Earth Science Institute II June 23, 2010 Day 3 Correlation of EarthComm Curriculum and HSCE's

EarthComm Curr	iculum Unit Code
EDG1 = Earth's Dynamic Geospheres:	ENR3 = Earth's Natural Resources:
Chapter 1, Volcanoes	Chapter 3, Water Resources
EDG2 = Earth's Dynamic Geospheres:	ESE1 = Earth System Evolution: Chapter
Chapter 2, Plate Tectonics	1, Astronomy
EDG2 = Earth's Dynamic Geospheres:	ESE2 = Earth System Evolution: Chapter
Chapter 3, Earthquakes	2, Climate Change
EFS1 = Earth's Fluid Spheres: Chapter 1,	ESE3 = Earth System Evolution: Chapter
Oceans	3, Changing Life
ENR1 = Earth's Natural Resources:	
Chapter 1, Energy Resources	

5,

	estuarine impacts, oceanic algae growth, and coral bleaching) and changing climatic zones (including the adaptive capacity of the	
	biosphere).	
0	Describe renewable and nonrenewable sources of energy for human consumption (electricity, fuels), compare their effects on the environment, and include overall costs and benefits.	E2.4A
0	Explain how the impact of human activities on the environment (e.g., deforestation, air pollution, coral reef destruction) can be understood through the analysis of interactions between the four	E2.4B
	Earth systems.	

Locat	ion: Houghton Water	· Supply / Sewage Treatment	
EarthC	Comm Connections	ENR3 = Earth's Natural Resources: Chapter 3,	Water
]	Resources, Activity 2, p. R156, Activity 4, p. R	177, Activity
		5, p. R184, Activity 6, p. R196	, <u>,</u>
]	ENR1 = Earth's Natural Resources: Chapter 1,	Energy
]	Resources, Activity 5, p. R41	6,
]	ESE3 = Earth System Evolution: Chapter 2. Ch	anging Life.
		Activity 1, p. E148, Activity 2, p.E156, Activity	4, p.E173,
		Activity 5, p.E182	,1 ,
]	ESE2 = Earth System Evolution: Chapter 2, Cli	mate
		Change, Activity 5, p.E125, Activity 6, p.E136	
Learr	ning Outcomes:		HSCE
0	Explain why the Earth	is essentially a closed system in terms of	E2.1A
Ũ	matter		
0	Analyze the interactio	ons between the major systems (geosphere.	E2.1B
_	atmosphere, hvdrosph	ere, and biosphere) that make up the Earth.	
0	Explain, using specific	c examples, how a change in one system	E2.1C
	affects other Earth sys	stems.	
0	Compare and contrast	surface water systems (lakes, rivers, streams,	E4.1A
	wetlands) and groundy	water in regard to their relative sizes as	
	Earth's freshwater res	ervoirs and the dynamics of water movement	
	(inputs and outputs, re	esidence times, sustainability).	
0	Explain the features an	nd processes of groundwater systems and how	E4.1B
	the sustainability of N	orth American aguifers has changed in recent	
	history (e.g., the past	100 years) qualitatively using the concepts of	
	recharge, residence tir	me, inputs, and outputs.	
0	Explain how water qu	ality in both groundwater and surface systems	E4.1C
	is impacted by land us	se decisions.	
0	Explain the natural me	echanism of the greenhouse effect, including	E5.4A
	comparisons of the ma	ajor greenhouse gases (water vapor, carbon	
	dioxide, methane, nitr	rous oxide, and ozone).	
0	Describe natural mech	nanisms that could result in significant	E5.4B
	changes in climate (e.	g., major volcanic eruptions, changes in	
	sunlight received by the	he earth, and meteorite impacts).	
0	Based on evidence of	observable changes in recent history and	E5.4D

	climate change models, explain the consequences of warmer oceans	
	(including the results of increased evaporation, shoreline and	
	estuarine impacts, oceanic algae growth, and coral bleaching) and	
	changing climatic zones (including the adaptive capacity of the	
	biosphere).	
0	Describe renewable and nonrenewable sources of energy for human	E2.4A
	consumption (electricity, fuels), compare their effects on the	
	environment, and include overall costs and benefits.	
0	Explain how the impact of human activities on the environment	E2.4B
	(e.g., deforestation, air pollution, coral reef destruction) can be	
	understood through the analysis of interactions between the four	
	Earth systems.	
0	Relate major events in the history of the Earth to the geologic time	E5.3C
	scale, including formation of the Earth, formation of an oxygen	
	atmosphere, rise of life, Cretaceous-Tertiary (K-T) and Permian	
	extinctions, and Pleistocene ice age.	

Locat	ion: Baltic Mine		
EarthC	Comm Connections	EDG1 = Earth's Dynamic Geospheres: Chapter	r 1,
		Volcanoes, Activity 2, p.G14, Activity 6, p.G43	3
		EDG2 = Earth's Dynamic Geospheres: Chapter	r 2, Plate
		Tectonics	,
		ENRI = Earth's Natural Resources: Chapter 2,	Minerals,
		Activity 2, p.R96, Activity 3, p.R111, Activity	5, p.R127,
		Activity 6, p.R136	
Learr	ning Outcomes:		HSCE
0	Discriminate betwee	en igneous, metamorphic, and sedimentary	E3.1A
	rocks and describe th	he processes that change one kind of rock into	
	another.		
0	Explain the relations	ship between the rock cycle and plate tectonics	E3.1B
	theory in regard to the	ne origins of igneous, sedimentary, and	
	metamorphic rocks.		
0	Use the distribution	of earthquakes and volcanoes to locate and	E3.4A
	determine the types	of plate boundaries.	
0	Describe how the size	zes of earthquakes and volcanoes are measured	E3.4B
	or characterized.	-	
0	Describe the effects	of earthquakes and volcanic eruptions on	E3.4C
	humans.		
0	Describe natural pro	cesses in which heat transfer in the Earth	E2.2C
	occurs by conduction	n, convection, and radiation.	
0	Describe the interior	of the Earth (in terms of crust, mantle, and	E3.2A
	inner and outer cores	s) and where the magnetic field of the Earth is	
	generated.		
0	Describe the differen	nces between oceanic and continental crust	E3.2C
	(including density, a	ge, and composition).	
0	Explain how plate te	ectonics accounts for the features and processes	E3.3A

	(sea floor spreading, mid-ocean ridges, subduction zones,	
	earthquakes and volcanoes, mountain ranges) that occur on or near	
	the Earth's surface.	
0	Explain why tectonic plates move using the concept of heat flowing	E3.3B
	through mantle convection, coupled with the cooling and sinking of	
	aging ocean plates that result from their increased density.	
0	Describe the motion history of geologic features (e.g., plates,	
	Hawaii) using equations relating rate, time, and distance.	E3.3C
0	Distinguish plate boundaries by the pattern of depth and magnitude	
	of earthquakes.	E3.3D

Locati	ion: Caledonia Mine		
EarthC	Comm Connections	EDG1 = Earth's Dynamic Geospheres: Chapte	r 1,
		Volcanoes, Activity 2, p.G14, Activity 6, p.G4	3
		EDG2 = Earth's Dynamic Geospheres: Chapte	r 2, Plate
		Tectonics	
		ENRI = Earth's Natural Resources: Chapter 2	, Minerals,
		Activity 2, p.R96, Activity 3, p.R111, Activity	5, p.R127,
		Activity 6, p.R136	-
Learr	ning Outcomes:		HSCE
0	Discriminate betwee	n igneous, metamorphic, and sedimentary	E3.1A
	rocks and describe th	he processes that change one kind of rock into	
	another.		
0	Explain the relations	ship between the rock cycle and plate tectonics	E3.1B
	theory in regard to the	ne origins of igneous, sedimentary, and	
	metamorphic rocks.		
0	Use the distribution	of earthquakes and volcanoes to locate and	E3.4A
	determine the types	of plate boundaries.	
0	Describe how the siz or characterized.	zes of earthquakes and volcanoes are measured	E3.4B
0	Describe the effects	of earthquakes and volcanic eruptions on	E3.4C
	humans.		
0	Describe natural pro	cesses in which heat transfer in the Earth	E2.2C
	occurs by conduction	n, convection, and radiation.	
0	Describe the interior	of the Earth (in terms of crust, mantle, and	E3.2A
	inner and outer cores	s) and where the magnetic field of the Earth is	
	generated.		
0	Describe the differen	nces between oceanic and continental crust	E3.2C
	(including density, a	ge, and composition).	
0	Explain how plate te	ectonics accounts for the features and processes	E3.3A
	(sea floor spreading,	mid-ocean ridges, subduction zones,	
	earthquakes and vol	canoes, mountain ranges) that occur on or near	
	the Earth's surface.		
0	Explain why tecton	c plates move using the concept of heat flowing	E3.3B
	through mantle conv	ection, coupled with the cooling and sinking of	
	aging ocean plates th	hat result from their increased density.	

0	Describe the motion history of geologic features (e.g., plates,	
	Hawaii) using equations relating rate, time, and distance.	E3.3C
0	Distinguish plate boundaries by the pattern of depth and magnitude	
	of earthquakes.	E3.3D