Field Studies
Our curriculum focuses intensely on field studies. Hands-on training and experience are critical to your success. We teach two required field courses in the summer but also provide plenty of opportunities to travel and conduct research on the Keweenaw Peninsula and beyond. Recent field trips included Alaska, Utah, Nicaragua, Mexico, Newfoundland, Florida, Guatemala, Canada, and Montana.

Why Choose Michigan Tech?
We are located in Michigan’s Copper Country, east of the north shore of Lake Superior. Residents of the area have measured the prevalence and severity of magnetic mineral flux, offering a unique geology and natural environment accessible to all students. We emit small needles to a wide variety of geologic disciplines. The peninsula was also the center of a billion-dollar native copper ore district. Start of mining and processing led to the creation of the Michigan Mining School more than 100 years ago. Our department is the direct descendant of that original school.

Beautiful Outdoor Facilities
We prepare students to understand and safely manage the Earth and its resources for the future. Along the way, we strive to foster an environment in which you can learn to think, conduct research, apply knowledge, and achieve success in a diverse and changing global economy. Join us and discover your potential.

Excellent Indoor Facilities
Our department features world-class computer and analytical laboratory equipment. Labs and research areas:
- Remote Sensing and Volcanology
- Subsurface Remediation and Visualization
- Seismic Petrophysics
- Environmental Magnetism
- Rock Mechanics
- Environmental Geochemistry
- X-Ray Diffraction
- Subsurface Visualization Lab
- Remote Sensing Institute
- Michigan Tech Research Vessel—R/V Agassiz
- Michigan Tech Volcano Observatory

Michigan Technological University
5100 Forest Drive
Houghton, MI 49931-1295
T: 906-487-2531
F: 906-487-1072
E: geo@mtu.edu
www.geo.mtu.edu

Michigan Technological University is an equal opportunity educational institution/employer.

Since 1885, we have offered educational excellence in beautiful Upper Michigan. Our students create the future in arts, humanities, and social sciences; business and economics; computing; engineering; forestry and environmental science; natural and physical sciences; and technology.

Michigan Technological University is an equal opportunity educational institution/employer.
With few exceptions, you will spend part of your working time outdoors enjoying nature—and, if desired, traveling the world. Upon graduation, you could work for oil companies such as Shell Exploration and Development, BP, Marathon, or Jordan Exploration; gas companies such as Nicor Gas, SEMCO, or DTE Energy; petroleum service companies such as Schlumberger, BakerHughes, or Halliburton; mining companies such as Newmont, Freeport-McMoRan, or Rio Tinto; environmental and engineering consulting firms such as Arcadis, URS, Ciorba Group, Golder Associates—or any number of smaller firms. Graduates also work for government agencies, including the US Geological Survey and state and local municipalities. Many enter graduate school for greater specialization.

Make The World Your Career

Do you like the outdoors and working with state-of-the-art technology? If so, check out these options.

GEODVILICAL ENGINEERING

Geodvilical engineers apply engineering to human problems that relate to the earth’s atmosphere, surface, and interior. The field offers many specialty areas, including exploration for energy and mineral resources, hydrogeology and groundwater engineering, and hazard investigation and planning.

As a geodvilical engineer, you could locate new sites and design facilities for nuclear waste disposal, recover groundwater resources, stabilize rock and soil slopes for dams, highways, and property development, and minimize the danger from landslides, volcanoes and earthquakes.

GEOLOGY

Geology is the study of the earth, earth materials, and earth systems. It is a physical and natural science. Geologists are involved in the development of natural resources, protection of the environment, conservation and land use planning, and research and development.

As a geologist, you could explore and extract minerals, search for energy resources, dispose of nuclear and chemical waste, choose the best sites for structures, and study volcanoes and earthquakes.

APPLIED GEOPHYSICS

Geophysics is the study of Earth through the use of physics. Applied geophysics is the exploration of the earth’s resources, and the measurement and evaluation of natural resources for industry and government use. Applied geophysics also evaluates and mitigates natural hazards. As a geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

CENTRAL INVESTIGATIONS

The earth sciences degree gives you the flexibility to pursue a teaching career, continue your studies in graduate school, or seek employment as a professional geologist.

MINORS INCLUDE

Applied Geophysics
Geodvilical Engineering
Earth Sciences
Mining
Remote Sensing
Enterprise

Jot an Enterprise team and get a first-rate edge on your education. Relevant and engaging engineering, design, and communication projects. Developing market, leadership, and teamwork skills. Teams are made up of students from every major and open like companies to the public sector. You can join an Enterprise team starting in your second year at Michigan Tech. Visit departmental The Alpha Tech Enterprise Trak, but you can join an Enterprise team more than thirty-eight across campus.

www.goe.mtu.edu

www.geo.mtu.edu
With few exceptions, you will spend part of your working time outdoors, enjoying nature—and, if desired, traveling the world. Upon graduation, you could work for oil companies such as Shell Exploration and Development, BP, Marathon, or Jordan Exploration; gas companies such as Nicor Gas, SEMCO, or DTE Energy; petroleum service companies such as Schlumberger, BakerHughes, or Halliburton; mining companies such as Newmont, Freeport-McMoRan, or Rio Tinto; environmental and engineering consulting firms such as Arcadis, URS, Ciorba Group, Golder Associates—or any number of smaller firms. Graduates also work for government agencies, including the US Geological Survey and state and local municipalities. Many return to graduate school for greater specialization.

CAREER OPTIONS

Join an Enterprise team and get the extra edge on your education. Solve real-world engineering, design, and communication problems. Develop marketing, business, and leadership skills. Teams are made up of students from every major and operate like companies in the private sector. You can join an Enterprise team starting in your second year at Michigan Tech. The department has more than twenty-eight teams across campus.

www.geo.mtu.edu

ENTREPRENEURS

Innovate in the study of Earth through the use of physics, applied computer science, or the exploration of such topics as the development of renewable and nonrenewable energy resources, and for evaluation and mitigation of natural hazards. As a geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

EARTH SCIENCE EDUCATION

The earth science education degree gives you the flexibility to pursue a teaching career, continue your studies in graduate school, or seek employment as a professional geologist.

MINORS INCLUDE

Applied Geophysics
Geological Engineering
Earth Sciences
Mining
Remote Sensing
Enterprise

Do you like the outdoors and working with state-of-the-art technology? If so, check out these options.

GEOLOGICAL ENGINEERING
Geological engineers apply engineering to human problems that relate to the earth’s atmosphere, surface, and interior. The field offers many specialty areas, including exploration for energy and mineral resources, hydrogeology and groundwater engineering, and hazard investigation and planning.

As a geological engineer, you could locate new sites and design facilities for nuclear waste disposal, develop and restore groundwater resources, stabilize rock and soil slopes for dams, highways, and property development, and minimize the danger from landslides, volcanoes, and earthquakes.

GEOLOGY
Geology is the study of the earth, earth materials, and earth systems. It is a physical and natural science. Geologists are involved in the development of natural resources, protection of the environment, restoration and land use planning, and research and development.

As a geologist, you could explore and extract minerals, search for energy resources, dispose of nuclear and chemical waste, choose the best sites for structures, and study volcanoes and earthquakes.

APPLIED GEOPHYSICS
Geophysics is the study of Earth through the use of physics, applied computer science, or the exploration of such topics as the development of renewable and nonrenewable energy resources, and for evaluation and mitigation of natural hazards. As an geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

GEOPHYSICS
Geophysics is the study of Earth through the use of physics. Applied geophysics is the application of such studies to the betterment of mankind and the environment. It includes understanding of the earth, its geology, and properties related to the earth, such as its magnetic fields, electrical fields, and seismic waves.

As a geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

EARTH SCIENCE EDUCATION
The earth science education degree gives you the flexibility to pursue a teaching career, continue your studies in graduate school, or seek employment as a professional geologist.

MINORS INCLUDE

Applied Geophysics
Geological Engineering
Earth Sciences
Mining
Remote Sensing
Enterprise

Do you like the outdoors and working with state-of-the-art technology? If so, check out these options.

GEOLOGICAL ENGINEERING
Geological engineers apply engineering to human problems that relate to the earth’s atmosphere, surface, and interior. The field offers many specialty areas, including exploration for energy and mineral resources, hydrogeology and groundwater engineering, and hazard investigation and planning.

As a geological engineer, you could locate new sites and design facilities for nuclear waste disposal, develop and restore groundwater resources, stabilize rock and soil slopes for dams, highways, and property development, and minimize the danger from landslides, volcanoes, and earthquakes.

GEOLOGY
Geology is the study of the earth, earth materials, and earth systems. It is a physical and natural science. Geologists are involved in the development of natural resources, protection of the environment, restoration and land use planning, and research and development.

As a geologist, you could explore and extract minerals, search for energy resources, dispose of nuclear and chemical waste, choose the best sites for structures, and study volcanoes and earthquakes.

APPLIED GEOPHYSICS
Geophysics is the study of Earth through the use of physics, applied computer science, or the exploration of such topics as the development of renewable and nonrenewable energy resources, and for evaluation and mitigation of natural hazards. As a geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

EARTH SCIENCE EDUCATION
The earth science education degree gives you the flexibility to pursue a teaching career, continue your studies in graduate school, or seek employment as a professional geologist.

MINORS INCLUDE

Applied Geophysics
Geological Engineering
Earth Sciences
Mining
Remote Sensing
Enterprise

Make The World Your Career

Do you like the outdoors and working with state-of-the-art technology? If so, check out these options.

GEOLOGICAL ENGINEERING
Geological engineers apply engineering to human problems that relate to the earth’s atmosphere, surface, and interior. The field offers many specialty areas, including exploration for energy and mineral resources, hydrogeology and groundwater engineering, and hazard investigation and planning.

As a geological engineer, you could locate new sites and design facilities for nuclear waste disposal, develop and restore groundwater resources, stabilize rock and soil slopes for dams, highways, and property development, and minimize the danger from landslides, volcanoes, and earthquakes.

GEOLOGY
Geology is the study of the earth, earth materials, and earth systems. It is a physical and natural science. Geologists are involved in the development of natural resources, protection of the environment, restoration and land use planning, and research and development.

As a geologist, you could explore and extract minerals, search for energy resources, dispose of nuclear and chemical waste, choose the best sites for structures, and study volcanoes and earthquakes.

APPLIED GEOPHYSICS
Geophysics is the study of Earth through the use of physics, applied computer science, or the exploration of such topics as the development of renewable and nonrenewable energy resources, and for evaluation and mitigation of natural hazards. As a geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

EARTH SCIENCE EDUCATION
The earth science education degree gives you the flexibility to pursue a teaching career, continue your studies in graduate school, or seek employment as a professional geologist.

MINORS INCLUDE

Applied Geophysics
Geological Engineering
Earth Sciences
Mining
Remote Sensing
Enterprise
Our curriculum focuses intensely on field studies. Hands-on training and experience are critical to your success. We teach two required field courses in the summer but also provide plenty of opportunities for students. Classes are offered at remote scientific research sites here on the Keweenaw Peninsula and beyond. Recent field trips included Alaska, Utah, Nicaragua, Mexico, Newfoundland, Florida, Guatemala, Canada, and Montana.

Why Choose Michigan Tech?

We are located in Michigan’s Copper Country, at the south shore of Lake Superior. Michigan Technological University is an equal opportunity educational institution and employer.

Since 1885, we have offered educational excellence in beautiful Upper Michigan. Our students create the future in arts, humanities, and social sciences; business and economics; computing; engineering; forestry and environmental science; natural and physical sciences; and technology.

Create the Future

Michigan Technological University is an equal opportunity educational institution/employment opportunity employer.

We prepare students to understand and safely manage the Earth and its resources for the future. Along the way, we strive to foster an environment in which you can learn to think, conduct research, apply knowledge, and achieve success in a diverse and changing global economy. Join us and discover your potential.

Michigan Technological University
Geological & Mining Engineering and Sciences
630 Dow Environmental Sciences & Engineering Building
1400 Townsend Drive
Houghton, MI 49931-1295

E: geo@mtu.edu

www.geo.mtu.edu
Field Studies
Our curriculum focuses intensely on field studies. Hands-on training and experience are critical to your success. We teach two required field courses in the summer but also provide plenty of opportunities for students to learn in the field. Recent field trips included Alaska, Utah, Nicaragua, Mexico, Newfoundland, Florida, Guatemala, Canada, and Montana.

Why Choose Michigan Tech?
We are located in Michigan’s Copper Country, in the southwest corner of Upper Peninsula. Much of the country is comprised of the scenic Keweenaw Peninsula, featuring a unique geology and rugged topography unusual to the Midwest. An international focal point for research, the area is ideal for a wide variety of geological studies.

Excellent Indoor Facilities
Our department features world-class computer and analytical facilities, including:
- Remote Sensing and Volcanology
- Subsurface Remediation and Visualization
- Seismic Petrophysics
- Environmental Magnetism
- Rock Mechanics
- Environmental Geochemistry
- X-Ray Diffraction
- Subsurface Visualization Lab
- Remote Sensing Institute
- Michigan Tech Research Vessel—R/V Agassiz
- Michigan Tech Volcano Observatory

We prepare students to understand and safely manage the Earth and its resources for the future. Along the way, we strive to foster an environment in which you can learn to think, conduct research, apply knowledge, and achieve success in a diverse and changing global economy. Join us and discover your potential.
With the exception of a few, you will spend part of your working time outdoors enjoying nature—and, if desired, traveling the world.

Upon graduation, you could work for oil companies such as Shell Exploration and Development, BP, Marathon, or Jordan Exploration; gas companies such as Nicor Gas, SEMCO, or DTE Energy; petroleum service companies such as Schlumberger, BakerHughes, or Halliburton; or mining companies such as Newmont, Freeport-McMoRan, or Rio Tinto; environmental and engineering consulting firms such as Arcadis, URS, Ciorba Group, Golder Associates—or any number of smaller firms.

Graduates also work for government agencies, including the US Geological Survey and state and local municipalities. Many new graduate students also pursue graduate specialization.

Make The World Your Career

Do you like the outdoors and working with state-of-the-art technology? If so, check out these options.

GEOLOGICAL ENGINEERING

Geological engineers apply engineering to human problems that relate to the earth's atmosphere, surface, and interior. The field offers many specialty areas, including exploration for energy and mineral resources, hydrogeology and groundwater engineering, and hazard investigation and planning.

As a geological engineer, you could locate new sites and design facilities for nuclear waste disposal, clean up and restore groundwater resources, or manage water and soil quality. You could also work on projects to predict and control earthquake and landslide hazards.

GEOLOGY

Geology is the study of the earth, its materials, and its processes through the use of scientific and mathematical methods. Geologists are involved in the development of natural resources, protection of the environment, conservation, and land use planning, and research and development in applied geophysics.

As a geologist, you could explore and extract minerals, search for energy resources, dispose of nuclear and chemical waste, choose the best sites for structures, and study volcanoes and earthquakes.

APPLIED GEOPHYSICS

Geophysics is the study of Earth through the use of physics. Applied geophysics is the exploration of such things as oil and gas deposits, mineral and water resources, and the identification of natural hazards. As a geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

GEO SCIENCE EDUCATION

The earth science education degree gives you the flexibility to pursue a teaching career, continue your studies in graduate school, or seek employment as a professional geologist.

MINORS INCLUDE

Applied Geophysics

Geological Engineering

Earth Sciences

Mining

Remote Sensing

Aqua Terra Tech Enterprise

Join an Enterprise team and get the extra edge on your education. Belmont the engineering, design, and communication problems. Develop modeling, leadership, and communication skills. Teams are made up of students from every major and operate like companies in the private sector. You can join a Enterprise team starting in your second year at Michigan Tech. Visit https://www.mtu.edu/enterprise/ for more information.

www.mtu.edu
With few exceptions, you will spend part of your working time outdoors enjoying nature—and, if desired, traveling the world. Upon graduation, you could work for oil companies such as Shell Exploration and Development, BP, Marathon, or Jordan Exploration; gas companies such as Nicor Gas, SEMCO, or DTE Energy; petroleum service companies such as Schlumberger, BakerHughes, or Halliburton; mining companies such as Newmont, Freeport-McMoRan, or Rio Tinto; environmental and engineering consulting firms such as Arcadis, URS, Ciorba Group, Golder Associates—or any number of smaller firms. Graduates also work for government agencies, including the US Geological Survey and state and local municipalities. Many also graduate school for greater specialization.

Make The World Your Career
Do you like the outdoors and working with state-of-the-art technology? If so, check out these options.

ECONOMIC ENGINEERING
Economic engineers apply engineering to human problems that relate to the earth's atmosphere, surface, and interior. The field offers many specialty areas, including mining, mineral, energy, and natural resources. Geology plays an important role in economic investigations and planning.

As a geologist, you could locate new sites and design facilities for nuclear waste disposal, clean up abandoned mines, or perform environmental assessments of new developments. Geologists are involved in the development of national resources, protection of the environment, and natural resources planning and development investigations and planning.

As a geophysicist, you will perform many of the same duties as a geologist but be more involved in gathering subsurface data for laboratory interpretation.

Earth Science Education
The earth science education degree gives you the flexibility to pursue a career in teaching, continue your studies in graduate school, or seek employment as a professional geologist.

Enterprise Opportunities
Join an Enterprise team and get the extra edge on your education. Solve real-world engineering, design, and communication problems. Develop marketing, leadership, and teamwork skills. Teams are made up of students from every major and specialize like corporations in the private sector. You can join an Enterprise team starting in your second year at Michigan Tech. Visit the department’s Facebook page for more information.

www.geo.mtu.edu
Field Studies
Our curriculum focuses intensely on field studies. Hands-on training and experience are critical to your success. We teach two required field courses in the summer but also provide plenty of opportunities for students to travel to classic and novel field sites here on the Keweenaw Peninsula and beyond. Recent field trips included Alaska, Utah, Nicaragua, Mexico, Newfoundland, Florida, Guatemala, Canada, and Montana.

Why Choose Michigan Tech?
We are located in Michigan’s Copper Country, on Lake Superior. Our students are surrounded by a unique geology and rugged topography unusual to the Midwest. An international focal point for mineral collecting, this area is ideal for a wide variety of geologic studies. The peninsula was also the center of a billion-dollar native copper mining district. The development of that mining district eventually led to the creation of the Michigan Mining School more than 100 years ago. Our department is the direct descendant of that original school.

Beautiful Outdoor Facilities
We are located in Michigan’s Copper Country, on the south shore of Lake Superior. We are surrounded by a unique geology and rugged topography unusual to the Midwest. An international focal point for mineral collecting, this area is ideal for a wide variety of geologic studies.

Excellent Indoor Facilities
Our department features world-class computer and analytical laboratory equipment(7,10),(993,991). Labs and research areas:

- Remote Sensing and Volcanology
- Subsurface Remediation and Visualization
- Seismic Petrophysics
- Environmental Magnetism
- Rock Mechanics
- Environmental Geochemistry
- X-Ray Diffraction
- Subsurface Visualization Lab
- Remote Sensing Institute
- Michigan Tech Research Vessel—R/V Agassiz
- Michigan Tech Volcano Observatory

Geological & Mining Engineering and Sciences
Michigan Technological University is an equal opportunity educational institution/employer.

Since 1885, Michigan Technological University has offered educational excellence in beautiful Upper Michigan. Our students create the future in arts, humanities, and social sciences; business and economics; computing; engineering; forestry and environmental science; natural and physical sciences; and technology.

Michigan Technological University is an equal opportunity educational institution/employer.

Since 1885, Michigan Technological University has offered educational excellence in beautiful Upper Michigan. Our students create the future in arts, humanities, and social sciences; business and economics; computing; engineering; forestry and environmental science; natural and physical sciences; and technology.

Michigan Technological University is an equal opportunity educational institution/employer.