HVID hvid; /* Heap variable identifier */

}IDL_ALLTYPES;

The basic scalar types are contained directly in thisunion, while arrays and structures
arerepresented by the IDL_ARRAY and IDL_SREF structures that are discussed
later in this chapter. Thetypefield of the IDL_VARIABLE structure contains one of
the type codes discussed in “ Type Codes’ on page 114. When avariableisinitialy
created, it is given the type code IDL_TYP_UNDEF, indicating that the variable
contains no value.

Theflagsfield is abit mask that specifies information about the variable. Asa
programmer adding code to the IDL system, you will rarely need to set bitsin this
mask. These bits are set by whatever portion of IDL created the variable. You can
check them to make sure the characteristics of the variable fit the requirements of
your routine (see “ Checking Arguments’ on page 202).

External Development Guide The IDL_VARIABLE Structure

154 Chapter 7: IDL Internals: Variables

The defined bitsin the mask are:
IDL_V_CONST

If thisflag is set, the variable is actually a constant. This means that storage for the
IDL_VARIABLE residesinside the code section of the user procedure or function
that used it. The IDL compiler generates such IDL_VARIABLEswhen an
expression involving a constant occurs. For example, the IDL statement:

PRINT, 23 * A

causes the compiler to generate a constant for the “23". You must not change the
value of thistype of “variable’.

IDL_V_TEMP

If thisflag is set, the variable is atemporary variable. IDL maintains a pool of
nameless IDL_VARIABL Esthat can be checked out and returned as needed. Such
variables are used by the interpreter to temporarily store the results of expressions on
the stack. For example, the statement:

PRINT, 2 * 3
will cause the interpreter to go through a sequence of events similar to:
1. Push aconstant variable for the 2 on the stack.
2. Push aconstant variable for the 3 on the stack.

3. Allocate atemporary variable, pop the two constants from the stack, perform
the multiplication with the result going into the temporary variable.

4. Push the temporary variable onto the stack.
Call the PRINT system procedure specifying one argument.

6. Removethe argument to PRINT from the stack, and return the temporary
variable.

Temporary variables are also used inside user procedures and functions. See
“Temporary Variables’ on page 165.

IDL_V_ARR

If thisflag is set, the variable is an array, and the value field of the IDL_VARIABLE
points to an array descriptor.

IDL_V _FILE
If thisflag is set, the variable is afile variable, as created by IDL's ASSOC function.

The IDL_VARIABLE Structure External Development Guide

Chapter 7: IDL Internals: Variables 155

IDL_V_DYNAMIC

If thisflag is set, the memory used by thisIDL_VARIABLE is dynamically
alocated. This bit is set for arrays, structures, and for variables of
IDL_TYP_STRING (because the memory referenced viathe string pointer is
dynamic).

IDL_V_STRUCT

If thisflag is set, the variable is a structure, and the value field of the
IDL_VARIABLE points to the structure descriptor. For implementation reasons, all
structure variables are also arrays, so IDL_V_STRUCT asoimpliesIDL_V_ARR.
Therefore, it isimpossible to have a scalar structure. However, single-element
structure arrays are quite common.

Because structure variables have their type field set to IDL_TYP_STRUCT, the
IDL_V_STRUCT bit isredundant. It exists for efficiency reasons.

External Development Guide The IDL_VARIABLE Structure

Scalar Variables

Chapter 7: IDL Internals: Variables

A scalar IDL_VARIABLE isdistinguished by not havingthe IDL_V_ARR bit setin
itsflagsfield. A scalar variable must have one of the basic data types (IDL structures
are never scalar) shown in Table 7-1. The datafor ascalar variable is stored in the
IDL_VARIABLE itsdf, usingthe IDL_ALLTYPES union. The following table
gives the relationship between the data type and the field used.

Scalar Data Type

Field that Stores

Data

IDL_TYP_UNDEF None.
IDL_TYP BYTE valuec
IDL_TYP_INT vauei
IDL_TYP_UINT value.ui
IDL_TYP_LONG valuel
IDL_TYP_ULONG vaue.ul
IDL_TYP_LONG64 valuel64
IDL_TYP_ULONG64 value.ul64
IDL_TYP_FLOAT vauef
IDL_TYP_DOUBLE valued
IDL_TYP_COMPLEX value.cmp
IDL_TYP_DCOMPLEX value.dcmp
IDL_TYP_STRING value.str
IDL_TYP_PTR value.hvid
IDL_TYP_OBJ value.hvid

Table 7-1: Scalar Variable Data Locations

Scalar Variables

External Development Guide

Chapter 7: IDL Internals: Variables 157

Array Variables

Array variables have the IDL_V_ARR bit of their flags field set, and the value.arr
field pointsto an array descriptor defined by the IDL_ARRAY structure:

typedef IDL_MEMINT IDL_ARRAY_DIM[IDL_MAX ARRAY_DIM];

typedef struct {
IDL_MEMINT elt_len;
IDL_MEMINT arr_len;
IDL_MEMINT n_elts;
UCHAR *data;
UCHAR n_dim;
UCHAR flags;
short file_unit;
IDL_ARRAY_DIM dim;
} IDL_ARRAY;

The meaning of the fields of an array descriptor are:
elt_len

The length of each array element in bytes (chars). The array descriptor does not keep
track of the types of the array elements, only their lengths. Single elements can get
quite long in the case of structures.

For IDL structures, this value includes any padding necessary to properly align the
data along required boundaries. On agiven platform, IDL creates structures the same
way a C compiler does on that platform. As aresult, you should not assume that the
size of astructure isthe sum of the sizes of the structurefields, or that the field offsets
are in specific locations.

arr_len

The length of the entire array in bytes. This value could be calculated as (elt_len *
n_elts), but is used so frequently that it is maintained as a separate field in the
IDL_ARRAY struct.

n_elts

The number of elementsin the array.

External Development Guide Array Variables

158 Chapter 7: IDL Internals: Variables

data

A pointer to the data area for the array. Thisisaregion of dynamically allocated
memory arr_len byteslong. This pointer should be cast to be a pointer of the correct
type for the data being manipulated. For example, if the array variable being
processed is pointed at by an IDL_VPTR named v and containsIDL_TYP_INT

data:
IDL_INT *data; /* Declare a pointer variable */
data = (IDL_INT *) v->value.arr->data;
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of thisvalue.

flags

A bit mask that specifies characteristics of the array. Allowed values are:

IDL_A_FILE — Thisflag indicates that the array is afile variable, as created
by the ASSOC function. The variable has an array block to specify the
structure of the variable, but it has no data area. The datafield of the
IDL_ARRAY structure does not contain useful information, and should not be
used.

IDL_A_PACKED — If array isan IDL_A_FILE variable and the datatypeis
IDL_TYP_STRUCT, then Input/Output to this struct should use a packed data
layout compatible with WRITEU instead of being a direct mapping onto the
struct (which reflects the C compiler layout of the structure including its
aignment holes).

file_unit

WhentheIDL_A_FILE bit issetintheflagsfield, file_unit containsthe IDL
Logical Unit Number associated with the variable.

dim
An array that contains the dimensions of the IDL variable. There can be up to

IDL_MAX_ARRAY_DIM dimensions. The number of dimensionsin the current
array is given by the n_dim field.

Array Variables External Development Guide

Chapter 7: IDL Internals: Variables 159

Structure Variables

Structure variables have the type code IDL_TYP_STRUCT. They aso have the
IDL_V_STRUCT bhit set in their flags field. The value.sfield of such avariable
contains a structure descriptor defined by the IDL_SREF structure:

typedef struct {

IDL_ARRAY *arr; /* ~ to IDL_ARRAY containing data */
void *sdef; /* ~ to structure definition */
} IDL_SREF;

Thearr field points at an array block, as described in “Array Variables’ on page 157.
It isworth noting that in the definition of the IDL_ALLTYPES union (described in
“The IDL_VARIABLE Structure” on page 153), the arr field is apointer to
IDL_ARRAY, whilethe sfieldisan IDL_SREF, a structure that contains a pointer
to IDL_ARRAY asitsfirst member.

The resulting definition looks like:

union {
IDL_ARRAY arr;
struct {
IDL_ARRAY arr;
void *sdef;
} s;
} value;

Dueto theway C lays out fields in structs and unions, value.arr will have the same
offset and size within the value union as value.s.arr. Therefore, it is possible to
access the array block of a structure variable as var->value.arr rather than the more
correct var->value.s.arr. You should avoid use of this shorthand, however, because
it is not strictly correct usage and because we reserve the right to change the
IDL_SREF definitionin away that could cause the memory layout of the

ALLTY PES union to change.

Creating Structures

Theactual structure definition is accessed through the sdef field, which isapointer to
an opaque IDL structure definition. Although the implementation of structure
definitions is not public information, they can be created using the
IDL_MakesStruct() function from a structure name and alist of tags:

void *IDL_MakeStruct (char *name, IDL_STRUCT_TAG_DEF *tags)

External Development Guide Structure Variables

160 Chapter 7: IDL Internals: Variables

name

The name of the structure definition, or NULL for anonymous structures.
tags

Anarray of IDL_STRUCT_TAG_DEF dements, one for each tag.

The result from this function can be passed to IDL_ImportArray() or
IDL_ImportNamedArray(), as described in “ Creating an Array from Existing
Data’ on page 172.

IDL_STRUCT_TAG_DEF is defined as:

typedef struct {
char *name;
IDL_MEMINT *dims;
void *type;
UCHAR flags;

} IDL_STRUCT_TAG_DEF;

name
Null-terminated uppercase name of the tag.
dims

An array that contains information about the dimensions of the structure. The first
element of this array is the number of dimensions. Following elements contain the
size of each dimension.

type
Either a pointer to another structure definition, or asimple IDL type code cast to void
(e.g., (void *) IDL_TYP_BYTE).

flags

A bit mask that specifies additional characteristics of the tag. Allowed values are:

IDL_STD_INHERIT — Type must be IDL_TYP_STRUCT. Thisflag
indicates that the structure isinherited (inlined) instead of making it a sub-
structure as usual.

The following example shows how to define an anonymous structure. Suppose that
you want to create a structure whose definition in the IDL languageis:

{TAGl: OL, TAG2: FLTARR(2,3,4), TAG3: STRARR(10)}

Structure Variables External Development Guide

Chapter 7: IDL Internals: Variables 161

It can be created with IDL_M akeStruct() asfollows:

static IDL_MEMINT one = 1;
static IDL_MEMINT tag2_dims]|] { 3, 2, 3, 4};
static IDL_MEMINT tag3_dims[] = { 1, 10 };
static IDL_STRUCT_TAG_DEF s_tags[] = {
{ "TaGl", 0, (void *) IDL_TYP_LONG},
{ "TAG2", tag2_dims, (void *) IDL_TYP_FLOAT},
{ "TAG3", tag3_dims, (void *) IDL_TYP_STRING},
{0}

Y

typedef struct data_struct {
IDL_LONG tagl_data;
float tag2_data [4] [3] [2];
IDL_STRING tag_3_data [10];

} DATA_STRUCT;

static DATA_STRUCT s_data;

volid *s;

IDL_VPTR v;

/* Create the structure definition */
s = IDL_MakeStruct (0, s_tags);
/* Import the data area s_data into an IDL structure,
note that no data are moved. */
v = IDL_TImportArray(l, &one, IDL_TYP_STRUCT,
(UCHAR *) &s_data, 0, s);

Accessing Structure Tags

Given an opaque IDL structure definition, you can determine the offset of the data
and adescription of its size and form (scalar, array, etc) for agiven tag.
IDL_StructTagl nfoByName() returns this information given the name of the tag.
IDL_StructTagl nfoBylndex() does the same thing, given the numeric index of the
tag. They are essentially the same routine, although IDL _StructTagl nfoBylndex()
is dightly more efficient:

IDL_MEMINT IDL_StructTagInfoByName (IDL_StructDefPtr sdef,
char *name, int msg_action,
IDL_VPTR *var)
IDL_MEMINT IDL_StructTagInfoByIndex (IDL_StructDefPtr sdef,
int index, int msg_action,
IDL_VPTR *var)

where:
sdef

Structure definition for which offset is needed.

External Development Guide Structure Variables

162 Chapter 7: IDL Internals: Variables

name (IDL_StructTagIinfoByName)

Name of tag for which information is required.
index (IDL_StructTaginfoBylndex)

Zero based index of tag for which information is required.
msg_action

The parameter that will be passed directly to IDL_M essage() if the specified tag
cannot be found in the supplied structure definition.

var

NULL, or the address of an IDL_VPTR to befilled in with a pointer to the variable
description for the specified field.

On success, these functions return the data offset of the tag. On error, if the resulting
call to IDL_Message() returnsto the caller, a-1 isreturned. The data offset can be
added to the data pointer of an IDL variable of this structure type to obtain a pointer
to the actual datafor that tag.

If thetag is successfully located and the var argument isnon-NULL, theIDL_VPTR
it pointsat isfilled in with a pointer to an IDL_VARIABLE structure that describes
the type and organization of the tag. It isimportant to understand that this
IDL_VARIABLE does not contain any actual data (or in the case of an array tag, a
valid data pointer). Hence, the data part of the IDL_VARIABL E description should
be ignored.

Determining the Number Of Structure Tags

One often needs to know how many tags a structure definition has in order to make
use of the information supplied by the routines described above. The
IDL_StructNumTags() function returns this information:

int IDL_StructNumTags (IDL_StructDefPtr sdef)

where:
sdef

Structure definition for which offset is needed.

Structure Variables External Development Guide

Chapter 7: IDL Internals: Variables 163

Determining the Names Of Structures and their Tags

TheIDL_StructTagNameByI ndex() function returns the name of a specified tag
from a structure definition, and optionally the name of the structure:

char *IDL_StructTagNameByIndex (IDL_StructDefPtr sdef, int index,
int msg_action, char **struct_name)

where:
sdef

Structure definition for which name information is needed.
index

Zero based index of tag within the structure.
msg_action

The parameter that will be passed directly to IDL_Message() if the specified tag
cannot be found in the supplied structure definition.

struct_name

NULL, or the address of a character pointer (char *) to be filled in with a pointer to
the name of the structure. If the structure is anonymous, the string “<anonymous>"
is returned.

On success, a pointer to the tag name is returned. On error, if the resulting call to
IDL_Message() returns to the caller, aNULL pointer is returned.

All strings returned by this function must be considered read-only, and must not be
modified by the caller.

External Development Guide Structure Variables

164 Chapter 7: IDL Internals: Variables

Heap Variables

Direct access to pointer and object reference heap variables (typesIDL_TYP_PTR
and IDL_TYP_OBJREF, respectively) is not allowed. Rather than accessing the heap
variable directly, store the value of the heap variable (an IDL pointer or object
reference) in aregular IDL variable at the IDL user level. Accessthe datain the regular
variable, then store the results back in the heap variable (via the pointer or object

reference) when done.

Note
You can use IDL's TEMPORARY function to avoid making copies of the data.

Heap Variables External Development Guide

Chapter 7: IDL Internals: Variables 165

Temporary Variables

Asdiscussed previoudly, IDL maintains a pool of nameless variables known as
temporary variables. These variables are used by the interpreter to hold temporary
results from evaluating expressions, and are also used within system procedures and
functions that need temporary workspace. In addition, system functions often obtain
atemporary variable to return the result of their operation to the interpreter.
Temporary variables have the following characteristics:

« All temporaries, when initially alocated, are of type IDL_TYP_UNDEF.
e Temporary variables do not have a name associated with them.

* Routinesthat check out temporaries must either check them back in or return
them as the result of the function. Once you return atemporary variable, you
cannot accessit again.

» Temporary variables are reclaimed by the interpreter when it is about to exit
after executing a program, so it is not possible to lose them and leak dynamic
memory by allocating them and failing to return them. If the interpreter is
exiting normally and it detects temporaries that have not been returned, it
issues an error message. Such an error message indicates an error in the
implementation of your system routine. If your routine exits by issuing an
IDL_MSG _LONGIMPor IDL_MSG_IO_LONGJIMP error via
IDL_Message() however, allocated temporaries are expected, and are
reclaimed quietly. Hence, your routines need only return temporaries on
normal return, and not before issuing errors. See “IDL Internals. Error
Handling” on page 191.

The interpreter uses temporary variablesto hold values that are the result of
evaluating expressions. Such temporaries are pushed on the interpreter stack where
they are often passed as arguments to other routines. For example, the IDL statement:

PRINT, MAX(FINDGEN(100))
causes the interpreter to perform the following steps:
1. Push aconstant variable with the value 100 onto the stack.
Call the system function FINDGEN, passing it one argument.

FINDGEN returns atemporary variable which is a 100-element vector with
each element set to the value of itsindex.

4. Theinterpreter removes the argumentsto FINDGEN from the stack (the
constant 100) and pushes the resulting temporary variable onto the stack.

External Development Guide Temporary Variables

166

Chapter 7: IDL Internals: Variables

5. The MAX system function is called with a single argument—the temporary
result from FINDGEN.

6. MAX findsthe largest element in its argument (99), places that value into a
temporary scalar variable, and returns that temporary variable as its result.

7. Theinterpreter removes the argument to MAX from the stack. This was the
temporary array from FINDGEN, so it is returned to the pool of temporary
variables. The resulting temporary variable from MAX isthen pushed onto the

stack.

8. ThePRINT system procedure is called with a single argument, which isthe
temporary scalar variable from MAX. It prints the value of the variable and

returns.

9. Theinterpreter removes the argument to PRINT from the stack, and returns it
to the pool of temporary variables.

Getting a Temporary Variable

Temporary variables are obtained viathe IDL _Gettmp() function:

IDL_VPTR

IDL_Gettmp (void) ;

IDL_Gettmp() requires no arguments, and returns an IDL_VPTR to atemporary
variable. This variable must be returned to the pool of temporary variables (with a
call toIDL_Detmp()) or bereturned as the value of a system function before control
returns to the interpreter, or an error will occur.

A number of variantson IDL_Gettmp() exist, as convenience routines for creating
temporary scalar variables of agiven type and value. In all cases, the valueis
supplied as the sole argument, and the resulting type is indicated by the name of the

routine:

IDL_VPTR
IDL_VPTR
IDL_VPTR
IDL_VPTR
IDL_VPTR
IDL_VPTR

Temporary Variables

IDL_GettmpInt (IDL_INT value) ;
IDL_GettmpUInt (IDL_UINT value) ;
IDL_GettmpLong (IDL_LONG wvalue) ;
IDL_GettmpULong (IDL_ULONG value) ;
IDL_GettmpFILEINT (IDL_FILEINT value) ;
IDL_GettmpMEMINT (IDL_MEMINT value) ;

External Development Guide

Chapter 7: IDL Internals: Variables 167

Creating a Temporary Array

Temporary array variables can be obtained viathe IDL_MakeTempArray()
function:

char *IDL_MakeTempArray (int type, int n_dim, IDL_MEMINT dim[],
int init, IDL_VPTR *var)

where:
type

Thetype code for the resulting array. See “ Type Codes’ on page 114.
n_dim

The number of array dimensions. The constant IDL_MAX_ARRAY_DIM defines
the upper limit of thisvalue.

dim
Anarray of IDL_MAX_ARRAY_DIM elements containing the array dimensions.
The number of dimensionsin the array is given by then_dim argument.

init
Specifies the sort of initialization that should be applied to the resulting array. The
init argument must be one of the following:

e |IDL_ARR_INI_INDEX — Each element of the array is set to the value of its
index. The INDGEN family of built-in system functionsisimplemented using
this feature.

e |IDL_ARR_INI_NOP — Noiinitidization is done. The data area of the array
will contain whatever garbage was |eft behind from its previous use.
Experience has shown that IDL_TYP_STRING data should never be | eft
uninitialized due to the risk of dereferencing an invalid string pointer and
crashing IDL. Therefore, IDL_TYP_STRING datais zeroed when
IDL_ARR_INI_NOP is specified.

e IDL_ARR_INI_ZERO — The data area of the array is zeroed.
var

The address of an IDL_VPTR where the address of the resulting temporary variable
will be put.

External Development Guide Temporary Variables

168 Chapter 7: IDL Internals: Variables

Thedataareaof anarray IDL_VARIABLE isaccessible fromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
accessthe dataarea, IDL_M akeTempArray() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable allocated vialDL_M akeTempArray()
must be returned to the pool of temporary variables or be returned as the value of a
system function before control returns to the interpreter, or an error will occur.

Creating a Temporary Vector

IDL_MakeTempArray() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempVector () function:

char *IDL_MakeTempVector (int type, IDL_MEMINT dim, int init,
IDL_VPTR *var)where:

type, init, var

These arguments are the same as for IDL_M akeTempArray().
dim

The number of e ementsin the resulting vector.

Creating a Temporary Structure

TheIDL_MakeTempStruct() allows you to create an IDL structure variable using
memory alocated by IDL, in much the same way that IDL_M akeStruct() and
IDL_ImportArray() allow you to create an IDL structure variable using memory
you provide. Temporary structure variables can be obtained via the
IDL_MakeTempsStruct() function:

char *IDL_MakeTempStruct (IDL_StructDefPtr sdef, int n_dim,
IDL_MEMINT dim[], IDL_VPTR *var, int zero)

where:
sdef

A pointer to the structure definition.
n_dim

The number of structure dimensions. The constant IDL_MAX_ARRAY_DIM
defines the upper limit of this value.

Temporary Variables External Development Guide

Chapter 7: IDL Internals: Variables 169
dim
A Carray of IDL_MAX_ARRAY_DIM elements containing the structure
dimensions. The number of dimensions in the array is given by the n_dim argument.
var
The address of an IDL_VPTR where the address of the resulting temporary variable

will be put.

Thedataareaof anarray IDL_VARIABLE isaccessible fromitsIDL_VPTR as
var->value.arr->data. However, since most routines that create an array need to
accessthe dataarea, IDL_M akeTempStruct() returns the data area pointer asits
value. Aswith IDL_Gettmp(), the variable allocated vial DL _M akeTempStr uct()
must be returned to the pool of temporary variables (with acall to IDL_Deltmp()) or
be returned as the value of a system function before control returnsto the interpreter,
or an error will occur.

Zero

Set to TRUE if the data area of the resulting variable should be zeroed, or to FALSE
otherwise. Unless the caller intends to immediately copy avalid result into the
variable, this argument should be set to TRUE to prevent memory corruption.

Creating a Temporary Vector

IDL_MakeTempStruct() can be used to create arrays with any number of
dimensions, but the common case of creating a 1-dimensional vector can be carried
out more conveniently using the IDL_M akeTempStr uctVector () function:

char *IDL_MakeTempStructVector (IDL_StructDefPtr sdef, IDL_MEMINT
dim,
IDL_VPTR *var, int zero)

where:
sdef, var, zero

These arguments are the same as for IDL _MakeTempStruct().
dim

The number of e ementsin the resulting vector.

External Development Guide Temporary Variables

170 Chapter 7: IDL Internals: Variables

Creating A Temporary Variable Using Another
Variable As A Template

It is common to want to create atemporary variable with aform that mimicsthat of a
variable you aready have accessto. Often, such atemporary variable has the same
number of elements and dimensions, but may vary in type. It is possible to do this by
using the basic temporary variable creation routines discussed earlier in this chapter,
but the resulting code will be complex, and this sort of code occurs frequently. The
best way to create such avariable is using the
IDL_VarMakeTempFromTemplate() function.

IDL_VarMakeTempFromTemplate() creates atemporary variable of the desired
type, using the template_var argument to specify its dimensionality. The address of
this temporary variable is stored at the address specified by the result_addr
argument. The address of the start of this variable's data areais returned as the value

of the function.

char *IDL_VarMakeTempFromTemplate (IDL_VPTR template_var,int type,
IDL_StructDefPtr sdef,
IDL_VPTR *result_addr,int zero);

where:
template_var

Source variable to take dimensionality from. This can be ascalar or array of any type.
type

The IDL type code for the desired temporary variable.
sdef

NULL, or apointer to a structure definition. This argument isignored if typeis not
IDL_TYP_STRUCT. If typeisIDL_TYP_STRUCT, sdef supplies the structure
definition for the result. It is an error to specify aresult typeof IDL_TYP_STRUCT
without providing a value for sdef, with one exception: If typeis
IDL_TYP_STRUCT and template var isavariableof IDL_TYP_STRUCT, and
sdef isNULL, then IDL_VarM akeTempFromTemplate() will use structure
definition of template var.

result_addr

Address of IDL_VPTR to receive a pointer to the newly allocated temporary
variable.

Temporary Variables External Development Guide

Chapter 7: IDL Internals: Variables 171

Zero

TRUE if the resulting variable should be zeroed, and FAL SE to not do this. Variables
of IDL_TYP_STRING, and structure types that contain strings, are always zeroed.

Freeing A Temporary Variable

UseIDL_Detmp() to free atemporary variable:
void IDL_Deltmp (IDL_VPTR p)

wherepisan IDL_VPTR to the temporary variable to be returned. IDL_Deltmp()
frees the dynamic parts of the temporary variable (if any) and then returns the
variable to the pool of available temporaries. Once you have deallocated atemporary
variable, you may not accessit again. Thereisalso amacro named IDL_DELTMP
which checks its argument to make sure it’s atemporary, and if so, calls
IDL_Deltmp() to return it.

External Development Guide Temporary Variables

172 Chapter 7: IDL Internals: Variables

Creating an Array from Existing Data

There are two functions that allow you to create an IDL array variable whose data
points at data you supply rather than having IDL allocate the data space. The routine
IDL_ImportArray() returns atemporary variable, while
IDL_ImportNamedArray() returns anamed variablein the current execution scope,
creating the new variable if necessary. Your data must already exist in memory. The
data area, which can be quite large, is not copied. These functions simply create
variable and array descriptors that point to the data you supply and return the pointer
to the resulting variable. Their definitions are:

IDL_VPTR IDL_ImportArray(int n_dim, IDL_MEMINT dim[], int type,
UCHAR *data, IDL_ARRAY FREE_CB free_cb, void *s)

IDL_VPTR IDL_ImportNamedArray (char *name, int n_dim,
IDL_MEMINT dim[], int type, UCHAR *data,
IDL_ARRAY FREE_CB free_cb, void *s)

typedef void (* IDL_ARRAY FREE_CB) (UCHAR *);

where:
name

The name of the variable to be created or modified.
n_dim

The number of dimensionsin the array.
dim

Anarray of IDL_MAX_ARRAY_DIM eements, containing the size of each
dimension.

type
The IDL type code describing the data. See “ Type Codes’ on page 114.
data

A pointer to your array data. Your datawill not be modified unless the user explicitly
modifies elements of the array using subscripts.

Creating an Array from Existing Data External Development Guide

Chapter 7: IDL Internals: Variables 173

Thetemporary variable returned by IDL_ImportArray() can be used immediately in
an expression, in which case the descriptors are freed immediately. It can also be
assigned to alonger-lived variable using IDL _Var Copy().

Note
IDL frees only the memory that it allocates for the descriptors, not the memory that
you supply containing your data. You can arrange to be notified when IDL is
finished with your data by using the free_cb argument, described below.

free_cb

If non-NULL, free_cb isapointer to afunction that will be called when IDL freesthe
array. Thisfeature gives the caller a sure way to know when IDL is no longer
referencing data. Use the called function to perform any required cleanup such as
freeing dynamic memory or releasing shared or mapped memory. The called function
should have no return value and should accept asits argument a (uchar *), whichisa
pointer to the memory to be freed.

If the type of thevariableisIDL_TYP_STRUCT, s points to the opaque structure
definition, as returned by IDL_MakeStruct().

External Development Guide Creating an Array from Existing Data

174 Chapter 7: IDL Internals: Variables

Getting Dynamic Memory

Many programs need to get dynamic memory for some temporary calculation. In the
C language, the functions malloc() and free() are used for this purpose, while other
languages have their own facilities. IDL provides its own memory allocation routines
(see “Dynamic Memory” on page 252). Use of such facilities within the IDL
interpreter and the system routines can lead to the loss of usable dynamic memory.
The following code fragment demonstrates how this can happen.

For example, assume that thereisaneed for 100 IDL_LONG integers.

char *c;

¢ = (char *) IDL_MemAlloc((unsigned) (sizeof (IDL_LONG) * 100)
(char *) 0, IDL_MSG_RET) ;

if (some_error_condition) IDL_Message(.., IDL_MSG LONGJMP,...) ;

IDL_MemFree((void *) ¢, (char *) 0, IDL_MSG_RET);

In the normal case, the allocated memory isreleased exactly asit should be.
However, if an error causesthe IDL M essage() function to be called, execution will
return directly to the interpreter and this code will never have a chance to clean up.
The dynamic memory allocated will therefore leak, and although it will continue to
occupy spacein the IDL processes, will not be used again.

The IDL_GetScratch Function

To solve this problem, use atemporary variable to obtain dynamic memory. Then, if
an error should cause execution to return to the interpreter, the interpreter will
reclaim the temporary variable and no dynamic memory will be lost. This frequently-
needed operation is provided by the IDL_GetScratch() function:

char *IDL_GetScratch(IDL_VPTR *p, IDL_MEMINT n_elts,
IDL_MEMINT elt_size)

where:

The address of an IDL_VPTR that should be set to the address of the temporary
variable allocated.

Getting Dynamic Memory External Development Guide

Chapter 7: IDL Internals: Variables 175

n_elts
The number of elements for which memory should be allocated.
elt_size

The length of each element, in bytes.

Once the need for the temporary memory has passed, it should be returned using the
IDL_Deltmp() function. Using these functions, the above example becomes:

char *c;
IDL_VPTR v;

c = IDL_GetScratch(&v, 100L, (IDL_LONG) sizeof (IDL_LONG)) ;

if (some error condition) IDL_Message(...,MSG LONGJMP, ...);

IDL_Deltmp (V) ;

Using the IDL_GetScratch() and IDL_Deltmp() functionsis similar to using
IDLMemAlloc() directly. Infact, IDL usesIDL_MemAlloc() and IDL_MemFree()
internally to implement array variables. The important difference is that dynamic
memory doesn’t leak when error conditions occur.

To avoid losing dynamic memory, always use the IDL _GetScratch() function in
preference to other ways of allocating dynamic memory, and use IDL_Deltmp() to
return it.

External Development Guide Getting Dynamic Memory

176 Chapter 7: IDL Internals: Variables

Accessing Variable Data

Often, we are not concerned with the distinction between a scalar and array
variable—all that is desired is a pointer to the data and to know how many elements
there are. IDL_Var GetData() can be used to obtain this information:

void IDL_VarGetData (IDL_VPTR v, IDL_MEMINT *n, char **pd,
int ensure_simple)

where:
The variable for which datais desired.

The address of a variable that will hold the number of elements.

pd

The address of variable that will hold a pointer to data, cast to be a pointer to a pointer
to acharacter (for example (char **) & myptr).

ensure_simple

If TRUE, thisroutine callsthe I DL_ENSURE_SIM PL E macro on the argument v to
screen out variables of the typesit prevents. Otherwise, IDL_EXCLUDE_FILE is
called, because file variables have no data area to return.

On exit, IDL_Var GetData() stores the data count and pointer into the variables
pointed at by n and pd, respectively.

Accessing Variable Data External Development Guide

Chapter 7: IDL Internals: Variables 177

Copying Variables

To copy the contents of one variable to another, use the IDL_Var Copy() function:
void IDL_VarCopy (IDL_VPTR src, IDL_VPTR dst)

Arguments src and dst are the source and destination, respectively.

IDL_VarCopy() uses the following rules when copying variables:

« If the destination variable aready has a dynamic part, this dynamic part is
released.

* Thedestination becomes a copy of the source.

« If the sourceisatemporary variable, IDL_Var Copy() does not make a
duplicate of the dynamic part for the destination. Instead, the dynamic part of
the source is given to the destination, and the source variable itself is returned
to the pool of free temporary variables. Thisis the equivalent of freeing the
temporary variable. Therefore, the variable must not be used any further and
the caller should not explicitly free the variable. This optimization
significantly improves resource utilization and performance because this
special case occurs frequently.

External Development Guide Copying Variables

178 Chapter 7: IDL Internals: Variables

Storing Scalar Values

TheIDL_StoreScalar () function setsan IDL_VARIABLE to ascalar value:

void IDL_StoreScalar (IDL_VPTR dest, int type,
IDL_ALLTYPES *value)

where:
dest

AnIDL_VPTR tothelDL_VARIABLE inwhich the scalar should be stored.
type

The type code for the scalar value. See “ Type Codes’ on page 114.
value

The address of the IDL_ALLTY PES union that contains the value to store.

If dest is alocation that cannot be stored into (for example, atemporary variable,
constant, and so on), an error isissued and control returnsto the interpreter.
Otherwise, any dynamic part of dest is freed and value is stored into it.

The IDL_StoreScalar Zero() function is a specialized variation of
IDL_StoreScalar(). It stores a zero scalar value of any specified type into the
specified variable:

void IDL_StoreScalarZero (IDL_VPTR dest, int type)

where:
dest

AnIDL_VPTRtothe IDL_VARIABLE in which the scalar zero should be stored.
type

The type code for the scalar zero value. See “ Type Codes’ on page 114.

Storing Scalar Values External Development Guide

Chapter 7: IDL Internals: Variables 179

Using IDL_StoreScalar() to Free Dynamic Resources

In addition to performing its primary function, IDL_StoreScalar () and
IDL_StoreScalar Zero() have two very useful side effects:

1. Storing ascalar value in avariable causes IDL to free any dynamic memory
currently used by that variable.

2. Theseroutines do the required error checking to make sure the variable allows
anew valueto be stored into it before performing the actual storage operation.

Often, a system routine accepts an input argument that will have a new value
assigned to it before the routine returnsto its caller, and the initial value of that
argument is of no interest to the routine. Storing a scalar value into such an argument
at the start of the routine will automatically check it for storability and free
unnecessary dynamic memory. In one easy operation, the required error checking is
done, and you’ve improved the dynamic memory behavior of the IDL system by
minimizing dynamic memory fragmentation. For example:

IDL_StoreScalarZero (&v, IDL_TYP_LONG) ;

Error handling is discussed further in “IDL Internas: Error Handling” on page 191.

External Development Guide Storing Scalar Values

180 Chapter 7: IDL Internals: Variables

Obtaining the Name of a Variable

The DL _VarName() function returns the name of avariable, constant, or expression
given its address. If the item is anamed variable, it must be in the currently active
program unit:

char *IDL_VarName (IDL_VPTR V)

Obtaining the Name of a Variable External Development Guide

Chapter 7: IDL Internals: Variables 181

Looking Up Main Program Variables

The DL _GetVar Addr () function returns the address of a main program variable,
given its name:

IDL_VPTR IDL_GetVarAddr (char *name)
name

Points to the null terminated name of the variable, which must be in upper case.

Thereturn valueisNULL if the variable does not exist, otherwise the pointer to the
variableis returned.

Alternatively, IDL_GetVar Addr1() will enter anew variable into the symbol table
of the main program if called with the parameter ienter set to TRUE, and the
specified variable name does not already exist. Otherwise, its operation isthe same as
IDL_GetVar Addr(). Note that new variables cannot be created if a user procedure
or function is active. IDL_GetVar Addr1() is called as shown following:

IDL_VPTR IDL_GetVarAddrl (char *name, int enter)
name
Points to the null-terminated name of the variable, which must be in upper case.
ienter

Set this parameter to TRUE to create the variable if it does not already exist.

If ienter is TRUE and the specified variable name does not aready exist, it will be
added to the symboal table of the main program. If ienter is FALSE,
IDL_GetVar Addr1() isequivalent to IDL_GetVar Addr ().

External Development Guide Looking Up Main Program Variables

182 Chapter 7: IDL Internals: Variables

Looking Up Variables in Current Scope

TheIDL_FindNamedVariable() function returns the address of avariable in the
current execution scope given its name:

IDL,_VPTR IDL_FindNamedVariable (char *name, int ienter)
name
Name of the variable to find.

ienter

Set this parameter to TRUE to create the variable if it does not already exist.

If the variable isfound (or created if ienter isTRUE), itsIDL_VPTR isreturned.
Otherwise, NULL isreturned.

Note
Even if ienter is TRUE, thisroutine can return NULL if creating the variable is not

possible due to memory constraints.

Looking Up Variables in Current Scope External Development Guide

Chapter 8
IDL Internals:
String Processing

This chapter discusses the following topics:

String Processingand IDL 184 DeetingStrings ... 187
Accessing IDL_STRING Values 185 SettinganIDL_STRING Vaue 188
CopyingStringso 186 Obtaining a String of a Given Length ... 189

External Development Guide 183

184 Chapter 8: IDL Internals: String Processing

String Processing and IDL

A number of functions exist to simplify the processing of IDL_STRING descriptors.
By using these functionsinstead of doing your own string management, you can
eliminate a common source of errors.

String Processing and IDL External Development Guide

Chapter 8: IDL Internals: String Processing 185

Accessing IDL_STRING Values

Itisimportant to realize that the sfield of an IDL_STRING struct does not contain a
valid string pointer in the case of anull string (i.e., when slen is zero). A common
error that can cause IDL to crashisillustrated by the following code fragment:

void print_str (IDL_STRING *s)
{
printf("%$s", s->s);

}

The problem with this code is that it fails to consider the case where the argument s
describes a null string. The proper way to write this codeis as follows:

void print str (IDL_STRING *s)
{

printf("%s", IDL_STRING_STR(s));
}

Themacro IDL_STRING_STR takesasitsargument apointer toan IDL_STRING
struct. If the string is null, it returns a pointer to a zero length null-terminated string,
otherwise it returns the string pointer from the struct. Consistent use of this macro
will avoid the most common sort of error involving strings.

It iscommon for IDL system routines to accept arguments that provide names. Such
arguments must be scalar strings, or string arrays that contain a single element. To
properly process such an argument, it is necessary to screen out non-string types or
multi-element arrays, locate the string descriptor, and usethe IDL_STRING_STR()
macro to extract a usable NULL terminated C string from it. The
IDL_VarGetString() is used for this purpose. It encapsulates all of the error
checking, and always returns a pointer to aNULL terminated C string, throwing the
proper IDL_MSG_L ONGJMP error viathe IDL_M essage() function when thisis
not possible:

char *IDL_VarGetString (IDL_VPTR V)

where

Variable from which string value is desired.

External Development Guide Accessing IDL_STRING Values

186 Chapter 8: IDL Internals: String Processing

Copying Strings

It is often necessary to copy one string to another. Assume, for example, that there are
two string descriptorss_src and s_dst, and that s_dst contains garbage. It would
almost suffice to simply copy the contents of s _srcinto s_dst. The reason thisis not
quite correct isthat both descriptors would then contain a pointer to the same string.
This aliasing can cause some strange effects, or even cause IDL to crash if one of the
two descriptorsis freed and the string from the other is accessed.

IDL_StrDup() takes care of this problem by allocating memory for a second copy of
the string, and replacing the string pointer in the descriptor with a pointer to the fresh
copy. Naturally, if the string descriptor isfor anull string, nothing is done.

void IDL_StrDup (IDL_STRING *str, IDL_MEMINT n)
where;
str

Pointer to one or more IDL_STRING descriptors which need their strings
duplicated.

The number of descriptors.
The proper way to copy astring is:

s_dst = s_src; /* Copy the descriptor */
IDL_StrDup (&s_dst, 1L); /* Duplicate the string */

Copying Strings External Development Guide

Chapter 8: IDL Internals: String Processing 187

Deleting Strings

Beforean IDL_STRING can be discarded or re-used, it isimportant to release any
dynamic memory it might be using. The IDL _StrDelete() function should be used to
delete strings:

void IDL_StrDelete(IDL_STRING *str, IDL_MEMINT n)

where;
str

Pointer to one or more IDL_STRING descriptors which need their contents freed.

The number of descriptors.

IDL_StrDelete() deletes all dynamic memory used by the IDL_STRINGSs. The
descriptors contain garbage once this has been done, and their contents should not be
used.

The DL _Ddtmp() function automatically calls | DL _StrDelete() when returning
temporary variables of type IDL_TYP_STRING, soit isnot necessary or desirable
tocal IDL_StrDelete() explicitly in this case.

External Development Guide Deleting Strings

188 Chapter 8: IDL Internals: String Processing

Setting an IDL_STRING Value

The IDL_StrStore() function should be used to store a null-terminated C string into
an IDL_STRING descriptor:

void IDL_StrStore (IDL_STRING *s, char *fs)

where:

Pointer to an IDL_STRING descriptor. This descriptor is assumed to contain
garbage, so call IDL_StrDelete() on it first if thisis not the case.

fs

Pointer to the null-terminated string to be copied into s.

IDL_StrStore() is useful for placing astring valueinto an IDL_STRING. This
IDL_STRING does not need to be acomponent of aVARIABLE, which makes this
function very flexible.

One often needs atemporary, scalar VARIABLE of typeIDL_TYP_STRING with
agiven value. The function IDL_Str ToSTRING() fills this need:

IDL_VPTR IDL_StrToSTRING (char *s)

where:

Pointer to the null-terminated string to be copied into the resulting temporary
variable.

Setting an IDL_STRING Value External Development Guide

Chapter 8: IDL Internals: String Processing 189

Obtaining a String of a Given Length

Sometimes you need to make sure that the string in an IDL_STRING descriptor has
aspecific length. The IDL_StrEnsurel ength() function can be used in this case:

void IDL_StrEnsureLength (IDL_STRING *s, int n)

where:
A pointer to the IDL_STRING that will have its length checked.

The number of characters the string must be able to contain, not including the
terminating null character.

If the IDL_STRING passed already has enough room for the specified number of
characters, it is not re-allocated. Otherwise, the existing string is freed and a new
string of sufficient length is allocated. In either case, the den field of the
IDL_STRING will be set to the requested length.

If anew dynamic string is allocated, it will contain garbage val ues because
IDL_StrEnsurel ength() only allocates memory of the specified size, it does not
copy avaueinto it. Therefore, the calling routine must copy a null-terminated string
into the new dynamic string.

External Development Guide Obtaining a String of a Given Length

190 Chapter 8: IDL Internals: String Processing

Obtaining a String of a Given Length External Development Guide

Chapter 9

IDL Internals:
Error Handling

This chapter discusses the following topics:

MessageBlocks 192 Looking Up A Message Code by Name .. 201
Issuing Error Messages 195 Checking Arguments 202

External Development Guide 191

192 Chapter 9: IDL Internals: Error Handling

Message Blocks

IDL maintains messages in opaque data structures known as Message Blocks. A
message block contains all the messages for alogically related area.

When IDL ¢tarts, there is only one defined block named IDL_MBLK _CORE,
containing all messages defined by the core IDL product. Typically, dynamically
loadable modules (DLMs) each define amessage block for their error messages when
they are loaded (See“ Dynamically Loadable Modules’ on page 309 for a description
of DLMs).

There are often two versions of IDL message modul e functions. Those with names
that end in FromBlock require an explicit message block. The versions that do not
end in FromBlock usethe IDL_MBLK_ CORE message block.

To define amessage block, you must supply an array of IDL_MSG_DEF structures:

typedef struct {
char *name;
char *format;
} IDL_MSG_DEF;

where:
name

A string giving the name of the message. We suggest that you adopt a consistent
unique prefix for all your error codes. All message codes defined by ITT Visual
Information Solutions start with the prefix IDL_M _. You should not use this prefix
when naming your blocksin order to avoid unnecessary hame collisions.

format

A format string, in printf(3) format. There is one extension to the printf formatting
codes: If the first two letters of the format are“%N”, then IDL will substitute the
name of the currently executing IDL procedure or function (if any) followed by a
colon and a space when this message isissued. For example:

IDL> print, undefined_var
% PRINT: Variable is undefined: UNDEFINED_VAR.

The IDL_MessageDefineBlock() function is used to define a new message block:

IDL_MSG_BLOCK IDL_MessageDefineBlock
(char *block_name, int n, IDL_MSG_DEF *defs)

Message Blocks External Development Guide

Chapter 9: IDL Internals: Error Handling 193

The argumentsto | DL_M essageDefineBlock() are as follows:

block_name

Name of the message block. This can be any string, but it will be case folded to upper
case. We suggest a single word be used. It isimportant to pick names that are
unlikely to be used by any other application. All blocks defined by ITT Visua
Information Solutions start with the prefix IDL_MBLK _. You should not use this
prefix when naming your blocks in order to avoid unnecessary confusion.

of message definitions pointed at by defs.
defs

An array of message definition structs, each one supplying the name and format
string for amessage in printf(3) format. The memory used for this array, including
the strings it points at, must be in permanently allocated read-only storage. IDL does
not copy this memory, but smply usesit in place.

If possible, the new message block is defined and an opagque pointer to it is returned.
This pointer must be supplied to subsequent calls to the “FromBlock” message
modul e functions to identify the message block a given error is being issued from. If
it is not possible to define the message block, this function returns NULL.

The message functions require a message block pointer and the negative index of the
specific message to be issued. Hence, message codes start and zero and grow
negatively. For mnemonic convenience, it is standard practice to define preprocessor
macros to represent the error codes.

Example: Defining A Message Block

The following code defines a message block named TESTMODULE that contains
two messages:

static IDL_MSG_DEF msg_arr[] =
{
#define M_TM_INPRO 0

{ "M_TM_INPRO", "$NThis is from a loadable module procedure."
.,
#define M_TM_INFUN -1

{ "M_TM_INFUN", "$NThis is from a loadable module function."
I
Y

External Development Guide Message Blocks

194 Chapter 9: IDL Internals: Error Handling

msg_block = IDL_MessageDefineBlock("Testmodule",
sizeof (msg_arr) /sizeof (msg_arr[0]),
msg_arr) ;

Message Blocks External Development Guide

Chapter 9: IDL Internals: Error Handling 195

Issuing Error Messages

Errors are reported using one of the following functions:
e |IDL_Message()
e |IDL_MessageFromBlock()
e |IDL_MessageSyscode()
e |DL_MessageSyscodeFromBlock()

These functions are patterned after the standard C library printf() function. They are
really the same function, differing in which message block the error isissued from
(the FromBlock versions allow you to specify the block) and their reporting of
system errors that might accompany IDL errors (the Syscode versions allow you to
specify a system error). IDL documentation often refersto IDL_Message(). This
should be understood to be a generic reference to any of these four functions.

void IDL_Message (int code, int action, ...)
void IDL_MessageFromBlock (IDL_MSG_BLOCK block,int code,
int action, ...)
void IDL_MessageSyscode (int code, IDL_MSG_SYSCODE_T syscode_type,
int syscode, int action, ...)

void IDL_MessageSyscodeFromBlock (IDL,_MSG_BLOCK block, int code,
IDL_MSG_SYSCODE_T syscode_type,
int syscode, int action, ...)

The arguments to are as follows:;
block

Pointer to the IDL message block from which the error should be issued. If block isa
NULL pointer, the default IDL coreblock (IDL_MBLK_CORE) is used.

code

Thisisthe error code associated with the error message to be issued. There are two
error codesin the default IDL coreblock (IDL_MBLK_CORE) that are available to
programmers adding system routinesto IDL. The use of these codesis described
below. See“IDL_M_GENERIC” on page 199 and “IDL_M_NAMED_GENERIC”
on page 199.

External Development Guide Issuing Error Messages

196 Chapter 9: IDL Internals: Error Handling

Note
For any significant development involving an IDL system routine, we recommend
your code be packaged as a Dynamically Loadable Module (DLM), and that your
DLM define a message block to contain its errorsinstead of using the GENERIC
core block messages.

syscode_type

IDL_Message() always issues asingle-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file,” while the underlying system reason
for the error is“no such directory.” The IDL M essageSyscode() functions
alow you to include the relevant system error code, and have it incorporated
into the IDL message on a second line of output. There are severa different
types of system error code that can be specified. The syscode type argument
isused to tell IDL_M essageSyscode() which type of system error is present:

IDL_MSG_SYSCODE_NONE — Indicates that there is no system error. In this case,
the syscode argument isignored, and DL _M essageSyscode() is functionally
equivaent to IDL_M essage().

IDL_MSG_SYSCODE_ERRNO — The UNIX operating system uses a system
provided global variable named errno for communicating system level errors.
Whenever a call to a system function fails, it returns a value of -1, and puts an
error code into errno that specifies the reason for the failure. Other functions,
such as those provided by the standard C library, do not set errno. The system
documentation (man pages) describeswhich functions do and do not set errno,
and the rules for interpreting its value.

The C programming language and UNIX operating system share acommon
heritage, as C was originally created by its authors as an implementation
language for UNIX. Since then, C has found broad acceptance on hon-UNIX
platforms, bringing along with standard POSIX libraries that provide
functionality commonly expected by C programs. Hence, although errnoisa
UNIX concept, non-UNIX C implementations generally provideit asa
convenience. Hence, IDL supports IDL_M SG_SYSCODE_ERRNO on al
platforms.

You should specify IDL_M SG_SY SCODE_ERRNO only if you are calling
IDL_M essageSyscode() astheresult of afailed function that is documented to
set errno on your target platform. Otherwise, errno might contain an unrelated

Issuing Error Messages External Development Guide

Chapter 9: IDL Internals: Error Handling 197

garbage value resulting in an incorrect error message. When specifying
IDL_MSG_SYSCODE_ERRNO, you should supply the current value of
errno asthe syscode argument to IDL M essageSyscode().

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically does not set it. On this operating
system, specifying IDL_MSG_SY SCODE_ERRNO may have no effect.

IDL_MSG_SYSCODE_WIN (Microsoft Windows Only) — Microsoft Windows
system error codes. The value suppled to the syscode argument to
IDL_M essageSyscode() should be a system error code, as returned by the
Windows GetL astError () system function.

IDL_MSG_SYSCODE_WINSOCK (Microsoft Windows Only) — Microsoft
Windows winsock error codes. The value suppled to the syscode argument to
IDL_M essageSyscode() should be a system error code, as returned by the
Windows WSAGetL astError () system function

syscode

Value of the system error code that should be reported. This argument isignored if its
valueis zero (0), or if syscode _typeisIDL_MSG_SYSCODE_NONE. Otherwise,
it isinterpreted as an error code of the type given by syscode_type, and thetext of the
specified system error will be output along with the IDL message on a separate
second line.

action

IDL_Message() can take a number of different actions after issuing the error
message. The action to take is specified by the action argument:

IDL_MSG_RET

Use this argument to make I DL _M essage() return to the caller after issuing
the error message. In this case, the calling routine can either continue or return
to the interpreter asit seesfit.

IDL_MSG_INFO

Use this argument to issue a message that is not an error, but is simply
informational in nature. The message is output and IDL _M essage() returns to
the caller. Normally, IDL_M essage() sets the values of IDL's
IERROR_STATE system variables, but not in this case.

External Development Guide Issuing Error Messages

198 Chapter 9: IDL Internals: Error Handling

IDL_MSG_EXIT

Use this argument to cause the IDL process to exit after the message is issued.
This code should never be used in a system function or procedure—it is
intended for use in other sections of the system.

IDL_MSG_LONGJIMP

Use this argument to cause IDL M essage() to exit directly back to the
interpreter after issuing the message. In this case, IDL _M essage() does not
returntoitscaller. It isan error to use this action code in code not called by the
IDL interpreter since the resulting call to longjmp() will beinvalid.

IDL_MSG_IO_LONGJIMP

This action code is exactly like IDL_M SG_LONGJIMP, except that it is
issued in response to an input/output error. This code is only used by the I/0
module. User written system routines should use the existing I/O routines, so
they do not need to use this action.

In addition, the following modifier codes can be ORed into the action code.
They modify the normal behavior of IDL_M essage():

IDL_MSG_ATTR_NOPRINT

Suppress the printing of the error message, but do everything elsein the
normal way.

IDL_MSG_ATTR_MORE

Use paging in the style of the UNIX more command to display the output.
This option exists primarily for use by the IDL compiler, and is unlikely to be
of interest to authors of system routines.

IDL_MSG_ATTR_NOPREFIX

Normally, IDL _M essage() prefixes the output message with the string
contained in IDL's M SG_PREFI X system variable.
IDL_MSG_ATTR_NOPREFIX suppresses this prefix string.

IDL_MSG_ATTR_QUIET

If the IDL_MSG_INFO action has been specified and this bit mask has been
included, and the IDL user has IDL's |QUIET system variable,
IDL_M essage() returns without issuing a message.

IDL_MSG_ATTR_NOTRACE
Set this code to inhibit the traceback portion of the error message.

Issuing Error Messages External Development Guide

Chapter 9: IDL Internals: Error Handling 199

IDL_MSG_ATTR_BELL
Set this code to ring the bell when the message is output.

The message format string (specified by the code argument) specifies aformat
string to be used for the error message. Thisformat string is exactly like those
used by the standard C library printf() function. Any arguments following
action are taken to be arguments for this format string.

Error Codes

As mentioned above, ITT Visual Information Solutions has reserved two error codes
for use by writers of system routines. They are:

IDL_M_GENERIC

This message code simply specifies aformat string of “%s". The first argument after
action istaken to be anull-terminated string that is substituted into the format string.
For example, the C statement:

IDL_Message (IDL_M_GENERIC, IDL_MSG_LONGJMP, "Error! Help!")
causes IDL to abort the current routine and issue the message:

[

% Error! Help!

IDL_M_NAMED_GENERIC

This message code is exactly like the one above, except that it prints the name of the
system routine in front of the error string. For example, assuming that the name of the
routineisMY _PROC, the C statement:

IDL_Message (IDL_M_NAMED_ GENERIC, IDL_MSG_LONGJMP,
"Error! Help!")

causes IDL tointerrupt the current routine and issue the message:

% MY PROC: Error! Help!

External Development Guide Issuing Error Messages

200 Chapter 9: IDL Internals: Error Handling

Choosing an Error Code

Note
For any significant development involving an IDL system routine, we recommend
your code be packaged as a Dynamically Loadable Module (DLM), and that your
DLM define a message block to contain its errorsinstead of using the GENERIC
messages described here.

The choice of which code to use depends on the context in which the messageis
issued, but IDL_M_NAMED_GENERIC isusually preferred.

If you wish to include arguments into your message string, you should use the
sprintf() function from the C standard library to format a string into a temporary
buffer, and then supply the buffer as the argument to IDL_M essage(). For example,
executing the code:

char buf[128];

int unit = 23;

sprintf (buf, "Help! Error number %d.", unit);

IDL_Message (IDL_M_GENERIC, IDL_MSG_LONGJMP, buf);
interrupts the current routine and issues the message:

[

% Help! Error number 23.

Issuing Error Messages External Development Guide

Chapter 9: IDL Internals: Error Handling 201

Looking Up A Message Code by Name

Given amessage block pointer and the name of a message from that block, the
IDL_M essageNameToCode() function returns the message code that corresponds to
it. Thisisespecialy useful for dynamically loadable modules that need to throw
errorsfrom the IDL core block. The actual error codes are subject to change between
IDL releases, so looking them up thisway at run-time allows agiven DLM to work
with different IDL versions.

int IDL_MessageNameToCode (IDL_MSG_BLOCK block, char *name)

where:

block

Message block name should be translated against, or NULL to use the default core
IDL block.

name

The message name for which the code is desired. Name is case sensitive, and should
usually be specified as uppercase.

IDL_MessageNameToCode () returns the message code, or O if it is not found.

External Development Guide Looking Up A Message Code by Name

202 Chapter 9: IDL Internals: Error Handling

Checking Arguments

IDL allows auser to provide any number of arguments, of any type, to system
functions and procedures. IDL checks for avalid number of arguments, but the
routine itself must check the validity of types. Thistask consists of examining the
argv argument to the routine checking the type and flags field of each argument for
suitability. The IDL_StoreScalar () function (see “ Storing Scalar Values’ on

page 178) can be very useful in checking write-only arguments.

A number of macros exist in order to simplify testing of variable attributes. All of
these macros accept a single argument—the VPTR to the argument in question. The
macros check for adesired condition and use the IDL _M essage() function with the
IDL_MSG_LONGJIMP action to return to the interpreter if an argument type
doesn’'t agree. Some of these macros overlap, and some are contradictory. You
should select the smallest set that covers your requirements for each argument. For an
example that uses one of these macros, see “Example: A Complete Numerical
Routine Example (FZ_ROOTS2)” on page 277.

IDL_EXCLUDE_UNDEF

The argument must not be of type IDL_TYP_UNDEF. This condition is usually
imposed if the argument is intended to provide some input information to the routine.

IDL_EXCLUDE_CONST

The argument must not be a constant. This condition should be specified if your
routine intends to change the value of the argument.

IDL_EXCLUDE_EXPR

The argument must not be a constant or atemporary variable (i.e., the argument must
be a named variable). Specify this condition if you intend to return avalue in the
argument. Returning avalue in atemporary variable is pointless because the
interpreter will remove it from the stack as soon as the routine completes, causing it
to be freed for re-use.

ThelDL_VarCopy() and IDL_StoreScalar () functions automatically check their
destination and issue an error if it is an expression. Therefore, if you are using one of
these functions to write the new value into the argument variable, you do not need to
perform this check first.

Checking Arguments External Development Guide

Chapter 9: IDL Internals: Error Handling 203

IDL_EXCLUDE_FILE

The argument cannot be a file variable (as returned by the IDL ASSOC) function.
Most system routines exclude file variables—they are handled by a small set of
existing routines. This check isalso handled by the IDL_ENSURE_SIMPLE
macro, which also excludes structure variables.

IDL_EXCLUDE_STRUCT

The argument cannot be a structure.
IDL_EXCLUDE_COMPLEX

The argument cannot be IDL_TYP_COMPLEX.
IDL_EXCLUDE_STRING

The argument cannot be IDL_TYP_STRING.
IDL_EXCLUDE_SCALAR

The argument cannot be a scalar.
IDL_ENSURE_ARRAY

The argument must be an array.
IDL_ENSURE_OBJREF

The argument must be an object reference heap variable.
IDL_ENSURE_PTR

The argument must be a pointer heap variable.
IDL_ENSURE_SCALAR

The argument must be a scalar.
IDL_ENSURE_STRING

Theargument must be IDL_TYP_STRING.
IDL_ENSURE_SIMPLE

The argument cannot be a file variable, a structure variable, a pointer heap variable,
or an object reference heap variable.

External Development Guide Checking Arguments

204 Chapter 9: IDL Internals: Error Handling

IDL_ENSURE_STRUCTURE
The argument must be IDL_TYP_STRUCT.

Checking Arguments External Development Guide

Chapter 10

IDL Internals:
Type Conversion

This chapter discusses the following topics:

Converting Argumentsto C Scalars 206 Converting to Specific Types 208
General TypeConversion 207

External Development Guide 205

206 Chapter 10: IDL Internals: Type Conversion

Converting Arguments to C Scalars

The routines described in this section convert the value of their IDL_VARIABLE
argument to the C scalar type indicated by their name. IDL_MEMINT Scalar () and
IDL_FILEINT Scalar () exist for processing memory and file sizes without the need
to know their actual types, asdiscussed in “IDL_MEMINT and IDL_FILEINT
Types’ on page 119.The converted value is returned as the function value. The
functions are defined as:

IDL_LONG IDL_LongScalar (IDL_VPTR p)
IDL_ULONG IDL_ULongScalar (IDL_VPTR V)
IDL_LONG64 IDL_Long64Scalar (IDL_VPTR V)
IDL_ULONG64 IDL_ULong64Scalar (IDL_VPTR V)
double IDL_DoubleScalar (IDL_VPTR p)
IDL_MEMINT IDL_MEMINTScalar (IDL_VPTR p)
IDL_FILEINT IDL_FILEINTScalar (IDL_VPTR p)

If these functions are unable to perform the conversion (e.g., the argument is afile
variable, an array, etc.), they issue a descriptive error and jump back to the
interpreter. By using these functions, you avoid having to do any of the type checking
described in “ Checking Arguments’ on page 202.

For example, the following IDL system function (named PRINT_L ONG) prints the
value of itsfirst argument, converted to an IDL_L ONG 32-hit integer:

IDL_VPTR print_long(int argc, IDL_VPTR argv[], char *argk)
{

printf ("%d\n", IDL_LongScalar (argv[0]));
}

Executing it as:
PRINT_LONG, 23D
gives the outpuit:
23
as expected, while the statement:
PRINT_LONG, FINDGEN(10)
causes the error:

[

% PRINT_LONG: Expression must be a scalar in this context:
<FLOAT Array (10)>
% Execution halted at SMAINS .

becauseit is not possible to convert an array (the result of FINDGEN) to a scalar.

Converting Arguments to C Scalars External Development Guide

Chapter 10: IDL Internals: Type Conversion 207

General Type Conversion

The DL _BasicTypeConversion() function provides general purpose type

conversion:
IDL_VPTR IDL_BasicTypeConversion (int argc, IDL_VPTR argv](]
int type)
where:
argc

The number of IDL_VPTRs contained in argv.
argv
An array of pointersto VARIABLE arguments.

type
The desired type code of the result. See “ Type Codes’ on page 114.

If argcis, thisfunction returns a pointer to atemporary VARIABLE containing the
value of argv[0] converted to the type specified by the type argument. If the variable
is aready of the correct type, the variable itself is returned.

If argv isgreater than 1, argv[1] istaken to be an offset into the variabl e specified by
argv[Q], and following arguments are taken as the dimensions to be used for the
result. In this case, enough bytes are copied (starting from the offset) to satisfy the
requirements of the dimensions given. This second form does not work for variables
of type string, and if argv is greater than 1 an error is generated if argv[0] is of string
type. You should ensure that variables of appropriate type are used with this function.

TheIDL BYTE and STRING system routines (implemented by the IDL _CvtByteg()
and IDL_CvtString() functions, described below) treat conversions between
variables of type byte and string in aspecia way. IDL_BasicTypeConver sion() does
not handle this special case. Instead, it simply performs a straightforward type
conversion between those types.

External Development Guide General Type Conversion

208

Chapter 10: IDL Internals: Type Conversion

Converting to Specific Types

A series of functions exist to convert VARI ABL Es to specific types:

IDL_VPTR IDL_CvtByte(int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtBytscl(int argc, IDL_VPTR argv[], char *argk)
IDL_VPTR IDL_CvtFix(int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtUInt (int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtLng(int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtULng (int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtLng64 (int argc, IDL_VPTR argv([])

IDL_VPTR IDL_CvtULng64 (int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtFlt (int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtDbl (int argc, IDL_VPTR argvl[])

IDL_VPTR IDL_CvtComplex (int argc, IDL_VPTR argv[])

IDL_VPTR IDL_CvtDComplex(int argc, IDL_VPTR argv[])

IDL_VPTR IDL_CvtString(int argc, IDL_VPTR argv[], char *argk)

When calling these functions, you should set the argk argument to NULL.

These functions are the direct implementations of the IDL commands BY TE,
BYTSCL, FIX, UINT, LONG, ULONG, LONG64, ULONG64, FLOAT, DOUBLE,
COMPLEX, DCOMPLEX, and STRING. See the description of these functionsin
the IDL Reference Guide for details on their arguments and calling sequences.

The behavior of these functionsisthe sameas | DL_BasicTypeConversion() except
when converting between bytes and strings. Calling IDL_CvtByte() with asingle
argument of string type causes each string to be converted to a byte vector of the
same length as the string. Each array element isthe character code of the
corresponding character in the string. Calling IDL_CvtString() with asingle
argument of IDL_TYP_BY TE has the opposite effect.

Converting to Specific Types External Development Guide

Chapter 11

IDL Internals:
UNIX Signals

This chapter discusses the following topics:

IDLandSignals.....................
SignaHandlers
Establishinga Signal Handler

External Development Guide

210 Removing a Signal Handler

213 UNIX Signal Masks

209

210 Chapter 11: IDL Internals: UNIX Signals

IDL and Signals

Signals pose one of the more difficult challenges faced by the UNIX programmer.
Although seemingly simple, they are atough portability problem because there are
several variants, and their semantics are subtle, inconvenient, and easily confused.
These issues are only magnified when signals are used in a program like IDL that
employs multiple threads. IDL has always done whatever is necessary with signalsin
order to get itsjob done, but its signal assumptions can a so affect user written code
linked to it.

Note
Thisdiscussion refers primarily to UNIX IDL. Microsoft Windows uses different
mechanisms to solve the problems solved by signals under UNIX.

Thefollowing isabrief list of problems and contradictionsinherent in UNIX signals.
For a more compl ete description, see Chapter 10 of External Programming in the
UNIX Environment by W. Richard Stevens.

* POSIX signals (sigaction) promise to unify and simplify signals, but not all
platforms support them fully.

* You can only have one signal handler function registered for each signal. This
means that if one part of a program uses asignal, the rest of the program must
leave that signal alone.

e Inorder to meet the needs of programs originally developed under different
UNIX systems (AT& T System V, BSD, Posix), most UNIX implementations
provide more than one package of signal functions. Typically, a given program
isrestricted to one of these libraries. If a programmer links code into IDL that
chooses alibrary or signal options different from that used by IDL itself,
unexpected results may occur.

e The number and exact semantics of some signals differ in different versions.
« Details of signa blocking differ.

e Some System V implementations of signals are unreliable, meaning that
signals can occur in a process and be missed.

* Someolder System V systems reset the handling action to SIG_DFL before
calling the handler. This opens awindow in time where two signalsin arow
can cause the process to be killed. Also, the signal handler must re-establish
itself every timeit is called.

IDL and Signals External Development Guide

Chapter 11: IDL Internals: UNIX Signals 211

On most platforms, if asignal is generated more than once whileiit is blocked,
the second and subsequent occurrences are lost. In other words, most UNIX
implementations do not queue signals.

These are among the reasons that most libraries avoid signals, and leave their use to
the end programmer. IDL, however, must use signals to function properly. In order to
alow usersto link their codeinto IDL whileusing signals, IDL providesasignal API
built on top of the signal mechanism supported by the target platform. The IDL signal
API hasthe following attributes:

It disallows use of SIGTRAP and SIGFPE. Thesesignalsarereserved to IDL.

It disallows use of SIGALRM. Most usesfor SIGALRM are provided by the
IDL timer API.

It works with all other signals, including those IDL doesn’t currently use, so
the interface won't change over time.

It allows multiple signal handlers for each signal, so IDL and other code can
use the same signal simultaneoudly.

It unifies the signal interface by supplying a stable consistent interface with
known behavior to the underlying system signal mechanism.

It keeps IDL in charge of which signal package is used and how.

Thisis not a perfect solution, it is a compromise between the needs of IDL and
programmers wishing to link code with it. Usually, the IDL signal abstractionis
sufficient, but it does have the following limitations:

The calling program must not attempt to catch SIGTRAP or SIGFPE, either
directly or through library routines that use these signals to achieve their ends.
Furthermore, the IDL signal abstraction does not allow the caller to catch these
signals, so your program must leave exception handling to IDL.

The caller loses control over signal package choice and some minor signal
abilities.

Having multiple signal handler routinesfor agiven signal opens the possibility
that one handler might do something that causes problems for the others (like
change the signal mask, or longjmp()). To minimize such problems, user code
linked into IDL must not call the actual system signal routines, and must not

longjmp() out of signa handlers—atactic that is usually alowed, but which
would seriously damage IDL’s signal state.

External Development Guide IDL and Signals

212 Chapter 11: IDL Internals: UNIX Signals

e Sincethere may be more than one signal handler registered for agiven signal,
the signal dispositionsof SIG_IGN and SIG_DFL arenot directly availableto
the caller as they would be if you were allowed to use the system signal
facilities directly.

If you find that these restrictions are too limiting for your application, chances are
your code is not compatible with IDL and should be executed in a separate process.
We then encourage you to consider running IDL in a separate process and to use an
interprocess communication mechanism such as RPC.

IDL and Signals External Development Guide

Chapter 11: IDL Internals: UNIX Signals 213

Signal Handlers

IDL signal handler functions are defined as:
typedef void (* IDL_SignalHandler_t) (int signo) ;

When asignal is delivered to the process, all registered signal handlers are called.
signo isthe integer number of the signal delivered, as defined by the C language
header file signal.h (foundin /usr/include/signal.h on most UNIX

systems). signo can be used by a signal handler registered for more than one signa
to tell which signal called it.

External Development Guide Signal Handlers

214 Chapter 11: IDL Internals: UNIX Signals

Establishing a Signal Handler

To register asignal handler, use the IDL_SignalRegister () function:

int IDL_SignalRegister (int signo, IDL_SignalHandler_t func,
int msg_action)

where:
signo

The numeric value of the signal to register for, as defined in signal . h.
func

The signal handler to be called when the signal specified by signo israised.
msg_action

Oneof theIDL_MSG_* action codesfor IDL_Message(). If thereisan error in
registering the signal handler, this action code is passed to IDL _M essage() to direct
itsrecovery action. Note that it isincorrect to use any of the message codes that cause
IDL_Message() to longjmp() back to the IDL interpreter if your codeisrunningin a
context where the IDL interpreter is not active—specifically as part of using Callable
IDL.

If func issuccessfully registered for signo, thisroutine returns TRUE. Otherwise,
FALSE isreturned and IDL_M essage() is called withmsg_action to control its
behavior. Note that there are values of msg_action that result in this routine not
returning on error. Multiple registration of the same function is allowed, but has no
additional effect—the handler will only be called once.

Establishing a Signal Handler External Development Guide

Chapter 11: IDL Internals: UNIX Signals 215

Removing a Signal Handler

To remove asignal handler, use the IDL_SignalUnregister () function:

export int IDL_SignalUnregister (int signo,
IDL_SignalHandler_t func, int msg_action)

where:
signo

The signal to unregister.
func

The handler to be unregistered.
msg_action

Oneof theIDL_MSG_* action codesfor IDL_Message(). If thereisan error in
removing the signal handler, thisaction codeis passedto IDL_M essage() to direct its
recovery action.

Once IDL_SignalUnregister () has been called, func is unregistered and will no
longer be called if the signal israised. IDL_SignalUnregister () returns TRUE for
success, FAL SE for failure. Requests to unregister afunction that has not been
previously registered are ignored.

External Development Guide Removing a Signal Handler

216 Chapter 11: IDL Internals: UNIX Signals

UNIX Signal Masks

UNIX processes contain asignal mask that defines which signals can be delivered
and which are blocked from delivery at any given time. When asignal arrives, the
UNIX kernel checksthe signal mask: If the signal isin the process mask, it is
delivered, otherwiseit is noted as undeliverable and nothing further is done until the
signal mask changes. Sets of signals are represented within IDL with the opague type
IDL_SignalSet_t. UNIX IDL provides severa functions that manipulate signal sets
to change the process mask and allow/disallow délivery of signals.

IDL_SignalSetinit()

IDL_Signal Setlnit() initializes asignal set to be empty, and optionally setsit to
contain one signal.

void IDL_SignalSetInit (IDL_SignalSet_t *set, int signo)

where:
set

The signal set to be emptied/initialized.
signo

If non-zero, asignal to be added to the new set. Thisis provided as a convenience for
the large number of cases where a set contains only one signal. Use
IDL_SignalSetAdd() to add additional signalsto a set.

IDL_SignalSetAdd()

IDL_SignalSetAdd() adds the specified signal to the specified signal set:

void IDL_SignalSetAdd(IDL_SignalSet_t *set, int signo)

where:

set

The signal set to be added to. The signal set must have been initialized by
IDL_SignalSetlnit().

signo
The signal to be added to the signal set.

UNIX Signal Masks External Development Guide

Chapter 11: IDL Internals: UNIX Signals 217

IDL_SignalSetDel()

IDL_SignalSetDel() deletes the specified signal from asignal set:
void IDL_SignalSetDel (IDL_SignalSet_t *set, int signo)

where:
set

The signal set to delete from. The signal set must have been initialized by
IDL_SignalSetlnit().

signo
The signal to be removed from the signal set.

IDL_SignalSetlsMember()

IDL_SignalSetlsM ember () tests asignal set for the presence of a specified signal,
returning TRUE if the signa is present and FAL SE otherwise:

int IDL_SignalSetIsMember (IDL_SignalSet_t *set, int signo)

where:
set

The signal set to test. The signal set must have been initialized by
IDL_Signal Setlnit().

signo
The signal to be removed from the signal set.

IDL_SignalMaskGet()

IDL_SignalMaskGet() setsasignal set to contain the signals from the current
process signal mask:

void IDL_SignalMaskGet (IDL_SignalSet_t *set)

where:
set

The signal set in which the current process signal mask will be stored.

External Development Guide UNIX Signal Masks

218 Chapter 11: IDL Internals: UNIX Signals

IDL_SignalMaskSet()
IDL_SignalMask Set() sets the current process signal mask to contain the signals
specified in asignal mask:

void IDL_SignalMaskSet (IDL_SignalSet_t *set,
IDL_SignalSet_t *omask)

where:

set
The signal set from which the current process signal mask will be set.

omask

If omask isnon-NULL, the unmodified process signal mask is stored in it. Thisis
useful for restoring the mask later using | DL_SignalM ask Set().

There are some signals that cannot be blocked. This limitation is silently enforced by
the operating system.

IDL_SignalMaskBlock()

IDL_SignalMaskBlock() adds signals to the current process signal mask:

void IDL_SignalMaskBlock (IDL_SignalSet_t *set,
IDL_SignalSet_t *oset)

where:

set
The signal set containing the signals that will be added to the current process signal
mask.

oset

If oset isnon-NULL, the unmodified process signal mask isstored init. Thisisuseful
for restoring the mask later using IDL _SignalM ask Set().

There are some signals that cannot be blocked. Thislimitation is silently enforced by
the operating system.

UNIX Signal Masks External Development Guide

Chapter 11: IDL Internals: UNIX Signals 219

IDL_SignalBlock()

IDL_SignalBlock() doesthe same thing asIDL_SignalM askBlock () except it
accepts asingle signal number instead of requiring a mask to be built:

void IDL_SignalBlock(int signo, IDL_SignalSet_t *oset)

where:
signo

The signal to be blocked.

There are some signals that cannot be blocked. Thislimitation is silently enforced by
the operating system.

IDL_SignalSuspend|()

IDL_SignalSuspend() replacesthe process signal mask with the onesin set and then
suspends the process until asignal is delivered. On return, the original process signal

maskK is restored:

void IDL_SignalSuspend (IDL_SignalSet_t *set)
where:
set

The signal set containing the signals that will be added to the current process signal
mask.

External Development Guide UNIX Signal Masks

220 Chapter 11: IDL Internals: UNIX Signals

UNIX Signal Masks External Development Guide

Chapter 12

IDL Internals:
Timers

This chapter discusses the following topics:

IDLandTimerscovvivinn... 222 Canceling Asynchronous Timer Requests 225
Making Timer Requests 223 BlockingUNIX Timers 226

External Development Guide 221

222 Chapter 12: IDL Internals: Timers

IDL and Timers

The details of how timers work varies widely between operating systems and
between variants of the same operating system (different “flavors’ of UNIX, for
example). IDL’s timer module is intended to provide a stable interface to the rest of
IDL, and to isolate the non-portable code in one place.

Under UNIX, IDL’stimer module performs a more important function. UNIX
processes contain asingle timer that must be shared by the code in the process. When
the timer fires, it raisesthe SIGALRM signal which must be caught and handled by
the process. The IDL timer routines transparently multiplex this single timer to
provide multiple virtual timers.

Under UNIX, IDL provides both blocking and non-blocking timers. Blocking timers
put the calling process to sleep until they go off. Non-blocking timers are delivered
asynchronously when they fire.

Under Microsoft Windows, only the blocking form of timer requests are supported.

IDL and Timers External Development Guide

Chapter 12: IDL Internals: Timers 223

Making Timer Requests

TheIDL_Timer Set() function registers atimer request. IDL timer requests are one-
shot timers. If you wish to have atimer go off repeatedly, your callback function must
make a new request each timeit is called to set up the next timer.

void IDL_TimerSet (length, callback, from_callback, context)

where:
length

The length of time to delay before issuing the alarm, in microseconds. You
should be aware that other activity on the system, overhead incurred in
managing the timers, and non-realtime attributes of the operating system can
cause the actual duration of the timer to be longer than requested.

callback

Under UNIX, if callback isnon-NULL, the timer request is queued and
IDL_Timer Set() returns immediately. When the alarm is due, the function
pointed at by callback is called. If callback is NULL (and not
from_callback), the request is queued and I DL _Timer Set() blocks until the
requested time expires.

Warning
When called, the callback function will be running in signal scope, meaning that it
has been called from a signal handler running asynchronously from the rest of the
program. There are significant restrictions on what code running in signal scopeis
allowed to do. Most common C library functions (such as printf()) are disallowed.
Consult abook on UNIX programming or your system documentation for details.

Under Windows, callback should awaysbe NULL. IDL_Timer Set() does not
support non-blocking timers on these platforms.

from_callback

Set this argument to TRUE if thisinvocation is from a callback function
previously set up viaacall to IDL_Timer Set(). Set thisargument to FALSE if
thisisthefirst invocation. In other words, this argument should only be TRUE
if youcall IDL_Timer Set() from within atimer callback.

External Development Guide Making Timer Requests

224 Chapter 12: IDL Internals: Timers

context

Thisargument isapointer to avariable of typeIDL_TIMER_CONTEXT, an
opaque IDL datatype that uniquely identifies atimer request. If thisisatop
level request (if from_callback is FAL SE), the context pointed at will be
assigned a unique value that identifies the request.

If this request is coming from within atimer callback in order to make another
reguest on the same timer, the context pointed at should contain the value from
the previous request.

If context isNULL, no context value is returned.

Note
It isan error to queue more than one request using the same callback. The results
are undefined.

For the timer module to perform adequately, the time request must be large compared
to the run-time of the called function. Re-queuing an extremely short request
repeatedly will cause any other requests to starve.

Making Timer Requests External Development Guide

Chapter 12: IDL Internals: Timers 225

Canceling Asynchronous Timer Requests

Under UNIX, IDL_Timer Cancel() can be used to cancel atimer request that has not
yet been delivered:

void IDL_TimerCancel (context)

where:
context

A timer request context returned by a previous call to IDL_Timer Set().

External Development Guide Canceling Asynchronous Timer Requests

226 Chapter 12: IDL Internals: Timers

Blocking UNIX Timers

Under UNIX operating systems, the delivery of signals such as SIGALRM (used to
manage timers) can cause system calls to be interrupted. In such cases, the system
call returns astatus of -1 and the global errno variableisset tothevalue EINTR. Itis
the caller’s responsibility to check for this result and restart the system call when it
ocCurs.

It is easy enough to handle this case when you make system calls directly, but
sometimes the problem surfacesin libraries (even those provided by the system, such
as 1ibc) that are not properly coded against this possibility because the author
assumed that no interrupts would occur. There is very little that the end user can do
about such libraries except take steps that prevent signals from being raised during
these critical sections.

If the IDL timer module is being used to deliver asynchronous events, it isinevitable
that the delivery of SIGALRM will interfere with this sort of library code. The
IDL_TimerBlock() function is available under UNIX to suspend the delivery of the
timer signal. This can be used to provide a window in which no timer will fire. This
routine should always be called in pairs, so the timer doesn’t get turned off
permanently. It isimportant to be sure a 1ongjmp () (such as caused by calling
IDL_Message() withthe IDL_M SG_L ONGJIMP action code) doesn't happen in
the critical region. In addition, this function is not re-entrant.

The effect of blocking timer delivery isthat the UNIX SIGALRM signal is masked
to prevent delivery. If the timer fires during this window of time, the signal will not
be delivered until timers are unblocked. At that time, the timer module resumes
managing the single real UNIX timer. In the meantime, timer requests are arbitrarily
delayed from being queued and processed. Clearly, excessive blocking of the timer
can lead to poor timer performance and should only be performed when necessary
and on the smallest possible critical section of code. Of course, the act of blocking
and unblocking signals requires a context switch into the UNIX kernel and back,
making them relatively computationally expensive operations. It istherefore better to
block alonger section of code rather than block and unblock around every critical
library call.

Blocking UNIX Timers External Development Guide

Chapter 12: IDL Internals: Timers 227

It has been our experience that some UNIX platforms have more problem with this
issue than others. You should let experience guide you in deciding when to block
signals and when to let them go.

void IDL_TimerBlock (stop)

where;
stop

TRUE if the timer should be suspended, FAL SE to restart it.

External Development Guide Blocking UNIX Timers

228 Chapter 12: IDL Internals: Timers

Blocking UNIX Timers External Development Guide

Chapter 13

IDL Internals: Files and

Input/Output

This chapter discusses the following topics:

IDL and Input/Output Files 230
Filelnformation 232
OpeningFiles....................... 236
ClosingFiles 239
Preventing FileClosing 240
Checking FileStatus 241

External Development Guide

Allocating and Freeing FileUnits 243
DetectingEndof File 245
Flushing BufferedData 246
Reading aSingle Character 247
Output of IDL Variables.............. 248
Adding tothe Journal File 249

229

230 Chapter 13: IDL Internals: Files and Input/Output

IDL and Input/QOutput Files

IDL provides extensive Input/Output facilities at the user level. Internally, it uses
native Input/Output facilities (UNIX system calls or Windows system API) in
addition to the standard C library stream package (stdio). The choice of which
facilities to use are made based on the target platform and the requested features for
thefile.

Most external code linked with IDL (CALL_EXTERNAL, system routines, etc.)
should not do Input/Output directly, for the following reasons:

e Part of the IDL philosophy is that Input/Output is handled by dedicated I/0O
facilities provided by IDL, and that computational code should accept data
from IDL variables and return results in the same way. This gives the user of
your code the freedom and flexibility to save their datain any of the many
forms supported by IDL’s core I/O facilities, and frees you from writing
complex and error prone input/output code.

e Using IDL’s Input/Output facilities frees you from having to code around
platform specific differencesin 1/O behavior.

* Input/Output from languages other than C often require runtime library support
code to run at program startup before your code and successfully perform 1/0.
For example, Fortran Input/Output may depend on a Fortran runtime
subsystem having been initialized. IDL, as a C program, does not perform
initialization of such libraries for other languages. If you know enough about
your Fortran system, you can often supply the missing initialization call, but
such workarounds are usually not well documented, and are inherently
platform specific.

For the reasons above, only minimal 1/O abilities are available from IDL'sinternals,
and only for files that explicitly use the standard C stdio library. Therefore, if your
application must directly perform 1/0 to afile managed by IDL, it is necessary to use
the standard C library streampackage (stdio) by specifyingthe IDL_F_STDIO flag to
IDL_FileOpen(). Most of the routines associated with the standard C library 1/0
package can be used in the normal manner.

IDL and Input/Output Files External Development Guide

Chapter 13: IDL Internals: Files and Input/Output

231

Note, however, that the C library routines listed in the following table should not be
used; use the IDL-specific functionsinstead:

C Library Function IDL Function
fclose() IDL_FileClose()
fdopen() IDL_FileOpen()
feof () IDL_FileEOF()
fflush() IDL_FileFlushUnit()
fopen() IDL_FileOpen()
freopen() IDL_FileOpen()

Table 13-1: Disallowed C Library Routines and Their IDL Counterparts

Note

In order to access afile opened using IDL_FileOpen() in this manner, you must
ensure that it is stdio compatible by specifying IDL_F_STDIO as part of the
extra_flags argument to IDL_FileOpen(). Failure to do thiswill cause your code to

fail to execute as expected.

External Development Guide

IDL and Input/Output Files

232 Chapter 13: IDL Internals: Files and Input/Output

File Information

IDL maintains afiletable in which it keeps afile descriptor for each file opened with
IDL_FileOpen(). Thistable isindexed by the file Logical Unit Number, or LUN.
These are the same LUNSs IDL users use.

The IDL_FileStat() function is used to get information about afile.

IDL_FileStat()

void IDL_FileStat(int unit, IDL_FILE_STAT *stat_blk)
unit

Thelogical unit number (LUN) of the file unit to be checked. This function should
only be called on file units that are known to be open.

stat_blk

A pointer toan IDL_FILE_STAT struct to befilled in with information about thefile.
Theinformation returned isvalid only as long as the file remains open. You must not
accessthefieldsof an IDL_FILE STAT oncethefileit refersto hasbeen closed. This
struct has the definition:

typedef struct {
char *name;
short access;
IDL_SFILE_FLAGS_T flags;
FILE *fptr;

} IDL_FILE_STAT;

The fields of this struct are listed below:
name

A pointer to a null-terminated string containing the name the file was opened with.

File Information External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 233

access

A bit mask describing the access allowed to the file. The allowed bit values are listed
in the following table:

Bit Value Description
IDL_OPEN_R Thefileis open for input.
IDL_OPEN_W Thefileis open for output.

IDL_OPEN_TRUNC | Thefilewastruncated when it was opened. Thisimplies
that IDL_OPEN_W isalso set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain thefile (the fileis open for appending).

Table 13-2: Bit values for the access field
flags

A bit mask that gives specia information about the file. The defined bits arelisted in
the following table:

Bit Value Description
IDL_F ISATTY Thefileisaterminal.
IDL_F ISAGUI ThefileisaGraphical User Interface.
IDL_F _NOCLOSE The CLOSE command will refuse to close the
file.
IDL_F MORE If thefileisaterminal, output is sent through a

pager similar to the UNIX more command.
Details on this pager are not included in this
document, and it is therefore not available for

genera use.

IDL_F XDR Thefileisread/written using XDR (eXterna
Data Representation).

IDL_F DEL_ON_CLOSE Thefilewill be deleted when it is closed.

Table 13-3: Bit values for the flags field

External Development Guide File Information

234

Chapter 13: IDL Internals: Files and Input/Output

Bit Value

Description

IDL_F_SR

Thefileis a SAVE/RESTORE file.

IDL_F_SWAP_ENDIAN

The file has opposite byte order than that of
the current system.

IDL_F_VAX_FLOAT

Binary float and double arein VAX Fand D
format.

IDL_F_COMPRESS

Thefileisin compressed gzip format. If
IDL_F SRisset (thefileisa
SAVE/RESTORE file), thefile contains zlib
compressed data.

IDL_F_UNIX_F77

Thefileisread/written in the format used by
the UNIX Fortran (f77) compiler for
unformatted binary data.

IDL_F_PIPE

Thefileisabi-directional data path
connecting IDL to a child process created by
the SPAWN procedure.

IDL_F_UNIX_RAWIO

(formerly called
IDL_F_UNIX_NOSTDIO)

No application level buffering will be
performed for the file and al data transfers
will go directly to the operating system for
processing (e.g. read() and write() system
callsunder UNIX, Windows system-level API
for MS Windows). Note that setting this bit
does not guarantee that data will be written to
the file immediately, because the operating
system may buffer the data. Thisbit value was
formerly called IDL_F _UNIX_NOSTDIO.
IDL_F _UNIX_RAWIO isthe preferred form,
but both names are supported.

IDL_F_UNIX_SPECIAL

ThefileisaUNIX device special file, most
likely a pipe. Thisdiffersfrom IDL_F_PIPE
because it appliesto any file, not only those
opened with the SPAWN procedure.

Table 13-3: Bit values for the flags field (Continued)

File Information

External Development Guide

Chapter 13: IDL Internals: Files and Input/Output

235

Bit Value

Description

IDL_F_STDIO

Use the C standard 1/0O library (stdio) to
perform /O on thisfile instead of any other
native OS API that might be otherwise used.
People intending to access IDL files viatheir
own code should specify thisflag if they
intend to access the file from their external
code as a stdio stream.

IDL_F_SOCKET

Fileis an internet TCP/I P socket.

Table 13-3: Bit values for the flags field (Continued)

fptr

The stdio stream file pointer to the file. Thisfield can be used with standard library
functions to perform I/O. Thisfield is dwaysvalid, athough you shouldn’t useiit if
thefileisan XDR file. You can check for this by looking for the IDL_F _XDR bitin

the flags field.

If thefileis not opened withthe IDL_F_STDIO flag, fptr may be returned as an
unusable NULL pointer, reflecting the fact that IDL is not using stdio to perform 1/0
onthefile. If accessto avalid fptr isimportant to your application, you should be
sureto specify IDL_F_STDI O to the extra_flags argument to IDL_FileOpen, or
use the STDIO keyword to OPEN if opening the file from the IDL user level.

In addition to the requirement to set the IDL_F_STDI O flag, you should be aware
that IDL buffers1/0 at alayer above the stdio package. If your code does 1/0 directly
to afilethat is also being written to from the IDL user level, the IDL buffer may
cause data to be written to thefile in a different order than you expect. There are
several approaches you can take to prevent this:

» Tel IDL not to buffer, by opening the file from the IDL user level and
specifying avalue of -1 to the BUFSIZE keyword.

« Disable stdio buffering by calling the stdio setbuf() function.

» Ensurethat you flush IDL’s buffer before you do any Input/Output, as
discussed in “Flushing Buffered Data’ on page 246.

External Development Guide

File Information

236 Chapter 13: IDL Internals: Files and Input/Output
Opening Files
Files are opened using the IDL_FileOpen() function.

IDL_FileOpen()

int IDL_FileOpen(int argc, IDL_VPTR *argv, char *argk,
int access_mode, IDL_SFILE_FLAGS_T extra_flags,
int longjmp_safe, int msg_attr)

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise.

Note
If longjmp_safeis TRUE, the usual courseisto jump back to the IDL interpreter, in
which case the routine won't return.

argc
The number of argumentsin argv. This value should always be 2.
argv

The argumentsto IDL_File Open(). argv[0] should be a scalar integer value giving
the file unit number (LUN) to be opened. argv[1] isascalar string giving the file
name.

argk
Keywords. Set this argument to NULL.
access_mode

A bit mask that specifies the access to be allowed to the file being opened. The
alowed bit values are listed in the following table:

Bit Value Description
IDL_OPEN_R Thefileis open for input.
IDL_OPEN_W Thefileis open for output.

Table 13-4: Bit Values for the access_mode Argument

Opening Files External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 237

Bit Value Description

IDL_OPEN_TRUNC | Thefilewastruncated when it was opened. Thisimplies
that IDL_OPEN_W isalso set.

IDL_OPEN_APND The file was opened with the file pointer set just past the
last byte of datain the file (the fileis open for appending).

Table 13-4: Bit Values for the access_mode Argument (Continued)

It isimportant that conflicting bits not be set together (for example, do not specify
IDL_OPEN_TRUNC | IDL_OPEN_APND). Also, one or both of IDL_OPEN_R and
IDL_OPEN_W must always be specified.

extra_ flags

Used to specify additional file attributes using the flags defined in the description of
the flags field of the IDL_FILE_STAT struct (see “File Information” on page 232).
Note that some flags are set by IDL based on the actual attributes of the opened file
(e.g. IDL_F_ISTTY) and that it makes no sense to set such flagsin this mask.

If you intend to use the opened file as a C standard I/O (stdio) stream file, you must
specify thelIDL_F_STDIO flagwhen calling IDL_FileOpen(). Otherwise, IDL may
choose not to use stdio.

longjmp_safe

If set to TRUE, IDL_FileOpen() isbeing called in a context where an
IDL_MSG_LONGJIMP IDL_Message action code is okay. If set to FALSE, the
routine won’t Longjmp ().

IDL_FileOpen() returns TRUE if the file has been successfully opened and FALSE
otherwise. Of course, if longjmp_safeis TRUE, the usual courseis to jump back to
the IDL interpreter, in which case the routine won’t return.

msg_attr

A zero (0), or any combination of the IDL_MSG_ATTR_ flags, used to fine tune the
error handling specified by the 1ongimp_safe argument. Note that you must not
specify any of thebase IDL_MSG__ codes, but only the attributes. The base code (e.g.
IDL_MSG_LONGJIMP) is determined by the value of 1ongjmp_safe. For a
discussion of the IDL_MSG_ATTR_ flags, see “Issuing Error Messages’ on

page 195.

External Development Guide Opening Files

238 Chapter 13: IDL Internals: Files and Input/Output

Special File Units

There are three files that are always open. The three units are:
e« |IDL_STDIN_UNIT — Unit 0 (zero) isthe standard input for the IDL process.
e« |IDL_STDOUT_UNIT — Unit -1 is the standard output.
e |IDL_STDERR_UNIT — Unit -2 isthe standard error.

Note
The constant IDL_NON_UNIT always has avalue that is not avalid file unit.

Opening Files External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 239

Closing Files

Files are closed using the IDL_FileClose() function.
IDL_FileClose()

void IDL_FileClose(int argc, IDL_VPTR *argv, char *argk)
argc
The number of argumentsin argv.
argv

The arguments to the close function. These should be scalar integer values giving the
Logical Unit Numbers of the file unitsto close.

argk
Keywords. Set this argument to NULL.

External Development Guide Closing Files

240 Chapter 13: IDL Internals: Files and Input/Output

Preventing File Closing

Usethe IDL_FileSetClose() function to prevent files from closing. It does this by
setting or clearing the IDL_F_NOCLOSE bit in the flags field of the internal file
descriptor maintained by IDL for thefile (see “File Information” on page 232). This
feature is used primarily in graphics drivers for printers. For example, the PostScript
driver uses this feature to prevent the user from closing the plot data file prematurely.

When IDL exits, it only closes open files that do not have the IDL_F NOCL OSE hit
set. Fileswith closeinhibited are simply left alone. Often, you will want to declare an
exit handler which takes care of closing such files.

IDL_FileSetClose()

void IDL_FileSetClose(int unit, int allow)
unit

The Logical Unit Number (LUN) of the filein question. The file must be open for
this function to have effect.

allow

Set thisfield to TRUE if users are allowed to close the file. Set to FALSE if users
should be prevented from closing thefile.

Preventing File Closing External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 241

Checking File Status

System routines that deal with files must verify that the files have the proper
attributes for the intended operation. Use the function IDL_FileEnsureStatus() for
this.

IDL_FileEnsureStatus()

int IDL_FileEnsureStatus (int action, int unit, int flags)
action

If the file unit does not satisfy the requirements of the flags argument,
IDL_FileEnsureStatus() will issue an error using the IDL_Message() function (see
“lssuing Error Messages’ on page 195). This action is the action argument to
IDL_Message() and should be IDL_MSG_RET, IDL_MSG_LONGJIMP, or
IDL_MSG_IO_LONGIMP.

unit
The Logical Unit Number of the file to be checked.
flags

IDL_FileEnsureStatus() always checksto make sure unitisavalid logical file unit. In
addition, flagsis abit mask specifying the file attributes that should be checked. The
possible bit values are listed in the following table:

Bit Value Description

IDL_EFS USER Thefile must be auser unit. This meansthat thefile
is not one of the three specidl files, stdin, stdout, or
stderr.

IDL_EFS IDL_OPEN The file unit must be open.

IDL_EFS CLOSED The file unit must be closed.

IDL_EFS READ The file unit must be open for input.

IDL_EFS WRITE The file unit must be open for output.

IDL_EFS NOTTY The file unit cannot be atty.

Table 13-5: Bit Values for the flags Argument

External Development Guide Checking File Status

242 Chapter 13: IDL Internals: Files and Input/Output

Bit Value Description
IDL_EFS NOGUI The file unit cannot be a Graphical User Interface.
IDL_EFS NOPIPE The file unit cannot be a pipe.
IDL_EFS NOXDR Thefile unit cannot be a XDR file.
IDL_EFS ASSOC The file unit can be ASSOC’ ed. Thisimplies

IDL_EFS_USER, IDL_EFS_OPEN,
IDL_EFS NOTTY, IDL_EFS NOPIPE,
IDL_EFS NOXDR, IDL_EFS NOCOMPRESS,
and IDL_EFS_NOSOCKET.

IDL_EFS NOT_RAWIO The file was not opened with the

(formerly called IDL_F _UNIX_RAWIO attribute. This bit was
IDL_EFS NOT_NOSTDIO | formerly called IDL_F_NOTSTDIO.
) IDL_EFS NOT_RAWIO isthe preferred form, but

both names are accepted.

IDL_EFS NOCOMPRESS | Thefile unit cannot have been opened for
compressed input/output (IDL_F_COMPRESS).

IDL_EFS STDIO The file must be using the C stdio package
(IDL_F_STDIO).

IDL_EFS NOSOCKET Thefile unit cannot be asocket (IDL_F_SOCKET).

Table 13-5: Bit Values for the flags Argument (Continued)

Note
Some of these values are contradictory. The caller must select a consistent set.

If the file unit meetsthe desired conditions, IDL_FileEnsureStatus() returns TRUE. If
it does not meet the conditions, and action was IDL_MSG_RET, then it returns
FALSE.

Checking File Status External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 243

Allocating and Freeing File Units

System routines must allocate and deallocate file unitsin order to avoid conflicts.
When writing IDL procedures, the GET_LUN and FREE_LUN procedures are used.
When writing system-leve routines, you can access the same routines by calling
IDL_FileGetUnit() and IDL_FileFreeUnit().

Use IDL_FileGetUnit() to allocate file units:
IDL_FileGetUnit()

void IDL_FileGetUnit (int argc, IDL_VPTR *argv)
argc
argc should aways be 1.
argv

argv[0] containsan IDL_VPTR tothe IDL_VARIABLE that will befilled in with the
resulting unit number.

Use IDL_FileFreeUnit() to freefile units:
IDL_FileFreeUnit()

void IDL_FileFreeUnit (int argc, IDL_VPTR *argv)
argc
argc gives the number of elementsin argv.
argv
argv should contain scalar integer values giving the Logical Unit Numbers of thefile
units to be returned.

Read the description of GET_LUN and FREE_LUN in the IDL Reference Guide for

additional details about these functions. The following code fragment demonstrates

how these functions might be used to open and close afile named junk.dat:
IDL_VPTR argv([2];

IDL_VARIABLE unit;
IDL_VARIABLE name;

External Development Guide Allocating and Freeing File Units

244 Chapter 13: IDL Internals: Files and Input/Output

/* Allocate a file unit. */
argv[0] = &unit;

unit.type = IDL_TYP_LONG;
unit.flags = 0;
IDL_FileGetUnit (1, argv);

/* Set up the file name */
name.type = IDL_TYP_ STRING;
name.flags = IDL_V_CONST;

name.value.str.s = "junk.dat";
name.value.str.slen = sizeof ("junk.dat") - 1;
name.value.str.stype = 0;

argv[l] = &name;

IDL_FileOpen (2, argv, (char *) 0, IDL_OPEN_R, 0, 1, 0);

/* Perform any required actions. */

/* Free the file unit. This will also close the file. */
IDL_FileFreeUnit(1l, argv);

Allocating and Freeing File Units External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 245
Detecting End of File
IDL_FileEOF()

The IDL_FileEOF() function returns TRUE if the file specified by the Logical Unit
Number unit is at EOF, and FAL SE otherwise:

int IDL_FileEOF (int unit)
unit

The Logical Unit Number (LUN) of the filein question.

External Development Guide Detecting End of File

246 Chapter 13: IDL Internals: Files and Input/Output
Flushing Buffered Data

IDL_FileFlushUnit()

File data might be buffered in system memory in order to boost input/output
performance. The IDL_FileFlushUnit() function forces any buffered data for thefile
specified by the Logical Unit Number unit to be written out:

int IDL_FileFlushUnit (int unit)
unit

The Logical Unit Number (LUN) of the filein question.

Flushing Buffered Data External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 247
Reading a Single Character
IDL_GetKbrd()

The IDL_GetKbrd() function returns the character code of the next available
character from IDL_STDIN_UNIT:

int IDL_GetKbrd(int should_wait)

should_wait

Set this argument to TRUE if IDL_GetKbrd() should wait for akey to be struck,
FAL SE otherwise.

If should_wait is FAL SE and no input characters are waiting in the input stream,
IDL_GetKbrd() returns NULL. Otherwise, it waits until akey is struck (if necessary)
and then returnsits ASCII value. Thisfunction will generate an error and return to the
interpreter if IDL_STDIN_UNIT is not aterminal.

External Development Guide Reading a Single Character

248 Chapter 13: IDL Internals: Files and Input/Output

Output of IDL Variables
IDL_Print() and IDL_PrintF()

The IDL_Print() and IDL_PrintF() functions output the value of IDL_VARIABLEs.
IDL_Print() ssmply outputsto IDL_STDOUT_UNIT, while IDL_PrintF() outputsto
aspecified unit:

void IDL_Print (int argc, IDL_VPTR *argv, char *argk)
void IDL_PrintF (int argc, IDL_VPTR *argv, char *argk)

argc
The number of argumentsto argv.
argv
IDL_VPTRsof the IDL_VARIABLESs to be output.
argk

Keywords. Set thisargument to NULL ((char *) 0).

These functions are the implementation of the built-in IDL system procedures PRINT
and PRINTF. See “PRINT/PRINTF" (IDL Reference Guide) for information on the
available arguments and the order in which you must specify them.

Output of IDL Variables External Development Guide

Chapter 13: IDL Internals: Files and Input/Output 249

Adding to the Journal File
IDL_Logit()

The IDL_Logit() function can be used to add lines of output to the journal log file:

void IDL_Logit(char *s)

A pointer to a NULL terminated string to be added to the journal log file.

If ajournal log fileis currently open, thisfunction writes the specified string to it on a
new line. If no journal fileisopen, IDL_L ogit() returns quietly. The only way to open
or close thejournal fileisviathe user-system-level JOURNAL procedure.

External Development Guide Adding to the Journal File

250 Chapter 13: IDL Internals: Files and Input/Output

Adding to the Journal File External Development Guide

Chapter 14

IDL Internals:
Miscellaneous

This chapter discusses the following topics:

DynamicMemory 252
ExitHandlers 255
Userinterruptst 256
Functions for Returning System Variables 257
Terminal Information................. 258

External Development Guide

Ensuring UNIX TTY State. 260
Typelnformation 261
User Information 263
Constantsccuu.n.. 264
Macros 265

251

252 Chapter 14: IDL Internals: Miscellaneous

Dynamic Memory

IDL provides access to the dynamic memory allocation routines it usesinternally.
Use these routines rather than system-provided routines such as malloc()/free() when
possible.

Warning
The memory pointers returned by the IDL memory allocation routines discussed in
this chapter do not necessarily correspond directly to malloc()/free() calls, or to any
other system memory allocation package. You must be careful not to mix memory
alocation packages. Memory allocated viaagiven API can only be freed by the
corresponding free call provided by that API. For example, memory allocated by an
IDL memory allocation routine can only be freed by the IDL IDL_MemFreg()
function. Memory allocated by malloc() can only be freed by freg().

Failure to follow thisrule can lead to memory corruption, including possible
crashing of the IDL program.

Please note that code called viaCALL_EXTERNAL, or as a system routine
(LINKIMAGE, Dynamically Loadable Modules) should not use the IDL dynamic
memory routines. Instead, use IDL_GetScratch() (see “ Getting Dynamic Memory”
on page 174) which prevents memory from being lost under error conditions.

Warning
Our experience shows that in situations where | DL _GetScratch() is appropriate,
use of any other memory allocation mechanism should raise awarning flag to the
programmer that something is wrong in their code. Rarely if ever isadirect call to
malloc()/free() reasonable in such a situation — even if it appears to work
correctly, you will have to work harder to provide the error handling functionality
that IDL_GetScratch() provides automatically, or your code will leak memory in
such situations.

Dynamic Memory External Development Guide

Chapter 14: IDL Internals: Miscellaneous 253

IDL_MemAlloc()

IDL_MemAlloc() is used to allocate dynamic memory.
void *IDL_MemAlloc (IDL_MEMINT n, char *err_str, int action)

where:

The number of bytesto alocate.

err_str

NULL, or anull terminated text string describing the memory being allocated.
action

An action parameter to be passed to IDL_Message() if IDL_MemAlloc() is unable
to allocate the desired memory and err_str isnon-NULL.

IDL_MemAlloc() attemptsto allocate the desired amount of memory. If the
requested amount is allocated, a pointer to the memory isreturned. The memory is
aligned strictly enough to be suitable for any object.

If the attempt to allocate memory failsand err_str isnon-NULL, IDL_Message() is
caled as:

IDL_Message (IDL_M_CNTGETMEM, action, err_str)

If IDL_Message() returns, or if err_str isNULL and IDL_M essage() is not called,
IDL_MemAlloc() returnsa NULL pointer indicating its failure.

IDL_MemFree()

Memory allocated vial DL_MemAlloc() should only be returned via

IDL_MemFreg():
void IDL_MemFree (REGISTER void *m, char *err_str, int action)
m
A pointer to memory previoudly allocated via | DL_MemAlloc().
err_str

NULL, or anull terminated text string describing the memory being freed.

External Development Guide Dynamic Memory

254 Chapter 14: IDL Internals: Miscellaneous

action

An action parameter to be passed to IDL_M essage() if unable to free memory and
err_str isnon-NULL.

IDL_MemFree() attempts to free the specified memory. If the attempt to free
memory failsand err_str isnon-NULL, IDL_Message() iscalled as.

IDL_Message (IDL_M_CNTFREMEM, action, err_str)
The following actions have undefined consequences, and should not be done:
« Returning memory allocated from a source other than IDL_M emAlloc().
» Freeing the same allocation more than once.

» Dereferencing memory once it has been freed.
IDL_MemAllocPerm()

Another memory alocation routine, IDL_MemAllocPer m(), existsto allocate
dynamic memory that will not be returned for reuse. IDL_MemAllocPerm()
alocates memory in moderately large units and carves out pieces of these blocksto
satisfy its requests. Use of this routine can help minimize the effects of memory
fragmentation.

void *IDL_MemAllocPerm(IDL_MEMINT n, char *err_str, int action)

IDL_MemAllocPerm() takes the same argumentsas | DL_MemAlloc(), differing
only in that the memory allocated will not be freed until the process exits. Do not
attempt to free memory allocated by IDL_MemAllocPer m(). The results of such an
action are undefined.

Dynamic Memory External Development Guide

Chapter 14: IDL Internals: Miscellaneous 255

Exit Handlers

IDL maintainsalist of exit handler functions that it calls as part of its shutdown
operations. These handlers perform actions such as closing files, wrapping up
graphics output, and restoring the user environment to itsinitial state. Exit handlers
accept no arguments and return no value.

A typical declaration would be:

void my_exit_handler (void)

{

/* Cleanup Code Here */

}
IDL_ExitRegister()

To register an exit handler, use the IDL_ExitRegister () function:
void IDL_ExitRegister (IDL_EXIT_HANDLER_FUNC)
where IDL_EXIT_HANDLER_FUNC is defined as:

typedef void(* IDL_EXIT_HANDLER_FUNC) (void) ;
proc

IDL will call proc just before it exits.

The order in which exit handlers are called is undefined, and you should not depend
on any particular ordering. If you have several exit handlers and the order in which
they are called isimportant, you should register a single handler that calls all the
othersin the required order.

Note
Under some operating systems, it is possible that the IDL process will diein an

abnormal way that prevents the calling of the exit handlers. For example, under
UNIX, receiving some signals (possibly viathe kill(1) command) will cause the
processto dieimmediately. IDL always calls exit handlers when possible, so thisis
rarely a significant problem.

External Development Guide Exit Handlers

256 Chapter 14: IDL Internals: Miscellaneous

User Interrupts

IDL catches certain operating system signalsincluding SIGINT, which occurs when
the user types the interrupt character (usually Control-C). When the interpreter
detects the interrupt character, it sets an internal flag which causes execution of the
program to stop at the next sequence statement. The interpreter clearsthis variable
every timeit isinvoked, and checks to seeif it has been set before it executes each
statement. This means that when the user presses the interrupt character, the current
statement must complete before the interpreter checks the value of the variable and
halts execution.

Typical statements do not take long to complete, so this delay is not noticeable.
However, some system routines take a long time to complete, and the user can be
fooled by the long delay into thinking that IDL isignoring the interrupt. While the
occasional long delay can be annoying, this method of handling interrupts is the only
way to maintain acceptable performance in the usual case where nointerrupt is
pending. Therefore, it is the responsibility of system routines that take along timeto
complete to check the value of thisinternal variable and to clean up and return if
SIGINT isseen. IDL’s Input/Output and FFT routines, among others, do this.

IDL_BailOut()

TheIDL_BailOut() function is used to sense or set the state of IDL’s internal
interrupt flag. It returns TRUE if the keyboard interrupt character has been typed,
otherwise FALSE.

int IDL_BailOut (int stop)

where;
stop

Set to FAL SE to sense the state of the keyboard interrupt flag without changing its
value. Set to TRUE to set the keyboard interrupt flag.

User Interrupts External Development Guide

Chapter 14: IDL Internals: Miscellaneous 257

Functions for Returning System Variables

The following functions return the values of certain system variables. Note that these
values should be considered READ-ONLY.

IDL_STRING *IDL_SysvVersionArch(void)

This function returns a pointer to the 'VERSION.ARCH system variable.
IDL_STRING *IDL_SysvVersionOS(void)

This function returns a pointer to the 'VERSION.OS system variable.
IDL_STRING *IDL_SysvVersionOSFamily(void)

This function returns a pointer to the 'VERSION.OS_FAMILY system variable.
IDL_STRING *IDL_SysvVersionRelease(void)

Thisfunction returns a pointer to the 'VERSION.REL EASE system variable.
IDL_STRING *IDL_SysvDirFunc(void)

This function returns a pointer to the !DIR system variable.
IDL_STRING *IDL_SysvErrStringFunc(void)

This function returns a pointer to the 'ERROR_STATE.M SG system variable.
IDL_STRING *IDL_SysvSyserrStringFunc(void)

This function returns a pointer to 'ERROR_STATE.SYS MSG system variable.
IDL_LONG IDL_SysvErrorCodeValue(void)

This function returns the value of the '[ERROR_STATE system variable.
IDL_LONG IDL_SysvOrderValue(void)

This function returns the value of the lORDER system variable.

For more information on IDL system variables, see Appendix D, “ System Variables’
(IDL Reference Guide).

External Development Guide Functions for Returning System Variables

258 Chapter 14: IDL Internals: Miscellaneous

Terminal Information

The global variable IDL_FileTerm isastructure of type IDL_TERMINFO:

typedef struct {

char *name; /* Name Of Terminal Type */

char is_tty; /* True if stdin is a terminal */
int lines; /* Lines on screen */

int columns; /* Width of output */

} IDL_TERMINFO;

Note
Under operating systems that do not support the concept of aterminal (Microsoft
Windows) the name and is _tty fields are not present.

IDL_FileTermisinitialized when IDL is started. Few, if any, user routineswill need
this information, because user routines should not do their own 1/0. User routines
that must do their own I/O should use this variable instead of making assumptions
about the output device.

Note
Under Microsoft Windows, the IDL_FileTerm is not accessible outside of the IDL
sharable library, and cannot be directly accessed by user code. Instead, use the
functions described in the following section.

Functions for Returning IDL_FileTerm Variable
Values

The following functions can be used to return values from the IDL_FileTerm
variable. They return the same information contained in the global variable, but in a
functional form. Thisisthe preferred way to access the IDL _FileTer m information,
asit will work on any platform.

char *IDL_FileTermName(void)

This function returns the value of IDL_FileTerm.name. This function is only
available under UNIX.

int IDL_FileTermlIsTty(void)
Thisfunction returns the value of IDL_FileTerm.is_tty. Thisfunction isonly

available under UNIX.

Terminal Information External Development Guide

Chapter 14: IDL Internals: Miscellaneous

int IDL_FileTermLines(void)
Thisfunction returns the value of IDL_FileTerm.lines.

int IDL_FileTermColumns(void)

This function returns the value of IDL_FileTerm.columns.

External Development Guide

259

Terminal Information

260 Chapter 14: IDL Internals: Miscellaneous

Ensuring UNIX TTY State

Under some UNIX operating systems, IDL keeps the users terminal in araw mode,
required to implement command line editing. On these platforms, externaly linked
code that performs output to the terminal will find that the output does not appear as
expected. A usual symptom of thisisthat newline characters ('\n’) do not move the
cursor to the left margin of the screen, and commands such as more(1) (perhaps
started viathe C runtime library system() function) do not control the screen
properly.

Thisisnot anissuefor IDL routines such as SPAWN that start sub-programs, because
they are written to be aware of thisissue and to ensurethe TTY isin the correct state
before they do their work. Externally linked code can call the IDL_TTY Reset()
function to do the same thing:

void IDL_TTYReset (void)

Thisfunction isavailable under all operating systems. On systems where such an
operation is not needed, it isastub. On platformsthat requirethe TTY to be managed
in this way, this operation ensures that the terminal is returned to its standard
configuration.

Ensuring UNIX TTY State External Development Guide

Chapter 14: IDL Internals: Miscellaneous 261

Type Information

The following read-only global variables provide information about IDL data.

Note
Under Microsoft Windows, these global variables are not available; use the
functions listed below to retrieve the values contained in the global variables.

IDL_OutputFormat

An array of pointersto character strings. IDL_OutputFor mat isindexed by type
code, and specifies the default output formats for the different data types (see “Type
Codes” on page 114). The default formats are used by the PRINT and STRING built-
in routines as well as for type conversions.

IDL_OutputFormatLen

An array of integers. IDL_OutputFormatL en gives the length in characters of the
corresponding elements of IDL_OutputFor mat.

IDL_TypeSize

An array of longintegers. IDL_TypeSize isindexed by type code, and gives the size
of the data object used to represent each type.

IDL_TypeName

An array of pointersto character strings. IDL_TypeName is indexed by type code,
and gives a descriptive string for each type.

Functions for Returning Data Type Variable Values

The following functions can be used to return the values contained in the global
variables described above, but in afunctional form.

char *IDL_OutputFormatFunc(int type)

Given an IDL type code, this function returns the default output format for that type.
Thisis equivalent to accessing the IDL_OutputFormat array.

External Development Guide Type Information

262 Chapter 14: IDL Internals: Miscellaneous

int IDL_OutputFormatLenFunc(int type)

Given an IDL type code, thisfunction returns the default output format length for that
type. Thisis equivalent to accessing the IDL_OutputFormatL en array.

int IDL_TypeSizeFunc(int type)

Given an IDL type code, this function returns the size of the data object used to
represent that type. Thisis equivalent to accessing the IDL_TypeSize array.

char *IDL_TypeNameFunc(int type)

Given an IDL type code, this function returns the name of the type as anull
terminated character string. Thisis equivalent to accessing the IDL _TypeName

array.

Type Information External Development Guide

Chapter 14: IDL Internals: Miscellaneous 263

User Information

Usethe IDL_GetUserInfo() function to get information about the current session.
Thisisthe sort of information that can be used in the header of files produced by
graphics drivers. It is used, for example, by the PostScript driver:

void IDL_GetUserInfo (IDL_USER_INFO *user_info)

wherethe IDL_USER_INFO struct is defined as:

typedef struct {

char *logname; /* User’s login name */

char *homedir; /* User’s home directory */

char *pid; /* The process ID */

char host[64]; /* Machine name */

char wd[IDL_MAXPATH+1]; /* Working Directory */
char datel[25]; /* Current System Time */

} IDL_USER_INFO;

External Development Guide User Information

264 Chapter 14: IDL Internals: Miscellaneous

Constants

Preprocessor constants defined in the id1_export .h file should be used in
preference to hardwired values. To accommodate the needs of various operating
systems, some of these constants have different values in different versions of IDL.
Those constants that are not discussed el sewhere in this book are listed bel ow.

IDL_TRUE

A more readable aternative to the constant 1.
IDL_FALSE

A more readable alternative to the constant O.

IDL_REGISTER

Some C compilers are good at allocating registers, and using the C register
declaration can cause efficiency to suffer. On the other hand, some C compilerswon't
put any variables into registers unless register definitions are used. Our solution isto
use IDL_REGISTER to declare variables we feel should be placed into registers.
For machines that we feel have a good register alocation scheme, we define
IDL_REGISTER to be anull macro. For lesser compilers, it is defined to bethe C
register keyword.

IDL_MAX_ARRAY_DIM
The maximum number of dimensions an array can have.

IDL_MAXIDLEN

The maximum number of characters IDL allowsin an identifier (variable names,
program names, and so on).

IDL_MAXPATH

The maximum number of characters allowed in afilepath.

Constants External Development Guide

Chapter 14: IDL Internals: Miscellaneous 265

Macros

The macros defined in id1_export . h handle recurring small jobs. Those macros
not discussed el sewherein this book are covered here.

IDL_ABS(X)

IDL_ABY() accepts asingle argument of any numeric C type, and returnsits absolute
value. IDL_ABS() evaluates its argument more than once, so be careful to avoid
unwanted side effects, and for efficiency do not call it with acomplex expression.

IDL_CARRAY_ELTS(arr)

This macro encapsulates a common C language idiom for determining the number of
eementsin a statically defined array without requiring the programmer to provide a
constant or otherwise hardwire the length. It's use improves the robustness of code
that usesit by automatically adapting to any change in the definition of the array
without requiring additional programmer effort. This macro corresponds directly to
the C expression:

sizeof (arr) /sizeof (arr[0])

The C compiler evaluates this expression at compile time, so thereis no additional
runtime cost for using this macro instead of a hardwired constant.

IDL_CHAR(ptr)

IDL_CHAR() castsits argument to be a pointer to char. It is used to convert an
existing pointer into a generic pointer to a memory location.

IDL_CHARA (addr)

IDL_CHARA() takesthe address of its argument and casts it to be a pointer to char.
It is used to get a generic pointer to a memory location.

IDL_MIN(x,y) and IDL_MAX(X,y)

The arguments can be of any numeric C type aslong asthey are compatible with each
other. IDL_MIN() and IDL_MAX() return the smaller and larger of their two
arguments, respectively. These macros evaluate their arguments more than once, so
be careful to avoid unwanted side effects, and for efficiency do not call them with a
complex expression.

External Development Guide Macros

266 Chapter 14: IDL Internals: Miscellaneous

IDL_ROUND_UP(x, m)

IDL_ROUND_UP() returns the value of x rounded up modulo m. m must be a

power of 2. This macro is useful for extending data regions out to a specified
alignment.

IDL_TRUE and IDL_FALSE

When performing logical expression evaluation the C programming language, in
which IDL iswritten, treats zero (0) as False, and non-zero as True, and when
returning the result of such an expression, uses 1 for True and O for False.

IDL_TRUE isdefined asthe constant 1, and IDL _FAL SE is defined as the constant
0. These constants are used internally by IDL.

Macros External Development Guide

Part Ill: Technigques
That Use IDL’s Internal
AP

Chapter 15

Adding System

Routines

This chapter discusses the following topics:

IDL and System Routines 270
The System Routine Interface 272
Example: HelloWorld 273

Example: Doing aLittle More (MULT?2) . 274

Example: A Complete Numerical Routine
Example (FZ_ROOTS2)

External Development Guide

Example: An Example Using Routine Design
Iteration (RSUM) 286

Registering Routines 296
Enabling and Disabling System Routines 299

LINKIMAGE ooo..L. 307
Dynamically Loadable Modules 309
269

270

Chapter 15: Adding System Routines

IDL and System Routines

AnIDL system routineis an IDL procedure or function that iswritten in a compiled
language with an IDL specific interface, and linked into IDL, instead of being written
inthe IDL language itself.The best way to create an IDL system routineisto compile
and link the routine into a sharable library and then to add the routineto IDL at
runtime using either the LINKIMAGE procedure or by making your routines part of a
Dynamically Loadable Module (DLM).

Note
We recommend the use of Dynamically Loadable Modules rather than
LINKIMAGE whenever possible. The small additional effort is more than
compensated for by the superior integration into IDL.

This chapter explains how to write a system routine, including several examples, and
discusses the various options for adding such routinesto IDL.

Debugging System Routines

To debug system routines and DLMs, you must attach your debugger to the IDL
process that isrunning your library code. In IDL 7.0 and later, the process to which
you should attach the debugger varies, depending on your platform and which version
of IDL you are using.

If the IDL Workbench is Running

When the IDL Workbench is running, IDL comprises two processes:

IDL Workbench — This process runsthe IDL Workbench interface. It will show up
inaprocesslist as id1de. exe on Windows systems, and as a Java command
containing the string 1 d1de on Unix-based systems.

IDL Out-of-Process server — This process runsthe IDL interpreter and loads
shared libraries (DLM’s). It will show up inaprocesslist asidl_opserver.exe 0N
Windows systems, and as 1d1_opserver on Unix-based systems.

To debug your shared library code when the IDL Workbench is running, attach your
debugger (gdb, Visual Studio, etc.) to one of the following:

e On Windows, using Visual Studio, you can select Attach to Process and
choosethe id1_opserver.exe process.

IDL and System Routines External Development Guide

Chapter 15: Adding System Routines 271

e On Unix-based systems, using gdb or dbx, you can use the ps command to
retrieve the ID of the 1id1_opserver process, and then attach your debugger
to that process ID.

If the IDL Workbench is Not Running

When the IDL is running in command-line mode, IDL comprises either one or two
processes:

IDL — On Unix-based systems, the 1d1 processistheonly IDL process. On
Windows systems, the 1d1 . exe processisafront-end to the id1_opserver.exe
process.

IDL Out-of-Process server — On Windows systems, the id1_opserver.exe
process runs the IDL interpreter and loads shared libraries (DLM’s). Unix-based
systems do not use an id1_opserver process when running in command-line mode.

To debug your shared library code when IDL is running in command-line mode,
attach your debugger (gdb, Visua Studio, etc.) to one of the following:

e On Windows, using Visual Studio, you can select Attach to Process and
choosethe id1_opserver.exe process.

e On Unix-based systems, using gdb or dbx, you can use the ps command to
retrieve the ID of the 1d1 process, and then attach your debugger to that
process ID.

External Development Guide IDL and System Routines

272 Chapter 15: Adding System Routines

The System Routine Interface

All IDL system routines must supply the same calling interface to the system,
differing only in that system functions must return an IDL_VPTR to the
IDL_VARIABLE that contains the result while system procedures do not return
anything. Typical system routine definitions are:

IDL_VPTR my_function(int argc, IDL_VPTR argv[], char *argk)
void my_procedure(int argc, IDL_VPTR argv([], char *argk)

System routines that do not accept keywords are called with two arguments:
argc

The number of elementsin argv.
argv

Anarray of IDL_VPTRSs. These point to the IDL_VARIABL Eswhich comprise the
arguments to the function.

System routines that accept keywords are called with an additional third argument:
argk

The keywords which were present when the routine was called. argk is an opaque
object—the called routine is not intended to understand its contents. ar gk is provided
to the function IDL_K W ProcessByOffset(), which processes the keywordsin a
standard way. For more information on keywords, see “IDL Internas. Keyword
Processing” on page 121.

The System Routine Interface External Development Guide

Chapter 15: Adding System Routines 273

Example: Hello World

Thanks to the definitive text on the C language (Kernighan and Ritchie, The C
Programming Language, Prentice Hall, NJ, Second Edition, 1988), the “Hello
World” program is often used as an example of atrivial program. Our version of this
program is a system function that returns a scalar string containing the text “Hello
World!”:

#include <stdio.h>
#include "idl_export.h"

IDL_VPTR hello_world(int argc, IDL_VPTR argvl[])
{
return (IDL_StrToSTRING("Hello World!"));

}

Thisisabout as simple as an IDL system routine can be. The function
IDL_StrToSTRINGY(), returns atemporary variable which contains a scalar string.
Sincethisis exactly what iswanted, hello_world() simply returns the variable.

After compiling this function into a sharable object (named, for example, hello_exe),
we can link it into IDL with the following LINKIMAGE call:

LINKIMAGE, 'HELLO_WORLD', 'hello_exe', 1, 'hello_world', $
MAX_ARGS=0, MIN_ARGS=0

We can now issue the IDL command:
PRINT, HELLO_WORLD()
In response, IDL writesto the screen:

Hello World!

External Development Guide Example: Hello World

274

Chapter 15: Adding System Routines

Example: Doing a Little More (MULT?2)

The system function shown in the following figure does alittle more than the
previous one, though not by much. It expects a single argument, which must be an
array. It returns a single-precision, floating-point array that contains the values from

the argument multiplied by two.

1 #include <stdio.h>

20 #include "idl_export.h"

3

4f IDL_VPTR mult2 (int argc, IDL_VPTR argv[])

50 {

6 IDL_VPTR dst, src;

7 float *src_d, *dst_d;

8 int n;

9 src = dst = argv[0];

10

11 IDL_ENSURE_SIMPLE (src) ;

12 IDL_ENSURE_ARRAY (src) ;

13

14 if (src->type != IDL_TYP_FLOAT)

C 15 src = dst = IDL_CvtFlt(l, argv);

16

17 src_d = dst_d = (float *) src->value.arr->data;
18

19 if (! (src->flags & IDL_V_TEMP))
20 dst_d = (float *)
21 IDL_MakeTempArray (IDL_TYP_FLOAT, src->value.arr->n_dim,
22 src->value.arr->dim,
23 IDL_ARR_INI_NOP, &dst);
24
25 for (n = src->value.arr->n_elts; n--;)
26 *dst_d++ = 2.0 * *src_d++;
27
28 return (dst) ;
290 1}

Table 15-1: mult2.c
Each line is numbered to make discussion easier. These numbers are not part of the
actual program. Each line of this routine is discussed bel ow:

1-2

Include the required header files.

Example: Doing a Little More (MULT?2)

External Development Guide

Chapter 15: Adding System Routines 275

4

10

Every system routine takes the same two or three arguments. ar gc is the number of
arguments, argv isan array of arguments. This routine does not accept keywords, so
argk is not present.

dst will become a pointer to the resulting variable's descriptor. src points at the input
variable which isfound in argv[Q].

src_d and dst_d will point to the source and destination data areas.

n will contain the number of elementsin src.

Assume, for now, that the input variable will serve as both the source and destination.
Thiswill only be trueif the parameter is atemporary floating-point array.

11-12

Screen out any input that is not of abasic type, and only allow arrays. A better
version of this routine would handle scalar input also, but we want to keep the
example simple.

14

If theinputisnot of IDL_TYP_FLOAT, wecall thel DL _CvtFIt() functionto create
afloating-point copy of the argument (see “ Converting to Specific Types’ on
page 208 for information about converting types).

Note that the routine could also be written, more efficiently, with a C switch
statement which would handle each of the eight possible data types, eliminating
conversion of the input parameter. This would be more in the spirit of the IDL
language, where system routines work with all possible data types and sizes, but is
outside the scope of this example.

17

Here, we initialize the pointersto the source and destination data areas from the array
block structure pointed to by the input variable descriptor.

External Development Guide Example: Doing a Little More (MULT2)

276

Chapter 15: Adding System Routines

19-23

If theinput variableisnot atemporary variable, we cannot change its value and return
it asthe function result. Instead, we allocate a new temporary floating point array into
which the result will be placed. Notice how the number of dimensions and their sizes
are taken from the source variable array block. See “Array Variables’ on page 157
and “ Temporary Variables’ on page 165.

L oop over each element of the arrays.

26

Do the multiplication for each element.

28

Return the temporary variable containing the result.

Testing the Example

Once we have compiled the function and linked it into IDL (possibly using
LINKIMAGE), we can use the built-in IDL function INDGEN to test the new
function, which we name MULT2. INDGEN returns an array of values with each
element set to the value of its array index. Therefore, the statement:

PRINT, INDGEN(5)
prints the following on the screen:
01234
To test our new function we use INDGEN to provide an input argument:
PRINT, MULT2 (INDGEN (5))
The result, as expected, is:
0.00000 2.00000 4.00000 6.00000 8.00000

Example: Doing a Little More (MULT?2) External Development Guide

Chapter 15: Adding System Routines 277

Example: A Complete Numerical Routine
Example (FZ_ROOTS2)

Thefollowing is acomplete implementation of the IDL system function FZ_ROOTS,
used to find the roots of an m-degree complex polynomial, using Laguerre’s method.
Theresult is an m-element complex vector. We call this version FZ_ROOTS2 to
avoid a name clash with the real routine. FZ_ROOTS2 has an additional keyword,
TC_INPUT, that is not present in the real routine.

FZ_ROQOTS2 usesthe routine zr oots(), described in section 9.5 of Numerical Recipes
in C: The Art of Scientific Computing (Second Edition), published by Cambridge
University Press:

void zroots (fcomplex al[], int m, fcomplex roots[], int polish)
Quoting from the referenced book:
Given the degree m and the m+1 complex coefficients g/0..m] of the polynomial,

pIIRCE
this routine successively calls 1aguer and finds all m complex rootsin roots[1..m].
The boolean variable po11 sh should be input as true (1) if polishing (also by
Laguerre’s method) is desired, false (0) if the roots will be subsequently polished by
other means.

FZ_ROQOTS2 will support both single and double precision complex valuesaswell as
give the caller control over the error tolerance, which is hard wired into the
Numerical Recipes code asa C preprocessor constant named EPS. In order to support
these requirements, we have copied the zroots() function given in the book and
altered it to support both data types and make EPS a user specified parameter, giving
two functions:

void zroots_f (fcomplex a[], int m, fcomplex roots[], int polish,
float eps);

void zroots_d(dcomplex al[], int m, dcomplex roots[], int polish,
double eps);

Note that fcomplex and dcomplex are Numerical Recipes defined types that happen
to have the same definition asthe IDL typesIDL_COMPLEX and
IDL_DCOMPLEX, aconvenient fact that eliminates some type conversion issues.

The definition of FZ_ROOTS2 from the IDL user perspectiveis:

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOQOTS2)

278 Chapter 15: Adding System Routines

Calling Sequence
Result = FZ_ROOTS2(C)
Arguments
C

A vector of length m+1 containing the coefficients of the polynomial, in ascending
order.

Keywords

DOUBLE

FZ_ROQOTS2 normally uses the type of C to determine the type of the computation. If
DOUBLE is specified, it overrides this default. Setting DOUBLE to a non-zero value
causes the computation type and the result to be double precision complex. Setting it

to zero forces single precision complex.
EPS

The desired fractional accuracy. The default valueis 2.0 ¥ 10°6.
NO_POLISH

Set this keyword to suppress the usual polishing of the roots by Laguerre’s method.

TC_INPUT

If present, TC_INPUT specifies a named variable that will be assigned the input
value C, with its type converted to the type of the result.

Example

The following figure gives the code for fzroots2.c,. Thisis ANSI C code that
implements FZ_ROQOTS2. The line numbers are not part of the code and are present
to make the discussion easier to follow. Each line of this routine is discussed bel ow.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 15: Adding System Routines 279

18 #include <stdio.h>

20 #include <stdarg.h>

3] #include "idl_export.h"

4f #include <nr/nr.h>

5

6 IDL_VPTR fzroots2 (int argc, IDL_VPTR *argv, char *argk)
7

8 typedef struct {

9 IDL_KW_RESULT_FIRST_FIELD; /* Must be first entry in this
10§ structure */

11 int force_type;

12 IDL_LONG do_double;

13 double eps;

14 IDL_LONG no_polish;

15 IDL_VPTR tc_input;

16 } KW_RESULT;

17 static IDL_KW_PAR kw pars[] = {

18 {"DOUBLE", IDL_TYP_LONG, 1, O,

19 IDL_KW_OFFSETOF (force_type), IDL_KW_OFFSETOF (do_double) 1},
20 { "EPS", IDL_TYP_ _DOUBLE, 1, 0, 0, IDL_KW_OFFSETOF (eps) 1},
21 { "NO_POLISH", IDL_TYP LONG, 1, IDL_KW_ ZERO,
22 0, IDL_KW_OFFSETOF (no_polish) 1},

C 23 { "TC_I1inpuT", 0, 1, IDL_KW_OUT|IDL_KW_ZERO,

24 0, IDL_KW_OFFSETOF (tc_input) 1},

25 { NULL }

26 Y

27

28 KW_RESULT kw;

29 IDL_VPTR result;

30 IDL_VPTR c_raw;

31 IDL_VPTR c_tc;

32 IDL_MEMINT m;

33 void *outdata;

34 IDL_ARRAY DIM dim;

35 int rtype;

36 static IDL_ALLTYPES zero;

37

38 kw.eps = 2.0e-6;

39 (void) IDL_KWProcessByOffset (argc, argv, argk,

40Q kw_pars, &c_raw, 1, &kw) ;

41

42 IDL_ENSURE_ARRAY (c_raw) ;

43 IDL_ENSURE_SIMPLE (c_raw) ;

44 if (c_raw->value.arr->n_dim != 1)

45 IDL_Message (IDL_M_NAMED_ GENERIC, IDL_MSG_LONGJMP,

46 "Input argument must be a column vector.");

External Development Guide

Table 15-2: fzroots2.c

Example: A Complete Numerical Routine Example (FZ_ROOTS2)

280 Chapter 15: Adding System Routines

47 m = c_raw->value.arr->dim[0];
48 if (--m <= 0)
49 IDL_Message (IDL_M NAMED_ GENERIC, IDL_MSG_LONGJMP,
50 "Input array does not have enough elements") ;
51 if (kw.tc_input)
52 IDL_StoreScalar (kw.tc_input, IDL_TYP_LONG, &zero);
53
54 if (kw.force_type) {
55 rtype = kw.do_double ? IDL_TYP_DCOMPLEX IDL_TYP_COMPLEX;
56 } else {
57 rtype = ((c_raw->type == IDL_TYP_DOUBLE)
58 || (c_raw->type == IDL_TYP_DCOMPLEX))
59 ? IDL_TYP_DCOMPLEX : IDL_TYP_ COMPLEX;
60 }
61 dim[0] = m;
62 outdata = (void *)
63 IDL_MakeTempArray (rtype,l,dim, IDL_ARR_INI_NOP, &result) ;
64
65 if (c_raw->type == rtype) {
C
66 c_tc = c_raw;
67 } else {
68 c_tc = IDL_BasicTypeConversion(l, &c_raw, rtype);
69 }
70
71 if (rtype == IDL_TYP_COMPLEX) {
72 zroots_f ((fcomplex *) c_tc->value.arr->data, m,
73 ((fcomplex *)outdata)-1, !kw.no_polish, (float) kw.eps);
74 } else {
75 zroots_d((dcomplex *) c_tc->value.arr->data, m,
76 ((dcomplex *) outdata) - 1, '!'kw.no_polish, kw.eps);
77 }
78
79 if (kw.tc_input) IDL_VarCopy(c_tc, kw.tc_input);
80 else if (c_raw != c_tc) IDL_Deltmp(c_tc);
81
82 IDL_KW_FREE;
83 return result;
}
Table 15-2: fzroots2.c (Continued)
4

nr . h isthe header file provided with Numerical Recipesin C code.

FZROOTS2 has the usual three standard arguments.

Example: A Complete Numerical Routine Example (FZ_ROOTS2)

External Development Guide

Chapter 15: Adding System Routines 281

10

kw.force_type will be TRUE if the user specifies the DOUBLE keyword. In this
case, the value of the DOUBLE keyword will determine the result type without
regard for the type of the input argument.

If the user specifies DOUBLE, a zero value forces a single precision complex result
and non-zero forces double precision complex.

12
The value of the EPS keyword.
13
The vaue of the NO_POLISH keyword.
15
The value of the TC_INPUT keyword.
16
This array defines the keywords accepted by FZ_ROOTS2.
17

Since setting DOUBLE to 0 has a different meaning than not specifying the keyword
a al, kw.force typeis used to detect the fact that the keyword is set independent of
its value.

20

The EPS keyword allows the user to specify the kw.eps tolerance parameter. kw.eps
is specified as double precision to avoid losing accuracy for double precision
computations—it will be converted to single precision if necessary. The default value
for this keyword is non-zero, so no zeroing is specified here. If the user includes the
EPS keyword, the value will be placed in kw.eps, otherwise kw.eps will not be
changed.

21

This keyword lets the user suppress the usual polishing performed by zroots(). Since
specifying avalue of 0 is equivalent to not specifying the keyword at all,
IDL_KW_ZERO isusedtoinitialize the variable.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOQOTS2)

282

Chapter 15: Adding System Routines

23

If present, TC_INPUT isan output keyword that will have the type converted value of
the input argument stored in it. By specifying IDL_KW_OUT and
IDL_KW_ZERO, we ensure that TC_INPUT is either zero or a pointer to avalid
IDL variable.

28

The results of keyword processing will all be written to this variable by
IDL_KWProcessByOffset().

29

This variable will receive the function result.
30

The input argument prior to any type conversion.
31

The type converted input variable. If the input variable is already of the correct type,
thiswill be the same as ¢_raw, otherwise it will be different.

32
The value of mto be passed to zr oots().
33

Pointer to the data area of the result variable. We declareit as (void *) sothat it can
point to data of any type.

34

Used to specify dimensions of the result. Thiswill always be a vector of m elements.
35

IDL type code for result variable.
36

Used by IDL _StoreScalar () to type check the TC_INPUT keyword. It is declared as
static to ensure it isinitialized to zero.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 15: Adding System Routines 283

38

Set the default EPS val ue before doing keyword processing. If the user specifies EPS,
the supplied value will override this. Otherwise, this value will still be in kw.eps and
will be passed to zroots() unaltered.

39
Perform keyword processing.
42-43

Ensure that the input argument is an array, and is one of the basic types (not afile
variable or structure).

44-46

The input variable must be a vector, and therefore should have only asingle
dimension.

47-50

Ensure that the input variable is long enough for mto be non-zero. mis one less than
the number of elementsin the input vector, so thisis equivalent to saying that the
input must have at least 2 elements.

51

If the TC_INPUT keyword was present, use IDL_StoreScalar () to make sure the
named variable specified can receive the converted input value. A nice side effect of
this operation is that any dynamic memory currently being used by this variable will
be freed now instead of later after we have allocated other dynamic memory. This
freed memory might be immediately reusableif it is large enough, which would
reduce memory fragmentation and lower overall memory requirements.

54

If the user specified the DOUBLE keyword, it is used to control the resulting type,
otherwise the input argument type is used to decide.

55

The DOUBLE keyword was specified. If it is non-zero, use
IDL_TYP_DCOMPLEX, otherwiseIDL_TYP_COMPLEX.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOQOTS2)

284

Chapter 15: Adding System Routines

56-60

Use the input type to decide the result type. If theinputisIDL_TYP_DOUBLE or
IDL_TYP_DCOMPLEX, useIDL_TYP_DCOMPLEX, otherwise
IDL_TYP_COMPLEX.

61-63
Create the output variable that will be passed back as the result of FZ_ROOTS2.
65-69

If necessary, convert the input argument to the result type. Thisis done after creation
of the output variable because it islikely to have ashort lifetime. If it does get freed at
the end of thisroutine, it won't cause memory fragmentation by leaving ahole in the
process virtual memory.

71
The version of zroots() to call depends on the data type of the result.
72-73

Single precision complex. Note that the outdata pointer is decremented by one
element. This compensates for the fact that the Numerical Recipe routinewill index it
from [1..m] rather than [0..m-1] asisthe usual C convention. Also, kw.epsis cast to
single precision.

74-76
Double precision complex case.

79

If the user specified the TC_INPUT keyword, copy the type converted input into the
keyword variable. Since Var Copy() freesits source variableif it is atemporary
variable, we are relieved of the usual responsibility to call IDL_Deltmp() if c_tc
contains atemporary variable created on line 66.

80

The user didn't specify the TC_INPUT keyword. In this case, if we alocated c_tc on
line 66, we must free it before returning.

Example: A Complete Numerical Routine Example (FZ_ROOTS2) External Development Guide

Chapter 15: Adding System Routines 285

82
Free any resources allocated by keyword processing.
83

Return the result.

External Development Guide Example: A Complete Numerical Routine Example (FZ_ROOQOTS2)

286 Chapter 15: Adding System Routines

Example: An Example Using Routine Design
Iteration (RSUM)

We now show how a simple routine can be developed in stages. RSUM isafunction
that returns the running sum of the valuesin its single input argument. We will
present three versions of this routine, each one of which represents an improvement
in functionality and flexibility.

All three versions use the function IDL_MakeTempFromTemplate(), described in
“Creating A Temporary Variable Using Another Variable As A Template” on

page 170. The result of RSUM always has the same general shape and dimensions as
the input argument. IDL_M akeTempFromTemplate() encapsulates the task of
creating atemporary variable of the desired type and shape using the input argument
asatemplate.

Example: An Example Using Routine Design Iteration (RSUM) External Development Guide

Chapter 15: Adding System Routines 287

Running Sum (Example 1)

Thefirst example of RSUM isvery simple. Here is asimple “ Reference Manual”
style description of it:

RSUM1

Compute a running sum on the array input. The result is afloating point array of the
same dimensions.

Calling Sequence
Result = RSUM 1(Array)
Arguments

Array
Array for which arunning sum will be computed.

Thisisaminimal design that lacks some important characteristics that IDL
system routines usually embody:

e It doesnot handle scalar input.

» Thetype of theinput isinflexible. IDL routines usually try to handle any
input type and do whatever type conversions are necessary.

» Theresult typeisalways single precision floating point. IDL routines
usually perform computationsin the type of the input arguments and return
avalue of the sametype.

External Development Guide Running Sum (Example 1)

288 Chapter 15: Adding System Routines

We will improve on this design in our subsequent attempts. The code to implement
RSUM1 is shown in the following figure. The line numbers are not part of the code
and are present to make the discussion easier to follow. Each line of thisroutineis

discussed below:
1§ IDL_VPTR IDL_rsuml (int argc, IDL_VPTR argv[])
2p {
3 IDL_VPTR v;
4 IDL_VPTR r;
5 float *f_src;
6 float *f_dst;
7 IDL,_MEMINT n;
8
9
10 v = argv[0];
11 if (v->type != IDL_TYP_FLOAT)
12 IDL_Message (IDL_M NAMED_GENERIC, IDL_MSG_LONGJMP,
C 13 "argument must be float");
14 IDL_ENSURE_ARRAY (V) ;
15 IDL_EXCLUDE_FILE(V) ;
16
17 f_dst = (float ¥*)
18 IDL_VarMakeTempFromTemplate (v, IDL_TYP_FLOAT,
19 (IDL_StructDefPtr) 0, &r, FALSE);
20 f src = (float *) v->value.arr->data;
21 n = v->value.arr->n_elts - 1;
22 *f dst++ = *f_src++;/* First element */
23 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;
24
25 return r;
261 }
Table 15-3: Code for IDL_rsum1()
1
The standard signature for an IDL system function that does not accept keywords.
3
Thisvariable is used to access the input argument in a convenient way.
4

ThisIDL_VPTR will be used to return the result.

Running Sum (Example 1) External Development Guide

Chapter 15: Adding System Routines 289

5-6

Asthe running sum is computed, f_src will point at the input dataand f_dst will
point at the output data.

The number of elementsin the input.
10

Obtain the input variable pointer from argv[0].
11

If theinput is not single precision floating point, throw an error and quit. Thisis
overly rigid. Real IDL routines would attempt to either type convert the input or do
the computation in the input type.

14
Thisversion can only handle arrays. If the user passes a scalar, it throws an error.
15

This routine cannot handle ASSOC file variables. Most IDL routines exclude such
variables as they do not contain any datato work with. ASSOC variable data usually
comes into aroutine as the result of an expression that yields atemporary variable
(e.g. TMP = RSUM(MY_ASSOC_VAR (2))).

17

Create asingle precision floating point temporary variable of the same size asthe
input variable and get a pointer to its data area.

20

Get apointer to the data area of the input variable. At this point we know this variable
is aways a floating point array.

21

The number of data elementsin the input.

External Development Guide Running Sum (Example 1)

290 Chapter 15: Adding System Routines

22-23
The running sum computation.
25

Return the result.
Running Sum (Example 2)

In our second example of RSUM, we improve on version 1 in several ways:
* RSUMZ2 accepts scalar input.

« If theinput is not of floating type, we type convert it instead of throwing an
error.

« If theinput is atemporary variable of the correct type, we will do the running
sum computation in place and return the input as our result variable rather than
creating an extratemporary. This optimization reduces memory use, and can
have positive effects on dynamic memory fragmentation.

Asaways, thefirst step in writing a system routine isto write a simple description of
its interface and intended behavior:

RSUM2

Compute a running sum on the input. The result is afloating point variable with the
same structure.

Calling Sequence
Result = RSUM 2(Input)
Arguments

Input

Scalar or array data of any numeric type for which a running sum will be
computed.

Running Sum (Example 1) External Development Guide

Chapter 15: Adding System Routines

Thefollowing is the code for RSUM2:

201

1§ IDL_VPTR IDL_rsum2 (int argc, IDL_VPTR argvl([])

24 {

3 IDL_VPTR v;

4 IDL_VPTR r;

5 float *f_src;

6 float *f_dst;

7 IDL_MEMINT n;

8

9

10 v = IDL_BasicTypeConversion(l, argv, IDL_TYP_FLOAT);
11 /* IDL_BasicTypeConversion calls IDL_ENSURE_SIMPLE, so
12 skip it here. */

13 IDL_VarGetData (v, &n, (char **) &f_src, FALSE);

14

C 15 /* Get a result var, reusing the input if possible */

16 if (v->flags & V_TEMP) {

17 r = v;

18 f dst = f_src;

19 } else {
20 f_dst = (float ¥*)
21 IDL_VarMakeTempFromTemplate (v, IDL_TYP_ FLOAT,
22 (IDL_StructDefPtr) 0, &r, FALSE);
23 }
24
25 *f dst++ = *f_src++;/* First element */
26 n--;
27 for (; n--; f_dst++) *f_dst = *(f_dst - 1) + *f_src++;
28
29 return r;
308 }

Table 15-4: Code for IDL_rsum2().
Discussion of the code for the improvements introduced in this version follow:

10

If the input has the wrong type, obtain one of the right type. If it was already of the
correct type, IDL _BasicTypeConversion() will simply return theinput value without
alocating atemporary variable. Hence, no explicit check for that is required. Also, if
the input argument cannot be converted to the desired type (e.g. itisastructure or file
variable) IDL_BasicTypeConversion() will throw an error. Hence, we know that the
result from this function will be what we want without requiring any further

checking.

External Development Guide Running Sum (Example 1)

292 Chapter 15: Adding System Routines

13

IDL_VarGetData() isamore elegant way to obtain a pointer to variable data along
with a count of elements. A further benefit isthat it automatically handles scalar
variables which removes the restriction from RSUM 1.

15-23

If theinput variableisatemporary, we will do the computation in place and return the
input. Otherwise, we create atemporary variable of the desired type to be the result.

Note that if IDL_BasicTypeConversion() returned a pointer to anything other than
the passed in value of argv[0], that value will be atemporary variable which will then
be turned into the function result by this code. Hence, we never free the value from
IDL_BasicTypeConversion().

Running Sum (Example 3)

RSUM2 is abig improvement over RSUM1, but it still suffers from the fact that all
computation isdone in asingle datatype. A rea IDL system routine alwaystries to
perform computations in the most significant type presented by its arguments. In a
single argument case like RSUM, that would mean doing computations in the input
datatype whatever that might be. Our final version, RSUM3, resolves this
shortcoming.

RSUM3

Compute a running sum on the input. The result is a variable with the same type and
structure as the input.

Calling Sequence
Result = RSUM 3(Input)
Arguments

Input

Scalar or array data of any numeric type for which a running sum will be
computed.

Running Sum (Example 1) External Development Guide

Chapter 15: Adding System Routines

293

The code for RSUM 3 is given in the following figure. Discussion of the code for the

improvements introduced in this version follow:

0 ~J o Ul WN R

11
12
13
14
15
16
17
18
19

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

cx_public IDL_VPTR IDL_rsum3 (int argc, IDL_VPTR argv([])
{
IDL_VPTR v, r;

union {
char *sc; /* Standard char */
UCHAR *c; /* IDL_TYP_BYTE */
IDL_INT *i; /* IDL_TYP_INT */
IDL_UINT *ui; /* IDL_TYP_UINT */
IDL_LONG *1; /* IDL_TYP_LONG */
IDL_ULONG *ul; /* IDL_TYP_ULONG */
IDL_LONG64 *164; /* IDL_TYP_LONG64 */
IDL_ULONG64 *ulé64; /* IDL_TYP_ULONG64 */
float *f; /* IDL_TYP_ FLOAT */
double *d; /* IDL_TYP_DOUBLE */
IDL_COMPLEX *cmp; /* IDL_TYP_COMPLEX */
IDL_DCOMPLEX *dcmp; /* IDL_TYP_DCOMPLEX */

} src, dst;
IDL_LONG n;

v = argv[0];
if (v->type == IDL_TYP_STRING)
v = IDL_BasicTypeConversion(l, argv, IDL_TYP_FLOAT) ;
IDL_VarGetData (v, &n, &(src.sc), TRUE);
n--; /* First i1s a special case */

/* Get a result var, reusing the input if possible */
if (v->flags & IDL_V_TEMP) {
r = v;
dst = src;
} else {
dst.sc = IDL_VarMakeTempFromTemplate (v, v->type,
(IDL_StructDefPre) 0, &r, FALSE);

#define DOCASE (type, field) \
case type: for (*dst.field++ = *src.field++; n--;dst.field++)\
*dst.field = *(dst.field - 1) + *src.field++; break

External Development Guide

Table 15-5: Code for IDL_rsum3

Running Sum (Example 1)

294 Chapter 15: Adding System Routines

39 #define DOCASE_CMP (type, field) case type: \

40Q for (*dst.field++ = *src.field++; n--; \
41 dst.field++, src.field++) { \
42 dst.field->r = (dst.field - 1)->r + src.field->r; \
43 dst.field->i = (dst.field - 1)->1i + src.field->i; } \
449 break
45
46 switch (v->type) {
47 DOCASE (IDL_TYP_BYTE, c);
48 DOCASE (IDL_TYP_INT, 1i);
49 DOCASE (IDL_TYP_LONG, 1);
50 DOCASE (IDL_TYP_FLOAT, f);
51 DOCASE (IDL_TYP_DOUBLE, d);
C 52 DOCASE_CMP (IDL_TYP_COMPLEX, cmp) ;
53 DOCASE_CMP (IDL_TYP_DCOMPLEX, dcmp) ;
54 DOCASE (IDL_TYP_UINT, uil);
55 DOCASE (IDL_TYP_ULONG, ul);
56 DOCASE (IDL_TYP_LONG64, 164);
57 DOCASE (IDL_TYP_ULONG64, ulé6d);
58 default: IDL_Message (IDL_M_NAMED_GENERIC, IDL_MSG_LONGJMP,
59 "unexpected type");
60 }

61 #undef DOCASE

62 #undef DOCASE_CMP
63
64 return r;
651 }

Table 15-5: Code for IDL_rsum3 (Continued)

17

f srcand f_dst are no longer pointersto float. They are now the IDL_ALLPTR
type, which can point to data of any IDL type. To reflect this change in scope, the
leading f__ prefix has been dropped.

22-23

Strings are the only input type that now require conversion. The other types can either
support the computation, or are not convertable to atype that can.

Running Sum (Example 1) External Development Guide

Chapter 15: Adding System Routines 295

36-38

The code for the running sum computation islogically the same for all non-complex
datatypes, differing only inthe IDL_ALLPTR field that is used for each type. Using
amacro for this means that the expression is only typed in once, and the C compiler
automaticaly fillsin the different parts for each datatype. Thisisless error prone
than entering the expression manually for each type, and |eads to more readable code.
Thisisone of the rare cases where a macro makes things more reliable and readable.

39-44
A macro for the 2 complex types.
46-60

A switch statement that uses the macros defined above to perform the running sum on

al possible types. Note the default case, which traps attempts to compute a running
sum on structures.

61-62

Don't allow the macros used in the above switch statement to remain defined beyond
the scope of this function.

External Development Guide Running Sum (Example 1)

296 Chapter 15: Adding System Routines

Registering Routines

The IDL_SysRtnAdd() function adds system routinesto IDL’s internal tables of
system functions and procedures. As a programmer, you will need to call this
function directly if you arelinking aversion of IDL to which you are adding routines,
although thisis very rare and not considered to be agood practice for maintainability
reasons. More commonly, you use IDL_SysRtnAdd() inthe IDL L oad() function

of aDynamically Loadable Module (DLM). DLMs are discussed in “Dynamically
L oadable Modules” on page 309.

Note
LINKIMAGE or DLMs are the preferred way to add system routinesto IDL
because they do not require building a separate IDL program. Of the two, we

recommend the use of DLMs whenever possible. These mechanisms are discussed
in the following sections of this chapter.

Syntax

int IDL_SysRtnAdd(IDL_SYSFUN_DEF2 *defs, int is_function, int cnt)

It returns True if it succeeds in adding the routine or False in the event of an error.

Arguments
defs

An array of IDL_SY SFUN_DEF2 structures, one per routine to be declared.
This array must be defined with the C language static storage class because

IDL keeps pointersto it. defs must be sorted by routine name in ascending
lexical order.

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SY SFUN_DEF2 structures contained in the defs array.
The definition of IDL_SYSFUN_DEF2is:

typedef IDL_VARIABLE *(* IDL_SYSRTN_GENERIC) () ;

Registering Routines External Development Guide

Chapter 15: Adding System Routines 297

typedef struct {
IDL_SYSRTN_GENERIC funct_addr;
char *name;
unsigned short arg_min;
unsigned short arg max;
int flags
void *extra;

} IDL_SYSFUN_DEF2;

IDL_VARIABLE structures are described in “The IDL_VARIABLE
Structure” on page 153.

funct_addr

name

Address of the function implementing the system routine.

The name by which the routine is to be invoked from within IDL. This should
be a pointer to anull terminated string. The name should be capitalized. If the
routine is an object method, the name should be fully qualified, which means
that it should include the class name at the beginning followed by two
consecutive colons, followed by the method name (e.g. CLASS : : METHOD).

arg_min

The minimum number of arguments allowed for the routine.

arg_max

flags

The maximum number of arguments allowed for the routine. If the routine
does not place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

A bitmask that provides additional information about the routine. Its value can
be any combination of the following val ues (bitwise OR-ed together to specify
more than one at atime) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is set.

External Development Guide Registering Routines

298 Chapter 15: Adding System Routines

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.

IDL_SYSFUN_DEF_F _METHOD

Thisroutine is an object method.

extra
Reserved to ITT Visua Information Solutions. The caller should set thisto O.

Example

The following example shows how to register a system routine linked directly with
IDL. For simplicity, everything is placed in asingle file. Normally, you would
modularize things to allow easier code maintenance.

#include <stdio.h>
#include "idl_export.h"

void proxl (int argc, IDL_VPTR argvl[])
{

printf ("proxl %$d\n", IDL_LongScalar (argv([0]));
}

main (int argc, char *argvl[])
{
static IDL_SYSFUN_DEF2 new_pros[] = {
{ (IDL_SYSRTN_GENERIC) proxl, "PROX1", 1, 1, 0, 0}
Y

if (!IDL_SysRtnAdd(new_pros, IDL_FALSE, 1))
IDL_Message (IDL_M_GENERIC, IDL_MSG_RET,
"Error adding system routine");
return IDL_Main (0, argc, argv);

}

This adds a system procedure named PROX 1 which accepts a single argument. It
converts this argument to a scalar longword integer and printsit.

Registering Routines External Development Guide

Chapter 15: Adding System Routines 299

Enabling and Disabling System Routines

Thefollowing IDL internal functions allow the enabling and/or disabling of IDL
system routines. Disabled routines throw an error when called from IDL code instead
of performing their usual functions.

These routines are primarily of interest to authors of Runtime or Callable IDL
applications.

External Development Guide Enabling and Disabling System Routines

300 Chapter 15: Adding System Routines

Enabling Routines

TheIDL_SysRtnEnable() function is used to enable and/or disable system routines.

Syntax

void IDIL_SysRtnEnable(int is_function, IDL_STRING *names,
IDL_MEMINT n, int option,
IDL_SYSRTN_GENERIC disfcn)

Arguments
is_function
Set to TRUE if functions are being manipulated, FAL SE for procedures.

names

NULL, or an array of names of routines.

n
The number of names in names.
option
One of the values from the following table which specify what this routine
should do.
Bit Description
IDL_SRE _ENABLE Enable specified routines.
IDL_SRE ENABLE EXCLUSIVE Enable specified routines and disable all
others.
IDL_SRE_DISABLE Disable specified routines.
IDL_SRE DISABLE EXCLUSIVE Dihsablespecified routines and enable all
others.

Table 15-6: Values for option Argument

Enabling Routines External Development Guide

Chapter 15: Adding System Routines 301

disfcn

NULL, or address of an IDL system routine to be called by the IDL interpreter
for these disabled routines. If thisargument is not provided, a default routineis
used.

Result

All routines are enabled/disabled as specified. If anon-existent routineis specified, it
is quietly ignored. Attempts to enable routines disabled for licensing reasons are also
quietly ignored.

Note
Theroutines CALL_FUNCTION, CALL_METHOD (function and procedure),
CALL_PROCEDURE, and EXECUTE are not real system routines, but are actually
special cases that result in different IDL pcode. For this reason, they cannot be
disabled. However, anything they can call can be disabled, so thisis not a serious
drawback.

External Development Guide Enabling Routines

302 Chapter 15: Adding System Routines

Obtaining Enabled/Disabled Routine Names

TheIDL_SysRtnGetEnabledNames() function can be used to obtain the names of
al system routines which are currently enabled or disabled, either dueto licensing
reasons (i.e., some routines are disabled in IDL demo mode) or dueto acall to
IDL_SysRtnEnable().

Syntax

void IDL_SysRtnGetEnabledNames (int is_function,
IDL_STRING *str, int enabled)

Arguments

is_function
Set to TRUE if alist of functionsis desired, FALSE for alist of procedures.
str

Points to a buffer of IDL_STRING descriptorsto fill in. The caller must call
IDL_SysRtnNumEnabled() to determine how many such routines exist, and
this buffer must be large enough to hold that number.

enabled

Set to TRUE to receive names of enabled routines, FAL SE to receive names of
disabled ones.

Result

The memory supplied viastr isfilled in with the desired names.

Obtaining Enabled/Disabled Routine Names External Development Guide

Chapter 15: Adding System Routines 303

Obtaining the Number of Enabled/Disabled Routines
ThelDL_SysRtnGetEnabledNames() function requires you to supply abuffer large
enough to hold all of the namesto be returned. IDL_SysRtnNumEnabled() can be
called to obtain the number of such routines, allowing you to properly size the buffer.

Syntax
IDL_MEMINT IDL_SysRtnNumEnabled(int is_function, int enabled)

Arguments

is_function
Set to TRUE if the number of functionsis desired, FALSE for procedures.
enabled

Set to TRUE to receive number of enabled routines, FAL SE to receive number
of disabled ones.

Result

Returns the requested count.

External Development Guide Obtaining the Number of Enabled/Disabled Routines

304 Chapter 15: Adding System Routines

Obtaining the Real Function Pointer
The IDL_SysRtnGetReal Ptr () routine returns the pointer to the actual internal DL
function that implements the system function or procedure of the specified name.

This routine can be used to interpose your own code in between IDL and the actual
routine. This processis sometimes called hooking in other systems. To implement
such ahook function, you must usethe IDL_SysRtnEnable() function to register the
interposed routine, whichin turn uses IDL _SysRtnGetReal Ptr () to obtain the actual
IDLfunction pointer for the routine.

Syntax

IDL_SYSRTN_GENERIC IDL_SysRtnGetRealPtr (int is_function,
char *name)

Arguments

is_function
Set to TRUE if functions are being manipulated, FAL SE for procedures.

name

The name of function or procedure for which the real function pointer is
required.

Result

If the specified routine...
e existsand isnot disabled, it's function pointer is returned.
e doesnot exist, aNULL pointer is returned.
* hasbeen disabled by the user, its actual function pointer is returned.

* hasbeen disabled for licensing reasons, the real function pointer does not exist,
and the pointer to its stub is returned.

Obtaining the Real Function Pointer External Development Guide

Chapter 15: Adding System Routines 305

Note
Thisroutine can cause an IDL_MSG_LONGJIMP message to be issued if the
function comes from aDLM and the DLM load fails due to memory allocation
errors. Therefore, it must not be called unlessthe IDL interpreter is active. The

prime intent for thisroutine isto call it from the stub routine of a disabled function
when the interpreter invokes the associated system routine.

External Development Guide Obtaining the Real Function Pointer

306 Chapter 15: Adding System Routines

Obtaining the IDL Name of the Current System
Routine

To get the IDL name for the currently executing system routine, use the
IDL_SysRtnGetCurrentName().

Syntax

char *IDL_SysRtnGetCurrentName (void)
This function returns a pointer to the name of the currently executing system
routine. If thereis no currently executing system routine, aNULL (0) pointeris
returned.
Thisroutine will never return NULL if called from within a system routine.

Obtaining the IDL Name of the Current System Routine External Development Guide

Chapter 15: Adding System Routines 307

LINKIMAGE

The IDL user level LINKIMAGE procedure makes the functionality of the
IDL_SysRtnAdd() function available to IDL programs. It allows IDL programsto
merge routines written in other languages with IDL at run-time. Each call to
LINKIMAGE defines anew system procedure or function by specifying the routine's
name, the name of the file containing the code, and the entry point name. The name
of your routine is added to IDL’sinternal system routine table, making it available in
the same manner as any other IDL built-in routine.

LINKIMAGE isthe easiest way to add your system routinesto IDL. It does not
require linking a separate version of the IDL program with your code the way adirect
call to IDL_SysRtnAdd() does, and it does not require writing the extra code
required for a Dynamically Loadable Module (DLM). It is therefore commonly used
for simple applications, and for testing during the development of a system routine.

If you are developing alarger application, or if you intend to redistribute your work,
you should package your routines as Dynamically Loadable Modules, which are
much easier for end-users to install and use than LINKIMAGE calls. You will find
that the small additional programming effort is more than repaid from the time saved
providing support for your code to your users.

If your IDL application relies on code written in languages other than IDL and linked
into IDL using the LINKIMAGE procedure, you must make sure that the routines
declared with LINKIMAGE are linked into IDL before any code that callsthem is
restored. In practice, the best way to do thisis to make the callsto LINKIMAGE in
your MAIN procedure, and include the code that uses the linked routinesin a
secondary . sav file. In this case your MAIN procedure may look something like

this:
PRO main
;Link the external code.
LINKIMAGE, 'link_ function', 'new.dll'

;Restore code that uses linked code.
RESTORE, 'secondary.sav'

;Run your application.
myapp

END

External Development Guide LINKIMAGE

308 Chapter 15: Adding System Routines

In this scenario, the IDL code that calls the LINK_FUNCTION routine (the routine
linked into IDL in the LINKIMAGE call) is contained in the secondary . sav file

'secondary.sav'.

Note

When creating your secondary . sav file, you will need to issue the LINKIMAGE
command before calling the SAVE procedureto link your routineinto IDL after you
have exited and restarted. The RESOLVE_ALL routine does not resolve routines
linked to IDL with the LINKIMAGE procedure.

Dynamically Loadable Modules do not have this issue, and are the best way to
avoid the problem.

LINKIMAGE External Development Guide

Chapter 15: Adding System Routines 309

Dynamically Loadable Modules

LINKIMAGE can be used to make IDL load your system routines in a simple and
efficient manner. However, it quickly becomes inconvenient if you are adding more
than a few routines. Furthermore, the limitation that the LINKIMAGE call must
happen before any code that callsit is compiled makesit difficult to use and
complicates the process of redistributing your routinesto others. IDL offers an
aternative method of packaging your system routines, called Dynamically Loadable
Modules (DLMs), that address these and other problems.

This section covers the following topics:
e DLM Concepts (page 309)
* How DLMsWork (page 310)
e TheModule Description (.dim) File (page 312)
* ThelDL_Load() function (page 314)
 DLM Example (page 315)
» Packaging and Installing DLMs (page 317)

DLM Concepts

ThelDL_SYSFUN_DEF2 structure, which isdescribed in “ Registering Routines” on
page 296, contains all the information required by IDL for it to be able to compile
callsto agiven system routine and call it:

e A routine signature (Name, minimum and maximum number of arguments, if
the routine accepts keywords).

* A pointer to acompiled language function (usually C) that suppliesthe
standard IDL system routineinterface (argc, argv, argk) and which implements
the desired operation.

IDL does not require the actual code that implements the function until the routineis
called: It is able to compile other routines and statements that reference it based only
on its signature.

DLMs exploit this fact to load system routines on an “as needed” basis. The routines
inaDLM arenot loaded by IDL unless the user calls one of them. A DLM consists of
two files:

External Development Guide Dynamically Loadable Modules

310

Dynamically Loadable Modules

Chapter 15: Adding System Routines

1. A module description file (human readabl e text) that IDL reads when it starts

running. Thisfiletells IDL the signature for all system routines contained in
the loadable module.

A sharablelibrary that implementsthe actual system routines.Thislibrary must
be coded to present a specific IDL mandated interface (described below) that
alows DL to automatically load it when necessary without user intervention.

DLMs are a powerful way to extend IDL's built-in system routines. This form of
packaging offers many advantages:

Unlike LINKIMAGE, IDL automatically discovers DLMswhen it starts up
without any user intervention. This makes them easy to install — you simply
copy the two files into adirectory on your system where IDL will look for
them.

DLM routines work exactly like standard built-in routines, and are
indistinguishable from them. There is no need for the user to load them (for
example, using LINKIMAGE) before compiling code that references them.

Asthe amount of code added to IDL grows, using sharablelibrariesin thisway
prevents name collisionsin unrelated compiled code from fooling the linker
into linking the wrong code together. DLMs thus act as afirewall between
unrelated code. For example, there are instances where unrelated routines both
use acommon third party library, but they require different versions of this
library. A specific exampleisthat the HDF support in IDL requiresits own
version of the NetCDF library. The NetCDF support uses a different
incompatible version of thislibrary with the same names. Use of DLMsalows
each module to link with its own private copy of such code.

Since DLMs are separate from the IDL program, they can be built and
distributed on their own schedul e independent of IDL releases.

System routines packaged as DL Ms are effectively indistinguishable from
routines built-into IDL by ITT Visua Information Solutions.

Use of sharable librariesin this manner has ample precedent in the computer industry.
Most modern operating systems use loadable kernel modules to keep the kernel small
while the functionality grows. The same technique is used in user programsin the
form of sharable libraries, which allows unrelated programs to share code and
memory space (e.g. asingle copy of the C runtime library is used by all running
programs on a given system).

How DLMs Work

IDL manages DLMs in the following manner:

External Development Guide

Chapter 15: Adding System Routines 311

1. WhenIDL dtarts, it looks in the current working directory for module
definition (. d1m) files. It reads any file found and adds the routines and
structure definitions thus defined to itsinternal routine and structure lookup
tables as “stubs’. In the system routine dispatch table, stubs are entries that
inform IDL of the routine's existence, but which lack an actual compiled
function to call. They contain sufficient information for IDL to properly
compile callsto the routines, but not to actually call them. Similarly, stub
entries in the structure definition table allow IDL to know that the DLM
supplies the structure definition, but the actual definition is not present.

After it looks in the current working directory, IDL searches!DLM_PATH for
.d1m files and adds them to the table in the same manner. The default value of
IDLM_PATH isthedirectory in the IDL distribution where the binary
executables are kept (bin/bin.platform), followed by the
idlde/plugins directory, bothinthe IDL installation. This default can be
changed by defining the IDL_DLM_PATH preference (thisis similar to the
way the IDL_PATH preference workswith PATH). This process happens once
at startup, and never again. This meansthat IDL’s knowledge of loadable
modules is static and unchangeable once the session is underway. Thisis very
different from the way !PATH works, and reflects the static nature of built-
inroutines. The format of .d1m filesis discussed in “The Module Description
(.dlm) File” on page 312.

Warning
If you redefinethe IDL_DLM_PATH preference, be sure to include the token
<IDL_DEFAULT>. IDL will not run correctly if the default DLM directories
arenot included in 'DLM_PATH.

See “Packaging and Installing DLMS’ on page 317 for additional information
about how IDL selects sharable libraries on different platforms.

2. ThelDL session then continuesin the usual fashion until acall to aroutine
from aloadable module occurs. At that time, the IDL interpreter notices the
fact that the routine is a stub, and loads the sharable library for the loadable
module that supplies the routine. It then looks up and calls a function named
IDL_L oad(), whichisrequired to exist, from thelibrary. It's job is to replace
the stubs from that module with real entries (by using IDL_SysRtnAdd()) and
otherwise prepare the module for use.

3. Oncethe moduleisloaded, the interpreter looks up the routine that caused the
load one moretime. If it is still a stub then the module has failed to load
properly and an error isissued. Normally, afull routine entry isfound and the
interpreter successfully calls the routine.

External Development Guide Dynamically Loadable Modules

312 Chapter 15: Adding System Routines

4. At thispoint the moduleisfully loaded, and cannat be distinguished from a
compiled part of IDL. A moduleisonly loaded once, and additional callsto
any routine, or access to any structure definition, from the module are made
immediately and without requiring any additional loading.

The Module Description (.dIm) File

The module description fileisasimple text file that is read by IDL when it starts.
Module description files have the file suffix .d1lm. Theinformation in the . d1m file
tellsIDL everything it needs to know about the routines supplied by aloadable
module. With thisinformation, IDL can compile callsto these routines and otherwise
behave as if it contains the actual routine. The loadable module itself remains
unloaded until acall to one of itsroutinesis made, or until the user forces the module
toload by calling the IDL DLM_LOAD procedure.

Empty linesare allowed in . d1m files. Comments are indicated using the # character.
All text from a # to the end of the lineisignored by IDL and isfor the user’s benefit
only.

All other lines start with a keyword indicating the type of information being
conveyed, possibly followed by arguments. The syntax of each line depends on the
keyword. Possible lines are:

MODULE Name

Gives the name of the DLM. This should always be the first non-comment linein a
.d1m file. There can only be one MODULE line.

MODULE JPEG
DESCRIPTION DescriptiveText

Supplies a short one line description of the purpose of the module. Thisinformation
isdisplayed by HELP, /DLM. Thislineis optional.

DESCRIPTION IDL JPEG support
VERSION VersionString

Suppliesaversion string that can be used by the IDL user to determine which version
of the module will be used. IDL does not interpret this string, it only displaysit as
part of the HEL P, /DL M output. Thislineisoptional.

VERSION 6a

Dynamically Loadable Modules External Development Guide

Chapter 15: Adding System Routines 313

BUILD_DATE DateString

If present, IDL will display thisinformation as part of the output fromHELP, /DLM.
IDL does not parse this string to determine the date, it is simply for the users benefit.
Thislineisoptional.

BUILD_DATE JAN 8 1998

SOURCE SourceString

A short one line description of the person or organization that is supplying the
module. Thislineis optional.

SOURCE ITT Visual Information Solutions

CHECKSUM CheckSumValue

Thisdirectiveisused by ITT Visual Information Solutions to sign the authenticity of
the DLMs supplied with IDL releases. It is not required for user-written DLMSs.

STRUCTURE StructureName

There should be one STRUCTURE linein the DLM file for every named structure
definition supplied by the loadable module. If you refer to such a structure before the
DLM isloaded, IDL usesthisinformation to cause the DLM to load. The IDL _Init()
function for the DLM will define the structure.

GLOBAL_SYMBOLS

Thislineisoptional. Including thisline in the DLM file will cause the shared library
toload al of its symbols (functions or procedures) as globally accessible rather than
locally accessible. If asymboal is globally accessible, then libraries that are loaded
later will be able to access the symbol. In practice, adding thisline to the DLM file
will cause IDL to set the RTLD_GLOBAL flag when calling the d1open ()
operating system function to load the module.

On Microsoft Windows and Macintosh OS X systems, symbols are automatically
loaded as global. A GLOBAL_SYMBOLS ineinthe DLM file will be quietly
ignored.

Use caution when making aDLM’s symbols globally accessible. Judicious naming of
the DLM’s symbol nameswill help ensure that symbols exported by the DLM will
not cause namespace collisions with symbols from other libraries.

External Development Guide Dynamically Loadable Modules

314 Chapter 15: Adding System Routines

FUNCTION RtnName [MinArgs] [MaxArgs] [Options...]
PROCEDURE RtnName [MinArgs] [MaxArgs] [Options...]

There should be one FUNCTION or PROCEDURE lineinthe DLM file for every
IDL routine supplied by the loadable module. These lines give IDL the information it
needs to compile calls to these routines before the module is loaded.

RtnName

The IDL user level namefor the routine. The routine name can be a simple procedure
or function name (e.g. MY_ PROCEDURE Of MY_FUNCTION), or the name of an object
method (e.g. MY_OBJECT : : PROCEDURE_METHOD Of

MY_OBJECT: : FUNCTTION_METHOD).

MinArgs

The minimum number of arguments accepted by this routine. If not supplied, Ois
assumed.

MaxArgs

The maximum number of arguments accepted by thisroutine. If not supplied, O is
assumed.

Options
Zero or more of the following:

OBSOLETE — IDL should issue awarning message if this routineis caled and
IWARN.OBS ROUTINE is set.

KEYWORDS — This routine accepts keywords as well as plain arguments.

For example, a procedure named READ_JPEG that accepts a minimum of one
argument, a maximum of three arguments, and al so accepts keyword arguments
would have the following definition in the . dim file:

PROCEDURE READ_JPEG 1 3 KEYWORDS
The IDL_Load() function

Every loadable module sharable library must export asingle symbol called
IDL_Load(). Thisfunction is called when IDL loads the module, and is expected to
do all the work required to load real definitions for the routines supplied by the
function and prepare the module for use. This always requires at least one call to
IDL_SysRtnAdd(). It usually also requiresacall to IDL_M essageDefineBlock () if
the modul e defines any messages. Any other initialization needed would also go here:

Dynamically Loadable Modules External Development Guide

Chapter 15: Adding System Routines 315

int IDL_Load(void)

This function takes no arguments. It is expected to return True (non-zero) if it was
successful, and False (0) if some initiaization step failed.

DLM Example

This example creates aloadable module named TESTM ODULE.

Note
Code for thisexampleisincluded in the external /d1m subdirectory of the IDL
installation.

TESTMODULE provides 2 routines:
TESTFUN

A function that issues a message indicating that it was called, and then returns the
string “TESTFUN" This function accepts between 0 and IDL_MAXPARAMS
arguments, but it does not use them for anything.

TESTPRO

A procedure that issues a message indicating that it was called. This procedure
accepts between O and IDL_M AX_ARRAY_DIM arguments, but it does not use
them for anything.

The intent of this example isto show the support code required to writea DLM for a
completely trivial application. This framework can be easily adapted to real modules
by replacing TESTFUN and TESTPRO with other routines.

Thefirst step is to create the module definition file for TESTMODULE, named
testmodule.dlm:

MODULE testmodule

DESCRIPTION Test code for loadable modules
VERSION 1.0

SOURCE ITT Visual Information Solutions
BUILD_DATE JAN 8 1998

FUNCTION TESTFUN O IDL_MAXPARAMS
PROCEDURE TESTPRO 0 IDL_MAX_ARRAY_DIM

The next step isto write the code for the sharable library. The contents of
testmodule.c are shown in the following figure. Comments in the code explain
what each step is doing.

External Development Guide Dynamically Loadable Modules

316 Chapter 15: Adding System Routines

1 #include <stdio.h>

2 #include "idl_export.h"

3

4 /* Define message codes and their corresponding printf(3) format

5 * strings. Note that message codes start at zero and each one is

6 * one less that the previous one. Codes must be monotonic and

7 * contiguous. */

8 static IDL_MSG_DEF msg_arr[] = {

9 #define M_TM_ INPRO 0

10 { "M_TM_INPRO", "$NThis is from a loadable module procedure.” },
11| #define M_TM_INFUN -1

12 { "M_TM_INFUN”, "$NThis is from a loadable module function.” }
13q };

14

15 /* The load function fills in this message block handle with the
16 * opaque handle to the message block used for this module. The other

17 * routines can then use it to throw errors from this block. */
18 static IDL_MSG_BLOCK msg_block;
19

20 /* Implementation of the TESTPRO IDL procedure */
21 static void testpro(int argc, IDL_VPTR *argv)
22 { IDL_MessageFromBlock (msg_block, M_TM_INPRO, IDL_MSG_RET); }

24 /* Implementation of the TESTFUN IDL function */
25 static IDL_VPTR testfun(int argc, IDL_VPTR *argv)

26 {
27 IDL_MessageFromBlock (msg_block, M_TM_INFUN, IDL_MSG_RET) ;
C 28 return IDL_StrToSTRING("TESTFUN") ;
29 1}
30
31 int IDL_Load(void)
32 {
33 /* These tables contain information on the functions and procedures
34 * that make up the TESTMODULE DLM. The information contained in these
35 * tables must be identical to that contained in testmodule.dlm.
36 */
37 static IDL_SYSFUN_DEF2 function_addr[] = {
38 { testfun, "TESTFUN”, 0, IDL_MAXPARAMS, 0, 0},
39 };
40 static IDL_SYSFUN_DEF2 procedure_addr([] = {
41 { (IDL_SYSRTN_GENERIC) testpro, "TESTPRO”, 0, IDL_MAX_ARRAY_ DIM, 0, 0},
42 Y
43
44 /* Create a message block to hold our messages. Save its handle where
45 * the other routines can access it. */
46 if (! (msg_block = IDL_MessageDefineBlock ("Testmodule”,
47 IDL_CARRAY_ELTS (msg_arr),
48 msg_arr))) return IDL_FALSE;
49
50 /* Register our routine. The routines must be specified exactly the same
51 * as in testmodule.dlm. */
52 return IDL_SysRtnAdd(function_addr, TRUE,
53 IDL_CARRAY_ELTS (function_addr))
54 && IDL_SysRtnAdd (procedure_addr, FALSE,
55 IDL_CARRAY_ELTS (procedure_addr)) ;
56 }

Table 15-7: testmodule.c

If building aDLM for Microsoft Windows, alinker definition file
(testmodule.def) isalso needed. All of these files, along with the commands

Dynamically Loadable Modules External Development Guide

Chapter 15: Adding System Routines 317

required to build the module can be found in the d1m subdirectory of the external
directory of the IDL distribution.

Once the loadable module is built, you can cause IDL to find it by doing one of the
following:

e Moveto the directory containing the . d1m and sharable library for the
module.

» Definethe IDL_DLM_PATH preference to include the directory.

Running IDL to demonstrate the resulting modul e;

IDL> HELP, /DLM, 'testmodule’

** TESTMODULE - Test code for loadable modules (not loaded)
Version:1.0,Build Date:JAN 8 1998, Source:ITT Visual Information
Solutions.

Path: /home/user/testmodule/external/testmodule.so

IDL> testpro

% Loaded DLM: TESTMODULE.

% TESTPRO: This is from a loadable module procedure.

IDL> HELP, /DLM, 'testmodule’

** TESTMODULE - Test code for loadable modules (loaded)
Version:1.0,Build Date:JAN 8 1998, Source:ITT Visual Information
Soluctions.

Path: /home/user/testmodule/external/testmodule.so

IDL> print, testfun()

% TESTFUN: This is from a loadable module function.

TESTFUN

Theinitial HEL P output shows that the module starts out unloaded. The call to
TESTPRO causes the module to be loaded. As IDL loads the module, it prints an
announcement of the fact (similar to the way it announcesthe .pro filesit
automatically compiles to satisfy calls to user routines). Once the module is loaded,
subsequent callsto HEL P show that it is present. Calls to routines from this module
do not cause the module to be reloaded (as evidenced by the fact that calling
TESTFUN did not cause an announcement message to be issued).

Packaging and Installing DLMs

Once you have created sharable library (. so or .d11) and module description
(.a1m) files, you will need to ensure that the files are installed in alocation where
IDL can find and load the libraries. Your approach may be slightly different
depending on whether your dynamically loadable module supports a single platform
or multiple platforms.

External Development Guide Dynamically Loadable Modules

318 Chapter 15: Adding System Routines

Single-Platform DLMs

If your module will be installed only on computers of a single architecture (32-hbit
Windows machines, for example, or 64-bit Linux machines), the processisrelatively
smple:

1. Createthe sharablelibrary file. The file will have the extension .d11 for
Microsoft Windows platforms, or . so for UNIX-like platforms (Macintosh,
Linux, Solaris).

2. Create the module description file (. d1m) as described “ The Module
Description (.dim) File” on page 312.

3. Place both the sharable library file and the module description filein a
directory included in IDL’s IDL_DLM_PATH preference. See “Installing
DLMs Using the IDL Workbench Update Mechanism” on page 322 for
additional notes.

4. Restart IDL.

Even if your module supports only one platform, consider following the naming rules
described in “How IDL Selects the Correct Sharable Library File” on page 319.
Using the multi-platform naming rules incurs no performance penalty, and may save
effort if you end up supporting other platformsin the future.

Multi-Platform DLMs

If your module will be installed on computers of different architectures, you must
create a unique sharable library file for each architecture. To install the DLM on a
user’s machine, you have the following options:

Create Platform-Specific Installations

If you create a separate installation package for each architecture, creating a multi-
platform DLM is essentially just creating a series of Single-Platform DLMs, one for
each platform. Use caution with this approach, since you will have to ensure that if
your end-user installs more than one platform’s version of the DLM, the module
description and shared library files for the different platforms are installed in the
correct directories.

Create a Multi-Platform Installation

You can create a single installation package that supports multiple architectures if
you follow a simple set of naming rules when creating your sharable library files. To
create a multi-platform install ation package:

Dynamically Loadable Modules External Development Guide

../com.rsi.idl.doc.core/prefs_directory.html#IDL_DLM_PATH

Chapter 15: Adding System Routines 319

1. Create asharablelibrary file for each platform, following the naming rules
described in “How IDL Selects the Correct Sharable Library File” on
page 319.

2. Create asingle module description file (. d1m) as described in “ The Module
Description (.dim) File” on page 312.

3. Place the module description file and al of the sharable librariesin asingle
directory included in IDL’s IDL_DLM_PATH preference. See “Installing
DLMs Using the IDL Workbench Update Mechanism” on page 322 for
additional notes.

4. RedartIDL.
How IDL Selects the Correct Sharable Library File

When IDL starts, it searches for DLMsin the directoriesincluded in IDL's
IDL_DLM_PATH preference as described in “How DLMs Work” on page 310.
When IDL finds a module description file, it adds the routines and structure
definitions defined by the DLM toitsinternal routine and structure lookup tables.

It is not until later, when a user calls aroutine defined by the DLM, that IDL actually
loads the sharable library. At this point, IDL searches for a sharable library file built
for the current platform.

Note
IDL’s ahility to search for platform-specific library file names was introduced in
IDL 7.1.

IDL uses the following process to search for the sharable library file:

1. IDL constructs the base name of the library file by removing the . d1m suffix
from the module definition file's name.

2. Tothelibrary’s base name, IDL appends a platform-specific string. The
specific strings are shown in Table 15-8 below. The string is the concatenation
of the name of the platform’s platform-specific bin subdirectory, along with
the suffix . d11 on Windows systems or . so on al UNIX-based systems.

For example, if the name of the DLM fileis
my_module.dlm

then the platform-specific sharable library file name for a 64-bit Linux
platform would be

my_module.linux.x86_64.so

External Development Guide Dynamically Loadable Modules

../com.rsi.idl.doc.core/prefs_directory.html#IDL_DLM_PATH
../com.rsi.idl.doc.core/prefs_directory.html#IDL_DLM_PATH

320

Dynamically Loadable Modules

3.

Chapter 15: Adding System Routines

IDL searchesthe directory that contains the module definition file (. d1m) for a
library file with the platform-specific sharable library file name. If it finds a
matching file, it loads the library and executes the routine called by the user.

If IDL does not find the platform-specific library file, it searches the directory
that contains the module definition file (. a1m) for alibrary file with the same
base name as the modul e definition file, replacing the . d1m extension with the
suffix .d11 or . so.

For example, if the name of the DLM fileis
my_module.dlm

then the generically-named sharable library file name would be
my_module.dll

on aWindows system, or
my_module.so

onaUNIX system.

If IDL finds a generically-named sharable library file (with either the .da11 or
the . so extension), it attemptsto load the library and execute the routine called
by the user. Note that IDL will only be able to successfully load the library if
the generically-named library file was built for the current platform.

If IDL failsto find either the platform-specific sharable library file or the

generically-named library file, it will issue one of the following error

messages.

« If aplatform-specific sharable library file for adifferent platform existsin
the same directory, the error message is

Dynamically loadable module is unavailable on this platform:
my_module.

« If no platform-specific sharable library filesfor any platform are present,
the error messageis

Dynamically loadable module failed to load: my_module.

The first message indicates that the DLM exists but is not supported for the
current platform, the second indicates that the DLM does not exist, despite the
presence of the . dim file.

One benefit of thisfile naming and search procedure isthat you can distributeaDLM
package that includeslibrary filesfor several platformsin asingle directory. IDL will
load the correct shared library for the end-user’s platform, or provide a sensible error
message if the platform is not supported.

External Development Guide

Chapter 15: Adding System Routines 321

Platform-Specific Sharable Library File Suffixes

The following table lists the platform-specific file suffixes for IDL’s supported

platforms:
Platform Sharable Library File Suffix

Windows 32-bit .x86.d11
Windows 64-bit .x86_64.d11
Solaris SPARC 32-bit .solaris?2.sparc.so
Solaris SPARC 64-bit .solaris2.sparc64.so
Solaris x86 64-bit .solaris2.x86_64.so0
Linux 32-bit .linux.x86.s0
Linux 64-bit .linux.x86_64.s0
Macintosh OS X PPC 32-bit | .darwin.ppc.so
Macintosh OS X Intel 32-bit | .darwin.i386.so
Macintosh OS X Intel 64-bit | .darwin.x86_64.so

Table 15-8: Sharable Library File Suffixes
Example DLM Distribution

For example, suppose you have created a dynamically loadable module named
my_cool_module, and created sharable libraries for Windows (32- and 64-bit) and
Linux (32- and 64-bit) but not for Macintosh OS X or Solaris. Your DLM installation
directory would contain the following files:

my_cool_module.dlm
my_cool_module.x86.d11
my_cool_module.x86_64.d11
my_cool_module.linux.x86.s0
my_cool_module.linux.x86_64.s0

If auser on aMacintosh OS X or Solaris system attempts to call aroutine from the
my_cool_module DLM, thefact that sharable libraries for other platforms exist
informs IDL that the DLM intentionally does not provide support for that platform. If
auser on one of these unsupported platforms attempts to use the functionality from
the DLM, IDL will issue the message

External Development Guide Dynamically Loadable Modules

322 Chapter 15: Adding System Routines

Dynamically loadable module is unavailable on this platform:
my_cool_module.

Installing DLMs Using the IDL Workbench Update Mechanism

Beginning in IDL 7.1, the idlde/plugins subdirectory of the IDL installation is
automatically added to the list of directoriesin the IDL_DLM_PATH preference.
This, coupled with IDL’s ability to select a sharable library file based on a platform-
specific file name, allows you to distribute multi-platform DLMs using the IDL
Workbench update mechanism. See IDL Workbench Questions and Answers for
more on the Workbench update mechanism.

Briefly stated, you can distribute your module using the Workbench update
mechanism if you create an Eclipse update site that includes (among other things) a
plug-in that contains your module description file and sharable libraries. When an
end-user installs the plug-in, the module description and library files are placed in the
idlde/plugins subdirectory of the IDL installation automatically, and are thus
found by the DLM search mechanism the next time IDL starts. See IDL Plug-in
Wizard for information on how to generate a plug-in and update site.

Dynamically Loadable Modules External Development Guide

../com.rsi.idl.doc.core/prefs_directory.html#IDL_DLM_PATH
../com.rsi.idl.doc.wb/IDL_Workbench_Questions_and_Answers.html
../com.rsi.idl.doc.wb/IDL_Plug-in_Wizard.html
../com.rsi.idl.doc.wb/IDL_Plug-in_Wizard.html

Chapter 16

Callable IDL

This chapter discusses the following topics:

Calling IDL asaSubroutine 324
Whenis Callable IDL Appropriate? 325
Licensing Issuesand Callable IDL 328
UsingCallableIDL 329

Initialization 331
Diverting IDL Output

External Development Guide

Executing IDL Statements 339
Runtime IDL and Embedded IDL 340
Cleanup...........coiiiii.. 341
Issues and Examples: UNIX 342

Issues and Examples: Microsoft Windows 358

323

324 Chapter 16: Callable IDL

Calling IDL as a Subroutine

IDL can be called as a subroutine from other programs. This capability is referred to
as Callable IDL to distinguish it from the more common case of calling your code
from IDL (aswith CALL_EXTERNAL or as asystem routine (LINKIMAGE,
Dynamically Loadable Module)).

How Callable IDL is Implemented

IDL ishbuiltin asharable form that allows other programsto call IDL as a subroutine.
The specific details of how IDL is packaged depend on the platform:

e IDL for UNIX hasasmall driver program linked to a sharable object library
that contains the actual IDL program.

« IDL for Windows consists of adriver program that implements the user
interface (known asthe IDE) linked to adynamic-link library (DLL) that
contains the actual IDL program.

In all cases, it ispossibleto link the sharable portion of IDL into your own programs.

Note that Callable IDL is not a separate copy of IDL that implements alibrary
version of IDL. It isin fact the same code, being used in a different context.

Calling IDL as a Subroutine External Development Guide

Chapter 16: Callable IDL 325

When is Callable IDL Appropriate?

Although Callable IDL is very powerful and convenient, it is not always the best
method of communication between IDL and other programs. There are usually easier
approaches that will solve a given problem. See “ Supported I nter-Language
Communication Techniquesin IDL” on page 13 for alternatives.

IDL will not integrate with all programs. Understanding the issues described in this
section will help you decide when Callable IDL isand is not appropriate.

Technical Issues Relating to Callable IDL

IDL makes computing easier by raising the level at which IDL usersinterface with
the compulter. It is natural to think that calling IDL from other programs will have the
same effect, and under the correct circumstances thisistrue. However, using Callable
IDL isnot aseasy as using IDL. Programmers who wish to use Callable IDL need to
possess the skills described in “ Skills Required to Combine External Code with IDL”
on page 23.

Be aware that the same things that make IDL powerful at the user level can make it
difficult to include in other programs. As an interactive, interpreted language, IDL is
adecidedly non-trivial object to add to a process. Unlike a simple mathematical
subroutine, IDL includes a compiler, alanguage interpreter, and related code that the
caller must work around. As an interactive program, IDL must control the process to
a high degree, which can conflict with the caller’s wishes. The following (certainly
incomplete) list summarizes some of the issues that must be dealt with.

UNIX IDL Signal API

IDL uses UNIX signals to manage many of its features, including exception
handling, user interrupts, and child processes. The exact signals used and the manner
inwhich they are used can change from IDL releaseto rel ease as necessary. Although
the IDL signal API (describedin“IDL Internals: UNIX Signals’ on page 209) alows
you to use signalsin an IDL-compatible way, the resulting constraints may require
changes to your code.

IDL Timer API

IDL’s use of the processtimer requires you to usethe IDL timer APl instead of the
standard system routines. This restriction may require changes to some programs.
Under UNIX, the timer module can interrupt system calls. Timers are discussed in
“IDL Internals. Timers’ on page 221.

External Development Guide When is Callable IDL Appropriate?

326 Chapter 16: Callable IDL

GUI Considerations

Most applications will call IDL and display IDL graphicsin an IDL window.
However, programmers may want to write applications in which they create the
graphical user interface (GUI) and then have IDL draw graphics into windows that
IDL did not create. It is not aways possible for IDL to draw into windows that it did
not create for the reasons described below:

X Windows

TheIDL X Windows graphics driver can draw in windowsit did not create aslong as
the window is compatible with the IDL display connection (see Appendix A, “IDL
Direct Graphics Devices’ (IDL Reference Guide) for details). However, the design of
IDL’s X Windows driver requires that it open its own display connection and run its
own event loop. If your program cannot support a separate display connection, or if
dividing time between two event loops is not acceptable, consider the following
options:

* RunIDL in aseparate process and use interprocess communication (possibly
Remote Procedure Cadlls, to control it.

e |If you choose to use Callable IDL, use the IDL Widget stub interface,
described in “Adding External Widgetsto IDL" on page 369, to obtain the IDL
display connection, and create your GUI using that connection rather than
creating your own. The IDL event loop will dispatch your events along with
IDL’s, creating awell-integrated system.

Microsoft Windows

At thistime, the IDL for Windows graphics driver does not have the ability to draw
into windows that were not created by IDL.

Program Size Considerations

On systems that support preemptive multitasking, a single huge program is a poor use
of system capabilities. Such programsinevitably end up implementing primitive task-
scheduling mechanisms better |eft to the operating system.

Troubleshooting

Troubleshooting and debugging applications that call IDL can be very difficult. With
standard IDL, malfunctionsin the program are clearly the fault of ITT Visual
Information Solutions, and given areproducible bug report, we attempt to fix them
promptly. A program that combines IDL with other code makesiit difficult to

When is Callable IDL Appropriate? External Development Guide

Chapter 16: Callable IDL 327

unambiguoudy determine where the problem lies. The level of support we can
provide in such troubleshooting is minimal. The programmer is responsible for
locating the source of the difficulty. If the problemisin IDL, asimple program
demonstrating the problem must be provided before we can address the issue.

Threading

IDL uses threads to implement its thread pool functionality, which is used to speed
numerical computation on multi-CPU hardware. Despitethis, it isessentially asingle
threaded program, and is not designed to be called from different threads of a
threaded application. Attempting to use IDL from any thread other than the main
thread is unsupported, and may cause unpredictable results.

Inter-language Calling Conventions

IDL iswritten in standard ANSI C. Calling it from other languagesis possible, but it
is the programmer’s responsibility to understand the inter-language calling
conventions of the target machine and compiler.

Appropriate Applications of Callable IDL

Callable IDL is most appropriate in the following situations:

o Cadlable DL isclearly the correct choice when the resulting programisto bea
front-end that creates a different interface for IDL. For example, you might
wish to turn IDL into an RPC server that uses an RPC protocol not directly
supported by IDL, or use IDL as amodulein adistributed system.

e Callable IDL isappropriateif either the calling program or IDL handles all
graphics, including the Graphical User Interface, without the involvement of
the other. Intermediate situations are possible, but more difficult. In particular,
beware of attempts to have two event/message |oops.

e Cadllable DL isappropriate when the calling program makes little or no use of
signals, timers, or exception handling, or is able to operate within the
constraintsimposed by IDL.

External Development Guide When is Callable IDL Appropriate?

328 Chapter 16: Callable IDL

Licensing Issues and Callable IDL

If you intend to distribute an application that calls IDL, note that each copy of your

application must have access to a properly licensed copy of the IDL library. For
availability of aruntime version of IDL, contact ITT Visual Information Solutions or

your IDL distributor.

Licensing Issues and Callable IDL External Development Guide

Chapter 16: Callable IDL 329

Using Callable IDL

The process of using Callable IDL has three stages: initialization, IDL use, and
cleanup. Between the initialization and the cleanup, your program contains a
complete active IDL session, just asif a user were typing commands at an 1Dr1.>
prompt. In addition to the usual IDL ahilities, you can import datafrom your program
and cause IDL to seeit asan IDL variable. IDL can use such datain computations as
if it had created the variable itself. In addition, you can obtain pointers to data
currently held by IDL variables and access the results of IDL computations from your
program.

Note
The functions documented in this chapter should only be used when calling IDL

from other programs—their usein code called by IDL viaCALL_EXTERNAL or a
system routine (LINKIMAGE, Dynamically L oadable Module) is not supported
and is certain to corrupt and/or crash the IDL process.

Before calling IDL to execute instructions, you must initialize it. Thisis done by
calling IDL_Initialize(). Thisis aone-time operation, and must occur before calling
any other IDL function. For complete information on this topic, see “Initialization”
on page 331. Once IDL isinitialized, you can:

1. SendIDL commandsto IDL for execution. Commands are sent as strings,
using the same syntax as interactive IDL. Note that there is not a separate C
language function for every IDL command—any valid IDL command can be
executed as IDL statements. This approach allows usto keep the callable IDL
APl small and smple while allowing full accessto IDL's ahilities. Thisis
explained in “ Executing IDL Statements” on page 339.

2. Call any of the several routines that interact with IDL through other meansto
perform operations such as:
e Importing datainto IDL. (See “Creating an Array from Existing Data’” on
page 172.)
e Accessing datawithin IDL. (See“Looking Up Variablesin Current Scope”
on page 182.)

* Changing itemsin the process, such as signal handling or timers. (See
“IDL Internals: UNIX Signals’ on page 209, or “IDL Internals: Timers’
on page 221.)

» Redirecting IDL output to your own function for processing. See
“Diverting IDL Output” on page 337.

External Development Guide Using Callable IDL

330 Chapter 16: Callable IDL

The above list is not complete, but is representative of the possibilities afforded by
CalableIDL.

Cleanup
After all IDL useis complete, but before the program exits, you must call
IDL_Cleanup() to allow IDL to shutdown gracefully and clean up after itself. Once

this has been done, you are not allowed to call IDL again from this process. See
“Cleanup” on page 341.

Using Callable IDL External Development Guide

Chapter 16: Callable IDL 331

Initialization

TheIDL _Initialize() function is used to prepare Callable IDL for use. Asa
convenience in simpler situations, the IDL _I nit() function may also be used for this
purpose.

Note
IDL can only beinitialized once for a given process; calling an IDL initialization
function more than once for a process will cause an error. If you need to reinitialize
an IDL session that is already running, consider using

IDL_ExecuteStr(".reset_session");

IDL_Initialize()

TheIDL _Initialize() function is the primary function used to prepare Callable IDL
for use. This must be the first IDL routine called.

int IDL_TInitialize (IDL_INIT DATA *init_data)

IDL _Initialize() returns TRUE if IDL was successfully initialize, and FALSE
otherwise:

init_data
A pointer to an IDL_INIT_ DATA structure, used to specify initialization options. If
no initialization datais required, aNULL pointer may be passed.
The definition of IDL_INIT_DATA includes the following fields:

typedef struct {
IDL_INIT_DATA_OPTIONS_T options;

struct { /* options & IDL_INIT CLARGS */
int argc;
char **argv;

} clargs;

void *hwnd; /* options & IDL_INIT_HWND */

} IDL_INIT_DATA;

The optionsfield of IDL_INIT_DATA can be set to any combination of the
IDL_INIT_ values described below. Most of these values represent boolean (on/off)
options and no other datais required for them. However, arelatively small number of

External Development Guide Initialization

332

Initialization

Chapter 16: Callable IDL

the options require additional information. This extrainformation is provided via one
of the other fieldsinthe IDL_INIT_DATA structure — the appropriate field to use
in each case is discussed with each individual option below.

IDL _Initialize() always examines the value of the optionsfield of this structure. It
will only examinethe other fieldsif avaluein optionsrequiresit to. Otherwise, those
other fields are not used and may safely be left uninitialized. This organization allows
ITT Visual Information Solutions to add additional initialization options to newer
versions of IDL without requiring source code changes to older applications that do
not require those new features.

The values allowed in the optionsfield of IDL_INIT_DATA are:

IDL_INIT_BACKGROUND

A convenience option, equivalent to setting both the IDL_INIT_NOCMDLINE and
IDL_INIT_NOTTYEDIT options.

IDL_INIT_CLARGS

Execution of C programs starts when the main() function is called. Command line
arguments are passed to the main() function via the standard argc and argv
arguments. Set the IDL_INIT_DATA clargs.argc and clargs.argv fields to these
values and set the IDL_INIT_CFLAGS hit in options to pass these command line
argumentsto IDL for processing. On return, IDL will remove any arguments it
understands, and will alter the value of clargs.argc to reflect the count of remaining
items.

The argc/argv pair passed must follow the usual convention in which argv[0] isthe
name under which the program was run, and any additional values are the arguments
passed to that program.

IDL_INIT_EMBEDDED

IDL isinitialized to run applications from a Save/Restore file that contains an
embedded license. IDL _RuntimeExec() is then used to run the application(s).

IDL_INIT_GUI

Indicatesthat IDL is being accessed viathe IDL Workbench GUI interface rather
than using the standard tty based interface.

IDL_INIT_GUI_AUTO (Unix Only)

IDL will try to use the IDL Workbench GUI. If that fails, IDL usesthe standard tty
interface.

External Development Guide

Chapter 16: Callable IDL 333

IDL_INIT_HWND (Microsoft Windows only)

Under Microsoft Windows, an application calling IDL will usually want IDL to use
its main window as its own. This option is used to pass the application’s main
window handleto IDL. In addition to setting IDL_INIT_HWND in the options
field, you must set the hwnd field to the value of the window handle to use.

IDL_INIT_LMQUEUE

At startup, if no license isimmediately available, IDL will wait for an available
license before continuing. Thisis useful for non-interactive IDL based tasks such as
batch processing, where waiting is acceptable and processing cannot succeed without
alicense.

IDL_INIT_NOCMDLINE

Indicatesto IDL that it is going to be used in a background mode by some other
program, and that IDL will not be in control of the user's input command processing.
The main effect of thisisthat IDL will never prompt for user input from the
command line, and execution will never stop in such asituation. Instead, IDL will act
asif the desired read returned an end of file (EOF) and IDL will instead return to the
caler. Another related effect is that XMANAGER will realize that the active
command line functionality for processing widget eventsis not available, and
XMANAGER will block to manage events when it is called rather than return
immediately.

IDL_INIT_NOLICALIAS

Our FLEXIm floating license policy isto dias all IDL sessions that share the same
user/system/display to the samelicense. If IDL_INIT_NOLICALIAS isset, this
IDL session will force a unique license to be checked out. In this case, we alow the
user to change the DISPLAY environment variable. Thisis useful for RPC servers
that don’t know where their output will need to go before invocation.

IDL_INIT_NOTTYEDIT (Unix Only)

Normally under UNIX, if IDL seesthat stdin and stdout are ttys, it putsthe tty into
raw mode and uses termcap/terminfo to handle command line editing. When using
callable IDL in abackground process that isn’t doing input/output to the tty, the
termcap initialization can cause the process to block (because of job control from the
shell) with amessage like “Stopped (tty output) idl”. Setting thisoption
prevents al tty edit functions and disables the calls to termcap. 1/0 to the tty isthen
done with a simple fgets()/printf(). This option only has meaning when aUnix tty is
inuse. It isignored on non-Unix platforms, or when the IDL_INIT_GUI bit is set.

External Development Guide Initialization

334 Chapter 16: Callable IDL

IDL_INIT_QUIET

Setting this bit suppresses the display of the startup announcement and message of
the day.

IDL_INIT_RUNTIME

Setting this bit causes IDL to check out aruntime license instead of the normal

license. IDL_RuntimeExec() isthen used to run an IDL application restored from a
Save/Restore file.

IDL_Init()

The IDL _Init() function offers asimplified interfaceto IDL _I nitialize(). When
possible, callable IDL programs should call IDL _Initialize() to perform the
initialization operation. However, IDL _|nitialize() requiresthe IDL_INIT_DATA
structure type to be defined. This definition comes from the 1d1_export.h header
file supplied with IDL, which can be used from the C or C++ languages, but whichis
not directly usable from languages such as Fortran. IDL_Init() does not use the
IDL_INIT_DATA structure, and is therefore more convenient in such cases.

Note
Most Microsoft Windows applications need to pass their main window handle
(HWND) to IDL, which is possible using IDL _Initialize(), but not IDL _Init().
IDL_Init() istherefore primarily of interest in Unix environments.

int IDL_Init(int options, int *argc, char *argvl([]);
IDL _Init() returns TRUE if IDL was successfully initialized, and FAL SE otherwise.

IDL _Init() is nothing more than a simple convenience wrapper written using
IDL_Initialize(). As an aid in understanding the rel ationship between these two
routines, the code that implementsit is shown in Table 16-1:

options

A bitmask used to specify initialization options. Thisis equivalent setting the options
field of the IDL_INIT_DATA structure to the desired options value when using the
IDL _Initialize() function. Allowed valuesfor options can befoundin
“Initialization” on page 331.

Initialization External Development Guide

Chapter 16: Callable IDL 335

argc, argv

Command line arguments, as passed by the operating system to the program main()
function. Setting these arguments to non-NULL valuesis equivalent to the following
3stepsusing IDL _Initialize():

1. Settheclargsargcfield of the IDL_INIT_DATA structure to the number of

itemsin the argv array, as given by argc.

2. Settheclargs.argy field of theIDL_INIT_DATA structureto the value of

argv.

3. SetIDL_INIT_CLARGS hit of the optionsfield of that structure.

{

0 J oUW

sl
oUW R oW

}

int IDL_Init(int options, int *argc, char *argvl[])

IDL_INIT DATA init_data;
int r;

init_data.options = options;

if (argc) {
init_data.options |: IDL_INIT CLARGS;
init_data.clargs.argc = *argc;
init_data.clargs.argv = argv;

}

r = IDL_Initialize(&init_data);
if (argc) *argc = init_data.clargs.argc;

return r;

Table 16-1: IDL_Init() Implementation Based on IDL_ Initialize().

Common Microsoft Windows Initialization Issues

Callable IDL applications intended to run under Microsoft Windows commonly face
the following issues:

e Under Windows, it is usually the case that the use of IDL from another

program is non-interactive. By default, IDL assumes an interactive
environment in which it is communicating with a user directly. It is necessary
tosettheIDL_INIT_NOCMDLINE option to change this.

External Development Guide Initialization

336

Chapter 16: Callable IDL

e Most Microsoft Windows applications have a main window that they wish
IDL to use as its main window. The window handle for this window must be
specified to IDL_Initialize().

The function MyApplnitI DL (), shown below, demonstrates how to specify this
information to IDL _Initialize(). This function accepts two arguments. options
alowsthe caller to supply any other IDL_INIT_ option values that the program may
need, while hwnd allows the specification of awindow handle to be used as the
application main window.

0 J oUW

o]

10
11
12
13
14
15

int MyAppInitIDL(int options, HWND hwnd)
{
IDL_INIT DATA init_data;

/* Combine any other IDL init options with NOCMDLINE */
init_data.options = options | IDL_INIT NOCMDLINE;

/* If we have a non-NULL HWND, tell IDL to use it */
if (hwnd) {
init_data.options |= IDL_INIT_ HWND;
init_data.hwnd = hwnd;
}

return IDL_Initialize(&init_data) ;

}

Table 16-2: Setting Initialization Information for Microsoft Windows Applications

Initialization

External Development Guide

Chapter 16: Callable IDL 337

Diverting IDL Output

When using a tty-based interface (available only on UNIX platforms), IDL sendsits
output to the screen for the user to see. When using a GUI-based interface (any
platform), the output goes to the IDL log window. The default output function is
automatically installed by IDL at startup. To divert IDL output to afunction of your
own design, use IDL_ToutPush() and IDL_ToutPop() to change the output
function called by IDL.

Internally, IDL maintains a stack of output functions, and provides two functions
(IDL_ToutPush() and IDL_ToutPop()) to manage them. The most recently pushed
output function is called to output each line of text. Output functions of your own
design should have the following type definition:

typedef void (* IDL_TOUT_OUTF) (int flags, char *buf, int n);

The arguments to an output function are:
flags

A bitmask of flag values that specify how the text should be output. The allowed bit
values are:

IDL_TOUT_F_STDERR

Send the text to stderr rather than stdout, if that distinction means anything to your
output device.

IDL_TOUT_F_NLPOST

After outputting the text, start anew output line. On atty, thisis equivalent to sending
anewline (' \n') character.

buf

Thetext to be output. There may or may not be aNULL termination, so the character
count provided by n must be used to move only the specified number of characters.

The number of charactersin buf to be output.

External Development Guide Diverting IDL Output

338 Chapter 16: Callable IDL

IDL_ToutPush()

Use IDL_ToutPush() to push anew output function onto the stack. The most
recently pushed function is the one used by IDL for output.

void IDL_ToutPush (IDL_TOUT_OUTF outf);
IDL_ToutPop()

IDL_ToutPop() removes the most recently pushed output function. The removed
function pointer is returned.

IDL_TOUT_OUTF IDL_ToutPop (void) ;

Warning
Do not pop an output function you did not push. It is an error to attempt to remove
the last remaining function.

Diverting IDL Output External Development Guide

Chapter 16: Callable IDL 339

Executing IDL Statements

There are two functions that allow you to execute IDL statements.
IDL_ExecuteStr() executes asingle command, while IDL_Execute() takes an array
of commands and executes them in order. In both cases, the commands are null
terminated strings—just as they would be typed by an IDL user at the TDL> prompt.
It isimportant to realize that the full abilities of IDL are available at this point.
Typically, the commands you issue will run IDL programs of varying complexity,
including support routines writtenin IDL from the IDL Library (found viathe IDL
IPATH system variable). This ability to “download” complicated programsinto IDL
and then run them via a simple command can be very powerful.

IDL_Execute()

IDL_Execute() executes the command strings in the order given. It returns the value
of 'lERROR_STATE.CODE after the final command has executed. If the value of
IERROR_STATE.CODE is needed for an intermediate command, you should use
IDL_ExecuteStr() instead of IDL_Execute().

int IDL_Execute(int argc, char *argvl[]);
argc
The number of commands contained in ar gv.
argv

An array of pointersto NULL-terminated strings containing IDL statements to
execute.

IDL_ExecuteStr()

IDL_ExecuteStr () returns the value of the lERROR_STATE.CODE system variable
after the command has executed.

int IDL_ExecuteStr (char *cmd) ;

cmd

A NULL-terminated string containing an IDL statement to execute.

External Development Guide Executing IDL Statements

340 Chapter 16: Callable IDL

Runtime IDL and Embedded IDL

If you distribute programsthat call IDL with aruntime license or an embedded
license, use IDL_RuntimeExec(). After initialization IDL_RuntimeExec() can be
used to run self-contained IDL applications from a Save/Restore file.
IDL_RuntimeExec() restores the file, then attemptsto call an IDL procedure named
MAIN. If no MAIN procedureisfound, the function attemptsto call a procedure with
the same name as the restored Savefile. (That is, if the Savefileis named
myprog.sav, |IDL_RuntimeExec() looks for a procedure named myprog.)

Note
IDL_RuntimeExec() clears the value of the 'ERROR_STATE system variable

before it restores the specified Savefile.

IDL_RuntimeExec() returns the value of the ' ERROR_STATE.CODE system
variable after IDL attempts to restore the specified file and execute the MAIN or
named procedure. Thus, areturn value of zero indicates that the specified Save file
was restored and the appropriate procedure executed without error.

int IDL_RuntimeExec (char *file);

where;
file

The compl ete path specification to the Save file to be restored, in the native syntax of
the platform in use.

Checking the Error Status

If the return value from IDL_RuntimeExec() is not zero, you may wish to check the
values of other fieldsin the 'ERROR_STATE structure. The following code fragment
populates buffer with the values of the lERROR_STATE.MSG,
IERROR_STATE.SYS MSG, and |ERROR_STATE.CODE system variable fields:

sprintf (buffer, "error_state.msg: %$s\nerror_state.sys_msg:
%$s\nerror_state: %d\n",
IDL_STRING_STR(IDL_SysvErrStringFunc()),
IDL_STRING_STR (IDL_SysvSyserrStringFunc()),
IDL_SysvErrorCodevValue ()

)

See “Functions for Returning System Variables’” on page 257 for additional
information.

Runtime IDL and Embedded IDL External Development Guide

Chapter 16: Callable IDL 341

Cleanup

After your programisfinished using IDL (typically just beforeit exits) it should call
IDL_Cleanup() to allow IDL to shut down gracefully. IDL_Cleanup() returns a
status value that can be passed to Exit().

int IDL_Cleanup (int just_cleanup) ;

where:
just_cleanup

If TRUE, IDL_Cleanup() does al the process shutdown tasks, but doesn't actually
exit the process. If FALSE (the usual), the process exits.

Microsoft Windows applications should place this call in their Main WndProc to be
called as aresult of the WM _CL OSE message.

switch (msg) {
case WM_CLOSE:

IDL_Cleanup (TRUE) ;
any additional processing

External Development Guide Cleanup

342

Chapter 16: Callable IDL

Issues and Examples: UNIX

Interactive IDL

Under UNIX, IDL_Main() implements IDL as seen by the interactive user. In the
interactive version of IDL as shipped by ITT Visua Information Solutions, the actual
main() function simply decodes its arguments to determine which options to specify
and then callsIDL_Main() to do therest. IDL_Main() calls exit() and does not
return to its caller.

int IDL_Main(int init_options, int argc, char *argvl(]);

where;

init_options

The optionsvalueto be passed to IDL _Initialize() viatheinit_data argument to that
function.

argc, argv

From main(). Arguments that correspond to options specified viathe init_options
argument should be removed and converted to init_options flags prior to calling this
routine.

Compiling Programs That Call IDL

A complete discussion of the issues that arise when compiling and linking C
programs is beyond the scope of this manual. The following is a brief list of basic
concepts to consider when building programsthat call IDL.

Compilersfor some languages add underscores at the beginning or end of user
defined names. To check the naming convention employed by your compiler,
use the UNIX nm (1) command to list the symbols exported from an object
file.

If you use only one language, naming details are handled transparently by the
compiler, linker, and debugger. If you use more than one language, problems
can ariseif the different compilers use different naming conventions. For
example, the Fortran compiler might add an underscore to the end of each
name, while the C compiler does not. To call a Fortran routine from C, you
must then include this underscore in your code (to call the function my_code,
you would refer to it asmy_code_). Note that you may also need to set a
compiler flag to make case significant.

Issues and Examples: UNIX External Development Guide

Chapter 16: Callable IDL 343

To determine whether your compilers use compatible naming conventions,
consult your compiler documentation or experiment with small test programs
using the compilers and the nm command.

* Every program starts execution at a known routine. In the C language, this
routine is explicitly named main(). In Fortran, execution begins with the
implicit main program. If you are using Callable IDL, you must provide a
main() function for your program.

e When linking a C program, use the cc command instead of the 1d command.
cc cals 1d to perform the link operation, and when necessary adds a directive
to 14 that causes the C runtime library to be used.

If you don't use cc to link your program (if you are using 14 directly or are
using a Fortran compiler, for example) and you get “ unsatisfied symbol” errors
for symbolsthat are in the standard C library, try including the runtime library
explicitly in your link command. Usually, adding the string -1c to the end of
the command is al that is necessary.

See “Compilation and Linking Details” on page 31 for advice on how to
compile and link programs with the IDL libraries under various operating
systems.

Example: Calling IDL From C

The program in the following figure is a simplified Unix-only version of
calltest.c, foundinthecallable subdirectory of the external subdirectory of
the IDL distribution. It demonstrates how to import datafrom a C program into IDL,
execute DL statements, and obtain data from IDL variables. It performsthe
following actions:

1. Createan array of 10 floating point values with each element set to the val ue of
itsindex. Thisis equivalent to the IDL command FINDGEN(10).

2. Initialize Callable IDL.
3. Import the floating point array into IDL as a variable named TMP.
4. HavelDL print the value of TMP.

External Development Guide Issues and Examples: UNIX

344

Chapter 16: Callable IDL

Execute a short sequence of IDL statements from a string array:

tmp2 = total (tmp)
print, 'IDL total is ', tmp2
plot, tmp

Set TMP to zero, causing IDL to release the pointer to the floating point array.

Obtain a pointer to the data contained in TMP2. From examining the IDL
statements executed to this point, we know that TMP2 isascalar floating point
value.

From our C program, print the value of the IDL TMP2 variable.

Execute a small widget program. Pressing the button allows the program to
end:

a
b

widget_base ()

widget_button(a, value='Press When Done',6xsize=300,
vsize=200)

widget_control, /realize, a

dummy = widget_event (a)

widget_control, /destroy, a

See “Compilation and Linking Statements” on page 357 for details on
compiling and linking this program.

Each line is numbered to make discussion easier. The line numbers are not part
of the actual program.

Issues and Examples: UNIX External Development Guide

Chapter 16: Callable IDL

345

0 J oUW

DR AR R R WWWWWWWWWWNNNNNMNMNOMNOMNNNNONNNRRRRRR R R R R
U WN PR OW®OMJOU PR WNROWOWJAUUER WNREOWOWLTOU B WNDRE O W

#include <stdio.h>
#include "idl_export.h"

static void free_callback (UCHAR *addr)

{

printf ("IDL released(%u)\n", addr);

int main(int argc, char **argv)

{

}

IDL_INIT DATA init_data;

float £[101];

int 1i;

IDL_VPTR v;

IDL_MEMINT dim[IDL_MAX_ARRAY DIM];

static char *cmds[] = { "tmp2 = total (tmp)",
"print, 'IDL total is ’,tmp2", "plot,tmp" };

static char *cmds2[] = { "a = widget_base()",

"b = widget_button(a, value=’'Press When Done’, xsize=300,

yvsize=200)", "widget_control, /realize, a",
"dummy = widget_event(a)",
"widget_control, /destroy, a" };

for (i=0; i < 10; i++) f[i] = (float) 1i;
init_data.options = IDL_INIT_CLARGS;
init_data.clargs.argc = argc;
init_data.clargs.argv = argv;
if (IDL_Initialize(&init_data)) {

dim[0] = 10;

printf ("ARRAY ADDRESS (%u)\n", f);

if (v=IDL_ImportNamedArray ("TMP", 1, dim, IDL_TYP_FLOAT,

(UCHAR *) f, free_callback, (void *) 0)) {

() IDL_ExecuteStr ("print, tmp");
() IDL_Execute(sizeof (cmds) /sizeof (char *), cmds) ;
(void) IDL_ExecuteStr ("print, ’'Free the user memory'’");
() IDL_ExecuteStr("tmp = 0");
if (v = IDL_FindNamedVariable("tmp2", IDL_FALSE))

printf ("Program total is %$f\n", v->value.f);
(void) IDL_Execute(sizeof (cmds2)/sizeof (char *), cmds2);
IDL_Cleanup (IDL_FALSE) ; /* Don’t return */

return 1;

External Development Guide

Table 16-3: Calling IDL from C on UNIX

Issues and Examples: UNIX

346

Chapter 16: Callable IDL

Following is commentary on this program, by line number:
25

C equivaent to IDL command “F = FINDGEN(10)”
26-28

Prepare initialization data.
29

Initialize IDL
30-33

Import C array F into IDL as a FLTARR vector named TM P with 10 elements. Note
use of the callback argument free_callback. Thisfunction will be called when IDL is
finished with the array F, giving us a chance to properly clean up at that time.

34
Have IDL print the value of TMP.
35

Execute the commands contained in the C string array cmds defined on lines 16-17.
These commands create anew IDL variable named TM P2 containing the sum of the
elements of TMP, print its value, and plot the vector.

36-37

Set TM P to anew value. Thiswill cause IDL to release the user supplied memory
from lines 30—33 and call free _callback.

38-39

From C, get areference to the IDL variable TM P2 and print its value. This should
agree with the value printed by IDL on line 35. It isimportant to realize that the
pointer to the variable or anything it points at can only be used until the next call to
execute an IDL statement. After that, the pointer and the contents of the referenced
IDL_VARIABLE may becomeinvalid as aresult of IDL’s execution.

Issues and Examples: UNIX External Development Guide

Chapter 16: Callable IDL 347

40

Run the simple IDL widget program contained in the array C string array cmds2
defined on lines 18-22.

41

Shut down IDL. The IDL_FALSE argument instructs IDL_Cleanup() to exit the
process, so this call should not return.

44

Thisline should never be reached. If it is, return the UNIX failing status.
Example: Calling an IDL Math Function

This example demonstrates how to write a simple C wrapper function that allows
calling IDL commands simply from another language. We implement a function
named call_idl_fft() that callsthe IDL FFT function operating on dataimported from
our C program. It returns TRUE on success, FAL SE for failure:

int call_idl_fft (IDL_COMPLEX *data, int n, int direction);

data

A pointer to alinear array of complex datato be processed.

The number of data points contained in the array data.
dir

The direction of the FFT transform to take. Specify -1 for aforward transform, 1 for
thereverse

The program is shown in the following figure. Each line is numbered to make
discussion easier. These numbers are not part of the actual program.

External Development Guide Issues and Examples: UNIX

348 Chapter 16: Callable IDL
18 #include <stdio.h>
20 #include "idl_export.h"
3
4
58 int call_idl_fft (IDL_COMPLEX *data, IDL_MEMINT n, int dir)
6f (
7 int r;
8 IDL_MEMINT dim[IDL_MAX_ARRAY DIM];
9 char buf([64];
10
11 dim[0] = n;
12 if (IDL_ImportNamedArray ("TMP_FFT_DATA", 1, dim,
13 IDL_TYP_COMPLEX, (UCHAR *) data, O,)) |
14 (void) IDL_ExecuteStr ("MESSAGE, /RESET");
15 sprintf (buf, "TMP_FFT DATA=FFT (TMP_FFT_DATA, /OVERWRITE) "
16 ,dir) ;
17 r = !IDL_ExecuteStr (buf) ;
18 (void) IDL_ExecuteStr ("TMP_FFT_DATA=0");
19 } else {
20 r = FALSE;
21 }
22
23 return r;
C 249 }
25
26 main(int argc, char **argv)
270 {
28 #define NUM_PNTS 10
29 IDL_COMPLEX data[NUM_PNTS] ;
30 IDL_INIT DATA init_data;
31 int 1i;
32
33 for (i = 0; i < NUM_PNTS; i++) datal[i]l.r = datali].i = i;
34 init_data.options = IDL_INIT_CLARGS;
35 init_data.clargs.argc = argc;
36 init_data.clargs.argv = argv;
37 if (IDL_Initialize(&init_data)) {
38 call_idl_fft(data, NUM_PNTS, -1);
39 call_idl_fft(data, NUM_PNTS, 1);
40 for (i = 0; 1 < NUM_PNTS; i++)
41 printf (" (%f, %f)\n", datali].r, datali].i);
42 IDL_Cleanup (IDL_FALSE) ;
43 }
44
45 return 1;
46 }

Table 16-4: call_idl_fft()

Issues and Examples: UNIX

External Development Guide

Chapter 16: Callable IDL 349

Following is commentary on the above program, by line number:

Thevariabler holds the result from the function.

dim isused to import the datainto IDL as an array.

A temporary buffer to format the IDL FFT command.
11-13

Import datainto IDL asthe variable TMP_FFT_DATA. Wedon't setup a
free_callback because we will explicitly force IDL to release the pointer after the
call to FFT.

14

Set the 'ERROR_STATE system variable back to the “success’ state so previous
errors don't confuse our results.

15-16

Format an FFT command to IDL into buf. Note the use of the OVERWRITE
keyword. Thistellsthe IDL FFT function to place the resultsinto the input variable
rather than creating a separate output variable. Hence, the results end up in our data
array without the need to obtain a pointer to the results and copy them out.

17

Have IDL execute the FFT statement. IDL_ExecuteStr () returns the value of
IERROR_STATE.CODE, which should be zero for success and non-zero in case of
error. Hence, negating the result of IDL_ExecuteStr () yields the status value we
require for the result of this function.

18

Set TMP_FFT_DATA to Owithin IDL. Thiscauses IDL to release the data pointer
imported previoudly.

External Development Guide Issues and Examples: UNIX

350

Chapter 16: Callable IDL

20
If thecall to IDL_ImportNamedArray() fails, we must report failure.
26

In order to test the call_idl_fft() function, this main program callsit twice. Taking
numerical error into account the end result should be equal to the original data.

33
Set the real and imaginary part of each element to the index value.
34-36

Prepare initialization data.

37

Initialize Callable IDL.
38

Call call_idl_fft() to perform aforward transform.
39

Call call_idl_fft() to perform areverse transform.
40-41

Print the results.
42

Shut down IDL and exit the process.
45

Thisline should never be reached. If it is, return the UNIX failing status.

Issues and Examples: UNIX External Development Guide

Chapter 16: Callable IDL 351

Example: Calling IDL from Fortran

The program shown in the following figure (caLLTEST, found inthe callable
subdirectory of the external subdirectory of the IDL distribution) demonstrates
how to import data from a Fortran program into IDL, execute IDL statements, and
obtain datafrom IDL variables. See “Compilation and Linking Statements” on

page 357 for details on compiling and linking this program. The source code for this
filecan befound inthefilecalltest. £, located in the callable subdirectory of
the external subdirectory of the IDL distribution.

Each lineis numbered to make discussion easier. The line numbers are not part of the
actual program:

0 J oUW

=R
N = O W

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

f77

C Routine to print a floating point value from an IDL variable.
SUBROUTINE PRINT_FLOAT (VPTR)

Declare a Fortran Record type that has a compatible form with
the IDL C struct IDL_VARIABLE for a floating point value.
Note this structure contains a union which is the size of

the largest data type. This structure has been padded to
support the union. Fortran records are not part of

F77, but most compilers have this option.

NN 0OnNnaOa

STRUCTURE /IDL_VARIABLE/
CHARACTER*1 TYPE
CHARACTER*1 FLAGS
INTEGER*4 PAD 'Pad for largest data type
REAL*4 VALUE_F
END STRUCTURE

RECORD /IDL_VARIABLE/ VPTR

WRITE(*, 10) VPTR.VALUE_F
10 FORMAT('Program total is: ', F6.2)

RETURN

END

Table 16-5: Calling IDL from Fortran On UNIX

External Development Guide Issues and Examples: UNIX

352

Chapter 16: Callable IDL

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

C This function will be called when IDL is finished with the
C array F.

SUBROUTINE FREE_CALLBACK (ADDR)
INTEGER*4 ADDR

WRITE(*,20) LOC (ADDR)
20 FORMAT (’'IDL Released:’, I12)

RETURN

END

C This program demonstrates how to import data from a Fortran
C program into IDL, execute IDL statements and obtain data
C from IDL variables.

PROGRAM CALLTEST

C Some Fortran compilers require external defs. for IDL routines:
EXTERNAL IDL_Init !$pragma C(IDL_Init)
EXTERNAL IDL_Cleanup !Spragma C(IDL_Cleanup)
EXTERNAL IDI_Execute !S$pragma C(IDL_Execute)
EXTERNAL IDI_ExecuteStr !$pragma C(IDL_ExecuteStr)
EXTERNAL IDL_ImportNamedArray !Spragma C (IDL_ImportNamedArray)
EXTERNAL IDIL_FindNamedVariable !Spragma C(IDL_FindNamedVariable)

C Define arguments for IDL_Init routine
INTEGER*4 ARGC
INTEGER*4 ARGV (1)
DATA ARGC, ARGV (1) /2 * 0/

Table 16-5: Calling IDL from Fortran On UNIX (Continued)

Issues and Examples: UNIX External Development Guide

Chapter 16: Callable IDL 353

65 C Define IDL Definitions for IDL_ImportNamedArray
66

67 PARAMETER (IDL_MAX_ARRAY DIM = 8)

68 PARAMETER (IDL_TYP_FLOAT = 4)

69

70 REAL*4 F(10)

71 INTEGER*4 DIM(IDL_MAX_ARRAY_DIM)

72 DATA DIM /10, 7*0/

73 INTEGER*4 FUNC_PTR 'Address of function
74 INTEGER*4 VAR_PTR 'Address of IDL variable
75 EXTERNAL FREE_CALLBACK !Declare ext routine for use as arg
76

77 PARAMETER (MAXLEN=80)

78 PARAMETER (N=10)

79

80 C Define commands to be executed by IDL

81

82 CHARACTER* (MAXLEN) CMDS(3)

83 DATA CMDS /"tmp2 = total (tmp)",

84 & "print, ‘IDL total is ’, tmp2",

77 85 & "plot, tmp"/

86 INTEGER*4 CMD_ARGV (10)

87

88 C Define widget commands to be executed by IDL

89

90 CHARACTER* (MAXLEN) WIDGET_CMDS(5)

91 DATA WIDGET_CMDS /"a = widget_base()",

92 & "b = widget_button(a,val='Press When Done’,xs=300,ys=200)",
93 & "widget_control, /realize, a",

94 & "dummy = widget_event(a)",

95 & "widget_control, /destroy, a"/

96

97 INTEGER*4 ISTAT

98

99 C Null Terminate command strings and store the address
100§ C for each command string in CMD_ARGV

101

102 DO I =1, 3
103 CMDS (I) (MAXLEN:MAXLEN) = CHAR(O0)
104 CMD_ARGV (I) = LOC(CMDS(I))
105 ENDDO
106

Table 16-5: Calling IDL from Fortran On UNIX (Continued)

External Development Guide Issues and Examples: UNIX

354 Chapter 16: Callable IDL
107 Initialize floating point array, equivalent to IDL FINDGEN(10)
108
109 DO I =1, N
110 F(I) = FLOAT(I-1)

111 ENDDO
112
113 Print address of F
114
115 WRITE(*,30) LOC(F)
116 30 FORMAT (’'ARRAY ADDRESS:’, I12)
117
118 Initialize Callable IDL
119
120 ISTAT = IDL_Init(%VAL(O0), ARGC, ARGV(1l))
121
122 IF (ISTAT .EQ. 1) THEN
123
124 Import the floating point array into IDL as a variable named TMP
125
126 CALL IDL_TImportNamedArray (’'TMP’//CHAR(0), %VAL(1l), DIM,
127 & $VAL (IDL_TYP_FLOAT), F, FREE_CALLBACK, $%VAL(0))
f77 128
129 Have IDL print the value of tmp
130
131 CALL IDL_ExecuteStr(’print, tmp’//CHAR(0))
132
133 Execute a short sequence of IDL statements from a string array
134
135 CALL IDL_Execute(%VAL(3), CMD_ARGV)
136
137 Set tmp to zero, causing IDL to release the pointer to the
138 floating point array.
139
140 CALL IDL_ExecuteStr('tmp = 0’//CHAR(0))
141
142 Obtain the address of the IDL variable containing the
143 the floating point data
144
145 VAR_PTR = IDL_FindNamedVariable(’'tmp2’//CHAR(0), %VAL(0))
146
147 Call a Fortran routine to print the value of the IDL tmp2 variable
148 CALL PRINT_FLOAT (%VAL (VAR_PTR))
149

Table 16-5: Calling IDL from Fortran On UNIX (Continued)

Issues and Examples: UNIX External Development Guide

Chapter 16: Callable IDL 355

f77

150
151
152
153
154
155
156
157
158
159
160
161
162
163

Null Terminate command strings and store the address
for each command string in CMD_ARGV

DO I =1, 5

WIDGET_CMDS (I) (MAXLEN:MAXLEN) = CHAR(O)
CMD_ARGV (I) = LOC(WIDGET_CMDS(TI))
ENDDO

Execute a small widget program. Pressing the button allows
the program to end

CALL IDL_Execute(%VAL(5), CMD_ARGV)

Shut down IDL

164 CALL IDL_Cleanup ($VAL(0))
165
166 ENDIF
167
168 END
Table 16-5: Calling IDL from Fortran On UNIX (Continued)
1-27

In order to print variables returned from IDL, we must define a Fortran structure type
for IDL_VARIABLE. This subroutine createsthe IDL_VARIABLE structure and
defines away to print the floating-point value returned in the an IDL variable.

14-17

Define a Fortran structure equivalent to the floating-point portion of the C
IDL_VARIABLE structure. Since we know our value is a floating-point number,
only the floating-point portion of the structure isimplemented. The structureis
padded for the largest data type contained in the union. With some Fortran compilers,
the combination of UNION and M AP can be used to implement the ALLTYPES
union portion of the IDL_VARIABLE structure.

29-42

Thissubroutine is called when IDL releases the user-supplied memory.

44-164

Thisisthe main Fortran program.

External Development Guide Issues and Examples: UNIX

356

Chapter 16: Callable IDL

51-57

External definitionsfor IDL internal routines. These definitions may not be necessary
with some Fortran compilers.

59-62
Define the argc and argv arguments required by IDL _Init().
66-67

Define constants equivalent to C IDL constants for the maximum array dimensions
and type float.

69-77

Define parameters necessary for IDL_ImportNamedArray().
79-85

Define an array of IDL commandsto be executed.
87-96

Define an array of IDL widget commands to be executed.
98-104

Null-terminate each of the command strings and store the address of each command
to passto IDL.

106-110

Initialize the floating-point array. Thisis the Fortran equivalent to the IDL command
F=FINDGEN (10).

117-121
Initialize IDL.
125-126

Import the Fortran array F inthe IDL as a 10-element FLTARR vector named TMP.
Note the use of the callback argument FREE_CAL LBACK (), which will be called
when IDL isfinished with the array F, giving us a chance to clean up at that time.

Issues and Examples: UNIX External Development Guide

Chapter 16: Callable IDL 357

134

Execute the commands contained in the character array CM DS defined on lines 71-
77. The address for each command is stored in the corresponding array element of
CMD_ARGV.

139

Set the TM P variable to a new value. This causes IDL to release the user-supplied
memory and call FREE_CALLBACKY().

144
Get areference to the IDL variable TM P2.
147

Call theroutine PRINT _FL OAT to print the value of TM P2. This should agree with
the value printed by line 130. Note that the address of the IDL variable TM P2, and its
contents, can only be used until the next call to execute an IDL statement, since IDL
may change the value of thereferenced IDL_VARIABLE.

150-161

Execute the commands contained in the character array WIDGET_CM DS defined
on lines 79-88.

163-168

Shut down IDL. The 0 argument instructs IDL_CL EANUP() to exit the process, so
this call should not return.

Compilation and Linking Statements

Compilation and linking procedures used when calling IDL on a UNIX system are
described inthefile calltest_unix. txt inthe callable subdirectory of the
external subdirectory of themain IDL directory. Note that different UNIX systems
have different compilation and link statements. Note also that the name of the entry
point in the object may be different than that shown here, because compilers may add
leading or trailing underscores to the name of the source routine.

Note
TheMakefile in the architecture-specific subdirectory of the bin subdirectory of
the IDL distribution contains a make rule for building the cal1test application.

External Development Guide Issues and Examples: UNIX

358

Chapter 16: Callable IDL

Issues and Examples: Microsoft Windows

Building an Application that Calls IDL

To build your Microsoft Windows application that calls IDL, you must take the
following steps:

1

Use a#include line to include the declarations from id1_export . h into your
source code. Thisincludefileisfound in the external/include
subdirectory of the IDL distribution.

Compile your application.
Link your application with IDL.LIB.

Place 1oL . DLL in adirectory with your application. See the readme . txt file
located inthe IDL,_DIR/external/callable for moreinformation.

Example: A Simple Application

The following program demonstrates how to display message text sent from IDL,
execute |IDL statements entered by auser, and how to obtain datafrom IDL variables.
It performs the following actions:

1

3.
4.

Creates aMain window with four client controls; a scrolling edit control to
display text messages from IDL, asingle line edit control to allow a user to
enter an IDL command, a Send button to send the user command to IDL, and a
Quit button to exit the application.

Registers a callback function to handle text messages sent by IDL to the
application.

Initializes Callable IDL.
Call IDL_Cleanup() when we receive the WM _CL OSE message.

Each line is numbered to make discussion easier. These numbers are not part of the
actual program. The source code for this program can befound in thefile simple.c,
located inthe callable subdirectory of the external subdirectory of the IDL
distribution. See the source code for details of the program not printed here.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 16: Callable IDL 359

1 /* ___
2 * gimple.c Source code for sample IDL callable application

3 *

4 * Copyright (c) 1992-1995, ITT Visual Information Solutions

9 .
*/

10 #include <windows.h>

11 #include <windowsx.h>
12 #include <ctl3d.h>

13 #include <string.h>

14 #include <stdio.h>

15 #include "simple.h"

16 #include "idl_export.h"

17

18 /F o
19 * WinMain

20 *

21 * This is the required entry point for all windows
applications.

22 *

23 * RETURNS: TRUE if successful

24 Ko */
25 int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE
hInstancePrev,

26 LPSTR lpszCmndline, int nCmdShow)

27 |

28 IDL_INIT_DATA init_data;

29 HWND hwnd;

30 MSG msg;

31

32 // Register the main window class.

33 if (!RegisterWinClass (hInstance)) {

34 return(0) ;

35 }

36

37

38

39 // Create and display the main window.

40 if ((hwnd = InitMainWindow (hInstance)) == NULL) {
41 return(0) ;

42 }

43 MainhWnd = hwnd;

44

45 // Register our output function with IDL.

46 IDL_ToutPush (OutFunc) ;

47

48 // Initialize IDL

49 init_data.options = IDL_INIT_BACKGROUND;

50 init_data.options |= IDL_INIT_HWND;

External Development Guide Issues and Examples: Microsoft Windows

360 Chapter 16: Callable IDL

51 init_data.hwnd = hwnd;

52 if (!'IDL_Initialize(&init_data))

53 return (FALSE) ;

54

55 // Main message loop.

56 while (GetMessage (&msg, NULL, 0, 0)) {

57 TranslateMessage (&msg) ;

58 DispatchMessage (&msg) ;

59 }

60

61 return (msg.wParam) ;

62 1}

63

64

65 /Ko
66 * RegisterWinClass

67 *

68 * To create a Main window (TLB in IDL speak). You must first
69 * register the class for that window

70 %

71 * RETURNS: TRUE if successful

72 Ao - */
73 BOOL RegisterWinClass (HINSTANCE hInst)

74 {

75 WNDCLASS wC;

76

77 wc.style = CS_HREDRAW | CS_VREDRAW;

78 wc . lpfnWwndProc = MainWndProc;

79 wc.cbClsExtra = 0;

80 wc . cbWndExtra = 0;

81 wc.hInstance = hInst;

82 wc.hIcon = NULL;

83 wc .hCursor = LoadCursor (NULL, IDC_ARROW) ;

84 wc . hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1);

85 wc . lpszMenuName = NULL;

86 wc.lpszClassName = "Simple";

87

88 if (!RegisterClass (&wc)) {

89 return (FALSE) ;

90 }

91

92 return (TRUE) ;

93}

94

95 /e -
96 * InitMainWindow

97 *

98 * This is where our Main window is created and displayed
99 *

Issues and Examples: Microsoft Windows External Development Guide

Chapter 16: Callable IDL 361

100 * RETURNS: Handle to window
0y */
102 HWND InitMainWindow (HINSTANCE hInst)

103 {

104 HWND hwnd;

105 CREATESTRUCT Ccs;

106

107

108 hwnd = CreateWindow("Simple",

109 "Callable IDL Sample Application",

110 WS_DLGFRAME | WS_SYSMENU | WS_MINIMIZEBOX | WS_VISIBLE,
111 CW_USEDEFAULT,

112 0,

113 600,

114 480,

115 NULL,

116 NULL,

117 hInst,

118 &cs) ;

119

120 if (hwnd) {

121 ShowWindow (hwnd, SW_SHOWNORMAL) ;

122 UpdateWindow (hwnd) ;

123 }

124

125 return (hwnd) ;

126 }

127

128 /Fmmm e -
129 * MainWndProc

130 *

131 * The window procedure (event handler) for our main window.

132 * All messages (events) sent to our app are routed through
133 * here

134 * RETURNS: Depends of message.

135 F e e e e */
136 IRESULT WINAPT MairiindProc (HAND hwnd, UINT uMsg, WPARAM wParam, LPARAM 1Param)
137 {

138 static int nDisplayable = 0;

139

140

141 switch (uMsg) {

142 //When our app is first created, we are sent this message.
143 //We take this opportunity to create our child controls and
144 //place them in their desired locations on the window.

145 case WM_CREATE:

146 if (!CreateControls (((LPCREATESTRUCT) l1Param)->hInstance, hwnd)) {
147 return(0) ;

148 }

External Development Guide Issues and Examples: Microsoft Windows

362

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Chapter 16: Callable IDL

if (!LayoutControls (hwnd)) {
return(0) ;
}
nDisplayable = GetCharacterHeight (GetDlgTItem(lmwnd, IDE COMMANDLOG)) ;
break;

case WM_DESTROY:
PostQuitMessage (1) ;
break;

//Each time a button or menu item is selected, we get this message
case WM_COMMAND:
OnCommand (hwnd, LOWORD (wParam), wParam, lParam);
return (FALSE) ;

//This is a message we send ourselves to indicate the need to
//display a text message in our log window.
case IDL_OUTPUT:
OutputMessage (wParam, lParam, nDisplayable) ;
return (FALSE) ;

case WM_CLOSE:
IDL_Cleanup (TRUE) ;
return (FALSE) ;

default:
break;

return (DefWindowProc (hwnd, uMsg, wParam, lParam)) ;

}

* OnCommand
*

* This is the message handle for our WM_COMMAND messages
*

* RETURNS: FALSE

BOOL OnCommand (HWND hwnd, UINT uld, WPARAM wParam, LPARAM lParam)
{

switch (uId) {
case IDB_SENDCOMMAND: {
LPSTR 1lpCommand;
LPSTR 1pOut;

Issues and Examples: Microsoft Windows External Development Guide

Chapter 16: Callable IDL

198
199
200
201
202
203
204

255) ;

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

External Development Guide

}

}

363

lpCommand = GlobalAllocPtr (GHND, 256);
1lpOut = GlobalAllocPtr (GHND, 256);
if (! 1lpCommand)

return (FALSE) ;

/* First we get the string that is in the input window */
GetDlgItemText (hWwnd, IDE_COMMANDLINE, lpCommand,
/* and then clear the window */

SetDlgItemText (hWwnd, IDE_COMMANDLINE, "");

lstrcpy (1pOut, "\r\nSent to IDL: ");
lstrcat (1pOut, lpCommand) ;

/* Send the string to our "log" window */
OutFunc (IDL_TOUT_F_NLPOST, 1lpOut, strlen(lpOut));

/* then send the string to IDL */
IDL_ExecuteStr (1pCommand) ;

/* Now clean up */
GlobalFreePtr (1lpCommand) ;
GlobalFreePtr (1pOut) ;

break;

return (FALSE) ;

OutFunc

This is the output function that receives messages from IDL
and displays them for the user

* RETURNS: NONE

void OutFunc(long flags, char *buf, long n)

{

static fShowMain = FALSE;
/* If there is a message, post it to our MAIN window */

if (n){
SendMessage (MainhWnd, IDL_OUTPUT, 0, (LPARAM)buf);

/* If we need to post a new line message... */
if (flags & IDL_TOUT_ F_NLPOST) {

Issues and Examples: Microsoft Windows

364

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

Issues and Examples: Microsoft Windows

/

* % ok X

*

Chapter 16: Callable IDL

SendMessage (MainhWnd, IDL_OUTPUT, 0, (LPARAM) (LPSTR)"\r\n\0");

* This message gets sent to the log window to have it scroll
and display the last message at the bottom of the window.
With this, the user will always see the last screen full of

messages sent

*/
SendMessage (MainhWnd, IDL_OUTPUT, (WPARAM)TRUE,
(LPARAM) (LPSTR) “\0") ;

return;

OutputMessage

Here we do the actual display of the text to our log window
RETURNS: nothing

void OutputMessage (WPARAM wParam, LPARAM lParam, int nDisplayable)

{

i

}

LRESULT 1Ret;
LONG 1Bufflen, 1NumLines, lFirstView;

/* Turn off the READONLY bit and postpone redraw */
1Ret = SendMessage (hwndLog, EM_SETREADONLY, FALSE, OL);
1Ret = SendMessage (hwndLog, WM_SETREDRAW, FALSE, OL);

/* Get the length of the text in the log window*/

1Bufflen = SendMessage (hwndLog, WM_GETTEXTLENGTH, 0, OL);
1NumLines = SendMessage (hwndLog, EM_GETLINECOUNT, 0, OL);
1FirstView = SendMessage (hwndLog, EM_GETFIRSTVISIBLELINE, 0, OL);
1Ret = SendMessage (hwndLog, EM_SETSEL, 1Bufflen, 1Bufflen);

/* If we are adding text, wParam will be 0 */
f (!wParam) {

1Ret = SendMessage (hwndLog, EM_REPLACESEL, 0, lParam);
else {

if (1NumLines > (lFirstView + nDisplayable)) {

int iLineLen = 0;
int iChar;

int iLines = 0;
1NumLines--;

while(!iLineLen) {
iChar = SendMessage (hwndLog, EM_LINEINDEX,
(WPARAM) 1NumLines, OL) ;

External Development Guide

Chapter 16: Callable IDL 365

295 iLinelLen = SendMessage (hwndLog, EM_LINELENGTH,
296 iChar, OL);

297 if(!iLineLen)

298 1NumLines--;

299 }

300 iLines = 1NumLines- (lFirstView + (nDisplayable - 1));
301 iLines = iLines >= 0 ? iLines : 0;

302 SendMessage (hwndLog, EM_LINESCROLL, 0, (LPARAM)iLines);
303 }

304 1}

305

306 /* Set the window to redraw and reset the READONLY bit */
307 1Ret = SendMessage (hwndLog, WM_SETREDRAW, TRUE, OL);

308 1Ret = SendMessage (hwndLog, EM_SETREADONLY, TRUE, OL);
309

310 return;

311 }

The following is a commentary on the program, by line number:
16

idl_export.h containsthe I DL _ function prototypes, IDL specific structures, and
IDL constants.

46

Call IDL_ToutPush() with the address of the output function (OutFunc) asit’'sonly
argument. Thiswill register OutFunc as a callback for IDL. IDL will call OutFunc
when it needs to display text.

49-53

Initialize IDL as a non-interactive session and supply it with the handle to the main
window.

56
Start the windows message loop.
136-181

Thisisthe Main window procedure. It will handle any messages that are sent to the
main window. ThisincludesWM_COMM AND messages that occur as aresult of
user interaction with the client controls. In addition, it handles a user defined message
called IDL_OUTPUT (the name doesn't matter but thisis a clue as to its purpose).

External Development Guide Issues and Examples: Microsoft Windows

366

Chapter 16: Callable IDL

163

When the user presses either the “ Send” or “ Quit” buttons, route the message to the
OnCommand function.

169

When we receive an IDL_OUTPUT message, call the function that displaystext in
the scrolling window (OutputM essage. Seeline 263).

173

When we receive the WM _CL OSE message, call IDL_Cleanup() to unlink IDL
from our application.

190-225

OnCommand handlesthe WM _COM M AND messages generated when the user
clicks on the application’s buttons.

204

Get the IDL command that the user has entered in the single line edit control and
store it in a buffer.

207
Clear the text in the edit control.
213
Display the command sent to IDL in the output window.
216
Cadll IDL_ExecuteStr () with the IDL command retrieved in line 204.
235-258

OutFunc isthe callback registered with IDL to handle text messages IDL sendsto
our application. In addition it will handle text from IDL routines that display
information, such as PRINT.

Issues and Examples: Microsoft Windows External Development Guide

Chapter 16: Callable IDL 367

268-311

OutputM essage handles displaying the text to the output window. Since thiswindow
isamulti-line edit control, we have created it as a read-only window. See the source
code for additional information on handling this situation.

285
OutputM essage appends new messages to the existing text in the control.

286-304

When the text has been displayed, OutputM essage scrolls the window to display the
last line of text in the bottom of the window.

External Development Guide Issues and Examples: Microsoft Windows

368 Chapter 16: Callable IDL

Issues and Examples: Microsoft Windows External Development Guide

Chapter 17
Adding External
Widgets to IDL

This chapter discusses the following topics:

IDL and External Widgets 370 Functions for Use with Stub Widgets.... 374

WIDGET STUB 371 Internal Callback Functions 377

WIDGET_CONTROL/WIDGET_STUB . 372 UNIX WIDGET_STUB Example:
WIDGET_ARROWB 379

External Development Guide 369

370

Chapter 17: Adding External Widgets to IDL

IDL and External Widgets

This chapter describes an IDL widget type not documented in the IDL Reference
Guide, called the stub widget. It also describes a small set of internal functionsto
manipul ate stub widgets. Stub widgets allow CALL_EXTERNAL, LINKIMAGE,
DLM, and Callable IDL usersto add their own widgets to IDL widget hierarchies.

This feature depends on your system providing the window system libraries used by
IDL (particularly the Matif libraries under UNIX) as sharable libraries. It will not
work with versions of IDL that statically link against the window system libraries.

The next two sections describe IDL’'s WIDGET_STUB function and changesto
WIDGET_CONTROL when used with WIDGET_STUB. “Functions for Use with
Stub Widgets’” on page 374 describes support functions that can be called from your
external code to manipulate stub widgets. “ Internal Callback Functions’ on page 377
describes how to make stub widgets generate IDL widget events. Finally, “UNIX
WIDGET_STUB Example: WIDGET_ARROWB” on page 379 illustrates the use of
stub widgets with an external program.

Note
Although WIDGET_STUB can be used under Microsoft Windows, this feature is

primarily of interest with UNIX IDL. Under Windows, we recommend the use of
the WIDGET_ACTIVEX functionality, which allows you to use ActiveX controls
with IDL without requiring external programming.

IDL and External Widgets External Development Guide

Chapter 17: Adding External Widgets to IDL 371

WIDGET_STUB

The WIDGET_STUB function creates a widget record that contains no actual
underlying widgets. Stub widgets are place holders for integrating external widget
typesinto IDL. Events from those widgets can then be processed in a manner
consistent with the rest of the IDL widget system.

First, the programmer calls WIDGET_STUB to create the widget, and then uses
CALL_EXTERNAL to call additiona custom code to handle the rest. A number of
internal functions are provided to manipulate widgets from this custom code. See
“Functions for Use with Stub Widgets’ on page 374.

The returned value of thisfunction isthe widget ID of the newly-created stub widget.
Calling Sequence

Result = WIDGET_STUB(Parent)
Arguments

Parent

The widget 1D of the parent widget. Stub widgets can only have bases or other stub
widgets as their parents.

Keywords

The following keywords are accepted by WIDGET_STUB and work the same as for
other widget creation functions:

EVENT_FUNC SCR_XSIZE
EVENT_PRO SCR_YSIZE
FUNC_GET_VALUE UVALUE
GROUP_LEADER XOFFSET
KILL_NOTIFY XSIZE
NO_COPY YOFFSET
PRO_SET VALUE YSIZE

External Development Guide WIDGET_STUB

372

Chapter 17: Adding External Widgets to IDL

WIDGET_CONTROL/WIDGET_STUB

The WIDGET_CONTROL procedure has some differences and limitations when
used with WIDGET_STUB that are not documented in the IDL Reference Guide.

These differences are described bel ow.

Keywords

Only the most general keywords are allowed with WIDGET_CONTROL when used
with stub widgets. All other keywords are ignored. Hereisalist of those keywords
that behave identically with all widgets including stub widgets:

BAD_ID

CLEAR_EVENTS

EVENT_FUNC
EVENT_PRO

FUNC_GET_VALUE

GET_UVALUE

GROUP_LEADER

HOURGLASS
ICONIFY
KILL_NOTIFY
MANAGED
NO_COPY

PRO_SET_VALUE
RESET
SET_UVALUE
SHOW

TIMER
TLB_GET_OFFSET
TLB_GET_SIZE
TLB_SET_TITLE
TLB_SET_XOFFSET
TLB_SET_YOFFSET
XOFFSET

YOFFSET

The following keywords also work with stub widgets, but require additional

commentary:

DESTROY

When awidget hierarchy containing stub widgets is destroyed, the following steps

are taken:

e Thelower-level code that deals with the system toolkit destroys any real
widgets currently used by the stub widgets.

e All IDL widget records are added to the freelist for re-use.

WIDGET_CONTROL/WIDGET_STUB

External Development Guide

Chapter 17: Adding External Widgets to IDL 373

e Anyrequested KILL_NOTIFY callbacks are called.

You should register KILL_NOTIFY callbacks on the topmost stub widget in each
widget subtree. Remember that the actual widgets are gone before the callbacks are
issued, so don’t attempt to access them. However, the callback provides an
opportunity to clean up any related resources used by the widget.

MAP, REALIZE, and SENSITIVE

These keywords cause the toolkit-specific, lower layer of the IDL widgets
implementation to be called. In the process of satisfying the specified request, any
real widgets used by the stub widgets will be processed, along with the ones created
by the non-stub widgets, in the usua way. Any additional processing must be
provided via CALL_EXTERNAL.

XSIZE, SCR_XSIZE, YSIZE, and SCR_YSIZE

These keywords inform IDL how large the stub widget is expected to be. This
information is necessary for IDL to calculate sizes and offsets of the surrounding
widgets.

IDL tries to do something reasonable with these requests but, without knowledge of
the actual widget being manipulated, it is possible that the results will not be
satisfactory. In such cases, the IDL_Widget StubSet SizeFunc() function can be used
to specify aroutine that IDL can call to perform the necessary sizing for your stub
widget.

External Development Guide WIDGET_CONTROL/WIDGET_STUB

374 Chapter 17: Adding External Widgets to IDL

Functions for Use with Stub Widgets

The following functions present a highly simplified interface to the stub widget class
that gives the user enough access to IDL widget internals to make the stub widget
work while hiding the details of the actual implementation.

IDL_WidgetStubLock()

Syntax:
void IDL_WidgetStubLock (int set) ;

IDL event processing occurs asynchronously, so any code that manipul ates widgets
must execute in a protected region. This function is used to create such aregion. Any
code that mani pul ates widgets must be surrounded by two callsto
IDL_WidgetStubL ock() asfollows:

IDL_WidgetStubLock (TRUE) ;
/* Do your widget stuff */
IDL_WidgetStubLock (FALSE) ;

IDL_WidgetStubLookup()
Syntax:

char *IDL_WidgetStubLookup (IDL_ULONG id) ;

When IDL creates awidget, it returns an integer value to the caler of the widget
creation function. Internally, however, IDL widgets are represented by a pointer to
memory. The IDL_WidgetStubL ookup() function is used to translate the user-level
integer value to this memory pointer. All the other internal routines use the memory
pointer to reference the widget.

Id isthe integer returned at the user level. Your call to CALL_EXTERNAL should
passthisinteger to your C-level codefor usewith IDL_WidgetStubL ookup() which
translates the integer to the pointer.

If the specified id does not represent avalid IDL widget, this function returns NULL.
This situation can occur if awidget was killed but its integer handleis still lingering
somewhere.

IDL_WidgetlssueStubEvent()

Syntax:

void IDL_WidgetIssueStubEvent (char *rec, LONG value) ;

Functions for Use with Stub Widgets External Development Guide

Chapter 17: Adding External Widgets to IDL 375

Given ahandle to the IDL widget, obtained vialDL_WidgetStubL cokup(), this
function queuesan IDL WIDGET_STUB_EVENT. Such an event isa structure that
contains the three standard fields (ID, TOP, and HANDLER) aswell as an additional
field named VALUE that contains the specified value.

VALUE can provide away to access additional information about the widget,
possibly by providing amemory address to the information.

IDL_WidgetSetStublds()
Syntax:

void IDL_WidgetSetStubIds (char *rec, unsigned long t_id,
unsigned long b_id);

IDL widgets are built out of one or more actual widgets. Every IDL widget carries
two pointers that are used to locate the top and bottom real widget for a given IDL
widget. This function allows you to set these top and bottom pointersin the stub
widget for later use.

Since the actual pointer type differs from toolkit to toolkit, this function declarest_id
(the top real widget) and b_id (the bottom real widget) as unsigned long, an integer
datatype large enough to safely contain any pointer. Use a C cast operator to handle
the difference.

After calling WIDGET_STUB to create an IDL stub widget, you will need to use
CALL_EXTERNAL to call additiona code that creates the real widgets that
represent the stub. Having done that, use IDL_WidgetSetStubl ds() to save the top
and bottom widget pointers.

IDL_WidgetGetStublds()

Syntax:

void IDL_WidgetGetStubIds (char *rec, unsigned long *t_id,
unsigned long *b_id);
This function returns the top (t_id) and bottom (b_id) real widget pointers for any
specified widget (not just stub widgets). When using these values for non-stub
widgets, it isthe caller’sresponsibility to avoid damaging the | DL -created widgetsin
any way.

External Development Guide Functions for Use with Stub Widgets

376 Chapter 17: Adding External Widgets to IDL

IDL_WidgetStubSetSizeFunc()

Syntax:

void IDL_WidgetStubSetSizeFunc (char *rec,
IDL_WIDGET_STUB_SET SIZE_FUNC func)

typedef void (* IDL_WIDGET_ STUB_SET SIZE_FUNC) ;
(IDL_ULONG id, int width, int height) ;

When IDL needs to set the size of a stub widget, it attempts to set the size of the
bottom real widget to the necessary dimensions. Often, thisisthe desired behavior,
but cases can arise where it would be better to handle sizing differently. In such cases,

use IDL_WidgetStubSetSizeFunc() to register afunction that IDL will call to do the
actual sizing.

Functions for Use with Stub Widgets External Development Guide

Chapter 17: Adding External Widgets to IDL 377

Internal Callback Functions

Real widget toolkits (upon which IDL widgets are built) are event driven. C language
programs register interest in specific events by providing callback functions that are
called when that event occurs. All but the most basic of widgets are capable of
generating events.

In order for IDL stub widgetsto generate IDL events, you must use
CALL_EXTERNAL to invoke code that sets up real widget event callbacks for the
eventsyou are interested in. This setup can be done as part of creating the real
widgets after the initial call to WIDGET_STUB. These callbacks then call
IDL_WidgetlssueStubEvent() to issue the IDL event.

Your C-language widget toolkit callback functions should be patterned after the
following template. Note that the arguments and return type will depend on the
widget toolkit used, and so cannot be shown here:

stub_widget_call ()
{
char *idl_widget;
IDL_WidgetStubLock (TRUE) ;
/* Get the IDL user-level identifier for this widget */
if (idl_widget = IDL_WidgetStubLookup (id)) {
/* Do whatever work is required */

/* Optionally, issue an IDL event */
IDL_WidgetIssueStubEvent (idl_widget, value)

}
IDL_WidgetStubLock (FALSE) ;

}
Commentary on the Example Shown Above

Note that IDL_WidgetStubL ock() is used to protect the critical section where
widgets are being manipul ated.

Somehow, the callback must be able to find the user-level integer returned by
WIDGET_STUB when the stub widget was created in IDL. Usually, thisisdonein
one of two ways:

* When registering the callback, it is sometimes possible to specify avaue that
will be passed to the callback without interpretation. For example, the X
windows XtAddCallback() function takes an argument named client_data.
Thisvalueis passed to the callback and can be used to supply the user-level
identifier.

External Development Guide Internal Callback Functions

378 Chapter 17: Adding External Widgets to IDL

» Some widget toolkits have a set of attributes that they carry along with each
widget. Under the X windows Xt toolkit, these attributes are called resources.
Xt widgets usually have aresource capable of holding asingle integer or
memory address. This resource can be used to supply the user level identifier.

IDL_WidgetStubL ookup() is used to trandlate the user level widget identifier into a
memory pointer. If this function returns NULL, no further event processing is done
sinceit would be afatal error to issue an IDL event for a non-existent widget.

Theeventisissued vial DL _Widgetl ssueStubEvent(). This step is not required.
Many of the IDL widget types process real widget events via callbacks that do not
aways result in an IDL widget event being sent.

Internal Callback Functions External Development Guide

Chapter 17: Adding External Widgets to IDL 379

UNIX WIDGET_STUB Example:
WIDGET_ARROWB

Thefollowing example adds the Motif ArrowButton widget to UNIX IDL intheform
of an IDL program named widget_arrowb.pro.

The primary user interface to our arrow button widget is the WIDGET_ARROWB
function. It presents an interface much like any of the built in WIDGET _ functions
provided by IDL. WIDGET_ARROWB usesthe MAKE_DLL procedure, and the
AUTO_GLUE keyword to CALL_EXTERNAL to automatically build and load the
C code required for thiswidget. This building and loading process is transparent to
the IDL user, requiring only that you have a C compiler installed on your system. All
the user has to do to use an arrow button widget isto call WIDGET _ARROWB

The WIDGET_ARROWB widget acts like a normal pushbutton. Events are sent
when the button is pressed (VALUE=1) and released (VALUE=0). If the

USE OWN_SIZE keyword is set to zero, IDL performs its default sizing on the stub
widget. A non-zero value causes a special routine provided by the
WIDGET_ARROWAB implementation to be registered to handle such sizing.

All of the code used in this example, including all code shown here, isavailablein the
external/widstub directory of the UNIX IDL distribution. To run it, execute the
following statements from IDL.:

PUSHD, FILEPATH('’, SUBDIRECTORY=[’external’, 'widstub’])
WIDGET_ARROWB_TEST
POPD

When running WIDGET_ARROWB_TEST, you can specify the VERBOSE
keyword, in which case, it will show you the compilation and linking stepsit takes to
build the sharable library from the C code. The use of pushd and popd are due to the
fact that your IDL search path (!PATH) isunlikely to have the directory containing
these examplesin it. PUSHD changes your working directory to the location where
these files are found, and POPD restoresit to its original location afterwards.

The IDL Program for WIDGET_ARROWB

The following text isthe IDL program for WIDGET_ARROWB. It isfound in the
file named WIDGET_ ARROWB . PRO:
function WIDGET ARROWB, parent, use_own_size, UVALUE=uvalue, $
VERBOSE=verbose, _EXTRA=extra

; Uses WIDGET_STUB, and a sharable library containing
; the necessary C support code, to provide the IDL user

External Development Guide UNIX WIDGET_STUB Example: WIDGET _ARROWB

380

Chapter 17: Adding External Widgets to IDL

; with a Motif Arrow Button widget. The interface is consistent
; with that presented by the built in IDL widgets.

; If the sharable library does not exist, it is built using
; MAKE_DLL.

common WIDGET_ ARROWB_BLK, shlib

; Build sharable 1lib if first call or lib doesn’t exist
build_lib = n_elements(shlib) eqg 0
if (not build_1lib) then build_lib = not FILE_TEST(shlib, /READ)
if (build_1lib) then begin
; Location of the widget_arrowb files from IDL distribution
arrowb_dir=FILEPATH(’'’, SUBDIRECTORY=['external’, 'widstub’])

; Use MAKE_DLL to build the widget_arrowb sharable library
; in the !MAKE_DLL.COMPILE_DIRECTORY directory.

; Normally, you wouldn’t use VERBOSE, or SHOW_ALL_OUTPUT

; once your work is debugged, but as a learning exercize it

; can be useful to see all the underlying work that gets

; done. If the user specified VERBOSE, then use those

; keywords to show what MAKE_DLL is doing.

MAKE_DLL, 'widget_arrowb’, ’‘widget_arrowb’, $
DLL_PATH=shlib, INPUT_DIR=arrowb_dir, $
VERBOSE=verbose, SHOW_ALL_OUTPUT=verbose

endif

; Use a stub widget along with the C code in the library to

; create an arrow button widget. The use of the AUTO_GLUE

; keyword simplifies the call to the sharable library by

; eliminating the need to use the CALL_EXTERNAL portable

; calling convention.

1_parent=LONG (parent)

1_use_own_size = $

(n_elements (use_own_size) eq 0) ? OL: LONG(use_own_size)
result = WIDGET_STUB (parent, _extra=extra)
if (n_elements(uvalue) ne 0) then $
WIDGET_ CONTROL, result, set_uvalue=uvalue

JUNK = CALL_EXTERNAL(shlib, ’‘widget_arrowb’,l_parent,result,$

1 use_own_size, value=[1, 1, 1], /AUTO_GLUE)

RETURN, result

end

UNIX WIDGET_STUB Example: WIDGET _ARROWB External Development Guide

Chapter 17: Adding External Widgets to IDL 381

The C Program for widget_arrowb.c

The C language code invoked by the call to CALL_EXTERNAL in the above IDL

codeiscontained in afile named widget_arrowb.c Thisfile can be found in the
widstub subdirectory of the external subdirectory of the IDL distribution. The

contents of thisfile are shown below:

/*

widget_arrowb.c - This file contains C code to be called from
UNIX IDL via CALL_EXTERNAL. It uses the IDL stub widget to add
a Motif ArrowButton to an IDL created widget hierarchy. The
button issues a WIDGET_STUB_EVENT every time the button is

* released.
*

* % % X

* While this code is Motif-centric, the principles apply across *
platforms and could be adapted to Microsoft Windows.
*/
#include <stdio.h>
#include <X1ll/keysym.h> /* Keysyms for text widget events */
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Shell.h>
#include <Xm/ArrowB.h>
#include "idl_export.h"

/*ARGSUSED* /
static void arrowb_CB (Widget w, caddr_t client_data,
caddr_t call_data)

char *rec;
XmArrowButtonCallbackStruct *abcs;

IDL_WidgetStubLock (TRUE) ;
if (rec = IDL_WidgetStubLookup ((unsigned long) client_data)) {
abcs = (XmArrowButtonCallbackStruct *) call_data;
IDL,_WidgetIssueStubEvent (rec, abcs->reason == XmCR_ARM) ;
}
IDL_WidgetStubLock (FALSE) ;

static void arrowb_size_func (IDL_ULONG stub, int width,
int height)

char *stub_rec;

unsigned long t_id, b_id;
char buf[128];

External Development Guide UNIX WIDGET_STUB Example: WIDGET _ARROWB

382 Chapter 17: Adding External Widgets to IDL

IDL_WidgetStubLock (TRUE) ;
if (stub_rec = IDL_WidgetStubLookup (stub)) {
IDL_WidgetGetStubIds (stub_rec, &t_id, &b_id);
sprintf (buf, "Setting WIDGET %d to width %d and height %d4d",
stub, width, height);
IDL_Message (IDL_M NAMED_GENERIC, IDL_MSG_INFO, buf);
XtVaSetValues ((Widget) b_id, XmNwidth, width, XmNheight,
height, NULL);
}
IDL_WidgetStubLock (FALSE) ;
}
int widget_arrowb (IDL_LONG parent, IDL_LONG stub, IDL_LONG
use_own_size_func)

Widget parent_w;

Widget stub_w;

char *parent_rec;

char *stub_rec;

unsigned long t_id, b_id;

IDL_WidgetStubLock (TRUE) ;
if ((parent_rec = IDL_WidgetStubLookup (parent))
&& (stub_rec = IDL_WidgetStubLookup (stub))) {
/* Bottom widget of parent is parent to arrow button */
IDL_WidgetGetStubIds (parent_rec, &t_id, &b_id);
parent_w = (Widget) b_id;
stub_w = XtVaCreateManagedWidget ("arrowb",
xmArrowButtonWidgetClass,
parent_w, NULL) ;
IDL_WidgetSetStubIds (stub_rec, (unsigned long) stub_w,
(unsigned long) stub_w) ;
XtAddCallback (stub_w, XmNarmCallback,
(XtCallbackProc) arrowb_ CB, (XtPointer) stub);
XtAddCallback (stub_w, XmNdisarmCallback,
(XtCallbackProc) arrowb_ CB, (XtPointer) stub);
if (use_own_size_func)
IDL_WidgetStubSetSizeFunc (stub_rec, arrowb_size_func);
}
IDL_WidgetStubLock (FALSE) ;
return stub;

UNIX WIDGET_STUB Example: WIDGET _ARROWB External Development Guide

Chapter 17: Adding External Widgets to IDL 383

An IDL Program to Test the External Widget

Shown below isan IDL widget program to test the ARROWB widget. This program
isfoundinthefile widget_arrowb_test.prointhe IDL distribution:

pro widget_arrowb_test_event, ev
widget_control, get_uvalue=val, ev.id
if (val eqg 0) then begin
widget_control, /destroy, ev.top
endif else begin
HELP, /STRUCT, ev
if (ev.value eq 1) then begin
widget_control,val, set_value='New label string’
tmp = widget_info(ev.id, /GEOMETRY)
widget_control, xsize=tmp.xsize+25, $
yvsize=tmp.ysize+25, ev.id
endif
endelse
end

pro widget_arrowb_test, VERBOSE=verbose
a = widget_base (/COLUMN)
b = widget_button(a, value=’'Done’, uvalue = 0)
label=widget_label (a,value='A label’)
arrow_w = widget_arrowb(a, 0, xsize=100, ysize=100, $
uvalue=label, verbose=verbose)
arrow_w = widget_arrowb(a, 1, xsize=100, ysize=50, $
uvalue=label, verbose=verbose)
widget_control, /real,a
xmanager, 'WIDGET_ARROWB_TEST’, a, /NO_BLOCK
end

External Development Guide UNIX WIDGET_STUB Example: WIDGET _ARROWB

384 Chapter 17: Adding External Widgets to IDL

UNIX WIDGET_STUB Example: WIDGET _ARROWB External Development Guide

Appendix A

Obsolete |
Interfaces

This chapter discusses the following topics:

nternal

Interfaces Obsoleted in IDL 6.3

Interfaces Obsoleted in IDL 5.5
Interfaces Obsoleted in IDL 5.2.1

External Development Guide

386 Simplified Routine Invocation

388 Obsolete Error Handling AP
401

385

386 Appendix A: Obsolete Internal Interfaces

Interfaces Obsoleted in IDL 6.3

Prior to IDL 6.3, the IDL_Win32Init() function was used to initialize IDL in callable
IDL applications for the Microsoft Windows environment, It was obsoleted in IDL
6.3, replaced by the IDL _Initialize() function that offers the same abilitiesin addition
to being usable on a cross platform basis. New code should be written to use

IDL_lInitialize().
Initialization: Microsoft Windows

Under Microsoft Windows, the IDL_Win32I nit() function preparesthe IDL DLL for
use. IDL_Win32Init() must be called before any other function except
IDL_ToutPush().

Note
Windows applications should not call IDL _Init(), described in the previous section.

IDL_Win32Init() calsIDL_Init() on your behalf at the appropriate time.

int IDL_Win32Init(int iOpts, void *hinstExe, void *hwndExe,
void *hAccel) ;

where:
iOpts
A bitmask used to specify initialization options. The allowed bit values are:

IDL_INIT_RUNTIME

Setting this bit causes IDL to check out aruntime license instead of the normal
license. IDL_RuntimeExec() isthen used to run an IDL application restored from a

Save/Restore file.
IDL_INIT_LMQUEUE

Setting this bit causes IDL to wait for an available license before beginning an IDL
task such as batch processing.

hinstExe
HINSTANCE from the application that will be calling IDL.

hwndExe

HWND for the application’s main window.

Interfaces Obsoleted in IDL 6.3 External Development Guide

Appendix A: Obsolete Internal Interfaces 387

hAccel

Reserved. This argument should always be NULL.

IDL_Win32lInit() returns TRUE if the initialization is successful, and FAL SE for
failure.

External Development Guide Interfaces Obsoleted in IDL 6.3

388 Appendix A: Obsolete Internal Interfaces

Interfaces Obsoleted in IDL 5.5

Thefollowing areas changed in IDL 5.5, requiring the introduction of new interfaces,
and causing some old interfaces to become obsolete. These old interfaces remainin
IDL and can be used by user code. However, new code should not use them, and old
code might benefit from migration as part of normal maintenance:

e ThelDL_Message() IDL_MSG_ATTR_SY S attribute has been retired,
in favor of the more general | DL _M essageSyscode() function.

e ThelDL_MessageErrno() and IDL_M essageEr rnoFromBlock()
functions have been retired in favor of the IDL_M essageSyscode() and
IDL_M essageSyscodeFromBlock() functions, which are more general.

e |DL'skeyword API has been redesigned to be easier to use and
understand, and to be reentrant.

IDL_MSG_ATTR_SYS

Note
IDL_MSG_ATTR_SY Sisone of the possible attribute values that can be included
in the action argument to the IDL _M essage() function. Its purpose was to cause
IDL_Message() to report the system error currently contained in the process errno
global variable. This functionality is now available in a more general and useful
formviathe IDL_M essageSyscode() and | DL _M essageSyscodeFromBlock ()
functions, documented in “Issuing Error Messages’ on page 195

IDL_MSG_ATTR_SYS

IIDL_Message() always issues a single-line error message that describes the
problem from IDL’s point of view. Often, however, there is an underlying
system reason for the error that should also be displayed to give the user a
complete picture of what went wrong. For example, the IDL view of the
problem might be “Unable to open file”, while the underlying system reason
for the error is “no such directory”.

The UNIX system provides aglobal variable named errno for communicating
such system level errors. Whenever acall to asystem function fails, it returnsa
1, and puts an error code into errno that specifies the reason for the failure.
Other functions, such as those provided by the standard C library, do not set
errno. These functions do set errno.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 389

Specifying IDL_MSG_ATTR_SYStellsIDL_M essage() to check errno, and
if it isnon-null, to issue a second line containing the text of the system error

message.
Specify IDL_MSG_ATTR_SYSonly if you are calling IDL_M essage() as
the result of afailed UNIX system call. Otherwise, errno might contain an
unrelated garbage value resulting in an incorrect error message.

The Microsoft Windows operating system has errno for compatibility with the
expectations of C programmers, but typically do not set it. On these operating
systems, it is possible to specify IDL_MSG_ATTR_SYS, but it has no effect.

Specifying errno Explicitly: IDL_MessageErrno()

Note
ThelDL_MessageErrno() and IDL M essageErrnoFromBlock() functions allow
you to throw an error message that includes the system error from the UNIX/POSI X
errno global variable. These functions have been replaced by
IDL_MessageSyscode() and | DL _M essageSyscodeFromBlock () which in
addition to being able to throw UNIX/Posix errors, can also throw other types of
system error.

There are times when specifying the IDL_M SG_ATTR_SY Smodifier codein the
action argument to | DL _M essage() isinadequate. This situation usually occurs when
your code attempts to perform some cleanup operation when an operating system call
fails before calling IDL_M essage() and this cleanup code might alter the value of
errno. In such cases, it is preferable to use the IDL_MessageErrno() or
IDL_MessageErrnoFromBlock() functions to issue the message:

void IDL_MessageErrno (int code, int errno, int action, ..)
void IDL_MessageErrnoFromBlock (IDL_MSG_BLOCK block, int code, int
errno, int action, ...)

These function differs from IDL_M essage() in two ways:

1. Thereisan additiona argument used to specify the value of errno. Seethe
discussion of errnoin“IDL_MSG_ATTR_SY S’ on page 388 for additional
information about errno and its use.

2. ThelDL_MSG_ATTR_SY S modifier code for the action argument is
ignored.-

External Development Guide Interfaces Obsoleted in IDL 5.5

390 Appendix A: Obsolete Internal Interfaces

Processing Keywords With IDL_KWGetParams()

Note
Previous versions of IDL used akeyword APl based around the
IDL_KWGetParams() and IDL_K W Cleanup() functions. This APl was
confusing to use (It was difficult to know when IDL_KW Cleanup() was supposed
to be called), and was not reentrant (requiring extensive and error prone codein
some IDL system routines). The new API, using IDL_KWProcessByOffset() and
IDL_KW_FREE, solve these problems and result in easier to write and maintain
code.

To enable rapid conversion from the old API to the new, the new APl uses most of
the same data structures as the old (with the notabl e exception of
IDL_KW_ARR_DESC, whichisreplaced by IDL_KW_ARR_DESC R).

This section reproduces those parts of the documentation of the original API that
differ from the current API, which is described in Chapter 6, “IDL Internals:
Keyword Processing”

The IDL_KW_PAR Structure

Note
IDL_KW_PAR isused with the old keyword API in largely the same manner as

the current API, asdescribed in “Overview Of IDL Keyword Processing” on

page 124. The main difference is that the contents of the specified and value fields
are the addresses of static variables, rather than offsetsintoa KW_RESULT
structure as with the new API.

specified

The address of aC int variable that will be set to TRUE (non-zero) or FAL SE (0)
based on whether the routine was called with the keyword present. This field should
be set to NULL ((int *) 0) if thisinformation is not needed.

value

If the keyword is aread-only scalar, thisfield is a pointer to a C variable of the
correct type (IDL_LONG, IDL_ULONG, IDL_LONG64, IDL_ULONGH64, float,
double, or IDL_STRING).

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 391

In the case of aread-only array, valueisapointertoan IDL_KW_ARR_DESC,
whichisdiscussedin “The IDL_KW_ARR_DESC Structure”’ on page 391. In the
case of an output variable (i.e., the IDL_KW_OUT flag isset), thisfield should point
toanIDL_VPTR that will befilled by IDL_KW GetParams() with the address of
the keyword argument.

The IDL_KW_ARR_DESC Structure

Note
ThelDL_KW_ARR_DESC structure was superseded by
IDL_KW_ARR_DESC_Rinthecurrent API. Thereason for thischangeisthat the
nfield of IDL_KW_ARR_DESC is modified by the call to
IDL_KWGetParams(), requiring the IDL_KW_ARR_DESC structure to be
defined in static memory, and rendering it non-reentrant.

When a keyword is specified to be aread-only array (i.e., theIDL_KW_ARRAY
flag is set), the value field of the IDL_KW _PAR struct should be set to point to an
IDL_KW_ARR_DESC structure. This structure is defined as:

typedef struct {
char *data;
IDL_MEMINT nmin;
IDL_MEMINT nmax;
IDL_MEMINT n;

} IDL_KW_ARR_DESC;

where:
data

The address of aC array to receive the data. This array must be of the C type mapped
into by the typefield of the IDL_KW _PAR struct. For example, IDL_TYP_LONG
mapsintoaC IDL_LONG. There must be nmax elementsin the array.

nmin
The minimum number of e ements allowed.
nmax

The maximum number of elements allowed.

External Development Guide Interfaces Obsoleted in IDL 5.5

392 Appendix A: Obsolete Internal Interfaces

The number of elements actually present. Unlike the other fields, thisfield is set by
IDL_KWGetParams().

Processing Keywords

TheIDL_KWGetParams() function is used to process keywords.

IDL_KWGetParams() performs the following actions on behalf of the calling
system routine:

* Verify that the keywords passed to the routine are all allowed by the routine.
« Carry out the type checking and conversions required for each keyword.

e Find the positional (non-keyword) arguments that are scattered among the
keyword argumentsin ar gv and copy them in order into the plain_args array.

* Return the number of plain arguments copied into plain_args.
IDL_KWGetParams() hasthe form:

int IDL_KWGetParams (int argc, IDL_VPTR *argv,char *argk,

IDL_KW_PAR *kw_list, IDL_VPTR plain_args[], int mask)
where:
argc
The number of arguments passed to the caller. Thisisthe first parameter to all system
routines.
argv

Thearray of IDL_VPTR to arguments that was passed to the caller. Thisisthe
second parameter to all system routines.

argk

The pointer to the keyword list that was passed to the caller. Thisisthe third
parameter to al system routines that accept keyword arguments.

kw_list

Anarray of IDL_KW_PAR structures (see"Overview Of IDL Keyword Processing”
on page 124, and “The IDL_KW_PAR Structure” on page 390) that specifies the
acceptable keywords for thisroutine. This array is terminated by setting the keyword
field of the final struct to NULL ((char *) 0).

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 393

plain_args

Anarray of IDL_VPTR intowhichthelDL_VPTRsof the positional argumentswill
be copied. This array must have enough elements to hold the maximum possible
number of positional arguments, asdefinedin IDL_SY SFUN_DEF2. See
“Registering Routines’ on page 296.

mask

Mask enable. This variable is ANDed with the mask field of each IDL_KW_PAR
struct in the array given by kw_list. If the result is non-zero, the keyword is accepted
asavalid keyword for the called system routine. If the result is zero, the keyword is
ignored.

Speeding Keyword Processing

As mentioned above, the kw_list argument to IDL_ KW GetParams() isanull
terminated list of IDL_KW_PAR structures. The time required to scan each item of
the keyword array and zero the required fields (those fields specified, and valuefields
with IDL_KW_ZERO set), can become significant, especially when more than afew
keyword array elements (e.g., 5 to 10 elements) are present.

To speed things up, specify IDL_KW_FAST_SCAN as the first keyword array
dement. If IDL_KW_FAST_SCAN isthefirst keyword array element, the keyword
array iscompiled by IDL_KW GetParams() into a more efficient form the first time
it is used. Subsequent calls use this efficient version, greatly speeding keyword
processing. Usage of IDL_KW_FAST_SCAN isoptional, and is not worthwhile for
small lists. For longer lists, however, the improvement in speed is noticeable. For
example, the following list does not use fast scanning:

static IDL_KW_PAR kw _pars([] = {
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d) 1},
{ "FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, CHARA(f) 1},
{ NULL }

Y

To use fast scanning, it would be written as:

static IDL_KW_PAR kw_pars[] = {
IDL_KW_FAST_SCAN,
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, CHARA(d)
{"FLOAT", IDL_TYP_FLOAT, 1, IDL_KW_ZERO, 0, CHARA(f)
{ NULL }

Y

I
I

External Development Guide Interfaces Obsoleted in IDL 5.5

394 Appendix A: Obsolete Internal Interfaces

Cleaning Up

TheIDL_KWCleanup() function is necessary if the keywords allowed by a system
routine include any input-only keywords of type IDL_TYP_STRING, or if the
IDL_KW_VIN flag is used by any of the keyword IDL_KW_PAR structures. Such
keywords can cause keyword processing to allocate temporary variables that must be
cleaned up after they’ve outlived their usefulness. Call IDL_KWCleanup() as
follows:

void IDL_KWCleanup (int fcn)

where fcn specifies the operation to be performed, and must be one of the following
values:

IDL_KW_MARK

Mark the stack by placing the statement:
IDL_KWCleanup (IDL_KW_MARK) ;
abovethecall to IDL_KWGetParams(). In addition, you will need to make a call
with IDL_KW_CLEAN at the end.
IDL_KW_CLEAN

Clean up from the last call to IDL_KWGetParams() by placing the line:
IDL_KWCleanup (IDL_KW_CLEAN) ;

just above the return statement.
Keyword Examples

The following C function implements KEY WORD_DEMO, a system procedure
intended to demonstrate how to write the keyword processing code for aroutine. It
prints the values of its keywords, changesthe value of READWRITE to 42 if itis
present, and returns. Each line is numbered to make discussion easier. These numbers
are not part of the actual program.

Note
The following code is designed to demonstrate keyword processing in asimple,
uncluttered example. In actual code, you would not use the printf mechanism used
on lines 35-39.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 395

0 J o Ul WN

BWWWWWWWWwWwWNMOMNNDMONNDNNONNNNEREERRRRRR P P
CLVWOWTOUE™WNROWOJIAOAUB®WNEROWODLOUDBWNRE O W

#include <stdio.h>
#include <idl_export.h>

void keyword_demo (int argc, IDL_VPTR *argv, char *argk)
{

int 1i;

IDL_ALLTYPES newval;

static int d_there, s_there, arr_there;

static IDL_LONG 1;

static float f;

static double 4d;

static IDL_STRING s;

static IDL_LONG arr_data[1l0];

static IDL_KW_ARRAY DESC arr_d = {(char *) arr_data,3,10,0};
static IDL_VPTR var;

static IDL_KW_PAR kw pars[] = { IDL_KW_FAST_SCAN,
{ "ARRAY", IDL_TYP_LONG, 1, IDL_KW_ARRAY, &arr_there,
IDL_CHARA (arr_d) 1},
{ "DOUBLE", IDL_TYP_DOUBLE, 1, 0, &d_there, IDL_CHARA(d) },
{ "FLOAT", IDL_TYP FLOAT, 1, IDL_KW_ZERO, 0, IDL_CHARA(f) 1},
{ "LONG", IDL_TYP_LONG, 1, IDL_KW_ZERO|IDL_KW_VALUE|15, 0,
IDL_CHARA (1) 1},
{ "READWRITE", IDL_TYP_UNDEF, 1, IDL_KW_OUT|IDL_KW_ZERO,
0, IDL_CHARA(var) 1},
{ "STRING",TYP_STRING, 1, 0, &s_there, IDL_CHARA(s) 1},
{ NULL }
Y

IDL_KWCleanup (IDL_KW_MARK) ;

(void) IDL_KWGetParams (argc, argv, argk, kw_pars, NULL, 1);

printf ("LONG: <%spresent>\n", 1 ? "": "not ");

printf ("FLOAT: %$f\n", f);

printf ("DOUBLE: <%spresent>\n", d_there ? "": "not ");

printf ("STRING: %s\n", s_there ? IDL_STRING_STR(&s) : "<not present>");
printf ("ARRAY: ");

Figure 0-1: Obsolete Example

External Development Guide Interfaces Obsoleted in IDL 5.5

396 Appendix A: Obsolete Internal Interfaces
41 if (arr_there)
42 for (1 = 0; 1 < arr_d.n; i++)
43 printf (" %d", arr_datalil]);
44 else
45 printf ("<not present>");
46Q printf ("\n");
47
48 printf ("READWRITE: ");
49 if (var) {

C 50 IDL_Print (1, &var, (char *) 0);

51 newval.l = 42;
52 IDL_StoreScalar (var, TYP_LONG, &newval) ;
530 } else {
54 printf ("<not present>");
559 }
56 printf("\n");
57
58 IDL_KWCleanup (IDL_KW_CLEAN) ;
591 }

Figure 0-1: Obsolete Example (Continued)

Executing this routine from the IDL command line, by entering:
KEYWORD_DEMO
gives the output:

LONG: <not present>
FLOAT: 0.000000

DOUBLE: <not present>
STRING: <not present>
ARRAY: <not present>
READWRITE: <not present>

Executing it again with keywords specified:

A = 56

KEYWORD_DEMO, /LONG, FLOAT=2, DOUBLE=34,$
STRING="hello", ARRAY=FINDGEN(10), READWRITE=A

PRINT, 'Final Value of A: ', A

gives the output:

LONG: <present>

FLOAT: 2.000000

DOUBLE: <present>

STRING: hello

ARRAY: 01 23 456 73829
READWRITE: 56

Final Value of A: 42

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 397

Those features of this procedure that are interesting in terms of keyword processing
are, by line number:

The DL _StoreScalar () function used on line 51 requires the scalar to be provided in
an IDL_ALLTYPESstruct.

These variables are used to determine if a given keyword is present. Note that all the
keyword-related variables are declared static. Thisis necessary so that the C compiler
can build the IDL_KW _PAR structure at compiletime.

10-13
C variables to receive the scaar read-only keyword values.

14

C array to be used for the ARRAY read-only array keyword.
15

The array descriptor used for ARRAY. arr_data is the address where the array
contents should be copied. The minimum number of elements allowed is 3, the
maximum is 10. The value set in the last field (O) is not important, because the
keyword processing routine never reads its value. Instead, it puts the number of
elements actually seen there.

16

The READWRITE keyword usesthe IDL_KW _OUT flag, so the routine receives an
IDL_VPTR instead of a processed value.

18

The keyword definition array. Notice that all of the keywords are ordered lexically
(ASCII) and that thereisa NULL entry at the end (line 28). Also, al of the mask
fieldsare set to 1, asisthe mask argument to IDL_ KW GetParams() on line 33. This
means that all of the keywords in the list are to be considered valid in this routine.

ThelDL_KW_FAST_SCAN macro is used to define the first keyword array element,
speeding the processing of along IDL_KW_PAR list.

External Development Guide Interfaces Obsoleted in IDL 5.5

398 Appendix A: Obsolete Internal Interfaces

19 - 20

ARRAY is defined to be aread-only array keyword of IDL_TYP_LONG. The
arr_therevariable will be set to non-zero if the keyword is present. In that case, the
array contents will be placed in the variable arr _data and the number of elements
will be placed into arr_d.n.

21

DOUBLE isascaar keyword of IDL_TYP_DOUBLE. It usesthevariabled_there
to know if the keyword is present.

22

FLOAT isan IDL_TYP_FL OAT scalar keyword. It does not use the specified field
of the IDL_KW_PAR struct to get notification of whether the keyword is present.
Instead, it usesthe IDL_KW_ZERO flag to make sure that the variable f is aways
zeroed. If the keyword is present, the value will be written into f, otherwise it will
remain 0. The important point is that the routine can’t tell the difference between the
keyword being absent, or being present with a user-supplied vaue of zero. If this
distinction doesn’t matter, such as when the keyword isto serve as an on/off toggle,
use this method. If it does matter, use the specified field as demonstrated with the
DOUBLE keyword, above.

23-24

LONG isascalar keyword of IDL_TYP_LONG. It setsthe IDL_KW_ZERO flag
to get the variable | zeroed prior to keyword parsing. The use of the
IDL_KW_VALUE flag indicates that if the keyword is present, the value 15 (the
lower 12 hits of the flags field) will be ORed into the variablel.

25—-26

ThelDL_KW_OUT flag indicates that the routine wants getsthe IDL_VPTR for
READWRITE if it is present. Since IDL_KW_ZERO is also set, the variable var
will be zero unless the keyword is present. The specification of IDL_TYP_UNDEF
here indicates that there is no type conversion or processing applied to
IDL_KW_OUT keywords.

27

This keyword isincluded here to force the need for IDL_KW Cleanup() on line 58.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 399

28

Every array of IDL_KW_PAR structs must end with a NULL entry.
31

Mark the stack in preparation for the IDL_K W Cleanup() call on line 58.
33

Do the keyword processing. The first three arguments are simply the arguments the
interpreter passed to the routine. The plain_args argument is set to NULL because
thisroutine is registered as not accepting any plain arguments. Since no plain
arguments will be present, the return value from IDL_KWGetParams() is discarded.

35
Thel variable will be 0 if LONG isnot present, and 1 if it is.
36

Thef variable will always have some usable value, but if it is zero there is no way to
know if the keyword was actually specified or not.

37—-38

These keywords use the variables from the specified field of their IDL_KW_PAR
struct to determine if they were specified or not. Use of the IDL_STRING_STR
macro is described in “Accessing IDL_STRING Vaues’ on page 185.

39-45

Accessing the ARRAY keyword issimple. Thearr_there variable indicates if the
keyword is present, and arr_d.n gives the number of elements.

47 —55

Sincethe READWRITE keyword is accessed viatheargument’'sIDL_VPTR, we use
the IDL_Print() function to print its value. This has the same effect as using the user-
level PRINT procedure when running IDL. See “Output of IDL Variables’ on

page 248. Then, we changeits value to 42 using IDL _StoreScalar ().

Again, please note that we use this mechanism in order to create a simple example.
You will probably want to avoid the use of this type of output (printf and
IDL_PRINT()) in your own code.

External Development Guide Interfaces Obsoleted in IDL 5.5

400 Appendix A: Obsolete Internal Interfaces

57

Theuse of IDL_KWCleanup() is necessitated by the existence of the STRING
keyword, whichisof IDL_TYP_STRING.

Interfaces Obsoleted in IDL 5.5 External Development Guide

Appendix A: Obsolete Internal Interfaces 401

Interfaces Obsoleted in IDL 5.2.1

Changes were required to implement the ability to enable and disable IDL system
routines from runtime and callable IDL. Rather than ater the IDL_SY SFUN_DEF
structure, and the IDL_AddSystemRoutine() function in an incompatible way, a new
structure (IDL_SY SFUN_DEF2) and new function (IDL_SysRtnAdd()) have been
created to accomplish the new tasks, and the old structure and function have been
obsoleted.

Note
The interfaces described in this section are considered functionally obsolete
although they continue to be supported by ITT Visua Information Solutions. This
section is supplied to help those maintaining older code. New code should be
written using the information found in “ Registering Routines’ on page 296.

Registering Routines

The DL _AddSystemRoutine() function adds system routinesto IDL’s internal
tables of system functions and procedures. As a programmer, you will need to call
this function directly if you are linking aversion of IDL to which you are adding
routines, although thisis very rare and not considered to be a good practice for
maintai nability reasons. More commonly, you use | DL _AddSystemRouting() in the
IDL_Load() function of aDynamically Loadable Module (DLM).

Note
LINKIMAGE or DLMs are the preferred way to add system routinesto IDL
because they do not require building a separate IDL program. These mechanisms
are discussed in the following sections of this chapter.

int IDL_AddSystemRoutine (IDL_SYSFUN_DEF *defs, int is_function,
int cnt);

It returns True if it succeeds in adding the routine or False in the event of an error:

defs
Anarray of IDL_SYSFUN_DEF structures, one per routine to be declared. This

array must be defined with the C language static storage class because IDL keeps
pointers to it. defs must be sorted by routine name in ascending lexical order.

External Development Guide Interfaces Obsoleted in IDL 5.2.1

402 Appendix A: Obsolete Internal Interfaces

is_function

Set this parameter to IDL_TRUE if the routines in defs are functions, and
IDL_FALSE if they are procedures.

cnt

The number of IDL_SYSFUN_DEF structures contained in the defs array.
The definition of IDL_SYSFUN_DEF is:

typedef IDL_VARIABLE *(* IDL_FUN_RET) () ;

typedef struct {
IDL_FUN_RET funct_addr;
char *name;
UCHAR arg_min;
UCHAR arg_max;
UCHAR flags

} IDL_SYSFUN_DEF;

IDL_VARIABLE structures are described in “The IDL_VARIABLE Structure” on

page 153.
funct_addr

Address of the function implementing the system routine.
name

The name by which the routine is to be invoked from within IDL. This should be a
pointer to anull terminated string. The name should be capitalized. If theroutineisan
object method, the name should be fully qualified, which meansthat it should include
the class name at the beginning followed by two consecutive colons, followed by the
method name (e.g. CLASS : : METHOD).

arg_min
The minimum number of arguments allowed for the routine.
arg_max

The maximum number of arguments allowed for the routine. If the routine does not
place an upper value on the number of arguments, use the value
IDL_MAXPARAMS.

Interfaces Obsoleted in IDL 5.2.1 External Development Guide

Appendix A: Obsolete Internal Interfaces 403

flags

A bitmask that provides additional information about the routine. Its value can be any
combination of the following values (bitwise OR’d together to specify more than one
at atime) or zero if no options are necessary:

IDL_SYSFUN_DEF_F_OBSOLETE

IDL should issue awarning message if thisroutineis called and
IWARN.OBS ROUTINE is set.

IDL_SYSFUN_DEF_F_KEYWORDS

This routine accepts keywords as well as plain arguments.

External Development Guide Interfaces Obsoleted in IDL 5.2.1

404 Appendix A: Obsolete Internal Interfaces

Simplified Routine Invocation

Note
The functions and techniques described in this section are no longer widely used,
and are considered functionally obsol ete although they continue to be supported by
ITT Visual Information Solutions. This section is supplied to help those
maintaining older code. New code should be written using the information found in
Chapter 15, “Adding System Routines’.

A great deal of the work involved in writing IDL system routines involves checking
positional arguments, screening out illegal combinations of type and structure, and
converting them to desired type. The function IDL _EzCall() provides a simplified
way to handle thistask. It processesan array of IDL_EZ ARG structs which
describe the processing to be applied to each positional argument.

ThelDL_EzCall() functionis similar to the facility provided for keyword arguments
by IDL_KWGetParams():

void IDL_EzCall (int argc, IDL_VPTR argvl[],
IDL_EZ_ARG arg_structl[]);

where:
argc

The number of positional arguments present.
argv

An array of pointers to the positional arguments.

arg_struct

Anarray of IDL_EZ ARG structures defining the desired characteristics for each
possible argument. Note that this array must have a definition for every possible
parameter whether that argument is present in the current call or not. The order of the
IDL_EZ ARG structuresisthe same as the order in which the arguments are
specifiedinthecall. (See“The IDL_EZ_ARG struct” on page 405.)

There are some things you need to be aware of when using IDL_EzCall():

e |IDL_EzCall() automatically excludesfile variables (such as those created
by the ASSOC function) so you don’t have to take any special action to
screen such variables out.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 405

Note

Every call to IDL_EzCall() must have amatching call to
IDL_EzCallCleanup() before execution returns to the interpreter.

IDL_EzCall() does not handle keyword arguments. If the calling routine
allows keyword arguments, it must do its own keyword processing using
IDL_KWGetParams() (see “IDL Internas. Keyword Processing” on
page 121) and pass an argv containing only positional argumentsto
IDL_EzCall().

If you mark avariable as being write-only, you shouldn’'t count on
anything useful being in the uargv or valuefields. Thisimpliesthat it is
not agood ideato setthe IDL_EZ POST_WRITEBACK fiddinthe
post field. Instead, you will haveto allocate a new temporary variable,
place the desired value into it, and use the IDL_Var Copy() function to
write its value back into the original argv entry yourself.

IDL_EZ_POST_WRITEBACK isonly useful when the access field is set to
IDL_EZ_ACCESS RW.

The IDL_EZ ARG struct

ThelDL_EZ ARG struct has the following definition:

typedef struct {

short allowed_dims;
short allowed_types;
short access;

short convert;

short pre;

short post;

IDL_VPTR to_delete;
IDL_VPTR uargv;
IDL_ALLTYPES value;

} IDL_EZ_ARG;

where:

allowed _dims

A bit mask that specifies the allowed dimensions. Bit 0 means scalar, bit 1 means
one-dimensional, etc. TheIDL_EZ DIM_MASK macro can be used to specify
certain hits. It accepts asingle argument that specifies the number of dimensions that
are accepted, and returns the bit value that represents that number. For example, to
specify that the argument can be scalar or have 2 dimensions:

External Development Guide Simplified Routine Invocation

406 Appendix A: Obsolete Internal Interfaces

IDL_EZ_DIM_MASK(0) | IDL_EZ_DIM_MASK(2)

In addition, the following constants are defined to simplify the writing of common
cases.

IDL_EZ_DIM_ARRAY
Allow all but scalar.
IDL_EZ_DIM_ANY
Allow anything.
allowed_types

Thisisabit mask defining the alowed data types for the argument. To convert type
codes to the appropriate hits, use the formulaBitMask = 2TypeCode o yge the
IDL_TYP_MASK macro (see“ Type Masks’ on page 115).

Note

If you specify avalue for the convert field, its agood idea to specify
IDL_TYP B ALL orIDL_TYP_B_SIMPLE here. The type conversion will
catch any problems and your routine will be more flexible.

access

A bitmask that describes the type of access to be allowed to the argument. The
following constants should be OR'd together to set the proper value:
IDL_EZ ACCESS_R
The value of the argument is used by the system routine.
IDL_EZ ACCESS_W

The value of the argument is changed by the system routine. This means that it
must be a named variable (as opposed to a constant or expression).

IDL_EZ_ACCESS_RW
Thisisequivalentto IDL_EZ_ACCESS R |IDL_EZ_ACCESS_W.
convert

The type code for the type to which the argument will be converted. A value of
IDL_TYP_UNDEF meansthat no conversion will be applied.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 407

pre
A bitmask that specifies special purpose processing that should be performed on the
variable by IDL_EzCall(). These bits are specified with the following constants:
IDL_EZ_PRE_SQMATRIX
The argument must be a square matrix.
IDL_EZ PRE_TRANSPOSE
Transpose the argument.

Note

This processing occurs after any type conversions specified by convert, and isonly
doneif the accessfield hasthe IDL_EZ ACCESS R bit set.

post

A bit mask that specifies special purpose processing that should be performed on the
variable by IDL_EzCallCleanup(). These bits are specified with the following
constants:

IDL_EZ_POST_WRITEBACK

Transfer the contents of the uargv field back to the actual argument.
IDL_EZ POST_TRANSPOSE

Transpose uargv prior to transferring its contents back to the actual argument.

Note

This processing occurs only when the accessfield hasthe IDL_EZ _ACCESS W
bitset. If IDL_EZ POST_WRITEBACK isnot present, none of the other actions
are considered, since that would imply wasted effort.

to_delete

Do not make use of thisfield. Thisfield isreserved for use by the EZ module. If
IDL_EzCall() allocated atemporary variable to satisfy the conversion requirements

given by the convert field, the IDL_VPTR to that temporary is saved here for use by
IDL_EzCallCleanup().

External Development Guide Simplified Routine Invocation

408 Appendix A: Obsolete Internal Interfaces

uargv

After caling IDL_EzCall(), uargv contains a pointer to the IDL_VARIABLE
which isthe argument. Thisisthe IDL_VPTR that your routine should use.
Depending on the required type conversions, it might be the actual argument, or a
temporary variable containing a converted version of the original. Thisfield won't
contain anything useful if the IDL_EZ ACCESS R bit isnot set in the access field.

value

Thisisacopy of the value field of the IDL_VARIABLE pointed at by uargv. For
scalar variables, it containsthe value, for arraysit points at the array block. Thisfield
is here to make reading read-only variables faster. Note that thisis only a copy from
uargv, and changing it will not cause the actual value field in uargv to be updated.

Cleaning Up

Every call to IDL_EzCall() must be bracketed by acall to IDL_EzCallCleanup():

void IDL_EzCallCleanup (int argc, IDL_VPTR argvl[],
IDL_EZ_ARG arg_structl[]);

The arguments are exactly the same as those passed to IDL_EzCall().
Example— using IDL_EzCall()

The following function skeleton shows how to use the simplified interface to handle
argument processing for an older version of the built-in SVD (Singular Value
Decomposition) function. SV D accepts the following positional arguments (in order):

A
An mby n matrix (input, required).
w
An n-dement vector (output, required).
U
An n by mmatrix (output, optional)
\%

Ann by nmatrix (output, optional)

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces 409

Each line is numbered to make discussion easier. These numbers are not part of the
actual program.

1§ void nr_svdcmp (int argc, IDL_VPTR argv[])
2p {
3
4
5 .
6 static IDL_EZ_ARG arg_struct[] = {
7 { IDL_EZ_DIM MASK(2), IDL_TYP_B_SIMPLE, IDL_EZ_ACCESS_R,
8 IDL_TYP_FLOAT, 0, O }, /* A */
9 { IDL_EZ_DIM ANY, IDL_TYP_B_ALL,
10 IDL_EZ_ACCESS_w, 0, 0, 0 }, /* w */
11 { IDL_EZ_DIM ANY, IDL_TYP_B_ALL,
12 IDL_EZ_ACCESS_w, 0, 0, 0 }, /* U */
13 { IDL_Ez_DIM_ANY, IDL_TYP_B_ALL,
C 14 IDL_EZ_ACCESS_W, 0, 0, 0 } /* V */
15 Y
16
17 IDL_EzCall (argc, argv, arg_struct);
18
19
20 .
21 /* Do the SVD calculation and prepare temporary
22 variables to be returned as w, U, and V */
23
24
25 .
26 IDL_EzCallCleanup (argc, argv, arg_struct);
2748 }

Table A-1: IDL_EzCall() Argument Processing Example

Those features of this procedure that are interesting in terms of plain argument
processing are, by line number:

7-8

The settings of the various fields of the IDL_EZ ARG struct for the first positional
argument (A) specifies:

allowed _dims

The argument must be 2-dimensional .

External Development Guide Simplified Routine Invocation

410 Appendix A: Obsolete Internal Interfaces

allowed_types

It can have any simple type. Types and type codes are discussed in “IDL Internals:
Types’ on page 113.

access
The routine will examine the argument’s value, but will not attempt to changeit.
convert
The argument should be convertedto IDL_TYP_FL OAT if necessary.
pre
No pre-processing is required.
post

No post-processing is required.

Theremaining fields are all set by IDL_EzCall() in response to the above.
9-14

Arguments two through four are allowed to have any number of dimensions and are
allowed any type. Thisis because the routine does not intend to examine them, only
to change them. For the samereason, azero (IDL_TYP_UNDEF) is specified for the
convert field indicating that no type conversion is desired. No pre or post-processing
is specified.

17
Process the positional arguments.

26

Clean up.

Simplified Routine Invocation External Development Guide

Appendix A: Obsolete Internal Interfaces

Obsolete Error Handling API

411

The following variables can be accessed only on UNIX. These variables have been
superseded by the functions listed in “ Functions for Returning System Variables’ on
page 257, which are available on al platforms. In al cases, these variables should be

considered READ-ONLY:.

IDL System Variable Internal Variable Type
IDIR IDL_SysvDir IDL_STRING
I'VERSION.ARCH IDL_SysvVersion.arch IDL_STRING
IVERSION.OS IDL_SysvVersion.os IDL_STRING
IVERSION.OS FAMILY | IDL_SysvVersion.os family |IDL_STRING
IVERSION.RELEASE IDL_SysvVersion.release IDL_STRING
IERR IDL_SysvErrCode IDL_LONG
IERROR IDL_SysvErrorCode IDL_LONG
IORDER IDL_SysvOrder IDL_LONG

Table A-2: IDL System Variables Available to User Programs

In addition, the following function has been superseded by the

IDL_SysvErrorCodeVaue() function:
IDL_LONG IDL_SysvErrCodeValue(void)

This function returns the value of ERR.

External Development Guide

Obsolete Error Handling API

412 Appendix A: Obsolete Internal Interfaces

Obsolete Error Handling API External Development Guide

Index

Symbols

IDIR system variable, 257
IDLM_PATH system variable
DLM management, 311
IERROR_STATE system variable, 257, 257
setting, 257
IERROR_STATE.CODE system variable, 339
IORDER system variable, 257
IVERSION. ARCH system variable, 257
IVERSION.OS system variable, 257
IVERSION.OS FAMILY system variable,
257
IVERSION.RELEASE system variable, 257

A
absolute value, 265

External Development Guide

accessing structure tags, 161
accessing variable data, 176
action argument, 197
adding

journal file output, 249

system routines, 296
adding codeto IDL

overview, 22

skillsrequired, 23

system routines, 270
alocating and freeing file units, 243
anonymous structures, 160, 160
arguments

checking, 202

keywords. See keywords
argv argument, 202
array variables, 157
arrays

413

414

creating
from existing data, 172
temporary, 167
passing with CALL_EXTERNAL, 68
ASSOC function, 154, 158
associated 1/0O, 154, 158
AUTO_GLUE, 56

B

bell, ringing with error messages, 199
blocking timers, 222

blocking UNIX timers, 226

buffered data, flushing, 246

C

CALL_EXTERNAL function
AUTO_GLUE, 46, 56
C examples, 58
calling a C routine, 60
calling convention, 54
common errors, 51
compared to UNIX child process, 45
compilation and linking, 45
datatypes, 47
Fortran examples, 72
glue functions, 46, 56
input/output, 47
memory cleanup, 47
Microsoft calling conventions, 49
overview, 16, 44
passing array data, 68
passing structures, 70
portable calling convention, 54
string data, 64
wrapper routines, 62

calable IDL
about, 18
appropriate applications, 327

Index

appropriate uses, 327
background mode, 333
cleanup, 330, 341, 341
compiling and linking C programs, 342
diverting IDL output, 337
example programs, 343, 347, 351
executing IDL statements, 339
implementation, 324
initializing IDL, 329
interactive |DL sessions, 342
inter-language calling conventions, 327
licensing issues, 328, 333
no command line, 333
platform-specific implementation, 324
program size considerations, 326
threading, 327
troubleshooting, 326
using
from C, 343
from Fortran, 351
overview, 329
using the Windows graphics driver, 326
when to use, 325
callable IDL applications
simple math function example, 347
callbacks
timer, 223
calltest program listing
C, 343
Fortran, 351
characters
reading from the keyboard, 247
checking arguments, 202
checking file status, 241
child processes
communicating with, 38
spawning, 37
cleanup
calable DL, 341
client process, 78
client variables, 80

External Development Guide

closing

files, 239

files, preventing, 240
code argument, 195
command line

initializing IDL without, 333
communicating with a child process, 37
compilation and link statements, 357
complex

datatype

internal, 117

constants

preprocessor, 264
copying

strings, 186

variables, 177
copyrights, 2
creating

structures, 159

D

datatypes

default output formats, 261

internal, 114

See also types, internal.
debugging

DLMs, 270

shared library code, 270

system routines, 270
default output formats for data types, 261
definitions

external, 29
deleting

strings, 187
device

special files, 234
diverting IDL output, 337
dynamic memory

alocating, 174

allocation routines, 252

External Development Guide

415

freed when deleting strings, 187
freeing, 179

IDL_MemAlloc(), 253
IDL_MemAllocPerm(), 254
IDL_MemFree(), 253

E

end of file
detecting, 245
errno global variable
system level errors, 196
error messages
ringing bell, 199
errors
checking arguments, 202
issuing, 195
messages
format string, 199
ringing bell with error message, 199
suppressing
error messages, 198
message prefixes, 198
traceback portion of messages, 198
examples
C examplesfor CALL_EXTERNAL, 58
calable IDL
from C, 343
from Fortran, 351
calling asimple math function, 347
Fortran CALL_EXTERNAL, 72
hello world, 273
simple system routine, 274
simple_vars.pro, 62
using WIDGET_STUB, 377, 379
exit handlers
IDL_ExitRegister(), 255
export restrictions, 2
export.h seeidl_export.h
externa
definitions, 29

Index

416

programs, accessing (SPAWN), 14

F

file
attributes, verifying, 241
descriptor, 232
end of file detection, 245
IDL_FileOpen(), 236
prevent closure, 240
file access
IDL_FILE_STAT struct, 233
mode, 236
file information
IDL_FILE_STAT struct, 232
file units
always open, 238
LUN table, 232
special, 238
files
checking
attributes, 241
status, 241
closing
IDL_FileClose, 239
closing, preventing, 240
FLEXIm floating licence policy, 333
flushing buffered data, 246
Fortran
binary data, unformatted, 234
calling, 74
child processes, 40
compiler, 342
complex datatypes, 117
externa functions, calling, 44
passing parameters, 24
freg() function, 174
FZ_ROOTS function
example, 277

Index

G

getting dynamic memory, 174
getting file information, 232

H

heap variables, 164
Hello World example, 273
HELP,/DLM, 312, 317

IDL
about language, 27
combining external code, 22
interna initialization, 329
no command line, 333
spawning child process, 37
IDL output, diverting, 337
IDL portable calling convention, 54
IDL RPC
Client APl Example, 81
variable accessor macros, 108
IDL signal API, 211
IDL statements, executing, 339
IDL_ABS() macro, 265
IDL_ALLTYPES union, 153, 156
IDL_ARRAY structure, 153
IDL_BailOut() function, 256

IDL_BasicTypeConversion() function, 207

IDL_CHAR() macro, 265
IDL_CHARA() macro, 265
IDL_Cleanup() function, 330, 341
IDL_CvtByte function, 208
IDL_CvtBytscl function, 208
IDL_CvtComplex function, 208
IDL_CvtDbl function, 208
IDL_CvtDComplex function, 208
IDL_CvtFix function, 208
IDL_CvtFIt function, 208

External Development Guide

IDL_CvtLng function, 208
IDL_CvtString function, 208
IDL_Deltmp() function, 171, 175
IDL_DLM_PATH, 311, 317
IDL_ENSURE_ARRAY macro, 203
IDL_ENSURE_OBJREF macro, 203
IDL_ENSURE_PTR macro, 203
IDL_ENSURE_SCALAR macro, 203
IDL_ENSURE_SIMPLE macro, 203
IDL_ENSURE_STRING macro, 203

IDL_ENSURE_STRUCTURE macro, 204

IDL_EXCLUDE_COMPLEX macro, 203
IDL_EXCLUDE_CONST macro, 202
IDL_EXCLUDE_EXPR macro, 202
IDL_EXCLUDE_FILE macro, 203
IDL_EXCLUDE_SCALAR macro, 203
IDL_EXCLUDE_STRING macro, 203
IDL_EXCLUDE_STRUCT macro, 203
IDL_EXCLUDE_UNDEF macro, 202
IDL_Execute() function, 339
IDL_ExecuteStr() function, 339
IDL_EXxitRegister() function, 255
idl_export.h file, 29

IDL_FAL SE preprocessor constant, 264
IDL_FILE_STAT struct, 232
IDL_FileClose() function, 239
IDL_FileEnsureStatus() function, 241
IDL_FileEOF() function, 245
IDL_FileFlushUnit() function, 246
IDL_FileFreeUnit() function, 243
IDL_FileGetUnit() function, 243
IDL_FileOpen() function, 236
IDL_FileSetClose() function, 240
IDL_FileStat() function, 232
IDL_FileTerm global variable, 258
IDL_FileTermColumns function, 259
IDL_FileTermlsTty function, 258
IDL_FileTermLines function, 259
IDL_FileTermName function, 258
IDL_FindNamedV ariable() function, 182
IDL_GetKbrd() function, 247

External Development Guide

417

IDL_GetScratch function, 174
IDL_Gettmp() function, 166
IDL_GetUserInfo() function, 263
IDL_GetVarAddr() function, 181
IDL_GetVarAddrl() function, 181
IDL_ImportArray() function, 160, 172
IDL_ImportNamedArray() function, 160, 172
IDL_Initialize() function, 329, 331
IDL_KW_ARR_DESC structure, 129
IDL_KW_FAST_SCAN macro, 134
IDL_KW_PAR structure, 123, 126
IDL_KWCleanup() function, 123
IDL_KWGetParams() function, 123, 133
IDL_Load(), 296, 314
IDL_Logit() function, 249
IDL_LONG type definition, 116
IDL_LONGS64, 116
IDL_M_GENERIC message string, 199
IDL_M_NAMED_GENERIC message code,
199
IDL_Main() function, 342
IDL_MakeStruct() function, 159
IDL_MakeTempArray function, 167
IDL_MakeTempStruct() function, 168
IDL_MAX() macro, 265
IDL_MAX_ARRAY _DIM preprocessor con-
stant, 264
IDL_MAX_TY PE constant, 114
IDL_MAXIDLEN preprocessor constant, 264
IDL_MAXPATH preprocessor constant, 264
IDL_MBLK_CORE, 192
IDL_MemAlloc() function, 253
IDL_MemAllocPerm() function, 254
IDL_MemFreg() function, 253
IDL_Message() function, 195, 214
IDL_MessageDefineBlock(), 192, 314
IDL_MessageNameToCodg(), 201
IDL_MIN() macro, 265
IDL_MSG_DEF, 192
IDL_NUM_TY PES constant, 114
IDL_OutputFormat global variable, 261

Index

418

IDL_OutputFormatFunc function, 261
IDL_OutputFormatL en global variable, 261
IDL_OutputFormatL enFunc function, 262
IDL_Print() function, 248
IDL_PrintF() function, 248
IDL_REGISTER preprocessor constant, 264
IDL_ROUND_UP() macro, 266
IDL_RPCCleanup, 86
IDL_RPCDeltmp, 87
IDL_RPCExecuteStr, 88
IDL_RPCGetArrayData, 108
IDL_RPCGetArrayNumDims, 108
IDL_RPCGetArrrayDimensions, 108
IDL_RPCGetMainVariable, 89
IDL_RPCGettmp, 90
IDL_RPCGetVarByte, 108
IDL_RPCGetVarComplex, 108
IDL_RPCGetVarComplex!, 108
IDL_RPCGetVarComplexR, 108
IDL_RPCGetVarDComplex, 108
IDL_RPCGetVarDComplex!, 108
IDL_RPCGetVarDComplexR, 108
IDL_RPCGetVarDouble, 109
IDL_RPCGetVarFloat, 109
IDL_RPCGetVariable, 91
IDL_RPCGetVarlnt, 109
IDL_RPCGetVarLong, 109
IDL_RPCGetVarLong64, 109
IDL_RPCGetVarString, 109
IDL_RPCGetVarType, 109
IDL_RPCGetVarUInt, 109
IDL_RPCGetVarULong64, 109
IDL_RPClmportArray, 92
IDL_RPCInit, 93
IDL_RPCMakeArray, 94
IDL_RPCOutputCapture, 96
IDL_RPCOutputGetStr, 97
IDL_RPCSetMainVariable, 98
IDL_RPCSetVariable, 99
IDL_RPCStoreScalar, 100
IDL_RPCStrDelete, 101

Index

IDL_RPCStrDup, 102
IDL_RPCStrEnsurelength, 103
IDL_RPCStrStore, 104
IDL_RPCTimeout, 105
IDL_RPCVarCopy, 106
IDL_RPCVarGetData, 107
IDL_RPCVarlsArray, 109
IDL_RuntimeExec() function, 340
IDL_SignaBlock() function, 219
IDL_SignalMaskBlock() function, 218
IDL_SignaMaskGet() function, 217
IDL_SignalMaskSet() function, 218
IDL_SignaRegister() function, 214
IDL_Signal SetAdd() function, 216
IDL_Signa SetDel() function, 217
IDL_Signal Setlnit() function, 216
IDL_Signal SetlsMember() function, 217
IDL_Signal Suspend() function, 219
IDL_SignalUnregister() function, 215
IDL_SREF structure, 153, 159
IDL_STDERR_UNIT file unit, 238
IDL_STDIN_UNIT file unit, 238
IDL_STDOUT_UNIT file unit, 238
IDL_StoreScalar() function, 178, 202
IDL_StoreScalarZero(), 178
IDL_StrDelete() function, 187
IDL_StrDup() function, 186
IDL_StrEnsurelength() function, 189
IDL_STRING struct, 117
IDL_STRING structure, 184
IDL_STRING_STR macro, 185
IDL_StrStore() function, 188
IDL_StrToSTRING() function, 188
IDL_STRUCT_TAG_DEF type definition,
160
IDL_StructNumTags(), 162
IDL_StructTaglinfoBylndex() function, 161
IDL_StructTaglnfoByName() function, 161
IDL_StructTagNameBylndex function, 163
IDL_SYSFUN_DEF, 296
IDL_SYSFUN_DEF F KEYWORDS, 123

External Development Guide

IDL_SYSFUN_DEF2 struct, 123, 296
IDL_SysRtnAdd function, 123, 296
IDL_SysvDirFunc function, 257
IDL_SysvErrorCodeValue function, 257
IDL_SysvErrStringFunc function, 257
IDL_SysVersionArch function, 257
IDL_SysVersionOS function, 257
IDL_SysVersionOSFamily function, 257
IDL_SysVersionRelease function, 257
IDL_SysvOrderValue function, 257
IDL_SysvSyserrStringFunc function, 257
IDL_TERMINFO struct, 258
IDL_TIMER_CONTEXT variable, 224
IDL_TimerBlock() function, 226
IDL_TimerCancel() function, 225
IDL_TimerSet() function, 223
IDL_ToutPop() function, 338
IDL_ToutPush() function, 338
IDL_TRUE preprocessor constant, 264
IDL_TTY Reset function, 260
IDL_TYP_B_ALL constant, 115
IDL_TYP_BYTE type code, 114
IDL_TYP_COMPLEX type code, 114, 117
IDL_TYP_DCOMPLEX type code, 114, 117
IDL_TYP_DOUBLE type code, 114
IDL_TYP_FLOAT type code, 114
IDL_TYP_INT type code, 114
IDL_TYP_LONG type code, 114
IDL_TYP_LONGB64 type code, 115
IDL_TYP_MASK preprocessor macro, 115
IDL_TYP_OBJREF type code, 115
IDL_TYP_PTR type code, 115
IDL_TYP_STRING type code, 114, 117
IDL_TYP_STRUCT type code, 114, 159
IDL_TYP_UINT type code, 115
IDL_TYP_ULONG type code, 115
IDL_TYP_ULONG64 type code, 115
IDL_TYP_UNDEF, 114
IDL_TYP_UNDEF type code, 114
IDL_TypeName globa variable, 261
IDL_TypeNameFunc function, 262

External Development Guide

419

IDL_TypeSize global variable, 261
IDL_TypeSizeFunc function, 262
IDL_ULONG, 116
IDL_ULONG#64, 117
IDL_USER_INFO struct, 263
IDL_VarCopy() function, 177
IDL_VarGetData() function, 176
IDL_VARIABLE structure, 153
IDL_VarName() function, 180
IDL_VPTR, 28, 153
IDL_WidgetGetStublds() function, 375, 375
IDL_WidgetlssueStubEvent() function, 374
IDL_WidgetSetStublds() function, 375, 375
IDL_WidgetStubL ock() function, 374
IDL_WidgetStubL ookup() function, 374
IDL_WidgetStubSetSizeFunc() function, 376,
376
IDLRPCGetVarULong, 109
information on open files
IDL_FILE_STAT struct, 232
initializing
IDL
cdlable IDL, 329
IDL_Init() function, 334
IDL_Initialize() function, 331
no command line, 333
input/output
internal, 230
inter-language
calling conventions, 24
supported communication techniques, 13
internal callback functions (widget stub), 377
internal functions for stub widgets, 374
interpreted languages, 27
interpreter stack, 28
interrupt flag, internal, 256

J
journal file, adding to, 249

Index

420

K

KEYWORD_DEMO procedure, 137
keywords
array, 127, 130
Boolean, 127
creating, 123
examples, 137
in external development, 122
input/output, 130
internal input/output, 127, 127
processing, 133
processing options, 130
read-only, 129
scalar, 130
speeding processing of, 134

L

language
about IDL, 27
legalities, 2
libraries
IDL portable calling convention, 54
linking to, 81
licensing
calable IDL, 328, 333
linking
C programs with callable IDL, 342
client library, 81
externa codeinto IDL, 31
toIDL, 31
logical unit numbers, 158
long integer data type, 116
longjmp() function, 198
LUNs seelogical unit numbers

M

macros
defined inidl_export.h, 265

Index

make file for IDL sharable libraries, 31
malloc() function, 174
mapping

IDL datatypesto C datatypes, 116
memory

alocating, 253

alocating permanent, 254

freeing, 253
messages

format string, 199

message blocks, 192

N

names
of variables (externa code), 180

O

obtaining names of variables, 180
opening files
IDL_FileOpen(), 236

P

parameters

passing mechanism, 54
preprocessor constants, 264
printf() function, 195
printing

IDL variables, 248
procedure calls, remote, 78
program size considerations

calableIDL, 326

R

registering
exit handlers, 255

External Development Guide

routines using IDL_SysRtnAdd(), 287
Remote Procedure Calls

about, 15, 78

backward compatibility, 83

example code, 110

IDL as server, 79

library, 85
ringing bell with error messages, 199
rounding

values, 266
RPC server, using IDL as, 79
RPCs see Remote Procedure Calls
running

IDL as RPC server, 79
runtime

embedded licensing, 340

S

scalars

values
storing, 178

variables, 156

server |D number, 79

server process, 78

shutting down
IDL, 255

SIG_DFL, 210, 212

SIG_IGN, 212

SIGALRM, 211, 226

SIGFPE, 211

SIGINT, 256

signal handlers
establishing, 214
removing, 215

signal masks
IDL_SignaBlock(), 219
IDL_SignalMaskBlock(), 218
IDL_SignalMaskGet(), 217
IDL_SignaMaskSet(), 218
IDL_Signa SetAdd(), 216

External Development Guide

IDL_Signal SetDel(), 217
IDL_Signal Setlnit(), 216
IDL_Signal SetlsMember(), 217
IDL_Signal Suspend(), 219
overview, 216
signals, 210
IDL API, 211
IDL limitations, 211
problems, 210
SIGTRAP, 211
simple_vars.pro, 62
Skills Required to Add Code to IDL, 23
SPAWN procedure
using, 37
stack, interpreter, 28
standard error, 238
standard input, 238
standard output, 238
stdio buffering, 234
storing
scalar values, 178
string data type, 117
strings
accessing, 185
copying, 186
deleting, 187
ensuring length of, 189
passing with CALL_EXTERNAL, 64
processing, 184
setting value of, 188
structure variables, 159
structures, 159
anonymous, 160, 160
creating internal, 159
creating temporary, 168
passing with CALL_EXTERNAL, 70
stub widgets
internal functions, 374
overview, 370
WIDGET_STUB function, 371
symbol table, 181

421

Index

422

system routines
adding, 296
examples, 273, 274
interface, 272
overview, 270

system variables
functions for returning, 257

T

temporary array, creating, 167
temporary variables
about, 165
internal
freeing, 171
getting, 166
Termina Information, 258
The IDL RPC directory, 79
timer modulesin IDL, 222
timers
blocking, 222, 226
callbacks, 223
cancelling requests, 225
IDL_TimerBlock(), 226
IDL_TimerCancel(), 225
IDL_TimerSet(), 223
trademarks, 2
troubleshooting
cdlableIDL, 326
type codes
internal, 114
type information, internal, 261
types, internal
complex, 117
global variables, 261
long integer, 116
mapping of, 116
string, 117
type codes, 114
type masks, 115
unsigned byte, 116

Index

U

UCHAR type definition, 116
UNIX

signal masks, 216
unsigned byte data type, 116
user information (IDL), 263
user interrupts, 256

Vv

variables
array, 157
copying, 177

in current scope, looking up, 182

names, 180
obtaining names of, 180
returning

address in main-level program, 181
current execution scope, 182

scalar, 156

setting to scalar values, 178
structure, 159

system, 257

temporary, 165

W

WIDGET_STUB
examples, 377, 379
interface, 326, 370

WIDGET_CONTROL keywords, 372

WIDGET_STUB function
reference, 371

widgets
adding custom to IDL, 370
internal functions, 374
WIDGET_CONTROL, 372
WIDGET_STUB, 371

wrapper routines
CALL_EXTERNAL, 62

External Development Guide

423

X blocking in background mode, 333
XMANAGER procedure

External Development Guide Index

424

Index External Development Guide

	Online Manuals
	IDL Documentation
	What's New in IDL 7.1
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Application Programming
	User Interface Programming
	Image Processing in IDL
	iTool User's Guide
	iTool Programming
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	IDL Advanced Math and Stats
	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	External Development Guide
	Contents
	External Development Overview
	About This Manual
	Supported Inter-Language Communication Techniques in IDL
	Dynamic Linking Terms and Concepts
	When Is It Appropriate to Combine External Code with IDL?
	Skills Required to Combine External Code with IDL
	IDL Organization
	External Definitions
	Interpreting Logical Boolean Values
	Compilation and Linking Details
	Recommended Reading

	Part I: Techniques That Do Not Use IDL’s Internal API
	Using SPAWN and Pipes
	Using CALL_EXTERNAL
	The CALL_EXTERNAL Function
	Passing Parameters
	Using Auto Glue
	Basic C Examples
	Wrapper Routines
	Passing String Data
	Passing Array Data
	Passing Structures
	Fortran Examples

	Remote Procedure Calls
	IDL and Remote Procedure Calls
	Using IDL as an RPC Server
	Client Variables
	Linking to the Client Library
	Compatibility with Older IDL Code
	The IDL RPC Library
	IDL_RPCCleanup
	IDL_RPCDeltmp
	IDL_RPCExecuteStr
	IDL_RPCGetMainVariable
	IDL_RPCGettmp
	IDL_RPCGetVariable
	IDL_RPCImportArray
	IDL_RPCInit
	IDL_RPCMakeArray
	IDL_RPCOutputCapture
	IDL_RPCOutputGetStr
	IDL_RPCSetMainVariable
	IDL_RPCSetVariable
	IDL_RPCStoreScalar
	IDL_RPCStrDelete
	IDL_RPCStrDup
	IDL_RPCStrEnsureLength
	IDL_RPCStrStore
	IDL_RPCTimeout
	IDL_RPCVarCopy
	IDL_RPCVarGetData
	Variable Accessor Macros

	RPC Examples

	Part II: IDL’s Internal API
	IDL Internals: Types
	Type Codes
	Mapping of Basic Types
	IDL_MEMINT and IDL_FILEINT Types

	IDL Internals: Keyword Processing
	IDL and Keyword Processing
	Creating Routines that Accept Keywords
	Overview Of IDL Keyword Processing
	The IDL_KW_PAR Structure
	The IDL_KW_ARR_DESC_R Structure
	Keyword Processing Options
	The KW_RESULT Structure
	Processing Keywords
	Cleaning Up
	Keyword Examples
	The Pre-IDL 5.5 Keyword API

	IDL Internals: Variables
	IDL and Internal Variables
	The IDL_VARIABLE Structure
	Scalar Variables
	Array Variables
	Structure Variables
	Heap Variables
	Temporary Variables
	Creating an Array from Existing Data
	Getting Dynamic Memory
	Accessing Variable Data
	Copying Variables
	Storing Scalar Values
	Obtaining the Name of a Variable
	Looking Up Main Program Variables
	Looking Up Variables in Current Scope

	IDL Internals: String Processing
	String Processing and IDL
	Accessing IDL_STRING Values
	Copying Strings
	Deleting Strings
	Setting an IDL_STRING Value
	Obtaining a String of a Given Length

	IDL Internals: Error Handling
	Message Blocks
	Issuing Error Messages
	Looking Up A Message Code by Name
	Checking Arguments

	IDL Internals: Type Conversion
	Converting Arguments to C Scalars
	General Type Conversion
	Converting to Specific Types

	IDL Internals: UNIX Signals
	IDL and Signals
	Signal Handlers
	Establishing a Signal Handler
	Removing a Signal Handler
	UNIX Signal Masks

	IDL Internals: Timers
	IDL and Timers
	Making Timer Requests
	Canceling Asynchronous Timer Requests
	Blocking UNIX Timers

	IDL Internals: Files and Input/Output
	IDL and Input/Output Files
	File Information
	Opening Files
	Closing Files
	Preventing File Closing
	Checking File Status
	Allocating and Freeing File Units
	Detecting End of File
	Flushing Buffered Data
	Reading a Single Character
	Output of IDL Variables
	Adding to the Journal File

	IDL Internals: Miscellaneous
	Dynamic Memory
	Exit Handlers
	User Interrupts
	Functions for Returning System Variables
	Terminal Information
	Ensuring UNIX TTY State
	Type Information
	User Information
	Constants
	Macros

	Part III: Techniques That Use IDL’s Internal API
	Adding System Routines
	IDL and System Routines
	The System Routine Interface
	Example: Hello World
	Example: Doing a Little More (MULT2)
	Example: A Complete Numerical Routine Example (FZ_ROOTS2)
	Example: An Example Using Routine Design Iteration (RSUM)
	Running Sum (Example 1)

	Registering Routines
	Enabling and Disabling System Routines
	Enabling Routines
	Obtaining Enabled/Disabled Routine Names
	Obtaining the Number of Enabled/Disabled Routines
	Obtaining the Real Function Pointer
	Obtaining the IDL Name of the Current System Routine

	LINKIMAGE
	Dynamically Loadable Modules

	Callable IDL
	Calling IDL as a Subroutine
	When is Callable IDL Appropriate?
	Licensing Issues and Callable IDL
	Using Callable IDL
	Initialization
	Diverting IDL Output
	Executing IDL Statements
	Runtime IDL and Embedded IDL
	Cleanup
	Issues and Examples: UNIX
	Issues and Examples: Microsoft Windows

	Adding External Widgets to IDL
	IDL and External Widgets
	WIDGET_STUB
	WIDGET_CONTROL/WIDGET_STUB
	Functions for Use with Stub Widgets
	Internal Callback Functions
	UNIX WIDGET_STUB Example: WIDGET_ARROWB

	Obsolete Internal Interfaces
	Interfaces Obsoleted in IDL 6.3
	Interfaces Obsoleted in IDL 5.5
	Interfaces Obsoleted in IDL 5.2.1
	Simplified Routine Invocation
	Obsolete Error Handling API

	Index

