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OBJECTIVESOBJECTIVES

GENERAL
Develop an Integrated Hydrologic-Economic-Institutional 

Water Model for the Yaqui River BasinWater Model for the Yaqui River Basin. 

SPECIFIC
Determine the impacts of climate change and variability on 

precipitation and reservoir storage in the Yaqui Basinprecipitation and reservoir storage in the Yaqui Basin.



TASKSTASKS

• Develop a water balance model to determine storage in the
reservoirs on a monthly basis.

•Create and calibrate a seasonal rainfall-runoff model.

•Incorporate climate change and climate variability into the
water balance model.



BACKGROUND

The Yaqui basin is
characterized by semi aridcharacterized by semi arid
conditions.

The basin consists of roughlyg y
72,000 square kilometers.

One of the most important agricultural regions in Mexico is located within the
basin.

Water users include farmers, rural and urban municipalities, industries, and
mines.



WATER BALANCE MODELWATER BALANCE MODEL

A node- link network is the
conceptual basis for the
model.model.

This node-link network includes
the primary reservoirs within thep y
basin, river reaches, locations
of water demand and supply,
and the Yaqui Valley.



WATER BALANCE MODELWATER BALANCE MODEL

A MATLAB code was developed in order to estimate the monthly storage

The model considers each 
surface water rights holder 
within the basin and takes

p y g
of the main reservoirs.

within the basin and takes 
into account priorities in 
allocating the water. 

The operating rules include 
the release of water 
downstream once the water 

The main objective was to determine the storage in the reservoirs in

needs have been met.

j g
October of every year, when cropping decisions are made.



WATER BALANCE MODEL
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CREATION AND CALIBRATION OF 
THE RAINFALL-RUNOFF MODEL

The watershed and sub-basin
boundaries were delineated using GIS
b d DEMbased on DEMs.

The sub-basins were aggregated and
classified into an Upper basin, a Middle
basin, and a Lower basin each with a
single outflow point.



PRECIPITATION MAPS

Precipitation data was interpolated

PRECIPITATION MAPS

Precipitation data was interpolated
on a monthly basis over a 33-year
time span using GIS.

The precipitation data was merged
into three climatic seasons:

Spring season: February-May.
Summer season: June-September
Winter season: October-January

A static runoff coefficient map was
also produced based on published
datadata.



PIXEL-BASED RUNOFF MODEL
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CALIBRATION OF THE MODELCALIBRATION OF THE MODEL

Pij
GIS * CGIS * A= Xij

Y = β X +αYij = βij Xij +αij

Min = ∑ (Y Y* )2Min = ∑ (Yij-Y ij)2

i=Sub basin
J=Season

Alpha and Beta were found minimizing the sum of the square errors.



RESULTS: CREATION AND 
CALIBRATION OF THE MODELCALIBRATION OF THE MODEL

2500

3000

)
Middle Basin

Winter Season Model (Yij)

C.N.A (Y*ij)
2500

3000

)
Middle Basin

Winter Season Model (Yij)

C.N.A (Y*ij)

1500

2000

2500

R
un

of
f (

M
C

M
)

1500

2000

2500

R
un

of
f (

M
C

M
)

0

500

1000

1970 1975 1980 1985 1990 1995 2000
0

500

1000

1970 1975 1980 1985 1990 1995 2000

The timing of the peaks matches reasonably well but the model tends

1970 1975 1980 1985 1990 1995 2000

Year
1970 1975 1980 1985 1990 1995 2000

Year

The timing of the peaks matches reasonably well,  but the model tends 
to under predict the runoff in the wettest year (1984).



RESULTS: CREATION ANDRESULTS: CREATION AND 
CALIBRATION OF THE MODEL

This table shows all the parameters fitted with the linear model. In 
most cases, the R2 values indicate reasonable fits. 



AT ACLIMATE CHANGE

• Two Global Climate Models were used : the UK’s Hadley Center model
(HADCM3) and the Canadian Center for Climate Modeling and Analysis
(CGCM) for the period 2011 2100(CGCM) for the period 2011-2100.

• A regional model was used for comparison for the period 2011-2040:
Providing Regional Climates for Impact Studies (PRECIS)Providing Regional Climates for Impact Studies (PRECIS).

•Two SRES (Special Report on Emissions Scenarios) scenarios were
used: A2 (high emission) and B1(low emission).used ( g e ss o ) a d ( o e ss o )



BIAS CORRECTION ANDBIAS CORRECTION AND 
DOWN-SCALING

•The bias-correction and downscaling approach developed by Wood et al (2002)
was used to downscale the GCMswas used to downscale the GCMs.



S ADOWNSCALING

For PRECIS, monthly percentage changes based on the 1961-
1990 record were calculated. These percentage changes were
then applied to our baseline period (1970-2000), assuming that
thi d ld b t d i th f tthis record would be repeated in the future.



CHANGE ON PRECIPITATION
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RESULTS:RESULTS:
CLIMATE CHANGE
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The forecasted precipitation is reflected in the total storage for the period 2011 2100The forecasted precipitation is reflected in the total storage for the period 2011-2100.



RESULTS:
CLIMATE CHANGE

•This table shows the percentage of times the reservoir storage 
falls below the users needs compared to the historical period.

•The storage  varies depending on the climate model  and the 
scenario used.



CLIMATE VARIABILITY

To assess the effects of year-to-year correlations in precipitation a 
l i it ti d t t (104 ) d (Ni h l t llonger precipitation data set (104 years) was used (Nicholas et al, 
2007). 
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CLIMATE VARIABILITY

An auto-regressive model approach (AR) was fitted to the 
th d l t f d i it ti d d t tsmoothed, log-transformed precipitation and used to generate, on 

a monthly basis, precipitation for a period of thirty years using the 
following approach:

( )∑ − +−+=
p

tjtjt yy εμφμ

Where μ is the mean of the data p is the order of the model φj

( )∑
=j

tjtjt
1

Where μ is the mean of the data, p is the order of the model, φj 

are fitted parameters and εt is a uncorrelated normal random 
variable.



RESULTS:
CLIMATE VARIABILITYCLIMATE VARIABILITY
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There is a small, but significant probability that the storage can fall 
below the water user’s needs.



CONCLUSIONS

• The results show that there is sufficient surface water to
meet users’ needs for a wide range of conditions
(uncertainty, climate change, and climate variability), but
this is not always the case.

•The rainfall-runoff model produces acceptable results when
compared with historical data. The best and worst matches
are obtained in the middle and lower basin, respectively.



CONCLUSIONS

Th t ti t bt i d f th i ti f•The storage estimates obtained from the incorporation of
climate change into the water model shows that the basin
could suffer from water shortages during some years
depending on the climate model or the scenario used. The
use of different GCMs or SRES scenarios that are more
optimistic or pessimistic might produce different results.

•Future assessments of climate variability should consider
season to season correlation and different ways of
classifying precipitation levels and corresponding
probabilities.
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Thank You



UNCERTAINTY ANALYSIS: A 
T A A AMONTE CARLO APPROACH

Uncertainty in the rainfall-runoff model predictions were assessed using a
Monte Carlo simulation approach, assuming that model errors are
normally distributed. Runoff was calculated using the relationship:

Y = α + β ± tn-2,1-α/2 SYXo

where α and β are best estimates, tn-2,1-α/2 is the t statistic, and SYXo
is the standard error of the estimate.

In the Monte Carlo simulations, 100 values of 1-α/2 were randomly
generated from a uniform distribution.



RESULTS:RESULTS:
MONTE CARLO
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water rights every year for the best estimates and, in some cases, for
the 10% confidence interval.


