How Are Earthquake Magnitudes Measured?

The Richter Scale



Figure 1 - Charles Richter studying a seismogram.


There are a number of ways to measure the magnitude of an earthquake. The first widely-used method, the Richter scale, was developed by Charles F. Richter in 1934. It used a formula based on amplitude of the largest wave recorded on a specific type of seismometer and the distance between the earthquake and the seismometer. That scale was specific to California earthquakes; other scales, based on wave amplitudes and total earthquake duration, were developed for use in other situations and they were designed to be consistent with Richter’s scale.


The Moment Magnitude Scale

Unfortunately, many scales, such as the Richter scale, do not provide accurate estimates for large magnitude earthquakes. Today the moment magnitude scale, abbreviated MW, is preferred because it works over a wider range of earthquake sizes and is applicable globally. The moment magnitude scale is based on the total moment release of the earthquake. Moment is a product of the distance a fault moved and the force required to move it. It is derived from modeling recordings of the earthquake at multiple stations. Moment magnitude estimates are about the same as Richter magnitudes for small to large earthquakes. But only the moment magnitude scale is capable of measuring M8 (read ‘magnitude 8’) and greater events accurately.

Magnitudes are based on a logarithmic scale (base 10). What this means is that for each whole number you go up on the magnitude scale, the amplitude of the ground motion recorded by a seismograph goes up ten times. Using this scale, a magnitude 5 earthquake would result in ten times the level of ground shaking as a magnitude 4 earthquake (and 32 times as much energy would be released). To give you an idea how these numbers can add up, think of it in terms of the energy released by explosives: a magnitude 1 seismic wave releases as much energy as blowing up 6 ounces of TNT. A magnitude 8 earthquake releases as much energy as detonating 6 million tons of TNT. Pretty impressive, huh? Fortunately, most of the earthquakes that occur each year are magnitude 2.5 or less, too small to be felt by most people.

Magnitude scales can be used to desribe earthquakes so small that they are expressed in negative numbers. The scale also has no upper limit, so it can describe earthquakes of unimaginable and (so far) unexperienced intensity, such as magnitude 10.0 and beyond.

Here's a table describing the magnitudes of earthquakes, their effects, and the estimated number of those earthquakes that occur each year.

The Mercalli Scale



Figure 2 - Giuseppe Mercalli

Another way to measure the strength of an earthquake is to use the Mercalli scale. Invented by Giuseppe Mercalli in 1902, this scale uses the observations of the people who experienced the earthquake to estimate its intensity.

The Mercalli scale isn't considered as scientific as the Richter scale, though. Some witnesses of the earthquake might exaggerate just how bad things were during the earthquake and you may not find two witnesses who agree on what happened; everybody will say something different. The amount of damage caused by the earthquake may not accurately record how strong it was either.



Some things that affect the amount of damage that occurs are:

Different building designs hold up differently in an earthquake and the further you are from the earthquake, the less damage you'll usually see. Whether a building is built on solid rock or sand makes a big difference in how much damage it takes. Solid rock usually shakes less than sand, so a building built on top of solid rock shouldn't be as damaged as it might if it was sitting on a sandy lot.


Figures 1 and 2 from Walker, 1982. All other content is 2007 Michigan Technological Univeristy. Permission granted for reproduction for non-commercial uses.