a restoring time constant of 5 months for the surface temperature',
a collapse of NADW formation induced by the introduction of a
large negative salinity anomaly in the North Atlantic leads also to
enhanced ventilation of the thermocline with fresher water (with
signal propagation by coastal and equatorial Kelvin and Rossby
waves within less than three decades from the Atlantic through the
Indian Ocean to the northeast Pacific). However, this mechanism
(compare ref. 6) accounts for only about one-third of the radio-
carbon signal in the OAGCM. The remaining part thus can be
explained by effects caused by changes in the atmosphere.

Although there is some agreement between model and geological
data for circulation changes along the American west coast, there are
also some disagreements. The cooling near the coast in our model is
rather small (~1K), whereas sediment records suggest®’ a surface
cooling of 2-3K. Because there is some discrepancy between
alkenone-based and foraminifera-based (Globigerina pachyderma)
SSTestimates for the Last Glacial Maximum from the Santa Barbara
basin®?, and G. pachyderma may have a subsurface habitat®, the
upwelling ‘discrepancies may not necessarily reflect model
inadequacies. The large changes in land ice cover, which are not
included in our simulations, would also influence the circulation
response. Another important shortcoming of the simulations is the
coarse resolution (both horizontally and vertically) which makes the
comparison with local phenomena in regions with large topography
gradients questionable and does not allow the simulation of several
important small-scale features. To address the above discrepancies a
more complete set of experiments would be required with fully
realistic boundary conditions for the deglacial.

Despite the differences mentioned above, our results clearly
demonstrate the influence of variations in NADW formation on
the North Pacific. In the case of a collapse of NADW formation,
both the atmospheric and oceanic transmission of the signal lead to
enhanced ventilation of the northeast Pacific thermocline, with the
atmospheric effect about twice as strong as the oceanic. These
results explain concurrent changes in the North Atlantic and
North Pacific for both the Younger Dryas and (possibly) earlier
millenial-scale cooling events of a similar nature’ . Owing to the
atmospheric teleconnection, a cooling in the North Atlantic and
increased sea-ice cover alone seem to be sufficient to enhance
thermocline variation in the northeast Pacific. [
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Catastrophic collapse at
stratovolcanoes induced
by gradual volcano spreading

B. van Wyk de Vries & P. W. Francis

Department of Earth Sciences, The Open University, Walton Hall, Milton Keynes,
UK

Unlike ordinary mountains, which are formed by slow uplift and
erosion, volcanoes are constructed rapidly. As a consequence,
many are liable to massive flank failures, leading to debris
avalanches (for example, at Mount St Helens in 1980). Such
failures occur worldwide about once every 25 years (ref. 1) and
even small ones can present a major hazard—in particular if far-
reaching tsunamis are generated, as at Mayu-yama in 1792 (ref. 2).
Previous work has tended to emphasize differences in eruption
style associated with flank failure’, but here we focus on the
fundamental structural causes of failure. Most volcanic failures
are generated by magmatic intrusion and flank spreading’. We
present evidence, however, that Mombacho volcano in Nicaragua
experienced a previously unrecognized type of failure, triggered
by sub-volcanic basement spreading. Notably, collapses related to
basement spreading do not require that the volcano be magma-
tically active, and thus flank failure may pose a significant risk
even at inactive volcanoes, which are rarely monitored.

Mombacho volcano rises 1,400 m above the west shores of Lake
Nicaragua, on a basement of Quaternary ignimbrite of the Las
Sierras Formation*® (Fig. 1). Conspicuous debris avalanche deposits
on two sides of the volcano provide unequivocal evidence for recent
flank failure. One deposit, below a well defined collapse scar, forms
the remarkable Las Isletas archipelago in Lake Nicaragua (Fig. 1).
The other, on the south side below the deep ‘El Crater’ scar, covers
~60 km? with hummocky avalanche deposit (Fig. 2). Forest cover
indicates that the avalanche deposits are at least 1,000 years old. The
20,000-yr-old Apoyo pumice underlies the deposits, giving a max-
imum age’.

Volcano spreading provides a framework to interpret the struc-
tural and magmatic evolution of volcanoes’”’. We propose here a
new failure mode caused by lateral displacement of sub-volcanic
strata. A similar process has been proposed for the Hawaiian shield
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volcanoes'’ but remains controversial 2, in part because of the lack
of physical evidence for the involvement of basement material, Our
observations lend weight to the hypothesis, although we stress the
differences in scale and geological context: Mombacho is a small
standard stratocone, whereas Hawaii is a large oceanic shield
complex. In particular, the thickness of the proposed weak layer
at Hawaii is a small fraction (1%) of the volcano height’, and acts
purely as a slip plane on which internal deformation of the volcano
flank is accommodated. At Mombacho, the weak layer thickness is
~20% of the volcano height and it is deformation taking place
within this layer that causes failure of the overlying edifice.

Barlier work suggested that the radial basement spreading limited
the hazard of flank failure at volcanoes®, but here we argue that
spreading on a restricted sector initiated the Las Isletas failure. In
contrast, the El Crater failure resulted from progressive hydrother-
mal weakening of the cone and consequential flank spreading.
Evidence for explosive activity in the form of tephra layers, pyro-
clastic flow deposits or juvenile fragments is absent from both the
Las Isletas and El Crater deposits. This emphasises that flank failure
can occur without associated magmatic activity.

The presence of large amounts of Las Sierras ignimbrite within
the Las Isletas avalanche deposit demonstrates that the failure
involved basement, because these ignimbrites underlie the volcano.
The Las Sierras material comprises the central and lowermost parts
of the deposit, adjacent to a shallow basin forming the Aseses inlet
(Figs 1 and 2). A small scarp extending from the eastern wall to the
lake indicates that the failure margin reached the lake here. This
suggests that the failure plane cut into basement under Aseses
beyond the volcano foot. An analogous situation occurs at
Socompa, North Chile, where a debris avalanche deposit contains
60% basement' and the failure margin extends 5km from the
volcano™!. Blocks of Las Sierras ignimbrite have pervasive calcite-
cemented shear fractures, quite distinct from the open, spaced
fractures associated with avalanche disagregation, and consistent
with deformation before failure. Thrusting along the north base and
slumping of the southeastern side’ provide additional evidence of
slow basement deformation (Fig. 2). Thus before collapse took
place, the north and east base of Mombacho was spreading out-
wards. This preferential direction of spreading may reflect localized
lake sediment layers within the Las Sierras Formation, though these
were not identified in the deposit. Alternatively, the orientation of
spreading structures could have been controlled by regional stress,
which in Nicaragua promotes east—west extension and north—
south compression'.

The floor of the collapse scar slopes at a similar angle to the cone
surface, suggesting that the avalanche slid along a bedding plane
(Fig. 3). In this respect, Las Isletas resembles many dip-slope slides
and avalanches, both volcanic and non-volcanic'®'”, but it also has a
lower part extending into the basement. The combination of dip-
slope upper slide and a lower spreading sector could have developed
into the avalanche in the way shown in Fig. 3a. Thrust anticline
growth at the front of the spreading sector elevates the front of the
spreading sector, so that basement can be included in a subsequent
failure without excessively deep excavation (Fig. 3a).

The model implies that spreading is integral to the development
of failure and demonstrates that identification of spreading is an
important first step in assessing potential collapse hazard. Further-
more, in contrast to radially spreading volcanoes’, preferential
spreading in one direction is critical to collapse development:
whereas radial spreading tends to generate inward-dipping graben
which inhibit collapse®, sector spreading (as at Mombacho) gen-
erates failure-prone outward-dipping structures (Fig. 3b). Spread-
ing in a preferential direction may be caused by buttressing®, by the
regional slope of basement beds, by regional stress”, by weak
basement or by high fluid pressures under one side. Importantly,
hot springs in the Aseses inlet suggest a possible role for elevated
pore pressures (Fig. 2).
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Figure 1 View of the Las Isletas collapse deposit at Mombacho. The islands of
the archipelago are the distal part of the avalanche deposit and are composed of
basement Las Sierras ignimbrite with a veneer of rocks from the volcano above.
The basement ignimbrites were excavated from the Aseses embayment seen in
the middle ground. They slope from 160 m above sea level on the western side of
Mombacho to about sea level in the area of the photograph: a dip of ~2° (ref. 4).
There are no confirmed reports of historic eruptions at Mombacho?.

\'\'85"54’

Las Isletas

Quaterna
volcanoes

Basement in Las Isletas deposit ¥ Normal fault

~ | Fresh Mombacho rock in deposits A Thrust
Altered rock in El Crater deposit Y Avalanche lobe
Scree cover in El Crater [aaIn
& Hot spring

Intrusive plugs in El Crater

Figure 2 Geological map of Mombacho, showing the two recent flank failures
and debris avalanche deposits of Las Isletas and El Crater. Insets show location
of Mombacho and a detail of El Crater. Points on map draw attention to: A,
thrusting observed at north base®; B, scarp in Las Isletas depositindicating buried
failure margin extending down into basement; C, La Calera post-collapse lava
flow; D, normal faults resulting from spreading of the southeastern flank.
Fumarole field in EI Crater shown by black circle at E Numbers in Las Isletas
deposit indicate sequential emplacement of lobes by retrogressive collapse.
Within the central lobe which forms the Las Isletas archipelago (1), the Las Sierras
facies forms the lowest material, partially covered by fresh lava blocks. By
contrast, the overlying marginal lobes are composed entirely of fresh cone
material (2). Small secondary lobes overly the La Calera lava flow, erupted in
the scar after the collapse (3), and one large headwall segment still awaits
collapse.
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In contrast to Las Isletas, the El Crater collapse scar is at least
400 m above the sub-volcanic basement, so failure clearly took place
wholly within the cone. The proximal avalanche deposit is com-
posed of thick lobes of a chaotic mixture of hydrothermal clays,
altered lava and scoria. Buttresses on the walls of the scar are plugs of
basalt and andesite, in places highly altered. Below one of these there
is a vigorous fumarole field. A zone of intense alteration extends
over much of the lower crater, the material being similar to that in
the avalanche. Progressive alteration of the volcano core, converting
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Figure 3 Interpretation of spreading and collapse structures at Mombacho,
showing contrasting models for basement failure at Las Isletas (aandb), El Crater
(e) and probable precursory features. a, Las Isletas: basement collapse. Deep
spreading on decollement (X) within the Las Sierras Formation rises to produce a
frontal anticline at the foot of Mombacho. Spreading induces differential
movements within the upper parts of the volcano®, contributing to the initiation
of slip on a plane (Y) within the cone. Once the dip-slip decollement is activated,
the mass above it places additional load on the spreading front, inducing
increased movement, and eventual failure through the frontal anticline (Z). b,
Plan diagrams illustrating the difference in structural style between a radially
spreading and a sector spreading volcano (that is, Mombacho). Radial spreading
produces inward dipping normal faults that cut any potential failure plane in the
cone*® In contrast, sector spreading creates outward dipping faults, which
promote collapse. ¢, El Crater: flank collapse. The El Crater collapse crater is
~15km wide and long, and 700m deep. Its walls curve inwards toward the
opening, where there is a pronounced 30-m-high lip (L). Overall, the shape is that
of a rotational slump failure in a mechanically homogenous medium", so no pre-
existing decollement plane is required. Such failures usually begin when shear
strength is reduced over a wide area'”?. At El Crater this homogeneous strength
loss was produced by progressive hydrothermal alteration.
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strong volcanic and intrusive rock to weak hydrothermal clays'®,
probably caused collapse (Fig. 3¢)".

Because hydrothermal weakening is progressive, deformation of
affected volcanoes is likely to begin long before failure, as in other
deep-seated failures', and would be indicated by steepening and
thrusting of the lower flank and by normal faulting higher up.
Increased fluid pressure® and magma intrusion could accelerate
failure, with pre-existing mass creep controlling the failure direc-
tion. Swanson™ suggested such a relationship between old altered
domes, and the orientation of the Mt St Helens collapse.

Precursory slow spreading probably triggered flank failures at
other volcanoes, notably Socompa'. Probable precursory spreading
has already been detected at Colima™ and Etna®, and we postulate
future failures for other volcanoes currently exhibiting evidence of
active spreading (Fig. 4). Spreading features observed at Kilauea
may be sites of potential collapse, though the direct involvement of
the basal décollement in such events is still uncertain'®-'2,

Because the features described here are produced by gradual
processes, they may be detectable long before any failure occurs.
Identification of basement and flank spreading allows prediction of
the type and location of potential collapses and assessment of their
probable effects. Potential collapses can be detected from evidence
of individual spreading sectors (Fig. 4a), while the symptoms of
flank spreading will be bulging and fracturing (Fig. 4b), core
weakening by persistent fumarolic activity, and evidence of old
domes and plugs. At Mt St Helens, where collapse was immediately
preceded by considerable deformation®, evidence of previous flank
movement in the collapse scar’' suggests that if the north flank had
been monitored before 1980, the location of the ultimate collapse
could have been identified well before the recent activity.

Once the location and structure of potential collapses are recog-
nized, deformation monitoring can determine baseline rates of
spreading activity, which probably range from 1 to 50cmyr ™'
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Figure 4 Examples of potential failures at spreading volcanoes. a, A spreading
sector with collapse potential: Merapi, Java; a long sector is spreading. Drawn
after van Bemmelen®. The compressive front is restrained by the Menoreh
mountains. This barrier may have inhibited flank failure during a rapid spreading
stage before a major eruption®. b, A spreading flank with collapse potential: Orosi,
Costa Rica; two flank sectors are creeping outwards. Each has a steepened front
just above the cone foot, probably hosting a thrust, and a crescent-shaped
graben higher up.
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(refs 4,9), and unusual accelerations which may immediately precede
collapse can be detected. Hundreds of volcanoes are potentially liable
to collapse: prediction of future collapse sites depends on their timely
identification by the criteria presented here, and subsequent
monitoring of deformation. As population densities increase on
the flanks of volcanoes around the world, recognition and prediction of
flank failure becomes increasingly urgent. 0
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avian origins from the
Late Cretaceous of Patagonia
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The spate of recent discoveries of Mesozoic birds has substantially
improved our understanding of the early evolution of birds and
flight'~*, but has failed to close the morphological gap between the
Upper Jurassic Archaeopteryx lithographica, the earliest known
bird, and the Dromaeosauridae, the group of non-avian theropod
dinosaurs regarded as most closely related to birds®’. Here we
describe a theropod dinosaur from Patagonia, Unenlagia
comahuensis gen. et sp. nov., which partially fills this gap. Despite
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the relatively late appearance of this dinosaur in the fossil record
(Upper Cretaceous), several features of Unenlagia are more bird-
like than in any other non-avian theropod so far discovered.
Unenlagia resembles Archaeopteryx in the morphology of the
scapula, pelvis and hindlimb. But several shared, primitive
features of the pubis, ischium and hindlimb proportions suggest
that Unenlagia may represent the sister taxon of the Avialae
(=Aves). The structure of the forelimb suggests that the avian
mode of forelimb folding, and the extensive forelimb elevation
necessary for powered, flapping flight, was already present in
cursorial, non-flying theropod dinosaurs.
Theropoda
Coelurosauria’
Maniraptora’
Unenlagia comahuensis gen. et sp. nov.
Etymology. Unenlagia, Latinized from “ufien” and “lag”, Mapuche
Indian names respectively meaning “half” and “bird”% and
comahuensis, from Comahue, a Mapuche name referring to
North-West Patagonia.
Holotype. (See Fig. 1).
Locality and horizon. Upper Cretaceous (Turonian-Coniacian®),
Rio Neuquén Formation, Sierra del Portezuelo, Neuquén Province,
Argentina. This formation has yielded remains of the basal bird
Patagonykus puertai'®"', plus a variety of non-avian theropods'.
Diagnosis. Possesses tall neural spines in posterior dorsals and
anterior sacral vertebrae, being nearly twice the height of the
centrum; deep lateral pits in the base of the neural spines of these
vertebrae; twisted scapular shaft; inflected dorsal margin of post-
acetabular iliac blade (Fig. 2).

Unenlagia is a medium-sized maniraptoran dinosaur, nearly 2 m
long. Presacral vertebrae are amphiplatyan and have pleurocoels.
Six fused sacrals are present, although the ilia extend the length of at
least nine vertebrae (that is, six sacrals, two dorsals, and one caudal),
instead of seven as in Deinonychus (Museum of Comparative
Zoology, MCZ 4871) and Archaeopteryx">'. Proximal haemal
arches are craniocaudally short and dorsoventrally long (Fig. 1),
resembling those of the dromaeosaurid Velociraptor®.

The scapula (Fig. 2a, b) is strap-like in dorsal aspect and curved in
lateral view, closely resembling that of Archaeopteryx®'®. As in the
latter, the acromion is triangular in lateral aspect, and projected
sharply cranioventrally. In contrast to the situation in non-avialan
theropods (for example, Deinonychus'®'’), the humeral articulation
of the scapula of Unenlagia is laterally oriented as in birds®'®'®,

The humerus, estimated to be 27 cm long, is 71% of the femoral
length, and is proportionally shorter than in Archaeopteryx'*™, As in
other Maniraptora’, the internal tuberosity (bicipital crest of
modern birds") is proximodistally extended.

The pelvic bones are not fused (Fig. 2c). The ilium is extensive
cranially, but the postacetabular blade is short. The latter is low and
sharp as in Archaeopteryxand enantiornithines'?, The fossa for the
m. cuppedicus is well developed, a condition that is widely present
among Coelurosauria, including basal birds'®'”!®, In contrast to
non-avialan coelurosaurs (that is, Deinoncyhus'”*), the acetabulum
of Unenlagia tends to close off medially, resembling Archaeopteryx™,
Patagopteryx’ and hesperornithiforms*?*, The brevis fossa is con-
siderably more reduced than in Deinonychus”. The pubis is slightly
shorter than the femur, is oriented ventrally as in other
maniraptorans'®', and distally bears a caudally projected “foot’
The pubic shaft expands transversally into a ‘pubic apron’ (Fig. 2d)
that is widely extended proximodistally as in Deinonychus (MCZ
4371), but in contrast with the more reduced symphysis of
Archaeopteryx and more derived birds®"'. The ischium is a short,
plate-like bone, triangular in side view. The obturator notch is
enclosed distally by a triangular obturator process, a primitive
condition lost in Archaeopteryx®* and more derived birds'>?
However, the dorsal edge of the ischium exhibits a prominent
proximodorsal process (Fig. 2c), separated from the ischiadic
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