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Abstract 1 

Over the past century, annual snowfall has increased across the ‘snow-belt’ region of the Upper 2 

Peninsula of Michigan, yet total annual precipitation has not changed, with potential impacts on 3 

hydrological processes and ecosystem composition.  Using an integrated hydrochemical 4 

approach, we characterized groundwater discharge and quantified the contribution of snow- and 5 

rain-derived waters to groundwater for an old-growth riparian area within the Huron Mountains 6 

in northern Michigan. We then quantified the relative contribution of lateral, hillslope-derived 7 

groundwater and upstream lake-water to streamwater, and the extent of hyporheic zone 8 

expansion and contraction during one growing season.  During a period of above-average 9 

snowfall, yet below average growing season precipitation, ~80% of the riparian area’s 10 

groundwater reservoir was derived from snowmelt. The relative contribution of groundwater to 11 

streamflow ranged from 70% in June to 100% in August. The remainder was derived from 12 

upstream lakes and wetlands, which dropped in elevation and relative contribution from June to 13 

August.  Finally, the extent of the hyporheic zone was small (<50cm from streambed surface) 14 

and contracted towards the stream during the recession limb of the hydrograph. We conclude that 15 

if snowfall continues to rise while total annual precipitation declines, in line with climate change 16 

scenarios for the region, then water fluxes from snowmelt will increasingly dominate summer 17 

baseflow from ‘snow-belt’ watersheds contributing to Lake Superior.   18 

 19 

Introduction 20 

 21 

The riparian area connects upland and in-stream ecosystems, where the amount and distribution 22 

of upland precipitation drive the recruitment, retention, and release of water and its constituents 23 

(carbon, nitrogen, etc.) to downstream ecosystems (Hynes, 1970; Naiman and Decamps, 1997).  24 
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 3 

Consequently, efforts to quantify patterns of subsurface and surface water movement through 1 

riparian areas are needed to inform simulation models that forecast the effects of chronic (e.g., 2 

global temperature increases) or acute (e.g., 100-year flood) climatic events on ecosystem 3 

processes (National Research Council, 2002; Naiman et al., 2005).  4 

Across the Upper Peninsula of Michigan, USA, annual precipitation falls nearly equally 5 

as snow and rain (Eichenlaub et al., 1990; Stottlemyer and Toczydlowski, 1996).  Some climate 6 

change scenarios predict an alteration in the amount and seasonality of precipitation inputs for 7 

the Lake Superior region, where predicted increases in temperature lead to drier summers, yet 8 

increasing amounts of snow precipitation during winters (Kattenberg et al., 1996; Kunkel et al., 9 

2000).  In line with model predictions, there is evidence that annual snowfall in the region has 10 

increased over the past century (Burnett et al., 2003; Norton and Bolsenga, 1993; Leathers and 11 

Ellis, 1996).  Based on Houghton, MI annual records from 1890 to 2007 12 

(http://www.admin.mtu.edu/alumni/snowfall/), snowfall has increased at 30 mm yr-1 (r2 = 0.45, p 13 

< 0.01); increases in snowfall from 1958 to 2007 for Marquette, Michigan is 64.8 mm yr-1 (r2 = 14 

0.33, p < 0.01) (NOAA). For Marquette, there does not appear to be a change in total 15 

precipitation (Marquette’s r2 = 0.008, p = 0.58), in line with climate change models that predict 16 

altered patterns of precipitation distribution for the region.  The measured increase in ‘lake-17 

effect’ snow within the Upper Peninsula is perceived to be due in part to greater rates of winter 18 

evaporation from the surface of Lake Superior, where rising annual temperatures of Lake 19 

Superior result in a longer duration of ice-free (evaporative) surface area during winter (Burnett 20 

et al., 2003; Leathers and Ellis, 1996).  Annual increases in snow precipitation lead to greater 21 

amounts of spring snowmelt, which in turn can lead to elevated pulses of either “acidic” and/or 22 

“dilution” events that can affect local streams and lakes by altering stream chemistry and 23 
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productivity (Stottlemyer and Toczydlowski, 1991; Rascher et al., 1987; Johannessen and 1 

Henriksen, 1978).  Furthermore, where annual precipitation amounts stay constant or even rise, 2 

but growing season precipitation decreases (i.e., more snow, less rain), then ecosystem 3 

composition, structure and function are likely to change in response to altered hydrological 4 

processes.  Considering the numerous scenarios and implications for northern ecosystems under 5 

a changing climate (Schlesinger, 1991; Levine, 1992; Davis et al., 2000; Nijssen et al., 2001), 6 

quantifying current connections between climate and forest hydrology in near-pristine north-7 

temperate forests will provide an important baseline for quantifying future changes. 8 

Overland flow and direct precipitation inputs are minor contributors to headwater streams 9 

in northern temperate forests (Brooks et al., 2003), and so field-based hydrology studies in these 10 

systems have focused on riparian groundwater fluxes to streamflow (Walker and Krabbenhoft, 11 

1998; McGlynn et al., 1999; Morrice et al., 1997; Vidon and Hill, 2004; Wondzell, 2005). 12 

Groundwater contributions of terrestrially-derived nutrients and elements contribute to biological 13 

and chemical processes within the surface water environment (Gilbert et al., 1994; Hemond and 14 

Fechner-Levy, 2000; Hill, 2000; Holmes, 2000), and the functional significance of riparian soils 15 

on nutrient cycling and flux regulation is well recognized (McClain et al., 2003; Mulholland, 16 

1992; Cirmo and McDonnel, 1997; Schindler and Krabbenhoft, 1998; Baker et al., 2000; 17 

Thomas et al., 2001; Valett et al., 2002). Further, riparian groundwater provides a stable source 18 

of water to streams and transpiring vegetation.  A change in precipitation inputs to groundwater 19 

could potentially alter riparian ecosystem processes, where the distribution (timing, duration, and 20 

amount) of inputs are likely to affect solute fluxes and concentrations.       21 

In this study we used three approaches to quantify the water sources to a headwater 22 

stream in the Huron Mountain Reserve in the Upper Peninsula of Michigan, USA.  First, we 23 
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 5 

compared upstream and downstream discharge to estimate groundwater contribution along a 1 

stream reach (Harvey and Wagner, 2000; Brooks et al., 2003; Ward & Trimble, 2004). Secondly, 2 

we measured the isotopic composition for oxygen (O18/O16) and hydrogen (H2/H) within stream 3 

and source waters to partition ground- and stream-sources (Winograd et al., 1998; Burns et al., 4 

2001; Katsuyama et al., 2001; Atekwana and Richardson, 2004; Pardo et al., 2004; Monteith et 5 

al., 2006, Cey et al., 1998; McGlynn et al., 1999; Buttle, 1998; Wenninger et al., 2004; Reddy et 6 

al., 2006).  Lastly, we used semi-conservative parameters of conductivity, temperature and 7 

chloride concentration to create a more complete description of groundwater hydrology (Stream 8 

Solute Workshop, 1990; Christopherson et al., 1990; Hooper et al., 1990; Mazor, 1991).  This 9 

diverse hydrochemical approach was used to partition the hillslope’s hydrological contribution to 10 

the downslope riparian area, stream channel, and hyporheic zone (McGlynn et al., 1999; Burns et 11 

al., 2001; Ladouche et al., 2001; Seibert, 2003; Wenninger, 2004).   12 

 The Fisher Creek riparian area, where the current study was conducted, has no known 13 

history of management, including land clearing or harvesting for timber, and so is an important 14 

pristine or old-growth site for conducting baseline forest-hydrology research.  We build on 15 

previous isotope-based hydrology studies of northern hardwood forests (McGlynn et al., 1999; 16 

Cey et al., 1998; Buttle et al., 2001; Monteith et al., 2006), by describing the baseflow conditions 17 

and relative contributions of an old-growth northern hardwood riparian area. Our objectives were 18 

to characterize the riparian subsurface hydrology for two old-growth riparian reaches.  19 

Specifically, we quantified groundwater discharge and the relative contributions of: 1) rainfall 20 

and snowfall to riparian groundwater; and 2) groundwater and upstream sources to streamwater. 21 

We also used the isotopic signature of groundwater and streamwater to examine the extent and 22 

dynamics of the hyporheic zone.  We hypothesized that: 1) snowmelt would be the dominant 23 
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source to groundwater during baseflow; 2) lateral groundwater inputs from the hillslope to 1 

streamwater would increase in relative contribution along the recession limb of the hydrograph, 2 

as longitudinal inputs from upstream sources decrease; and 3) the zone of hyporheic mixing 3 

would contract towards the stream during the recession limb of the hydrograph as upstream 4 

inputs and surface streamflow decreases. 5 

 6 

Methods 7 

 8 

Site Description 9 

This study was conducted in the Huron Mountain Reserve (HMR) (46o52’ north latitude, 87o50’ 10 

west longitude), a conservation area within the larger, privately-owned Huron Mountain Club 11 

property in the Upper Peninsula of Michigan, USA near Lake Superior (Figure 1a).  The HMR 12 

contains one of the largest (~2600-hectares) pristine old-growth forests within the Great Lakes 13 

region (Frelich, 1995; Davis, 1996a; 1996b; Woods, 2000; Flaspohler and Meine, 2006).  The 14 

climate of the HMR is characterized by a relatively even distribution of annual precipitation, low 15 

potential evapotranspiration, and a strong local influence from the proximity to Lake Superior, 16 

which includes moderated temperatures and elevated snowfall (Figure 2; Denton & Barnes, 17 

1988).  Three NOAA weather stations located in Marquette, Houghton and Herman are within 55 18 

km of the research site. Based on isohyetal interpolation, we estimate a 30-year average (1971-19 

2000) for mean annual temperature of 4.2o C, a mean precipitation of 918 mm, and a mean 20 

snowfall of 5453 mm for the HMR.  Snow-free season rainfall data were collected daily from 21 

two locations approximately 3-km north and east of the Fisher Creek using graduated rain 22 

collectors during the study period from April 7 to Nov. 11, 2005 (total = 522 mm). To account 23 
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 7 

for the spring snowmelt, snow water equivalent was found to be 0.72 mm mm-1 (± 0.112; n= 6) 1 

for late March, which for the average measured snowpack depth of approximately 400 mm was 2 

equal to about 290 mm of meltwater precipitation per unit area.  Together, snowmelt plus 3 

rainfall, the localized 812 mm of precipitation corroborates the below average conditions for the 4 

study period.   5 

Our study was conducted along Florence Pond Drain (FPD), a 1st order reach that drains 6 

Florence Pond, and Fisher Creek (FC), a 2nd order reach that drains Trout Lake and other small 7 

headwater wetlands (Figure 1b). The two reaches were selected based on mature forest 8 

condition, and similarity in lithotopography (Montgomery, 1999) and channel characterization 9 

(Rosgen, 1994).  The FC study area is approximately 600 m in straight length, with an 10 

approximate 840 m of stream channel length, while the FPD study area is approximately 300 m 11 

in length, with an approximate stream channel length of 540 m.   12 

The riparian areas of FC and FPD have been characterized as yellow birch (Betula 13 

allegheniensis), eastern hemlock (Tsuga canadensis), northern white cedar (Thuja occidentalis), 14 

red maple (Acer rubrum) forest type (Simpson et al., 1989; 1990), although sugar maple (Acer 15 

saccharum), white pine (Pinus strobus), white spruce (Picea glauca), and balsam fir (Abies 16 

balsamea) occur throughout the riparian area.  The canopy is composed of super-dominant 17 

individuals of white pine that often exceed 40 m in height and 1.2 m in diameter (Wells and 18 

Thompson, 1976), which attest to the absence of timber harvesting activities within the 19 

watershed.  ANOVA analyses revealed that reaches did not differ with respect to amounts of 20 

large woody debris (volume, length, or biomass) or decay class frequency.  Because 21 

characteristics of large woody debris within a riparian forest often is related to disturbance 22 

history (Barnes et al., 2003; Bragg and Kershner, 1999; Duvall, 1997; Gregory et al., 2000; 23 
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 8 

Hedman et al., 1996; McClure et al., 2004; Naiman et al., 2002), we expect that the FC and FPD 1 

reaches to be similar in disturbance history. 2 

The Huron Mountains consist of Huronian and Archean formations, which are of 3 

Precambrian metamorphic origin resulting from uplifting of the Canadian Shield (Dorr & 4 

Eschman, 2001).  They were subject to glacial processes until ~10,000 ybp.  Floodplains of 5 

HMR riparian areas consist of deep sandy glacial outwash sediments, and are characterized as 6 

sandy stream terraces with deep, moderately well drained loamy sands (Simpson, 1990).  Soils 7 

are mapped as either Kalkaska Sands or the Evart-Pelkie-Sturgeon Complex, in which all soils 8 

are sands with hydraulic conductivity values that range from 0.000423-0.0141 cm s-1 and pH 9 

values that range from 3.6-8.4, depending on depth. The higher pH Evart type is composed of 0-10 

10 percent calcium carbonate, but when soils were sampled to a depth of 50cm throughout the 11 

riparian area, application of 10% HCl did not result in a characteristic bubbling reaction, and so 12 

indicates little or no calcium carbonate. 13 

 14 

Streamflow 15 

Stream discharge was measured using velocity and cross-sectional area measurements 16 

throughout the two reaches. Velocity was measured with a Marsh-McBirney™ electromagnetic 17 

flow meter (Hauer & Lamberti, 1996; Brooks et al., 2003). Discharge was determined for 18 

multiple stage heights, while stage was recorded regularly using 3-staff gauges positioned within 19 

the stream’s thalweg at two locations along the FC reach and at one location within the FPD 20 

reach.   21 

To predict discharge during periods when no field data were collected, a discharge-to-22 

discharge relationship was developed using regression analysis against a nearby USGS stage 23 
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 9 

recording data station (http://waterdata.usgs.gov/nwis/rt).  A discharge-to-discharge power-1 

function was determined to be the best fit for FC and FPD discharge. Power functions have been 2 

used in similar studies of other regional watersheds (Cey et al., 1998; Goebel, 2001).  The 3 

Yellow Dog River USGS station located approximately 20 km from Fisher Creek provided the 4 

best continuous discharge data with which to predict FC and FPD flow (r2 = 0.76 for FC, r2 = 5 

0.90 for FPD; p ≤ 0.05). 6 

 7 

Well Network 8 

Throughout FC and FPD, 11-meter segments of straight reaches were used as the upper and 9 

lower bound of each plot.  A total of 15 plots were randomly chosen from a population of 46 10 

selected 11-meter segments of similar morphological characteristics within the reaches.  Each 11 

rectangular plot spans the farthest extent of the historical floodplain on either side of the stream 12 

(Figure 1c).  Within each plot, at least 6-wells were randomly located at: 1) the approximate 13 

bankfull width of the stream (Ward & Trimble, 2004), and 2) the estimated floodprone width of 14 

the stream, where floodprone is considered the width of the stream at twice the depth of the 15 

thalweg.  Beyond the floodprone wells on both sides of the stream, a floodplain well was 16 

installed at the farthest edge of each plot, which coincided with the farthest extent of the 17 

historical floodplain.  Terrace wells were positioned above the floodplain (n= 4 in FC, n= 2 in 18 

FPD) irrespective of plot location (Figure 1c).  There were 11 plots positioned within the FC 19 

reach, with a total of 72-bankfull wells, 71-floodprone wells, and 22-floodplain wells.  Within 20 

the FPD reach, a total of 4 plots, with 26-bankfull wells, 26-floodprone wells, and 8-floodplain 21 

wells were installed.   22 
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 10 

All wells were installed using a bucket-auger with each bankfull and floodprone well 1 

installed to approximately 30-cm below the stream bed elevation; floodprone and terrace wells 2 

were installed 2-3 m below ground-surface, in order to extend below the point of contact with the 3 

water table.  All wells were constructed of 5.1-cm inside-diameter PVC pipe of various lengths 4 

with perforations along the underground portion of the pipe.  Each perforated section of the pipe 5 

was then covered with a nylon filter to keep sediment from entering the wells, while each pipe 6 

bottom and top was capped with a fitted PVC cap.  All wells were back-filled with native 7 

material and capped with 5cm of Portland cement. Each cap was then sealed with 5cm of 8 

bentonite clay to resist preferential flow down the well exterior.     9 

Additionally, streambed wells (or mini-piezometers, as described in Dahm and Valett, 10 

1996) of 1.9 cm diameter PVC were installed into the middle of the stream thalweg; these wells 11 

were perforated from 10- to 50-cm below the streambed.  At least 3 mini-piezometers were 12 

randomly placed within each plot (see Fig. 1c; n=37 for FC, n=13 for FPD).  All, wells were 13 

installed in 2004 and not measured or sampled until the spring of 2005 to allow wells to settle.   14 

 15 

Water Sampling and Analyses 16 

Samples of streamwater for the δ18O and δ2H analyses were collected by grab-sampling while 17 

groundwater samples were collected with a peristaltic pump from wells and mini-piezometers.  18 

Groundwater and streamwater samples were taken from 4 of the 15 randomly selected plots in 19 

June and September, 2005.  Precipitation was collected using 6 rainfall collectors placed 20 

throughout the watershed; while snowwater was collected from 10 snowpack cores sampled 21 

along 2 transects spanning a 100 m gradient of elevation.  Precipitation samples were collected 22 

for 6 events from June through September, 2005 and snowpack samples were collected on a 23 
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single occasion in April 2005. All samples were collected into acid-washed HDPE 125ml bottles, 1 

then kept chilled on ice until filtration within 24-hours of collection (0.7µ glass fiber filters 2 

within a polypropylene inline filter holder attached to a peristaltic pump using sterilized tygon 3 

tubing).  The samples were then kept in a dark refrigerator (~ 2oC) until sent to the USDA 4 

Forestry Sciences Lab in Moscow, Idaho for isotope analysis using Finnigan Delta+ Continuous 5 

Flow IRMS (Thermo Scientific, Waltham, MA).   6 

Chloride analyses of monthly samples collected from all wells, piezometers and stream 7 

grab-stations, were conducted following vacuum filtration with an acid-washed polysulfone filter 8 

apparatus (0.7µ glass fiber filter paper), on a Dionex DX 500™ ion chromatograph analyzer 9 

(Dionex, Sunnyvale, CA) at the USDA Forest Service Forestry Sciences Lab in Grand Rapids, 10 

MN.  Monthly in situ measurements of temperature and conductivity were collected for all wells 11 

and stream sampling locations using a YSI 556TM multi-parameter meter (YSI Inc., Yellow 12 

Springs, OH).  Outliers that were more than 2 times the standard error were omitted before 13 

analyses.  Precipitation values for conductivity and chloride concentration were assumed to equal 14 

those measured at the nearest National Atmospheric Deposition Program (NADP) site in 15 

Chassel, MI approximately 30-km northwest of the study site (http://nadp.sws.uiuc.edu/sites/).   16 

 17 

Groundwater Discharge  18 

Stream Gauging Method:  As one measure of groundwater contribution along each stream reach, 19 

the difference in discharge using stream gauging between an upstream and downstream pair of 20 

sample points was determined.  The difference between upstream and downstream pairs was 21 

fitted for a regression (for FPD, r2= 0.93, p<0.05; for FC, r2= 0.96, p<0.05) which was used to 22 
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predict groundwater discharge from the previously described daily discharge estimates.  Given 1 

local topography constraints, we assume gaining reaches with no losses of streamwater.   2 

 3 

Partitioning Water Sources 4 

Stable Isotopes:  Isotope data were analyzed using a mixing model procedure to partition water 5 

sources.  This approach assumes no between-population correlation between isotopic signatures.  6 

An analysis of model error was performed with the Environmental Protection Agency, Western 7 

Ecology Division’s free software program IsoError© (Phillips and Gregg, 2001; 2003).  The 8 

simplified model equation used to partition different sources of each chemical and physical 9 

parameter, is expressed as: 10 

 11 

Cmixture = XCsourceA + (1-X)CsourceB 12 

 13 

where Cmixture is the mean of the water mixture of the two end-members, and CsourceA is the mean 14 

for one source end-member, while CsourceB is the mean for the other end member. Solving for X 15 

provides the percent contribution by each end member in the mixture.   16 

To estimate the source contributions of water within the groundwater aquifer mixture 17 

(floodplain and terrace wells), the end-members were pooled into late-winter snowpack isotopic 18 

values and into summer rain precipitation concentration values.  For estimating the source 19 

contributions within the hyporheic zone (streambed mini-piezometers and bankfull wells), 20 

streamwater and groundwater concentration were considered the two end-members. The two 21 

concentration end-members used to partition streamwater were groundwater from streamside 22 
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wells (mean of bankfull and flood prone locations) and surface water from the upstream Trout 1 

Lake and Florence Pond.   2 

 3 

Conservative Tracers:  Because chloride is considered a highly soluble and a somewhat 4 

conservative natural tracer (Stream Solute Workshop, 1990; Hart et al., 1999; Hinkle et al., 2001; 5 

Thomas et al., 2003), we used chloride concentration to partition hyporheic water sources of 6 

groundwater and streamwater.  We also used measurements of conductivity and temperature as 7 

semi-conservative tracers for water source partitioning (Robson & Neal, 1990; Kleissen et al., 8 

1990; Mazor, 1991; Cey et al., 1998; Battin et al., 2003; Wenninger et al., 2004; Monteith et al., 9 

2006) within the hyporheic zone and streamwater (groundwater vs. upstream reservoirs) 10 

estimates, respectively.      11 

 12 

Statistical analyses 13 

ANOVA was used to test for differences between well positions and sampling locations, while 14 

linear and non-linear regressions were performed for isotope and discharge comparisons.  The 15 

univariate models, descriptive statistics, and Least Significant Differences (LSD) comparisons 16 

were performed using SPSS© statistical software, while all regressions were performed using 17 

SIGMAPLOT© software.  All differences are considered significant at the p≤ 0.05 level, unless 18 

otherwise stated.     19 

 20 

Results & Discussion 21 

 22 

Groundwater Discharge 23 
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The stream gauging approach yielded estimates of groundwater discharge for the study period 1 

that ranged from 10.8-14.4 m3 hour-1 for FC and 1.8-144 m3 hour-1 for FPD. Groundwater 2 

discharge for each reach decreased from onset of snowmelt through the summer growing season, 3 

but increased with autumnal precipitation inputs, likely as a result of increased inputs and 4 

reduced evapotranspiration demands (Figure 3).  The greater range/relative flashiness of FPD, 5 

compared to FC, is likely due to a more constrained floodplain along the study reach with a 6 

shorter residence time of the relatively steep upslope recharge. 7 

 8 

Partitioning Water Sources  9 

Precipitation Inputs:  The distinct isotopic signatures of rain and snow precipitation permitted us 10 

to quantify the relative contributions as source waters to groundwater and streamwater.  By 11 

regressing δ2H (‰) against values of δ18O (‰) for precipitation, we developed a local meteoric 12 

water line (LMWL) where δ2H = 7.8 δ
18O + 14.1 (R2 = 0.99) (Figure 4).  The LMWL very 13 

closely approximates the recognized global meteoric water line for precipitation with the formula   14 

δ
2H = 8.0 δ

18O + 10 (Craig, 1961).  Upon superimposing our values for groundwater, 15 

streamwater, and upstream reservoirs (lake-waters), a local evaporation line (LEL) with the 16 

equation δ
2H = 5.0 δ

18O - 26.5 (R2= 0.83; p< 0.0001) is formed.  The divergence of the LEL 17 

from the LMWL distinguishes the evaporative enrichment that occurs for the site, while the LEL 18 

intersection with the LMWL closely approximates the mean annual precipitation signature 19 

(Mazor, 1991; Gibson et al., 2005; Reddy et al., 2006), which was approximately -14.5 ‰ for the 20 

Fisher Creek watershed during 2005.  Walker and Krabbenhoft (1998) found a 2-year volume 21 

weighted average of approximately -11 ‰ for a Northern Wisconsin site.  Since the Fisher Creek 22 

watershed is closer in proximity to Lake Superior it experiences more lake-effect snow 23 
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precipitation, therefore the relative depletion in signature is expected.  The evaporative trend is 1 

very similar to Reddy et al.’s (2006) LEL for a north-central Minnesota watershed, where most 2 

groundwater closely resembled the LMWL.  FC’s and FPD’s groundwater and streamwater do 3 

not show much divergence from the LMWL, therefore evaporative enrichment is relatively low 4 

within the stream.  Conversely, the values for the upstream lakes (Trout Lake and Florence 5 

Pond) indicate strong enrichment, where 2H preferentially evaporates over 18O during the 6 

summer and/or rain dilution continues to enrich the chemical signature of the lakes.  7 

 8 

Groundwater Sources:  The signature of meteoric water has been shown to follow a sine function 9 

relationship with the seasons (Reddy et al., 2006; Dewalle et al., 1997; Gibson et al., 2005), but 10 

for shorter time steps the LMWL provides an indication of whether ground, stream, or lake-11 

waters are derived from rain or snow.  For 2005, Fisher Creek streamwater was positioned 12 

between the range of values found for snow and rain.  Isotopic analyses revealed that 13 

streamwater closely resembled groundwater (Figure 5), and that both stream and groundwaters 14 

derived primarily from snowmelt, with minor contributions from rain or upstream lakes.  15 

Because streamwater during base flow was on average 80% groundwater, and groundwater was  16 

85% snowmelt, we conclude that streamwater during baseflow was up to 70% of snowmelt 17 

origin. 18 

The distinctness of our results is sensitive to any isotopic enrichment resulting from the 19 

loss of lighter water during sublimation of snow or evaporation of meltwater and/or intercepted 20 

rainwater.  In fact, several laboratory and in situ studies estimated the δ18O enrichment of snow 21 

to snowmelt water to range from + 1.4 ‰ to + 5.6 ‰ (Hermann et al., 1981; Cooper et al., 1993; 22 

Mast et al., 1995; Suzuki, 1995; Taylor et al., 2002).  Mast et al. (1995) found an enrichment of + 23 
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1.4 ‰ for a Colorado site while Taylor et al. (2002) found an enrichment of + 4.5 ‰ for another 1 

Colorado site and an enrichment of > 5 ‰ for a Vermont site.  To address enrichment in the 2 

mixing model, we conservatively assumed that at our site, snowmelt was enriched to a maximum 3 

of + 4 ‰ relative to snow.  Additionally, soil evaporative enrichment can be large in arid 4 

climates (Gat, 1998; Yakir, 1998), but an enrichment of +1.5 ‰ is considered a limit in humid 5 

climates (Gat, 1998).  Considering this potential enrichment along with other selective 6 

enrichment factors (e.g. selective runoff processes and canopy interception), a maximum rain 7 

enrichment of 1.5 ‰ was evaluated within the mixing model. 8 

Based on our analyses of the possible range of enrichment, the 95% confidence limit for 9 

the percent of groundwater that was snow derived for May ranged from 73-100% (Table 1).  For 10 

August the range was slightly lower at 69-97% snow-derived groundwater, which may be an 11 

indication of slight dilution with rain or evaporative enrichment that occurred since May.  Given 12 

all the potential evaporative enrichment effects, our analysis conservatively suggests that ~ 85% 13 

of groundwater is snowmelt derived.  Given evidence of low enrichment from stream values, we 14 

believe that this is a low estimate for snowmelt’s contribution to groundwater within the Fisher 15 

Creek Watershed. This conservatively high estimate of contribution underscores the importance 16 

of snowmelt to this riparian system. 17 

 Approximately 50% of annual runoff in the region occurs during and immediately after 18 

snowmelt (Stottlemyer & Toczydlowski, 1996; Stottlemyer & Toczydlowski, 1999; Stottlemyer 19 

& Toczydlowski, 2006), with snowfall equaling approximately 50% of annual precipitation 20 

inputs (Eichenlaub 1970; Eichenlaub et al., 1990; Stottlemyer & Toczydlowski, 2006).  Because 21 

snowmelt occurs before the growing season commences, during which evapotranspiration losses 22 

are minimal, it is likely that a greater percentage of snowmelt water will reach the riparian 23 
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groundwater system than growing season precipitation inputs.  This may explain why the 1 

groundwater and streamwater signatures varied very little between May and August (Fig. 5).  2 

The uneven distribution of snowmelt to rain precipitation during a moderately droughty 2005 3 

(Figure 2), led to a snow-dominated riparian groundwater reservoir. 4 

 5 

Streamwater Sources:  An isotope mixing model was used to separate groundwater and upstream 6 

lake water sources that contributed to streamwater in the FC and FPD reaches of study.  7 

Groundwater in May contributed ~75% of the streamwater, while groundwater in August 8 

contributed ~90% to streamwater.  These results indicate that upstream lakes and ponds in May 9 

resemble snowmelt more than in August, and that groundwater is more influential in August due 10 

to lower surface water elevations of upstream lakes.  Therefore, our hypothesis of an increasing 11 

percentage of groundwater derived streamwater during the recession limb of the hydrograph is 12 

supported. 13 

Other results from this study support this isotope-based conclusion.  Specific conductivity 14 

of waters varied by riparian position (Table 2), with streambed, bankfull and floodprone 15 

positions exhibiting the highest conductivities, while more distant groundwater positions 16 

(floodplain + terrace wells) had the lowest conductivities.  These results indicate that 17 

precipitation with low conductivity (< 0.02 mS cm-1) gains ions as it percolates through soils 18 

along a course to the stream.  McGlynn et al. (1999) found similar increases in solute 19 

concentrations along riparian flow paths.  Based on mixing model results for conductivity, the 20 

June contribution to streamwater by upstream lakes (precipitation values as a proxy) was 21 

estimated at 40%, while in August it decreased to 23%.  If one separates the analysis by reach, 22 

upstream sources contribute less to FPD streamwater than the FC reach, similar to earlier 23 
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indications derived from isotope data.  Additionally, both reaches show increases in groundwater 1 

contribution from June to August, which corroborate earlier isotope data.  The conductivity 2 

model results in a greater (2X) contribution from upstream lakes than the isotope model results 3 

(25% in May/June to 10% in August), however the difference between months is similar; with a 4 

12-15% decrease in upstream lake/upstream precipitation inputs to streamwater from June to 5 

August.  The conductivity and isotope data both suggest that streamwater is dominated by 6 

groundwater inputs and upstream-inputs to streamwater are reduced in August when surface 7 

water elevations in the upstream lakes have dropped.  When the late autumnal period is analyzed 8 

for conductivity, the contribution from upstream lakes rises to nearly 53% in October, which is a 9 

13% increase from June.  This pattern in upstream contribution correlates well with the observed 10 

hydrograph (Figure 3), where periods of elevated recharge to upstream lakes, such as early 11 

season snowmelt and autumn rain, result in reduced contribution of groundwater to streamwater.         12 

 13 

Hyporheic Zone:  Isotope, chloride and water temperature mixing models were performed to 14 

describe the extent of the hyporheic zone and the relative contributions of groundwater and 15 

streamwater to within hyporheic waters (Hinkle et al., 2001; Battin et al., 2003).  Based on 16 

temperature and chloride concentration data, the stream contributed approximately 25% of the 17 

water found within waters < 50 cm from the streambed (within bankfull and streambed wells) in 18 

early June, while the late summer values for these wells were indistinguishable from 19 

groundwater.  With the onset of autumn rains, the stream contributed nearly 36% to bankfull and 20 

streambed wells, as determined from temperature measurements in October.  Oxygen isotope 21 

signatures resulted in a 38% streamwater contribution to bankfull and streambed wells in late 22 

May, and 0 % contribution in August due to identical groundwater and streamwater end-23 
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members.  Although there is a difference between the results for determining the percent 1 

contributions to the waters within bankfull and streambed wells, all results indicate that the 2 

hyporheic boundary was detectable within our sampling design, was consistently close to the 3 

streambed’s margin (< 50cm), and contracted seasonally in unison with the discharge 4 

hydrograph, as hypothesized.  For these sandy bottom stream reaches, there was no hyporheic 5 

mixing beyond 10-cm during baseflow conditions for the moderately droughty summer.  6 

 7 

Conclusions 8 

 9 

The groundwater dynamics during a period of moderate drought provided a snapshot of changing 10 

climatic effects on the riparian hydrology within a Lake Superior watershed.  Snowfall is 11 

increasing throughout the region, while total precipitation appears to be unchanged (Burnett et 12 

al., 2003; Norton and Bolsenga, 1993; Leathers and Ellis, 1996).  The redistribution of 13 

precipitation is a predicted outcome from global climate change. If snowfall continues to rise, 14 

while total annual precipitation declines, in line with climate change scenarios for the region 15 

(Kattenberg et al., 1996; Kunkel et al., 2000), then it is likely that riparian ecosystems feeding 16 

Lake Superior will experience a greater range of water and nutrient fluxes from snowmelt to 17 

summer baseflow.  Stottlemyer and Toczydlowski (1996; 1999; 2006) estimated that regional 18 

snowpacks contribute ~ 50% to annual runoff or streamflow.  However, our calculations indicate 19 

that baseflow conditions of an old-growth riparian area are not evenly distributed, at least for a 20 

year with an above average snowmelt-to-rain precipitation ratio. The isotope-derived mixing 21 

model estimated that snowmelt accounted for approximately 80% of the inputs to the riparian 22 

groundwater during 2005 baseflow conditions with the remaining 20% of inputs likely from rain 23 
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during the previous non-growing season (spring and fall, 2004). Models also allowed for the 1 

observation that groundwater’s relative contribution to streamflow increases along the recession 2 

limb of the hydrograph, as upstream reservoirs decrease in relative influence downstream.  3 

Future increases in snowfall, without an increase in rain, may further lead to riparian 4 

groundwater with snowmelt origin, and stream baseflow of groundwater origin.  The changes in 5 

stream chemistry, let alone streamflow, could greatly alter the productivity of in-stream 6 

ecosystems.  7 

We also observed that in our riparian areas, the hyporheic zone was very small in extent 8 

(< 50 cm from the streambed surface) and shrank during the growing season, as streamwater 9 

contribution and hyporheic zone expansion and contraction also followed the hydrograph.  As 10 

the hyporheic zone boundary was indistinguishable during the drought conditions of summer 11 

baseflow, an argument could be made that the hyporheic zone processes are minimal and/or 12 

contracted during this period, while higher flow conditions expand the boundary and zone of 13 

hyporheic mixing, potentially leading to a greater impact on ecosystem processing of nutrients.   14 

Our isotope – based analyses allowed us to track the flux and fate of water of a remote 15 

northern old-growth watershed, and highlighted the dominant role that snowmelt plays in the 16 

functioning of old-growth riparian ecosystems of the Great Lakes.  Faced with ecosystems that 17 

are being altered by climate change, our research also highlights the need for long-term, diverse 18 

hydrological research within unaltered ecosystems that exhibit pronounced variation in 19 

precipitation as they may be sensitive to future changes in climate.   20 

 21 
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Table 1. Mixing model results for determining proportionality of source waters to 

groundwater for Fisher Creek, 2005. 

Groundwater Snowmelt (N=8; March) Rain (N=23; June - Sept.) 

Sample Date 

&  δ
18

O 

Corrections* 

δ
18

O 

(‰) 

δ
18

O 

(‰) 

% of 

GW 
SE 

95% 

C.L. 

δ
18

O 

(‰) 

% of 

GW 
SE 

95% 

C.L. 

May  (N=9) -14.3 -19.1    -6.2    

snow +3‰ -14.3 -16.1 82 4.3 73-91 -6.2 18 4.3 9-27 

snow +4‰; 

rain +1.5‰ 
-14.3 -15.1 92 4.3 83-100 -4.7 8 4.3 0-17 

Aug.  (N=5) -13.9 -19.1    -6.2    

snow +3‰ -13.9 -16.1 78 3.9 69-86 -6.2 22 3.9 14-31 

snow +4‰; 

rain +1.5‰ 
-13.9 -15.1 88 3.9 80-97 -4.7 12 3.9 3-20 

* Interpolated enrichment corrections based on data from Taylor et al., 2002 & Gat, 1998. 
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Table 2.   ANOVA Results with Least Significant Differences (LSD) for temperature, 

conductivity, and chloride of waters from the Fisher Creek watershed by position in riparian 

landscape, June-October 2005. 

Temperature Conductivity Chloride Riparian 

Position ºC S.E. LSD 
mS  

cm-1 
S.E. LSD ppm S.E. LSD 

Streamwater 11.5 0.17 A 0.086 0.009 B 0.68 0.01 A 

Streambed 10.4 0.12 B 0.149 0.003 A 0.66 0.01 A 

Bankfull 9.84 0.07 C 0.148 0.003 A 0.63 0.01 B 

Floodprone 9.76 0.07 C 0.141 0.003 A 0.62 0.01 B 

Floodplain 8.67 0.10 D 0.085 0.006 B 0.64 0.01 B 

Terrace 8.82 0.30 D 0.033 0.002 C 0.53 0.03 C 
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 1 

Figure 1.  Location of Huron Mountains, MI, USA (A), and locations of plots (rectangles in B) 2 
along the middle section of Fisher Creek and lower section of Florence Pond’s Drain, within the 3 
Huron Mountain Reserve.  A reference diagram (C) is provided that describes the relative 4 
position of well and in-stream piezometer placement within the riparian plots; the dotted line 5 
represents the groundwater elevation, while bold arrows represent possible upwelling flowpaths. 6 
 7 
Figure 2.  Monthly precipitation and snowfall data for nearby Marquette, MI. 8 
 9 
Figure 3.  Groundwater discharge of Florence Pond Drain (FPD) and Fisher Creek (FC), along 10 
with the Huron Mountain Reserve’s rain precipitation inputs for 2005 (gray shaded area).  Notice 11 
the difference in scale (log) for discharge between reaches.  12 
 13 
Figure 4. Local Meteoric Water Line (LMWL; solid line) of δ2H (‰) and δ18O (‰) for all 14 
precipitation (snow and rain) collected within the Fisher Creek Watershed, 2005; along with the 15 
regressed local evaporation line (LEL; dashed line) for all ground- and surface-waters collected.    16 
 17 
Figure 5.  δ18O (‰) for select waters of the Fisher Creek Watershed, 2005.  The snowmelt 18 
signature was elevated +4‰ from the snowpack signature to account for enrichment processes 19 
(estimated from Talyor et al., 2002) used in mixing model analyses.  Error bars are present, but 20 
hidden under most symbols. 21 
 22 
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